1
|
Xu R, Li L, Ke Y, An Z, Duan W, Guo M, Tan Z, Liu X, Liu Y, Guo H. The role of pyroptosis in environmental pollutants-induced multisystem toxicities. Life Sci 2025; 372:123632. [PMID: 40220954 DOI: 10.1016/j.lfs.2025.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
The global ecosystem is adversely affected by environmental pollutants, which have numerous deleterious consequences on both the environment and human health. A multitude of human organs and systems, including the neurological, digestive, cardiovascular, reproductive, and respiratory systems, can be adversely affected by these pollutants. Pyroptosis is a form of programmed cell death, primarily involving the Caspase-1/Gasdermin D (GSDMD) classical inflammasome pathway, Caspase-4/5/11/GSDMD non-classical inflammasome pathway, Caspase-3/8 pathway, and other signaling pathways, which induce cell death and regulate the occurrence of inflammatory responses. Pyroptosis plays an important role in a range of diseases, including cancer, neurodegenerative diseases and cardiovascular disease. Evidence has emerged in recent years indicating that environmental pollutants exert various toxic effects by modulating pyroptosis. In this review, we examine hepatotoxicity, cardiovascular toxicity, nephrotoxicity, neurotoxicity, pulmonary toxicity, reproductive toxicity and the related mechanisms caused by environmental pollutants through the regulation of pyroptosis. We aim to provide theoretical references for future toxicity research on environmental pollutants.
Collapse
Affiliation(s)
- Rui Xu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yijia Ke
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
2
|
Chang R, Sun J, Leng J, Wang Z, Mu S, Li Y, Wang J, Song L. A new type of Caspase-1 upon recognizing bacteria inhibits GSDME-dependent histone modification and NF-κB signaling. Commun Biol 2025; 8:827. [PMID: 40442231 PMCID: PMC12122919 DOI: 10.1038/s42003-025-08290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/23/2025] [Indexed: 06/02/2025] Open
Abstract
In the present study, a new type of Caspase-1 homolog is identified from Crassostrea gigas (defined as CgCas1-2D). It is composed of 2×DSRM-CASc domain and has closer evolutionary relationship with mammalian Caspase-1s. The mRNA expressions of CgCas1-2D increase significantly after Vibrio splendidus or LPS stimulation. Recombinant CgCas1-2D and its 2×DSRM and CASc domains all bind various PAMPs and bacteria. rCgCas1-2D shows the highest binding activity to human Caspase-1 substrate. Upon recognizing bacteria, CgCas1-2D co-localizes and interacts with CgGSDME, while it has no cleavage activity to CgGSDME. CgCas1-2D inhibits the histone methylation and acetylation levels and CgNF-κB/Rel nuclear translocation mediated by CgGSDME. In addition, CgCas1-2D suppresses the mRNA expression levels of cytokines mediated by GSDME-NF-κB/Rel axis. The results demonstrate that a new type of anti-inflammatory Caspase-1 identified from oyster upon recognizing various bacteria interacts with GSDME to inhibit the histone modification and NF-κB signaling to suppress the inflammation.
Collapse
Affiliation(s)
- Renle Chang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China.
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China
| | - Zihan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China
| | - Shuyi Mu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China
| | - Jie Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China.
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China.
| |
Collapse
|
3
|
Ma C, Yang J, Fu XN, Luo JY, Liu P, Zeng XL, Li XY, Zhang SL, Zheng S. Microbial characteristics of gut microbiome dysbiosis in patients with chronic liver disease. World J Hepatol 2025; 17:106124. [DOI: 10.4254/wjh.v17.i5.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/28/2025] [Accepted: 04/24/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND In this study, we are committed to exploring the characteristics of the gut microbiome in three different stages of chronic liver disease (CLD): Chronic hepatitis B, liver cirrhosis, and hepatocellular carcinoma (HCC).
AIM To delineate the gut microbiota traits in individuals with chronic liver ailments (chronic hepatitis B, cirrhosis, HCC), scrutinizes microbiome alterations during the progression of these diseases, and assesses microbiome disparities among various Child-Pugh categories in cirrhosis sufferers.
METHODS A cohort of 60 CLD patients from the Third People’s Hospital of Yunnan Province were recruited from February to August 2023, together with 37 healthy counterparts. Employing 16SrDNA high-throughput sequencing, we evaluated the diversity and composition of the gut microbiota.
RESULTS Compared to healthy subjects, patients exhibited a reduced presence of Firmicutes and a corresponding decline in butyrate-producing genera. In contrast, an upsurge in Proteobacteria was observed in the diseased cohorts, particularly an increase in Enterobacteriaceae that intensified with the disease's progression. At the genus level, the occurrence of Escherichia_Shigella, Parabacteroides, Streptococcus, Klebsiella, and Enterococcus was higher, with Escherichia_Shigella numbers augmenting as the disease advanced. Furthermore, in cirrhosis patients, an increase in Proteobacteria was noted as liver reserve diminished, alongside a decrease in Ruminococcaceae and Bacteroidaceae.
CONCLUSION The reduced abundance of short-chain fatty acid-producing bacteria in the intestine, alongside the increased abundance of gram-negative bacteria such as Escherichia_Shigella and Parabacteroides, may promote the progression of CLD.
Collapse
Affiliation(s)
- Chi Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Juan Yang
- Department of Gastroenterology, The Third People’s Hospital of Yunnan Province, Kunming 650011, Yunnan Province, China
| | - Xin-Nian Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Jiang-Yan Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Pei Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Xue-Li Zeng
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Xin-Yi Li
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Shun-Ling Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Dali University, Kunming 650011, Yunnan Province, China
| | - Sheng Zheng
- Department of Gastroenterology, The Third People’s Hospital of Yunnan Province, Kunming 650011, Yunnan Province, China
| |
Collapse
|
4
|
Wang J, Li LL, Zhao ZA, Niu CY, Zhao ZG. NLRP3 Inflammasome-mediated pyroptosis in acute lung injury: Roles of main lung cell types and therapeutic perspectives. Int Immunopharmacol 2025; 154:114560. [PMID: 40184810 DOI: 10.1016/j.intimp.2025.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
The NLRP3 inflammasome plays a pivotal role in the pathogenesis of acute lung injury (ALI) by regulating pyroptosis, a highly inflammatory form of programmed cell death. NLRP3-mediated pyroptosis leads to alveolar epithelial cell injury, increased pulmonary microvascular endothelial permeability, excessive alveolar macrophage activation, and neutrophil dysfunction, collectively driving ALI progression. In addition to the classical NLRP3-dependent pathway, the non-canonical pyroptosis pathway (caspase-4/5/11) also contributes to ALI by inducing pyroptotic cell death in AECs and ECs, further amplifying NLRP3 activation through damage-associated molecular patterns (DAMP) release. Moreover, neutrophils (NE) pyroptosis exhibits dual roles in ALI, as it enhances pathogen clearance but also exacerbates excessive inflammation and tissue damage, highlighting the complexity of its regulation. Targeting the NLRP3 inflammasome and pyroptotic pathways has emerged as a promising therapeutic strategy for ALI. Various NLRP3 inhibitors (e.g., MCC950, CY-09, OLT1177) and pyroptosis inhibitors have demonstrated significant anti-inflammatory and tissue-protective effects in preclinical models. However, the clinical translation of NLRP3-targeted therapies remains challenging due to off-target effects, potential immunosuppression, lack of patient stratification strategies, and compensatory activation of alternative inflammasomes (e.g., AIM2, NLRC4). Future studies should focus on optimizing the selectivity of NLRP3 inhibitors, developing personalized therapeutic approaches, and exploring combination strategies to enhance their clinical applicability in ALI.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Lu-Lu Li
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Chun-Yu Niu
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| |
Collapse
|
5
|
Huang C, Li J, Wu R, Li Y, Zhang C. Targeting pyroptosis for cancer immunotherapy: mechanistic insights and clinical perspectives. Mol Cancer 2025; 24:131. [PMID: 40319304 PMCID: PMC12049004 DOI: 10.1186/s12943-025-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025] Open
Abstract
Pyroptosis is a distinct form of programmed cell death characterized by the rupture of the cell membrane and robust inflammatory responses. Increasing evidence suggests that pyroptosis significantly affects the tumor microenvironment and antitumor immunity by releasing damage-associated molecular patterns (DAMPs) and pro-inflammatory mediators, thereby establishing it as a pivotal target in cancer immunotherapy. This review thoroughly explores the molecular mechanisms underlying pyroptosis, with a particular focus on inflammasome activation and the gasdermin family of proteins (GSDMs). It examines the role of pyroptotic cell death in reshaping the tumor immune microenvironment (TIME) involving both tumor and immune cells, and discusses recent advancements in targeting pyroptotic pathways through therapeutic strategies such as small molecule modulators, engineered nanocarriers, and combinatory treatments with immune checkpoint inhibitors. We also review recent advances and future directions in targeting pyroptosis to enhance tumor immunotherapy with immune checkpoint inhibitors, adoptive cell therapy, and tumor vaccines. This study suggested that targeting pyroptosis offers a promising avenue to amplify antitumor immune responses and surmount resistance to existing immunotherapies, potentially leading to more efficacious cancer treatments.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiayi Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ruiyan Wu
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yangqian Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenliang Zhang
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Gupta J, Mohammed MH, Alghazali T, Uthirapathy S, R R, Thakur V, Kaur M, Naidu KS, Kubaev A, Al-Mukhtar MM. Inflammasomes and autophagy in cancer: unlocking targeted therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04184-x. [PMID: 40310530 DOI: 10.1007/s00210-025-04184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025]
Abstract
This study clarifies the interaction between autophagy and inflammasome within the cancer framework. The inflammasome generates pro-inflammatory cytokines to direct the immune response to pathogens and cellular stressors. Autophagy maintains cellular homeostasis and can either promote or inhibit cancer. These pathways interact to affect tumorigenesis, immune responses, and therapy. Autophagy controls inflammasome activity by affecting cancer pathogenesis and tumor microenvironment inflammation, highlighting novel cancer therapeutic approaches. Recent studies indicate that modulating autophagy and inflammasome pathways can boost anti-cancer immunity, reduce drug-resistance, and improve therapeutic efficacy. Recent studies indicate modulating inflammasome and autophagy pathways can augment anti-cancer immunity, mitigate therapy resistance, and improve treatment efficacy. Cancer research relies on understanding the inflammasome-autophagy relationship to develop targeted therapies that enhance anti-tumor efficacy and reduce inflammatory symptoms. Customized therapies may improve outcomes based on autophagy gene variations and inflammasome polymorphisms. This study investigates autophagy pathways and the inflammasome in tumor immunopathogenesis, cytokine function, and cancer therapeutic strategies, highlighting their significance in cancer biology and treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India.
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq.
| | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Manpreet Kaur
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh- 531162, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Mahmoud Mussleh Al-Mukhtar
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
7
|
Shang J, Huang G, Wang B, Wang J, Wei W, Cui Y, Liu X. Shuxuetong injection inhibits pyroptosis in acute ischemic stroke via CD44/NLRP3/GSDMD signal. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119618. [PMID: 40074097 DOI: 10.1016/j.jep.2025.119618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute ischemic stroke (AIS) is an important cause of death and disability in the world. Based on the blood stasis syndrome of stroke, Shuxuetong Injection (SXT) is a representative prescription for the treatment of AIS, which extracted by modern technology from Whitmania pigra Whitman (Shuizhi) and Pheretima aspergillum E.Perrier (Dilong). AIM OF THE STUDY This study is in order to examine whether SXT regulates pyroptosis in AIS via Cluster of Differentiation 44 (CD44)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/gasdermin D (GSDMD) signal. MATERIALS AND METHODS The rats were randomly divided into sham group, model (transient middle cerebral artery occlusion, 24 h) group, SXT low-dose group (0.27 mL/kg), SXT medium-dose group (0.54 mL/kg), SXT high-dose group (1.08 mL/kg) and positive drug group (edaravone injection, 1.35 mL/kg). Transient middle cerebral artery occlusion (tMCAO, 24 h) model of rats was set up. Neurological deficit score, tetrazolium red staining, hematoxylin-eosin staining, and Nissl staining were used to observe and screen out the optimal dosage for improving AIS. Mechanism research indicators included transmission electron microscopy and Western blot. Adeno-associated virus (AAV)-CD44 and small interfering RNA (siRNA) of CD44 were used for knocking down the CD44 expression level to verify whether SXT could resist pyroptosis through CD44. The oxygen and glucose deprivation/re-oxygenation (OGD/R, 24 h) model of PC12 cells was used for in vitro pharmacological validation. Molecular docking, cellular thermal shift assay and drug affinity responsive target stability were employed to assess the binding affinity of critical components for the CD44 protein. RESULTS SXT conspicuously mitigated the neurological function scores and cerebral infarct volume in tMCAO rats, thereby safeguarding nerve cells. In vitro, SXT not only enhanced the viability of PC12 cells subjected to OGD/R but also mitigated cellular swelling and inflammatory infiltration. The optimal dose was 1.08 mL/kg (rats) or 72.56 mg/mL (PC12 cells). SXT reduced pyroptosis and inflammation in tMCAO rats and OGD/R cells by decreasing the expression levels of GSDMD-N, NLRP3 and CD44. In addition, after knocking down the expression level of CD44 by using AAV-CD44 and siRNA-CD44, it was found that the pyroptosis of AIS intervened by SXT was closely related to the CD44/NLRP3/GSDMD signal. The pivotal constituent of SXT, xanthine, exhibited pronounced binding affinity towards the CD44 protein, thereby demonstrating the capacity to stabilize this molecular target. CONCLUSION This study demonstrates that Shuxuetong Injection inhibits pyroptosis in acute ischemic stroke via CD44/NLRP3/GSDMD signal.
Collapse
Affiliation(s)
- Jinfeng Shang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | | | - Bohong Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jingyi Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Wanting Wei
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yiran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xin Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
8
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
9
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Du B, Fu Q, Yang Q, Yang Y, Li R, Yang X, Yang Q, Li S, Tian J, Liu H. Different types of cell death and their interactions in myocardial ischemia-reperfusion injury. Cell Death Discov 2025; 11:87. [PMID: 40044643 PMCID: PMC11883039 DOI: 10.1038/s41420-025-02372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers' understanding of the mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.
Collapse
Affiliation(s)
- Bingxin Du
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yeying Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingrong Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China
| | - Jinwei Tian
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Huibin Liu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
| |
Collapse
|
11
|
Li Z, Xi Z, Fan C, Xi X, Zhou Y, Zhao M, Xu L. Nanomaterials evoke pyroptosis boosting cancer immunotherapy. Acta Pharm Sin B 2025; 15:852-875. [PMID: 40177577 PMCID: PMC11959974 DOI: 10.1016/j.apsb.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 04/05/2025] Open
Abstract
Cancer immunotherapy is currently a very promising therapeutic strategy for treating tumors. However, its effectiveness is restricted by insufficient antigenicity and an immunosuppressive tumor microenvironment (ITME). Pyroptosis, a unique form of programmed cell death (PCD), causes cells to swell and rupture, releasing pro-inflammatory factors that can enhance immunogenicity and remodel the ITME. Nanomaterials, with their distinct advantages and different techniques, are increasingly popular, and nanomaterial-based delivery systems demonstrate significant potential to potentiate, enable, and augment pyroptosis. This review summarizes and discusses the emerging field of nanomaterials-induced pyroptosis, focusing on the mechanisms of nanomaterials-induced pyroptosis pathways and strategies to activate or enhance specific pyroptosis. Additionally, we provide perspectives on the development of this field, aiming to accelerate its further clinical transition.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyue Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chuanyong Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinran Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yao Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
12
|
Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 inflammasome and gut microbiota-brain axis: a new perspective on white matter injury after intracerebral hemorrhage. Neural Regen Res 2025; 21:01300535-990000000-00684. [PMID: 39885662 PMCID: PMC12094575 DOI: 10.4103/nrr.nrr-d-24-00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
ABSTRACT Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury. The NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in this context. This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome. These mechanisms include metabolic pathways (involving short-chain fatty acids, lipopolysaccharides, lactic acid, bile acids, trimethylamine-N-oxide, and tryptophan), neural pathways (such as the vagus nerve and sympathetic nerve), and immune pathways (involving microglia and T cells). We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage. The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood-brain barrier, inducing neuroinflammation, and interfering with nerve regeneration. Finally, we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury. Our review highlights the critical role of the gut microbiota-brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage, paving the way for exploring potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanhua Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xueqi Xiao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tong Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tian Zhou
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Xu J, Zhang L, Duan Y, Sun F, Odeh N, He Y, Núñez G. NEK7 phosphorylation amplifies NLRP3 inflammasome activation downstream of potassium efflux and gasdermin D. Sci Immunol 2025; 10:eadl2993. [PMID: 39752537 PMCID: PMC12020992 DOI: 10.1126/sciimmunol.adl2993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/25/2024] [Accepted: 12/05/2024] [Indexed: 03/23/2025]
Abstract
The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K+ efflux. However, the mechanism by which K+ efflux promotes this interaction remains unknown. Here, we show that NEK7 is rapidly phosphorylated at threonine-190/191 by JNK1 downstream of K+ efflux and gasdermin D (GSDMD) after NLRP3 activation. NEK7 phosphorylation enhances the binding between NEK7 and NLRP3, which further promotes inflammasome assembly and activation. Mutant mice and macrophages in which Thr190 and Thr191 of Nek7 were replaced by valine exhibited impaired NEK7 phosphorylation, NLRP3 inflammasome activation, and IL-1β secretion. Thus, NEK7 phosphorylation is an important event that acts downstream of K+ efflux and GSDMD to further enhance NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lingzhi Zhang
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yanhui Duan
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fangyuan Sun
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nouha Odeh
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yuan He
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Zhang L, Gao Y, Zhou H, Liang X, Jiang X, Gong W, Sun Y, Zhang D, Wang X, Nauwynck H, Bai J, Jiang P. PRRSV-2 nsp2 Ignites NLRP3 inflammasome through IKKβ-dependent dispersed trans-Golgi network translocation. PLoS Pathog 2025; 21:e1012915. [PMID: 39869629 PMCID: PMC11801707 DOI: 10.1371/journal.ppat.1012915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/06/2025] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
The NLRP3 inflammasome is a fundamental component of the innate immune system, yet its excessive activation is intricately associated with viral pathogenesis. Porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), belonging to the family Arteriviridae, triggers dysregulated cytokine release and interstitial pneumonia, which can quickly escalate to acute respiratory distress and death. However, a mechanistic understanding of PRRSV-2 progression remains unclear. Here, we screen that PRRSV-2 nsp2 activates the NLRP3 inflammasome, thereby instigating a state of hyperinflammation. Mechanistically, PRRSV-2 nsp2 interacts with the nucleotide-binding and oligomerization (NACHT) domain of NLRP3, augmenting IKKβ recruitment to driving NLRP3 translocation to the dispersed trans-Golgi network (dTGN) for oligomerization. This process facilitates ASC polymerization, culminating in the activation of the NLRP3 inflammasome. In addition, the IKKβ-dependent NLRP3 translocation to the dTGN is pivotal for pseudorabies virus (PRV) and encephalomyocarditis virus (EMCV)-induced inflammatory responses. Collectively, these results elucidate a novel mechanism of NLRP3 inflammasome activation during PRRSV-2 infection, providing valuable insights into PRRSV-2 pathogenesis.
Collapse
Affiliation(s)
- Lujie Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haoran Zhou
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao Liang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaolin Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenqin Gong
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Sun
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Desheng Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan Merelbeke, Belgium
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, PR China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
15
|
Liu F, Yang Z, Li J, Wu T, Li X, Zhao L, Wang W, Yu W, Zhang G, Xu Y. Targeting programmed cell death in diabetic kidney disease: from molecular mechanisms to pharmacotherapy. Mol Med 2024; 30:265. [PMID: 39707216 DOI: 10.1186/s10020-024-01020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Diabetic kidney disease (DKD), one of the most prevalent microvascular complications of diabetes, arises from dysregulated glucose and lipid metabolism induced by hyperglycemia, resulting in the deterioration of renal cells such as podocytes and tubular epithelial cells. Programmed cell death (PCD), comprising apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis, represents a spectrum of cell demise processes intricately governed by genetic mechanisms in vivo. Under physiological conditions, PCD facilitates the turnover of cellular populations and serves as a protective mechanism to eliminate impaired podocytes or tubular epithelial cells, thereby preserving renal tissue homeostasis amidst hyperglycemic stress. However, existing research predominantly elucidates individual modes of cell death, neglecting the intricate interplay and mutual modulation observed among various forms of PCD. In this comprehensive review, we delineate the diverse regulatory mechanisms governing PCD and elucidate the intricate crosstalk dynamics among distinct PCD pathways. Furthermore, we review recent advancements in understanding the pathogenesis of PCD and explore their implications in DKD. Additionally, we explore the potential of natural products derived primarily from botanical sources as therapeutic agents, highlighting their multifaceted effects on modulating PCD crosstalk, thereby proposing novel strategies for DKD treatment.
Collapse
Affiliation(s)
- Fengzhao Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhenyu Yang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jixin Li
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lijuan Zhao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenru Wang
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenfei Yu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guangheng Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
16
|
Shang P, Gan M, Wei Z, Hu S, Song L, Feng J, Chen L, Niu L, Wang Y, Zhang S, Shen L, Zhu L, Zhao Y. Advances in research on the impact and mechanisms of pathogenic microorganism infections on pyroptosis. Front Microbiol 2024; 15:1503130. [PMID: 39735183 PMCID: PMC11671501 DOI: 10.3389/fmicb.2024.1503130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death characterized by the activation of gasdermin proteins, leading to the formation of pores in the cell membrane, continuous cell swelling, and eventual membrane rupture. This process results in the release of intracellular contents, including pro-inflammatory cytokines like IL-1β and IL-18, which subsequently trigger a robust inflammatory response. This process is a crucial component of the body's innate immune response and plays a significant role in combating infections. There are four main pathways through which pathogenic microorganisms induce pyroptosis: the canonical inflammasome pathway, the non-canonical inflammasome pathway, the apoptosis-associated caspase-mediated pathway, and the granzyme-mediated pathway. This article provides a brief overview of the effects and mechanisms of pathogen infections on pyroptosis.
Collapse
Affiliation(s)
- Pan Shang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Ziang Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Shijie Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Lei Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Jinkang Feng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Shamas S, Rahil RR, Kaushal L, Sharma VK, Wani NA, Qureshi SH, Ahmad SF, Attia SM, Zargar MA, Hamid A, Bhat OM. Pyroptosis in Endothelial Cells and Extracellular Vesicle Release in Atherosclerosis via NF-κB-Caspase-4/5-GSDM-D Pathway. Pharmaceuticals (Basel) 2024; 17:1568. [PMID: 39770410 PMCID: PMC11677252 DOI: 10.3390/ph17121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Pyroptosis, an inflammatory cell death, is involved in the progression of atherosclerosis. Pyroptosis in endothelial cells (ECs) and its underlying mechanisms in atherosclerosis are poorly understood. Here, we investigated the role of a caspase-4/5-NF-κB pathway in pyroptosis in palmitic acid (PA)-stimulated ECs and EVs as players in pyroptosis. Methods: Human umbilical vein endothelial cells (HUVECs) were cultured in an endothelial cell medium, treated with Ox-LDL, PA, caspase-4/5 inhibitor, NF-κB inhibitor, and sEV release inhibitor for 24 h, respectively. The cytotoxicity of PA was determined using an MTT assay, cell migration using a scratch-wound-healing assay, cell morphology using bright field microscopy, and lipid deposition using oil red O staining. The mRNA and protein expression of GSDM-D, CASP4, CASP5, NF-κB, NLRP3, IL-1β, and IL-18 were determined with RT-PCR and Western blot. Immunofluorescence was used to determine NLRP3 and ICAM-1 expressions. Extracellular vesicles (EVs) were isolated using an exosome isolation kit and were characterized by Western blot and scanning electron microscopy. Results: PA stimulation significantly changed the morphology of the HUVECs characterized by cell swelling, plasma membrane rupture, and increased LDH release, which are features of pyroptosis. PA significantly increased lipid accumulation and reduced cell migration. PA also triggered inflammation and endothelial dysfunction, as evidenced by NLRP3 activation, upregulation of ICAM-1 (endothelial activation marker), and pyroptotic markers (NLRP3, GSDM-D, IL-1β, IL-18). Inhibition of caspase-4/5 (Ac-FLTD-CMK) and NF-κB (trifluoroacetate salt (TFA)) resulted in a significant reduction in LDH release and expression of caspase-4/5, NF-κB, and gasdermin D (GSDM-D) in PA-treated HUVECs. Furthermore, GW4869, an exosome release inhibitor, markedly reduced LDH release in PA-stimulated HUVECs. EVs derived from PA-treated HUVECs exacerbated pyroptosis, as indicated by significantly increased LDH release and augmented expression of GSDM-D, NF-κB. Conclusions: The present study revealed that inflammatory, non-canonical caspase-4/5-NF-κB signaling may be one of the crucial mechanistic pathways associated with pyroptosis in ECs, and pyroptotic EVs facilitated pyroptosis in normal ECs during atherosclerosis.
Collapse
Affiliation(s)
- Salman Shamas
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Razia Rashid Rahil
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Laveena Kaushal
- Department of Dermatology, Venereology & Leprology, Postgraduate Institute for Medical Education and Research, Chandigarh 160012, India; (L.K.); (V.K.S.)
| | - Vinod Kumar Sharma
- Department of Dermatology, Venereology & Leprology, Postgraduate Institute for Medical Education and Research, Chandigarh 160012, India; (L.K.); (V.K.S.)
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Shabir H. Qureshi
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (S.M.A.)
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (S.M.A.)
| | - Mohammad Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| |
Collapse
|
18
|
Wagner KD, Safwan-Zaiter H, Wagner N. A Dual Role of the Senescence Marker P16Ink4a in Liver Endothelial Cell Function. Cells 2024; 13:1929. [PMID: 39682678 PMCID: PMC11640762 DOI: 10.3390/cells13231929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
P16Ink4a is a well-established marker of senescence. Although P16Ink4a is expressed in endothelial cells, little is known about its function in these cells. Using isolated liver endothelial cells with silencing or overexpression of P16Ink4a, we show here that dependent on P16Ink4a levels, different pathways and functions are affected. High levels of P16Ink4a reduce proliferation and induce senescence, while low levels have the opposite effects. Only high P16Ink4a expression reduces in vitro angiogenesis. Expression profiling reveals an inflammatory phenotype upon silencing of P16Ink4a, while P16Ink4a overexpression is associated with a profile associated with DNA damage, repair and senescence. Low levels of P16Ink4a induce reactive oxygen species (ROS) generation and increase endothelial cell leakage. Collectively, P16Ink4a represents an "antagonistic pleiotropy" gene, which is, on the one hand, required to prevent ROS generation and endothelial damage and, on the other hand, inhibits angiogenesis through induction of senescence at high levels.
Collapse
Affiliation(s)
| | | | - Nicole Wagner
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France;
| |
Collapse
|
19
|
Thawanaphong S, Nair A, Volfson E, Nair P, Mukherjee M. IL-18 biology in severe asthma. Front Med (Lausanne) 2024; 11:1486780. [PMID: 39554494 PMCID: PMC11566457 DOI: 10.3389/fmed.2024.1486780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The role of interleukin-18 (IL-18) and inflammasomes in chronic inflammatory airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), has garnered significant attention in recent years. This review aims to provide an overview of the current understanding of IL-18 biology, the associated signaling pathways, and the involvement of inflammasome complexes in airway diseases. We explore the multifaceted role of IL-18 in asthma pathophysiology, including its interactions with other cytokines and contributions to both T2 and non-T2 inflammation. Importantly, emerging evidence highlights IL-18 as a critical player in severe asthma, contributing to chronic airway inflammation, airway hyperresponsiveness (AHR), and mucus impaction. Furthermore, we discuss the emerging evidence of IL-18's involvement in autoimmunity and highlight potential therapeutic targets within the IL-18 and inflammasome pathways in severe asthma patients with evidence of infections and airway autoimmune responses. By synthesizing recent advancements and ongoing research, this review underscores the importance of IL-18 as a potential novel therapeutic target in the treatment of severe asthma and other related conditions.
Collapse
Affiliation(s)
- Sarita Thawanaphong
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Aswathi Nair
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Emily Volfson
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Parameswaran Nair
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Manali Mukherjee
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
20
|
Al Mamun A, Geng P, Wang S, Shao C. Role of Pyroptosis in Endometrial Cancer and Its Therapeutic Regulation. J Inflamm Res 2024; 17:7037-7056. [PMID: 39377044 PMCID: PMC11457779 DOI: 10.2147/jir.s486878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Pyroptosis is an inflammatory cell death induced by inflammasomes that release several pro-inflammatory mediators such as interleukin-18 (IL-18) and interleukin-1β (IL-1β). Pyroptosis, a type of programmed cell death, has recently received increased interest both as a therapeutic and immunological mechanism. Numerous studies have provided substantial evidence supporting the involvement of inflammasomes and pyroptosis in a variety of pathological conditions including cancers, nerve damage, inflammatory diseases and metabolic conditions. Researchers have demonstrated that dysregulation of pyroptosis and inflammasomes contribute to the progression of endometriosis and gynecological malignancies. Current research also indicates that inflammasome and pyroptosis-dependent signaling pathways may further induce the progression of endometrial cancer (EC). More specifically, dysregulation of NLR family pyrin domain 3 (NLRP3) and caspase-1-dependent pyroptosis play a contributory role in the pathogenesis and development of EC. Therefore, pyroptosis-regulated protein gasdermin D (GSDMD) may be an independent prognostic biomarker for the detection of EC. This review presents the molecular mechanisms of pyroptosis-dependent signaling pathways and their contributory role and function in advancing EC. Moreover, this review offers new insights into potential future applications and innovative approaches in utilizing pyroptosis to develop effective anti-cancer therapies.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| |
Collapse
|
21
|
Kasana S, Kumar S, Patel P, Kurmi BD, Jain S, Sahu S, Vaidya A. Caspase inhibitors: a review on recently patented compounds (2016-2023). Expert Opin Ther Pat 2024; 34:1047-1072. [PMID: 39206873 DOI: 10.1080/13543776.2024.2397732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Caspases are a family of protease enzymes that play a crucial role in apoptosis. Dysregulation of caspase activity has been implicated in various pathological conditions, making caspases an important focus of research in understanding cell death mechanisms and developing therapeutic strategies for diseases associated with abnormal apoptosis. AREAS COVERED It is a comprehensive review of caspase inhibitors that have been comprising recently granted patents from 2016 to 2023. It includes peptide and non-peptide caspase inhibitors with their application for different diseases. EXPERT OPINION This review categorizes and analyses recently patented caspase inhibitors on various diseases. Diseases linked to caspase dysregulation, including neurodegenerative disorders, and autoimmune conditions, are highlighted to accentuate the therapeutic relevance of the patented caspase inhibitors. This paper serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking an up-to-date understanding of recently patented caspase inhibitors. The integration of recent patented compounds, structural insights, and mechanistic details provides a holistic view of the progress in caspase inhibitor research and its potential impact on addressing various diseases.
Collapse
Affiliation(s)
- Shivani Kasana
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Shweta Jain
- Sir Madanlal Institute of Pharmacy, Etawah, India
| | - Sanjeev Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankur Vaidya
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah, India
| |
Collapse
|
22
|
Kumar P, Schroder EA, Rajaram MVS, Harris EN, Ganesan LP. The Battle of LPS Clearance in Host Defense vs. Inflammatory Signaling. Cells 2024; 13:1590. [PMID: 39329771 PMCID: PMC11430141 DOI: 10.3390/cells13181590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Lipopolysaccharide (LPS) in blood circulation causes endotoxemia and is linked to various disease conditions. Current treatments focus on preventing LPS from interacting with its receptor Toll-like receptor 4 (TLR4) and reducing inflammation. However, our body has a natural defense mechanism: reticuloendothelial cells in the liver rapidly degrade and inactivate much of the circulating LPS within minutes. But this LPS clearance mechanism is not perfect. Excessive LPS that escape this clearance mechanism cause systemic inflammatory damage through TLR4. Despite its importance, the role of reticuloendothelial cells in LPS elimination is not well-studied, especially regarding the specific cells, receptors, and mechanisms involved. This gap hampers the development of effective therapies for endotoxemia and related diseases. This review consolidates the current understanding of LPS clearance, narrates known and explores potential mechanisms, and discusses the relationship between LPS clearance and LPS signaling. It also aims to highlight key insights that can guide the development of strategies to reduce circulating LPS by way of bolstering host defense mechanisms. Ultimately, we seek to provide a foundation for future research that could lead to innovative approaches for enhancing the body's natural ability to clear LPS and thereby lower the risk of endotoxin-related inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Evan A. Schroder
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA; (E.A.S.); (E.N.H.)
| | - Latha P. Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
23
|
Kane LE, Flood B, Manils J, McSkeane DE, Smith AP, Tosetto M, Alalawi F, Fay J, Kay E, Dunne C, McQuaid S, Loughrey MB, O'Sullivan J, Ryan EJ, Sheahan K, Doherty GA, Creagh EM. Caspase-4 Has Potential Utility as a Colorectal Tissue Biomarker for Dysplasia and Early-Stage Cancer. GASTRO HEP ADVANCES 2024; 4:100552. [PMID: 39866724 PMCID: PMC11760840 DOI: 10.1016/j.gastha.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/09/2024] [Indexed: 01/28/2025]
Abstract
Background and Aims Colorectal cancer (CRC) is the second most deadly cancer globally. The rapidly rising incidence rate of CRC, coupled with increased diagnoses in individuals <50 years, indicates that early detection of CRC, and those at an increased risk of CRC development, is paramount to improve the survival rates of these patients. Here, we profile caspase-4 expression across 2 distinct CRC development pathways, sporadic CRC (sCRC) and inflammatory bowel disease-associated CRC (IBD-CRC), to examine its utility as a novel biomarker for CRC risk and diagnosis. Methods Tissue samples from patients with CRC, colonic polyps, IBD-CRC, and sCRC were assessed by immunohistochemistry for caspase-4 expression in epithelial and stromal compartments. RNAseq expression data for caspase-4 in CRC and normal tissue samples were mined from online databases. Results Epithelial caspase-4 expression is selectively elevated in CRC tumor tissue compared to adjacent normal tissue, where it is not expressed. In the sCRC pathway, caspase-4 is expressed in the epithelial and stromal tissue of all histological subtypes of colonic polyps, with a significant increase in epithelial expression from low-grade dysplasia to high-grade dysplasia progression. For the IBD-CRC pathway, caspase-4 epithelial expression was specifically upregulated in dysplastic and neoplastic tissue of IBD-CRC but was not expressed in normal or inflamed tissue. Conclusion This study demonstrates that epithelial caspase-4 is selectively expressed in colon tissue during the development of dysplasia. As such, epithelial caspase-4 represents a promising novel tissue biomarker for CRC risk and diagnosis.
Collapse
Affiliation(s)
- Laura E Kane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Brian Flood
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Joan Manils
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Donna E McSkeane
- School of Biological Sciences, Technological University Dublin, Dublin, Ireland
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Aoife P Smith
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Miriam Tosetto
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Fatema Alalawi
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Joanna Fay
- Pathology Department, Royal College of Surgeons Ireland and Beaumont Hospital, Dublin, Ireland
| | - Elaine Kay
- Pathology Department, Royal College of Surgeons Ireland and Beaumont Hospital, Dublin, Ireland
| | - Cara Dunne
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Stephen McQuaid
- Precision Medicine Centre of Excellence, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Maurice B Loughrey
- Department of Cellular Pathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity St. James's Cancer Institute and Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Department of Biological Sciences, Limerick Digital Cancer Research Centre, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Kieran Sheahan
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Department of Pathology, St. Vincent's University Hospital, Dublin, Ireland
| | - Glen A Doherty
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Wang JY, Lu YH, Li F, Huang ML. Pyroptosis: A promising biomarker for predicting colorectal cancer prognosis and enhancing immunotherapy efficacy. World J Clin Oncol 2024; 15:968-974. [PMID: 39193165 PMCID: PMC11346071 DOI: 10.5306/wjco.v15.i8.968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] Open
Abstract
In this editorial, we comment on the article by Zhu et al published in the recent issue of the World Journal of Clinical Oncology. We focus specifically on the characteristics and mechanisms of pyroptosis and the impact of changes in the tumor immune microenvironment (TIME) on cancer prognosis. Pyroptosis is a distinct form of programmed cell death; its occurrence can change the TIME and regulate the growth and spread of tumors and therefore is significantly correlated with cancer prognosis. Previous research has demonstrated that pyroptosis-related genes can be used in prognostic models for various types of cancer. These models enhance the mechanistic understanding of tumor evolution and serve as valuable guides for clinical treatment decision-making. Nevertheless, further studies are required to thoroughly understand the function of pyroptosis within the TIME and to assess its mode of action. Such studies should reveal new tumor therapeutic targets and more successful tumor immunotherapy strategies.
Collapse
Affiliation(s)
- Jia-Yi Wang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yu-Hao Lu
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Fang Li
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Mo-Li Huang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| |
Collapse
|
25
|
Neu C, Beckers C, Frank N, Thomas K, Bartneck M, Simon TP, Mossanen J, Peters K, Singendonk T, Martin L, Marx G, Kraemer S, Zechendorf E. Ribonuclease inhibitor 1 emerges as a potential biomarker and modulates inflammation and iron homeostasis in sepsis. Sci Rep 2024; 14:14972. [PMID: 38951571 PMCID: PMC11217267 DOI: 10.1038/s41598-024-65778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Sepsis, marked by organ dysfunction, necessitates reliable biomarkers. Ribonuclease inhibitor 1 (RNH1), a ribonuclease (RNase) inhibitor, emerged as a potential biomarker for acute kidney injury and mortality in thoracoabdominal aortic aneurysm patients. Our study investigates RNH1 dynamics in sepsis, its links to mortality and organ dysfunction, and the interplay with RNase 1 and RNase 5. Furthermore, we explore RNH1 as a therapeutic target in sepsis-related processes like inflammation, non-canonical inflammasome activation, and iron homeostasis. We showed that RNH1 levels are significantly higher in deceased patients compared to sepsis survivors and correlate with creatine kinase, aspartate and alanine transaminase, bilirubin, serum creatinine and RNase 5, but not RNase 1. RNH1 mitigated LPS-induced TNFα and RNase 5 secretion, and relative mRNA expression of ferroptosis-associated genes HMOX1, FTH1 and HAMP in PBMCs. Monocytes were identified as the predominant type of LPS-positive PBMCs. Exogenous RNH1 attenuated LPS-induced CASP5 expression, while increasing IL-1β secretion in PBMCs and THP-1 macrophages. As RNH1 has contradictory effects on inflammation and non-canonical inflammasome activation, its use as a therapeutic agent is limited. However, RNH1 levels may play a central role in iron homeostasis during sepsis, supporting our clinical observations. Hence, RNH1 shows promise as biomarkers for renal and hepatic dysfunction and hepatocyte injury, and may be useful in predicting the outcome of septic patients.
Collapse
Affiliation(s)
- Carolina Neu
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Beckers
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Nadine Frank
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Katharina Thomas
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Tim-Philipp Simon
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jana Mossanen
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Kimmo Peters
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Tobias Singendonk
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lukas Martin
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sandra Kraemer
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Elisabeth Zechendorf
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
26
|
Chmielarz M, Sobieszczańska B, Środa-Pomianek K. Metabolic Endotoxemia: From the Gut to Neurodegeneration. Int J Mol Sci 2024; 25:7006. [PMID: 39000116 PMCID: PMC11241432 DOI: 10.3390/ijms25137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Metabolic endotoxemia is a severe health problem for residents in developed countries who follow a Western diet, disrupting intestinal microbiota and the whole organism's homeostasis. Although the effect of endotoxin on the human immune system is well known, its long-term impact on the human body, lasting many months or even years, is unknown. This is due to the difficulty of conducting in vitro and in vivo studies on the prolonged effect of endotoxin on the central nervous system. In this article, based on the available literature, we traced the path of endotoxin from the intestines to the blood through the intestinal epithelium and factors promoting the development of metabolic endotoxemia. The presence of endotoxin in the bloodstream and the inflammation it induces may contribute to lowering the blood-brain barrier, potentially allowing its penetration into the central nervous system; although, the theory is still controversial. Microglia, guarding the central nervous system, are the first line of defense and respond to endotoxin with activation, which may contribute to the development of neurodegenerative diseases. We traced the pro-inflammatory role of endotoxin in neurodegenerative diseases and its impact on the epigenetic regulation of microglial phenotypes.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Beata Sobieszczańska
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw University of Medicine, Chalubinskiego 3a, 50-368 Wroclaw, Poland
| |
Collapse
|
27
|
Sánchez-Gil MA, Fraile-Martinez O, García-Montero C, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Camacho-Alcázar A, De León-Luis JA, Bravo C, Díaz-Pedrero R, López-Gonzalez L, Bujan J, Cancelo MJ, Álvarez-Mon M, García-Honduvilla N, Saez MA, Ortega MA. Exacerbated Activation of the NLRP3 Inflammasome in the Placentas from Women Who Developed Chronic Venous Disease during Pregnancy. Int J Mol Sci 2024; 25:5528. [PMID: 38791563 PMCID: PMC11122606 DOI: 10.3390/ijms25105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic venous disease (CVD) comprises a spectrum of morphofunctional disorders affecting the venous system, affecting approximately 1 in 3 women during gestation. Emerging evidence highlights diverse maternofetal implications stemming from CVD, particularly impacting the placenta. While systemic inflammation has been associated with pregnancy-related CVD, preliminary findings suggest a potential link between this condition and exacerbated inflammation in the placental tissue. Inflammasomes are major orchestrators of immune responses and inflammation in different organs and systems. Notwithstanding the relevance of inflammasomes, specifically the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3)- which has been demonstrated in the placentas of women with different obstetric complications, the precise involvement of this component in the placentas of women with CVD remains to be explored. This study employs immunohistochemistry and real-time PCR (RT-qPCR) to examine the gene and protein expression of key components in both canonical and non-canonical pathways of the NLRP3 inflammasome (NLRP3, ASC-apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain-caspase 1, caspase 5, caspase 8, and interleukin 1β) within the placental tissue of women affected by CVD. Our findings reveal a substantial upregulation of these components in CVD-affected placentas, indicating a potential pathophysiological role of the NLRP3 inflammasome in the development of this condition. Subsequent investigations should focus on assessing translational interventions addressing this dysregulation in affected patient populations.
Collapse
Affiliation(s)
- María Asunción Sánchez-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- University Defense Center of Madrid (CUD), 28047 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Adrían Camacho-Alcázar
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
| | - Juan A. De León-Luis
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Raúl Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Laura López-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - María J. Cancelo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Department of Obstetrics and Gynecology, University Hospital of Guadalajara, 19002 Guadalajara, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| |
Collapse
|
28
|
Eckhart L, Fischer H. Caspase-5: Structure, Pro-Inflammatory Activity and Evolution. Biomolecules 2024; 14:520. [PMID: 38785927 PMCID: PMC11117641 DOI: 10.3390/biom14050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinz Fischer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
29
|
Zhu H, Yuan Z, Xu H, Sun L. Characterization of the Apoptotic and Antimicrobial Activities of Two Initiator Caspases of Sea Cucumber Apostichopus japonicus. Genes (Basel) 2024; 15:540. [PMID: 38790170 PMCID: PMC11121444 DOI: 10.3390/genes15050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Caspase (CASP) is a protease family that plays a vital role in apoptosis, development, and immune response. Herein, we reported the identification and characterization of two CASPs, AjCASPX1 and AjCASPX2, from the sea cucumber Apostichopus japonicus, an important aquaculture species. AjCASPX1/2 share similar domain organizations with the vertebrate initiator caspases CASP2/9, including the CARD domain and the p20/p10 subunits with conserved functional motifs. However, compared with human CASP2/9, AjCASPX1/2 possess unique structural features in the linker region between p20 and p10. AjCASPX1, but not AjCASPX2, induced marked apoptosis of human cells by activating CASP3/7. The recombinant proteins of AjCASPX2 and the CARD domain of AjCASPX2 were able to bind to a wide range of bacteria, as well as bacterial cell wall components, and inhibit bacterial growth. AjCASPX1, when expressed in Escherichia coli, was able to kill the host bacteria. Under normal conditions, AjCASPX1 and AjCASPX2 expressions were most abundant in sea cucumber muscle and coelomocytes, respectively. After bacterial infection, both AjCASPX1 and AjCASPX2 expressions were significantly upregulated in sea cucumber tissues and cells. Together, these results indicated that AjCASPX1 and AjCASPX2 were initiator caspases with antimicrobial activity and likely functioned in apoptosis and immune defense against pathogen infection.
Collapse
Affiliation(s)
- Hanshuo Zhu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao 266404, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao 266404, China
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao 266404, China
| |
Collapse
|
30
|
Lim YA, Tan LS, Lee WT, Sim WL, Lv Y, Takakuni M, Saito S, Ihara M, Arumugam TV, Chen C, Wong FWS, Dawe GS. Hope for vascular cognitive impairment: Ac-YVAD-cmk as a novel treatment against white matter rarefaction. PLoS One 2024; 19:e0299703. [PMID: 38630707 PMCID: PMC11023579 DOI: 10.1371/journal.pone.0299703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 04/19/2024] Open
Abstract
Vascular cognitive impairment (VCI) is the second leading cause of dementia with limited treatment options, characterised by cerebral hypoperfusion-induced white matter rarefaction (WMR). Subcortical VCI is the most common form of VCI, but the underlying reasons for region susceptibility remain elusive. Recent studies employing the bilateral cortical artery stenosis (BCAS) method demonstrate that various inflammasomes regulate white matter injury and blood-brain barrier dysfunction but whether caspase-1 inhibition will be beneficial remains unclear. To address this, we performed BCAS on C57/BL6 mice to study the effects of Ac-YVAD-cmk, a caspase-1 inhibitor, on the subcortical and cortical regions. Cerebral blood flow (CBF), WMR, neuroinflammation and the expression of tight junction-related proteins associated with blood-brain barrier integrity were assessed 15 days post BCAS. We observed that Ac-YVAD-cmk restored CBF, attenuated BCAS-induced WMR and restored subcortical myelin expression. Within the subcortical region, BCAS activated the NLRP3/caspase-1/interleukin-1beta axis only within the subcortical region, which was attenuated by Ac-YVAD-cmk. Although we observed that BCAS induced significant increases in VCAM-1 expression in both brain regions that were attenuated with Ac-YVAD-cmk, only ZO-1 and occludin were observed to be significantly altered in the subcortical region. Here we show that caspase-1 may contribute to subcortical regional susceptibility in a mouse model of VCI. In addition, our results support further investigations into the potential of Ac-YVAD-cmk as a novel treatment strategy against subcortical VCI and other conditions exhibiting cerebral hypoperfusion-induced WMR.
Collapse
Affiliation(s)
- Yun-An Lim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Si Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Yang Lv
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maki Takakuni
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | - Christopher Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fred Wai-Shiu Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
32
|
Abstract
An intense, stereotyped inflammatory response occurs in response to ischaemic and non-ischaemic injury to the myocardium. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a finely regulated macromolecular protein complex that senses the injury and triggers and amplifies the inflammatory response by activation of caspase 1; cleavage of pro-inflammatory cytokines, such as pro-IL-1β and pro-IL-18, to their mature forms; and induction of inflammatory cell death (pyroptosis). Inhibitors of the NLRP3 inflammasome and blockers of IL-1β and IL-18 activity have been shown to reduce injury to the myocardium and pericardium, favour resolution of the inflammation and preserve cardiac function. In this Review, we discuss the components of the NLRP3 inflammasome and how it is formed and activated in various ischaemic and non-ischaemic cardiac pathologies (acute myocardial infarction, cardiac dysfunction and remodelling, atherothrombosis, myocarditis and pericarditis, cardiotoxicity and cardiac sarcoidosis). We also summarize current preclinical and clinical evidence from studies of agents that target the NLRP3 inflammasome and related cytokines.
Collapse
Affiliation(s)
- Stefano Toldo
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
33
|
Yu G, Choi YK, Lee S. Inflammasome diversity: exploring novel frontiers in the innate immune response. Trends Immunol 2024; 45:248-258. [PMID: 38519271 DOI: 10.1016/j.it.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/24/2024]
Abstract
Pathogens elicit complex mammalian immune responses by activating multiple sensors within inflammasomes, which recognize diverse pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). This simultaneous activation induces the formation of protein complexes referred to as multiple inflammasomes, that orchestrate a spectrum of programmed cell death pathways, including pyroptosis, apoptosis, and necroptosis. This concept is crucial for comprehending the complexity of the innate immune system's response to diverse pathogens and its implications for various diseases. Novel contributions here include emphasizing simultaneous sensor activation by pathogens, proposing the existence of multiple inflammasome complexes, and advocating for further exploration of their structural basis. Understanding these mechanisms may offer insights into disease pathogenesis, paving the way for potential therapeutic interventions targeting inflammasome-mediated immune responses.
Collapse
Affiliation(s)
- Gyeongju Yu
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - SangJoon Lee
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
34
|
Kidder E, Gangopadhyay S, Francis S, Alfaidi M. "How to Release or Not Release, That Is the Question." A Review of Interleukin-1 Cellular Release Mechanisms in Vascular Inflammation. J Am Heart Assoc 2024; 13:e032987. [PMID: 38390810 PMCID: PMC10944040 DOI: 10.1161/jaha.123.032987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, characterized by atherosclerotic activity within large and medium-sized arteries. Inflammation has been shown to be a primary driver of atherosclerotic plaque formation, with interleukin-1 (IL-1) having a principal role. This review focuses on the current state of knowledge of molecular mechanisms of IL-1 release from cells in atherosclerotic plaques. A more in-depth understanding of the process of IL-1's release into the vascular environment is necessary for the treatment of inflammatory disease processes, as the current selection of medicines being used primarily target IL-1 after it has been released. IL-1 is secreted by several heterogenous mechanisms, some of which are cell type-specific and could provide further specialized targets for therapeutic intervention. A major unmet challenge is to understand the mechanism before and leading to IL-1 release, especially by cells in atherosclerotic plaques, including endothelial cells, vascular smooth muscle cells, and macrophages. Data so far indicate a heterogeneity of IL-1 release mechanisms that vary according to cell type and are stimulus-dependent. Unraveling this complexity may reveal new targets to block excess vascular inflammation.
Collapse
Affiliation(s)
- Evan Kidder
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Siddhartha Gangopadhyay
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Sheila Francis
- School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Mabruka Alfaidi
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| |
Collapse
|
35
|
Yi YS. MicroRNA-mediated epigenetic regulation of inflammasomes in inflammatory responses and immunopathologies. Semin Cell Dev Biol 2024; 154:227-238. [PMID: 36437174 DOI: 10.1016/j.semcdb.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Inflammation represents the first-line defense mechanism of the host against pathogens and cellular stress. One of the most critical inflammatory responses is characterized by the activation of inflammasomes, intracellular multiprotein complexes that induce inflammatory signaling pathways in response to various pathogen-associated molecular patterns or danger-associated molecular patterns under physiological and pathological conditions. Inflammasomes are tightly regulated in normal cells, and dysregulation of these complexes is observed in various pathological conditions, especially inflammatory diseases and cancers. Epigenetic regulation has been suggested as a key mechanism in modulating inflammasome activity, and microRNAs (miRNAs) have been implicated in the post-transcriptional regulation of inflammasomes. Therefore, miRNA-mediated epigenetic regulation of inflammasomes in pathological conditions has received considerable attention, and current strategies for targeting inflammasomes have been shown to be effective in the treatment of diseases associated with inflammasome activation. This review summarizes recent studies suggesting the roles of miRNAs in the epigenetic control of inflammasomes and highlights the potential of miRNAs as a therapeutic tool for treating human diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, South Korea.
| |
Collapse
|
36
|
Li X, Ji LJ, Feng KD, Huang H, Liang MR, Cheng SJ, Meng XD. Emerging role of exosomes in ulcerative colitis: Targeting NOD-like receptor family pyrin domain containing 3 inflammasome. World J Gastroenterol 2024; 30:527-541. [PMID: 38463022 PMCID: PMC10921143 DOI: 10.3748/wjg.v30.i6.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease. Despite ongoing advances in our understanding of UC, its pathogenesis is yet unelucidated, underscoring the urgent need for novel treatment strategies for patients with UC. Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules, such as proteins, RNAs, DNA, and metabolites. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1β (IL-1β) and IL-18, triggering the inflammatory response to a pathogenic agent or injury. Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome, with vital roles in the pathological process of UC. Here, recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC. First, the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized. Finally, an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are highlighted.
Collapse
Affiliation(s)
- Xin Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| | - Li-Jiang Ji
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Kai-Di Feng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hua Huang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Mei-Rou Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shi-Jin Cheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiu-Dong Meng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
37
|
Yi YS. Roles of the Caspase-11 Non-Canonical Inflammasome in Rheumatic Diseases. Int J Mol Sci 2024; 25:2091. [PMID: 38396768 PMCID: PMC10888639 DOI: 10.3390/ijms25042091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are intracellular multiprotein complexes that activate inflammatory signaling pathways. Inflammasomes comprise two major classes: canonical inflammasomes, which were discovered first and are activated in response to a variety of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and non-canonical inflammasomes, which were discovered recently and are only activated in response to intracellular lipopolysaccharide (LPS). Although a larger number of studies have successfully demonstrated that canonical inflammasomes, particularly the NLRP3 inflammasome, play roles in various rheumatic diseases, including rheumatoid arthritis (RA), infectious arthritis (IR), gouty arthritis (GA), osteoarthritis (OA), systemic lupus erythematosus (SLE), psoriatic arthritis (PA), ankylosing spondylitis (AS), and Sjögren's syndrome (SjS), the regulatory roles of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 non-canonical inflammasomes, in these diseases are still largely unknown. Interestingly, an increasing number of studies have reported possible roles for non-canonical inflammasomes in the pathogenesis of various mouse models of rheumatic disease. This review comprehensively summarizes and discusses recent emerging studies demonstrating the regulatory roles of non-canonical inflammasomes, particularly focusing on the caspase-11 non-canonical inflammasome, in the pathogenesis and progression of various types of rheumatic diseases and provides new insights into strategies for developing potential therapeutics to prevent and treat rheumatic diseases as well as associated diseases by targeting non-canonical inflammasomes.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
38
|
Zhou Y, Richmond A, Yan C. Harnessing the potential of CD40 agonism in cancer therapy. Cytokine Growth Factor Rev 2024; 75:40-56. [PMID: 38102001 PMCID: PMC10922420 DOI: 10.1016/j.cytogfr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40-CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8+ effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.
Collapse
Affiliation(s)
- Yang Zhou
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA.
| |
Collapse
|
39
|
Samare-Najaf M, Samareh A, Savardashtaki A, Khajehyar N, Tajbakhsh A, Vakili S, Moghadam D, Rastegar S, Mohsenizadeh M, Jahromi BN, Vafadar A, Zarei R. Non-apoptotic cell death programs in cervical cancer with an emphasis on ferroptosis. Crit Rev Oncol Hematol 2024; 194:104249. [PMID: 38145831 DOI: 10.1016/j.critrevonc.2023.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Cervical cancer, a pernicious gynecological malignancy, causes the mortality of hundreds of thousands of females worldwide. Despite a considerable decline in mortality, the surging incidence rate among younger women has raised serious concerns. Immortality is the most important characteristic of tumor cells, hence the carcinogenesis of cervical cancer cells pivotally requires compromising with cell death mechanisms. METHODS The current study comprehensively reviewed the mechanisms of non-apoptotic cell death programs to provide possible disease management strategies. RESULTS Comprehensive evidence has stated that focusing on necroptosis, pyroptosis, and autophagy for disease management is associated with significant limitations such as insufficient understanding, contradictory functions, dependence on disease stage, and complexity of intracellular pathways. However, ferroptosis represents a predictable role in cervix carcinogenesis, and ferroptosis-related genes demonstrate a remarkable correlation with patient survival and clinical outcomes. CONCLUSION Ferroptosis may be an appropriate option for disease management strategies from predicting prognosis to treatment.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran.
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Rastegar
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | | | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
40
|
Li X, Wang S, Wu P, Nan D, Chen D, Suo L, Lu X, Rao C, Li Q, Yue J, Xiang Y, Mao X, Yan J. Effect of O antigen glycosyl isomerase gene mutation on biological property and pathogenicity of Burkholderia pseudomallei strain BPC006. Int J Biol Macromol 2024; 258:128922. [PMID: 38141699 DOI: 10.1016/j.ijbiomac.2023.128922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Burkholderia pseudomallei, an intracellular pathogen, is responsible for melioidosis, a zoonotic disease. Its pathogenesis involves several virulence factors, among which lipopolysaccharide (LPS) plays a crucial role. Our research reveals that the O antigen present within the LPS significantly regulates the host immune response. In a previous study, we obtained a B. pseudomallei mutant strain ΔwbiI. Here, the purification of LPS from ΔwbiI and a gas chromatography-mass spectrometry (GC-MS) analysis were conducted. The results confirmed the absence of specific sugar 6-deoxy-Talp, which is a typical component of the O antigen in the wild type B. pseudomallei. Our findings underscore the potent impact the O antigen exerts on the virulence of B. pseudomallei. The ΔwbiI strain displayed significantly increased invasiveness and cytotoxicity in vitro. This enhanced cytotoxicity seems to be related to the exposure of lipid A and an increased cell membrane hydrophobicity resulting from the deletion of the O antigen. Additionally, in mouse models, the ΔwbiI strain resulted in a heightened host lethality and an excessive inflammatory response in mice. These findings indicate that the O-antigenic polysaccharide moiety of B. pseudomallei plays a role in its pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwei Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Pan Wu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dongqi Nan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dan Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Liangpeng Suo
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Juanjuan Yue
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yang Xiang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
41
|
Yu H, Yan X, Wang N, Liu X, Xue T, Li C, Zhang X. Characterization of caspase gene family in Sebastes schlegelii and their expression profiles under Aeromonas salmonicida and Vibrio anguillarum infection. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110913. [PMID: 37913865 DOI: 10.1016/j.cbpb.2023.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
The caspase, functioning as a proteinase, plays a crucial role in eukaryotic cell apoptosis, regulation of apoptosis, cellular growth, differentiation, and immunity. The identification of caspase gene family in Sebastes schlegelii is of great help to understand its antimicrobial research. In S. schlegelii, we totally identified nine caspase genes, including four apoptosis initiator caspases (caspase 2, caspase 8, caspase 9 and caspase 10), four apoptosis executioners (caspase 3a, caspase 3b, caspase 6, and caspase 7) and one inflammatory executioner (caspase 1). The duplication of caspase 3 genes on chr3 and chr8 may have been facilitated by whole genome duplication (WGD) events or other complex evolutionary processes. In general, the number of caspase genes relatively conserved in high vertebrates, while exhibiting variation in teleosts. Furthermore, syntenic analysis and phylogenetic relationships analysis supported the correct classification of these caspase gene family in S. schlegelii, especially for genes with duplicated copies. Additionally, the expression patterns of these caspase genes in different tissues of S. schlegelii under healthy conditions were assessed. The results revealed that the expression levels of most caspase genes were significantly elevated in the intestine, spleen, and liver. To further investigate the potential immune functions of these caspase genes in S. schlegelii, we challenged individuals with A. salmonicida and V. anguillarum, respectively. After infection with A. salmonicida, the expression levels of caspase 1 in the liver and spleen of S. schlegelii remained consistently elevated throughout the infection time points. The expression levels of most caspase family members in the intestine exhibited significant divergence following V. anguillarum infection. This study provides a comprehensive understanding of the caspase gene families in S. schlegelii, thereby establishing a solid foundation for further investigations into the functional roles of these caspase genes.
Collapse
Affiliation(s)
- Haohui Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xu Yan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China, Qingdao 266011, China; College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ningning Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiantong Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
42
|
Barnacle JR, Davis AG, Wilkinson RJ. Recent advances in understanding the human host immune response in tuberculous meningitis. Front Immunol 2024; 14:1326651. [PMID: 38264653 PMCID: PMC10803428 DOI: 10.3389/fimmu.2023.1326651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Tuberculous meningitis (TBM), the most severe form of tuberculosis, causes death in approximately 25% cases despite antibiotic therapy, and half of survivors are left with neurological disability. Mortality and morbidity are contributed to by a dysregulated immune response, and adjunctive host-directed therapies are required to modulate this response and improve outcomes. Developing such therapies relies on improved understanding of the host immune response to TBM. The historical challenges in TBM research of limited in vivo and in vitro models have been partially overcome by recent developments in proteomics, transcriptomics, and metabolomics, and the use of these technologies in nested substudies of large clinical trials. We review the current understanding of the human immune response in TBM. We begin with M. tuberculosis entry into the central nervous system (CNS), microglial infection and blood-brain and other CNS barrier dysfunction. We then outline the innate response, including the early cytokine response, role of canonical and non-canonical inflammasomes, eicosanoids and specialised pro-resolving mediators. Next, we review the adaptive response including T cells, microRNAs and B cells, followed by the role of the glutamate-GABA neurotransmitter cycle and the tryptophan pathway. We discuss host genetic immune factors, differences between adults and children, paradoxical reaction, and the impact of HIV-1 co-infection including immune reconstitution inflammatory syndrome. Promising immunomodulatory therapies, research gaps, ongoing challenges and future paths are discussed.
Collapse
Affiliation(s)
- James R. Barnacle
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Angharad G. Davis
- The Francis Crick Institute, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Robert J. Wilkinson
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
43
|
Wang M, Fu Q. Nanomaterials for Disease Treatment by Modulating the Pyroptosis Pathway. Adv Healthc Mater 2024; 13:e2301266. [PMID: 37354133 DOI: 10.1002/adhm.202301266] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Pyroptosis differs significantly from apoptosis and cell necrosis as an alternative mode of programmed cell death. Its occurrence is mediated by the gasdermin protein, leading to characteristic outcomes including cell swelling, membrane perforation, and release of cell contents. Research underscores the role of pyroptosis in the etiology and progression of many diseases, making it a focus of research intervention as scientists explore ways to regulate pyroptosis pathways in disease management. Despite numerous reviews detailing the relationship between pyroptosis and disease mechanisms, few delve into recent advancements in nanomaterials as a mechanism for modulating the pyroptosis pathway to mitigate disease effects. Therefore, there is an urgent need to fill this gap and elucidate the path for the use of this promising technology in the field of disease treatment. This review article delves into recent developments in nanomaterials for disease management through pyroptosis modulation, details the mechanisms by which drugs interact with pyroptosis pathways, and highlights the promise that nanomaterial research holds in driving forward disease treatment.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| |
Collapse
|
44
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023; 65:1433-1464. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
45
|
Calbay O, Padia R, Akter M, Sun L, Li B, Qian N, Guo J, Fu Z, Jin L, Huang S. ASC/inflammasome-independent pyroptosis in ovarian cancer cells through translational augmentation of caspase-1. iScience 2023; 26:108408. [PMID: 38058301 PMCID: PMC10696124 DOI: 10.1016/j.isci.2023.108408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/24/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Canonical pyroptosis is type of programmed cell death depending on active caspase-1, and the inflammasome carries out caspase-1 activation. Here, we showed that docosahexaenoic acid (DHA) induced ovarian cancer cell deaths in caspase-1-dependent manner. DHA increased caspase-1 activity and led to interleukin-1β secretion and gasdermin D cleavage while disulfiram inhibited DHA-induced cell death, suggesting that DHA triggered pyroptosis. Intriguingly, ASC, the molecule recruiting caspase-1 to inflammasome for activation, was dispensable for DHA-induced pyroptosis. Instead, we observed remarkable elevation in caspase-1 abundance concurrent with the activation of caspase-1 in DHA-treated cells. As ectopically overexpressing caspase-1 resulted in robust amount of active caspase-1, we reason that DHA activates caspase-1 and pyroptosis through the generation of excessive amount of caspase-1 protein. Mechanistically, DHA increased caspase-1 by specifically accelerating caspase-1 protein synthesis via the p38MAPK/Mnk1 signaling pathway. We have uncovered an unknown pyroptosis mechanism in which caspase-1-dependent pyroptosis can occur without the participation of ASC/inflammasome.
Collapse
Affiliation(s)
- Ozlem Calbay
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ravi Padia
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mahmuda Akter
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lei Sun
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Bin Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Nicole Qian
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jianhui Guo
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
46
|
Wellems D, Hu Y, Jennings S, Wang G. Loss of CFTR function in macrophages alters the cell transcriptional program and delays lung resolution of inflammation. Front Immunol 2023; 14:1242381. [PMID: 38035088 PMCID: PMC10687418 DOI: 10.3389/fimmu.2023.1242381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator (CFTR) gene. The most severe pathologies of CF occur in the lung, manifesting as chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite increasing knowledge of the CF primary defect and the resulting clinical sequelae, the relationship between the CFTR loss of function and the neutrophilic inflammation remains incompletely understood. Here, we report that loss of CFTR function in macrophages causes extended lung inflammation. After intratracheal inoculation with Pseudomonas aeruginosa, mice with a macrophage-specific Cftr-knockout (Mac-CF) were able to mount an effective host defense to clear the bacterial infection. However, three days post-inoculation, Mac-CF lungs demonstrated significantly more neutrophil infiltration and higher levels of inflammatory cytokines, suggesting that Mac-CF mice had a slower resolution of inflammation. Single-cell RNA sequencing revealed that absence of CFTR in the macrophages altered the cell transcriptional program, affecting the cell inflammatory and immune responses, antioxidant system, and mitochondrial respiration. Thus, loss of CFTR function in macrophages influences cell homeostasis, leading to a dysregulated cellular response to infection that may exacerbate CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
47
|
Garcia-Puente LM, Fraile-Martinez O, García-Montero C, Bujan J, De León-Luis JA, Bravo C, Rodríguez-Benitez P, Pintado P, Ruiz-Labarta FJ, Álvarez-Mon M, García-Honduvilla N, Cancelo MJ, Saez MA, Ortega MA. Placentas from Women with Late-Onset Preeclampsia Exhibit Increased Expression of the NLRP3 Inflammasome Machinery. Biomolecules 2023; 13:1644. [PMID: 38002326 PMCID: PMC10669618 DOI: 10.3390/biom13111644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Pre-eclampsia is a harmful and potentially lethal medical condition during pregnancy clinically diagnosed by hypertension and commonly accompanied by proteinuria and multiorgan affections. According to the time of diagnosis, it is differentiated between early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being less dangerous and presenting distinct pathophysiological signatures, LO-PE has a greater prevalence than EO-PE, both having significant consequences on the placenta. Previous works have evidenced that exacerbated inflammation in this organ might play a potential pathogenic role in the development of pre-eclampsia, and there is some preliminary evidence that the hyperactivation of inflammasomes can be related to the altered immunoinflammatory responses observed in the placentas of these patients. However, the precise role of inflammasomes in the placentas of women with LO-PE remains to be fully understood. In this work, we have studied the gene and protein expression of the main components related to the canonical and non-canonical pathways of the inflammasome NLRP3 (NLRP3, ASC, caspase 1, caspase 5, caspase 8, interleukin 1β, and interleukin 18) in the placental tissue of women with LO-PE. Our results show a marked increase in all these components in the placentas of women who have undergone LO-PE, suggesting that NLRP3 inflammasome plays a potentially pathophysiological role in the development of this entity. Future works should aim to evaluate possible translational approaches to this dysregulation in these patients.
Collapse
Affiliation(s)
- Luis M Garcia-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Juan A De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Patrocinio Rodríguez-Benitez
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Department of Nephrology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
| | - Pilar Pintado
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Francisco Javier Ruiz-Labarta
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María J Cancelo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of Obstetrics and Gynecology, University Hospital of Guadalajara, 19002 Guadalajara, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
48
|
Granata S, La Russa D, Stallone G, Perri A, Zaza G. Inflammasome pathway in kidney transplantation. Front Med (Lausanne) 2023; 10:1303110. [PMID: 38020086 PMCID: PMC10663322 DOI: 10.3389/fmed.2023.1303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Kidney transplantation is the best available renal replacement therapy for patients with end-stage kidney disease and is associated with better quality of life and patient survival compared with dialysis. However, despite the significant technical and pharmaceutical advances in this field, kidney transplant recipients are still characterized by reduced long-term graft survival. In fact, almost half of the patients lose their allograft after 15-20 years. Most of the conditions leading to graft loss are triggered by the activation of a large immune-inflammatory machinery. In this context, several inflammatory markers have been identified, and the deregulation of the inflammasome (NLRP3, NLRP1, NLRC4, AIM2), a multiprotein complex activated by either whole pathogens (including fungi, bacteria, and viruses) or host-derived molecules, seems to play a pivotal pathogenetic role. However, the biological mechanisms leading to inflammasome activation in patients developing post-transplant complications (including, ischemia-reperfusion injury, rejections, infections) are still largely unrecognized, and only a few research reports, reviewed in this manuscript, have addressed the association between abnormal activation of this pathway and the onset/development of major clinical effects. Finally, the regulation of the inflammasome machinery could represent in future a valuable therapeutic target in kidney transplantation.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
49
|
Ruan H, Zhang H, Feng J, Luo H, Fu F, Yao S, Zhou C, Zhang Z, Bian Y, Jin H, Zhang Y, Wu C, Tong P. Inhibition of Caspase-1-mediated pyroptosis promotes osteogenic differentiation, offering a therapeutic target for osteoporosis. Int Immunopharmacol 2023; 124:110901. [PMID: 37839278 DOI: 10.1016/j.intimp.2023.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Pyroptosis, an emerging inflammatory form of cell death, has been previously demonstrated to stimulate a massive inflammatory response, thus hindering the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Nevertheless, the impact of pyroptosis in thwarting osteogenic differentiation and exacerbating the advancement of osteoporosis (OP) remains enigmatic. METHODS We evaluated the expression levels of pyroptosis-associated indicators, including NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), CASPASE-1, IL-1β, and IL-18, in specimens obtained from femoral heads of OP patients, as well as in an ovariectomy-induced mouse model of OP. Subsequently, the precise roles of pyroptosis in osteogenic differentiation were investigated using bioinformatics analysis, alongside morphological and biochemical assessments. RESULTS The pivotal pyroptotic proteins, including NLRP3, Caspase-1, IL-1β, and IL-18, exhibited significant upregulation within the bone tissue samples of clinical OP cases, as well as in the femoral tissues of ovariectomy (OVX)-induced mouse OP model, displaying a negatively associated with compromised osteogenic capacity, as represented by lessened bone mass, suppressed expression of osteogenic proteins such as Runt-related transcription factor 2 (RUNX2), Alkaline phosphatase (ALP), Osterix (OSX), and Osteopontin (OPN), and increased lipid droplets. Moreover, bioinformatics analysis substantiated shared gene expression patterns between pyroptosis and OP pathology, encompassing NLRP3, Caspase-1, IL-1β, IL-18, etc. Furthermore, our in vitro investigation using ST2 cells revealed that dexamethasone treatment prominently induced pyroptosis while impeding osteogenic differentiation. Notably, gene silencing of Caspase-1 effectively counteracted the inhibitory effects of dexamethasone on osteogenic differentiation, as manifested by increased ALP activity and enhanced expression of RUNX2, ALP, OSX, and OPN. CONCLUSION Our findings unequivocally underscore that inhibition of Caspase-1-mediated pyroptosis promotes osteogenic differentiation, providing a promising therapeutic target for managing OP.
Collapse
Affiliation(s)
- Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huihao Zhang
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei, China; Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Jing Feng
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan, Hubei, China
| | - Huan Luo
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yishan Bian
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuliang Zhang
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China.
| | - Chengliang Wu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
50
|
Chen JW, Chen S, Chen GQ. Recent advances in natural compounds inducing non-apoptotic cell death for anticancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:729-747. [PMID: 38239395 PMCID: PMC10792489 DOI: 10.20517/cdr.2023.78] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 01/22/2024]
Abstract
The induction of cell death is recognized as a potent strategy for cancer treatment. Apoptosis is an extensively studied form of cell death, and multiple anticancer drugs exert their therapeutic effects by inducing it. Nonetheless, apoptosis evasion is a hallmark of cancer, rendering cancer cells resistant to chemotherapy drugs. Consequently, there is a growing interest in exploring novel non-apoptotic forms of cell death, such as ferroptosis, necroptosis, pyroptosis, and paraptosis. Natural compounds with anticancer properties have garnered significant attention due to their advantages, including a reduced risk of drug resistance. Over the past two decades, numerous natural compounds have been discovered to exert anticancer and anti-resistance effects by triggering these four non-apoptotic cell death mechanisms. This review primarily focuses on these four non-apoptotic cell death mechanisms and their recent advancements in overcoming drug resistance in cancer treatment. Meanwhile, it highlights the role of natural compounds in effectively addressing cancer drug resistance through the induction of these forms of non-apoptotic cell death.
Collapse
Affiliation(s)
- Jia-Wen Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| |
Collapse
|