1
|
Xun QQ, Zhang J, Feng L, Ma YY, Li Y, Shi XL. Identification of a novel pyrrolo[2,3- b]pyridine compound as a potent glycogen synthase kinase 3β inhibitor for treating Alzheimer's disease. J Enzyme Inhib Med Chem 2025; 40:2466846. [PMID: 39976249 PMCID: PMC11843656 DOI: 10.1080/14756366.2025.2466846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
Herein, a novel pyrrolo[2,3-b]pyridine-based glycogen synthase kinase 3β (GSK-3β) inhibitor, S01, was rationally designed and synthesised to target Alzheimer's disease (AD). S01 inhibited GSK-3β, with an IC50 of 0.35 ± 0.06 nM, and had an acceptable kinase selectivity for 24 structurally similar kinases. Western blotting assays indicated that S01 efficiently increased the expression of p-GSK-3β-Ser9 and decreased p-tau-Ser396 levels in a dose-dependent manner. In vitro cell experiments, S01 showed low cytotoxicity to SH-SY5Y cells, significantly upregulated the expression of β-catenin and neurogenesis-related biomarkers, and effectively promoted the outgrowth of differentiated neuronal neurites. Moreover, S01 substantially ameliorated dyskinesia in AlCl3-induced zebrafish AD models at a concentration of 0.12 μM, which was more potent than Donepezil (8 μM) under identical conditions. Acute toxicity experiments further confirmed the safety of S01 in vivo. Our findings suggested that S01 is a prospective GSK-3β inhibitor and can be tested as a candidate for treating AD.
Collapse
Affiliation(s)
- Qing-Qing Xun
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Jing Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lei Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yu-Ying Ma
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Ying Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xiao-Long Shi
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Foroozanmehr B, Hemmati MA, Yaribeygi H, Karav S, Jamialahmadi T, Sahebkar A. Parkinson's disease and brain insulin signaling: Mechanisms and potential role of GLP-1 mimetics. Brain Res 2025; 1862:149738. [PMID: 40449678 DOI: 10.1016/j.brainres.2025.149738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/21/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized primarily by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. The pathophysiology of PD is complex and multifactorial involving genetic factors, oxidative stress, mitochondrial dysfunction, impaired protein clearance, and neuroinflammation but recent evidence emphasizes the role of impaired brain insulin signaling. Insulin is a metabolic hormone with extensive effects on metabolic substrates but recent studies have demonstrated that it is also involved in central signaling pathways and induces different brain areas related to food craving, motor activities, cognitive abilities, and emotional feelings. Hence it has been suggested that induction of brain insulin sensitivity may be a promising treatment for PD. Glucagon-like peptide-1 (GLP-1) mimetics are a new-generation class of antidiabetics that normalize glucose homeostasis via several pathways. Recent studies suggest extra-glycemic benefits for GLP-1 mimetics against PD. GLP-1 mimetics can prevent or slow PD progression. Additionally, these agents can improve cognitive functions by improving brain insulin signaling pathways. In this review, we aim to highlight the role of brain insulin signaling in PD pathophysiology and discuss the possible benefits of GLP-1 mimetics in PD management.
Collapse
Affiliation(s)
- Behina Foroozanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Contreras A, Jiménez-Herrera R, Djebari S, Navarro-López JD, Jiménez-Díaz L. Mapping the hippocampal spatial proteomic signature in male and female mice of an early Alzheimer's disease model. Biol Sex Differ 2025; 16:36. [PMID: 40414897 PMCID: PMC12103767 DOI: 10.1186/s13293-025-00697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/03/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Hippocampal dysfunction induced by soluble amyloid-β oligomers (oAβ) is an early neuropathological hallmark of Alzheimer's disease (AD). oAβ shifts hippocampal synaptic-plasticity induction threshold facilitating long-term depression (LTD) instead of long-term potentiation (LTP, the functional basis of memory), thereby leading to memory deficits in early AD-like amyloidosis mouse models. In this regard, the spatial distribution of the underlying synaptic-plasticity/memory proteome changes in the hippocampus, and potential sex differences, remain unknown. Here we postulated that some protein changes related to synaptic-plasticity and memory may be unique to sex and/or specific to the dorsal or ventral hippocampus -as both regions have distinct functionality and connectivity-, potentially providing sex- and spatial-specific proteomic phenotypes for early AD-amyloidosis interventions. METHODS An innovative spatial-resolution proteomics study was performed to map whole hippocampal proteome distribution using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry. For this purpose, sixteen adult male and female mouse brains intracerebroventricularly injected with oAβ1-42/vehicle were analyzed. MALDI-imaging RapifleXTM-MALDI-TissuetyperTM TOF/TOF mass spectrometer was used, followed by traditional tandem mass spectrometry (MS/MS) for precise protein identification on tissue. RESULTS 34 proteins showed significant differences in expression levels due to treatment, sex, or hippocampal location among 234 peptides initially detected; and displayed significant protein-protein interaction (PPI), indicating main functional relationship to LTP/LTD pathways and memory. Thus, 14 proteins related to synaptic-plasticity and/or AD were further studied, showing that most modulated glycogen synthase kinase-3β (GSK-3β), a protein widely involved in synaptic-plasticity induction threshold regulation towards LTD. Accordingly, hippocampal GSK-3β was found to be overactivated in AD-like amyloidosis mice. CONCLUSIONS We show for the first-time specific sex-dependent synaptic-plasticity proteome changes in dorsal/ventral hippocampi that modulate GSK-3β activity. These findings provide new insight into the early amyloidosis pathogenesis in AD and offer valuable, unique proteomic phenotypes as potential biomarkers and targets for early diagnosis and therapy in both sexes.
Collapse
Affiliation(s)
- Ana Contreras
- Neurophysiology & Behavior Lab, Biomedicine Institute (IB-UCLM), School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Raquel Jiménez-Herrera
- Neurophysiology & Behavior Lab, Biomedicine Institute (IB-UCLM), School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Souhail Djebari
- Neurophysiology & Behavior Lab, Biomedicine Institute (IB-UCLM), School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Juan D Navarro-López
- Neurophysiology & Behavior Lab, Biomedicine Institute (IB-UCLM), School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, 13071, Spain.
| | - Lydia Jiménez-Díaz
- Neurophysiology & Behavior Lab, Biomedicine Institute (IB-UCLM), School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, 13071, Spain.
| |
Collapse
|
4
|
Ponce-Lopez T. Peripheral Inflammation and Insulin Resistance: Their Impact on Blood-Brain Barrier Integrity and Glia Activation in Alzheimer's Disease. Int J Mol Sci 2025; 26:4209. [PMID: 40362446 PMCID: PMC12072112 DOI: 10.3390/ijms26094209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and synaptic dysfunction. The accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein leads to neuronal dysfunction, neuroinflammation, and glial cell activation. Emerging evidence suggests that peripheral insulin resistance and chronic inflammation, often associated with type 2 diabetes (T2D) and obesity, promote increased proinflammatory cytokines, oxidative stress, and immune cell infiltration. These conditions further damage the blood-brain barrier (BBB) integrity and promote neurotoxicity and chronic glial cell activation. This induces neuroinflammation and impaired neuronal insulin signaling, reducing glucose metabolism and exacerbating Aβ accumulation and tau hyperphosphorylation. Indeed, epidemiological studies have linked T2D and obesity with an increased risk of developing AD, reinforcing the connection between metabolic disorders and neurodegeneration. This review explores the relationships between peripheral insulin resistance, inflammation, and BBB dysfunction, highlighting their role in glial activation and the exacerbation of AD pathology.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| |
Collapse
|
5
|
García-Cruz VM, Coria R, Arias C. Role of saturated fatty acid metabolism in posttranslational modifications of the Tau protein. Mol Cell Biochem 2025:10.1007/s11010-025-05275-2. [PMID: 40208460 DOI: 10.1007/s11010-025-05275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
The relationship between metabolic alterations induced by the consumption of a high-fat diet (HFD) and the risk of developing neurodegenerative diseases such as Alzheimer's disease (AD) has been extensively studied. In particular, the induction of neuronal insulin resistance, endoplasmic reticulum stress, and the production of reactive oxygen species by chronic exposure to high concentrations of saturated fatty acids (sFAs), such as palmitic acid (PA), have been proposed as the cellular and molecular mechanisms underlying cognitive decline. Lipid metabolism affects many processes critical for cellular homeostasis. However, questions remain as to whether neuronal exposure to high sFA levels contributes to the onset and progression of AD features, and how their metabolism plays a role in this process. Therefore, the aim of this work is to review the accumulated evidence for the potential mechanisms by which the neuronal metabolism of sFAs affects signaling pathways that may induce biochemical changes in the AD hallmark protein Tau, ultimately promoting its aggregation and the subsequent generation of neurofibrillary tangles. In particular, the data presented here provide evidence that PA-dependent metabolic stress results in an imbalance in the activities of protein kinases and deacetylases that potentially contribute to the post-translational modifications (PTMs) of Tau.
Collapse
Affiliation(s)
- Valeria Melissa García-Cruz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Roberto Coria
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Eo H, Kim SH, Ju IG, Lee JH, Oh MS, Kim YJ. NXP032 Improves Memory Impairment Through Suppression of Tauopathy in PS19 Mice and Attenuates Okadaic Acid-Induced Tauopathy in SH-SY5Y Cells. J Neuroimmune Pharmacol 2025; 20:10. [PMID: 39891801 DOI: 10.1007/s11481-025-10175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Tauopathy is widely observed in multiple neurodegenerative diseases such as Alzheimer's disease (AD) and characterized by abnormal tau protein phosphorylation, aggregation and its accumulation as a form of neurofibrillary tangle (NFT) in the brain. However, there are no effective treatments targeting tau pathology in the AD. Vitamin C is known to reduce tauopathy and modulate one of its regulators called glycogen synthase kinase 3 (GSK3) in the body. Nevertheless, vitamin C has a limitation of its stability during metabolism due to its chemical properties. Thus, in the current study, NXP032 (a vitamin C/aptamer complex) was tested as a candidate for tau-targeting treatment because it can preserve antioxidative efficacy of vitamin C before it can reach the target tissue. In this context, the current study aimed to investigate the therapeutic effect of NXP032 on tauopathy in vivo and in vitro. As a result, NXP032 attenuated cognitive and memory decline and reduced NFT and tau hyperphosphorylation in the P301S mutant human tau transgenic mice (or called PS19 mice). In addition, NXP032 suppressed neuroinflammation found in the PS19 mice. Furthermore, NXP032 protected SH-SY5Y human neuroblastoma cells from okadaic acid (OKA)-induced cytotoxicity. Especially, 10 ng/ml of NXP032 reduced tau hyperphosphorylation and GSK3 activation though its phosphorylation at Tyr216 site which were promoted by OKA treatment in the SH-SY5Y cells. Taken together, our results suggest that NXP032 might be a potential therapy for AD and tauopathy-related neurodegenerative disorders as well.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seong Hye Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hee Lee
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Jones T, Raman R, Puhl AC, Lane TR, Riabova O, Kazakova E, Makarov V, Ekins S. Discovery of Dual Targeting GSK-3β/HIV-1 Reverse Transcriptase Inhibitors as Neuroprotective Antiviral Agents. ACS Chem Neurosci 2025; 16:77-84. [PMID: 39663760 DOI: 10.1021/acschemneuro.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Glycogen synthase kinase-3 beta (GSK-3β or GSK-3B) is a serine-threonine kinase involved in various pathways and cellular processes. Alteration in GSK-3β activity is associated with several neurological diseases including Alzheimer's disease (AD), bipolar disorder, and rare diseases like Rett syndrome. GSK-3β is also implicated in HIV-associated dementia (HAD), as it is upregulated in HIV-1-infected cells and plays a role in neuronal dysfunction. Therefore, a small molecule that can inhibit both GSK-3β and HIV-1 reverse transcriptase could offer neuroprotective therapy for patients suffering from HIV-1. Despite this, there are no known GSK-3β inhibitors currently approved, thus prompting us to screen our panel of various antiviral compounds against this kinase to better understand its structure-activity relationship. We show for the first time that the approved drugs, etravirine and rilpivirine, possess GSK-3β activity (IC50 619 nM and 502 nM, respectively). We have also identified 3 lead molecules exhibiting IC50 < 1 μM (11726169, 12326205, and 12326207), with compound 11726169 being the most potent in vitro GSK-3β inhibitor (IC50 = 12.1 nM). We also describe the generation of machine learning models for GSK-3β inhibition and their validation with our data as an external test set and propose their use for the future optimization of such inhibitors.
Collapse
Affiliation(s)
- Thane Jones
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Renuka Raman
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Olga Riabova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, Moscow 119071, Russia
| | - Elena Kazakova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, Moscow 119071, Russia
| | - Vadim Makarov
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, Moscow 119071, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
8
|
Colín-Martínez E, Espino-de-la-Fuente C, Arias C. Age- and Sex-Associated Wnt Signaling Dysregulation is Exacerbated from the Early Stages of Neuropathology in an Alzheimer's Disease Model. Neurochem Res 2024; 49:3094-3104. [PMID: 39167347 PMCID: PMC11449975 DOI: 10.1007/s11064-024-04224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Emerging studies suggest that Wnt signaling is dysregulated in the brains of AD patients, suggesting that this pathway may also contribute to disease progression. However, it remains to be determined whether alterations in the Wnt pathway are the cause or consequence of this disease and which elements of Wnt signaling mainly contribute to the appearance of AD histopathological markers early in disease compared to what occurs during normal aging. The present study aimed to describe the status of several canonical Wnt pathway components and the expression of the AD marker p-tau in the hippocampi of female and male 3xTg-AD mice during disease progression compared to those during normal aging. We analyzed the levels of the canonical Wnt components Wnt7a, Dkk-1, LRP6 and GSK3β as well as the levels of p-tau and BDNF at 3, 6, 9-12 and 18 months of age. We found a gradual increase in Dkk-1 levels during aging prior to Wnt7a and LRP5/6 depletion, which was strongly exacerbated in 3xTg-AD mice even at young ages and correlated with GSK3β activation and p-tau-S202/Thr205 expression. Dkk-1 upregulation, as well as the level of p-tau, was significantly greater in females than in males. Our results suggest that Dkk-1 upregulation is involved in the expression of several features of AD at early stages, which supports the possibility of positively modulating the canonical Wnt pathway as a therapeutic tool to delay this disease at early stages.
Collapse
Affiliation(s)
- Elizabeth Colín-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - César Espino-de-la-Fuente
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| |
Collapse
|
9
|
Xiao Z, Li Y, Haider A, Pfister SK, Rong J, Chen J, Zhao C, Zhou X, Song Z, Gao Y, Patel JS, Collier TL, Ran C, Zhai C, Yuan H, Liang SH. Radiosynthesis and evaluation of a novel 18F-labeled tracer for PET imaging of glycogen synthase kinase 3. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:327-336. [PMID: 39583910 PMCID: PMC11578811 DOI: 10.62347/obzs8887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine kinase family that regulates diverse biological processes including glucose metabolism, insulin activity and energy homeostasis. Dysregulation of GSK3 is implicated in the development of several diseases such as type 2 diabetes mellitus, Alzheimer's disease (AD), and various cancer types. In this study, we report the synthesis and evaluation of a novel positron emission tomography (PET) ligand compound 28 (codenamed [18F]GSK3-2209). The PET ligand [18F]28 was obtained via copper-mediated radiofluorination in more than 32% radiochemical yields, with high radiochemical purity and high molar activity. In vitro autoradiography studies in rodents demonstrated that this tracer exhibited a high specific binding to GSK3. Furthermore, PET imaging studies of [18F]28 revealed its ability to penetrate the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Stefanie K Pfister
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Zhendong Song
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Yabiao Gao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Department of Radiation Oncology, Winship Cancer Institute of Emory UniversityAtlanta, GA 30322, USA
| | - Thomas L Collier
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA 02114, USA
| | - Chuangyan Zhai
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of MedicineAtlanta, GA 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| |
Collapse
|
10
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
11
|
Poupon-Bejuit L, Geard A, Millicheap N, Rocha-Ferreira E, Hagberg H, Thornton C, Rahim AA. Diabetes drugs activate neuroprotective pathways in models of neonatal hypoxic-ischemic encephalopathy. EMBO Mol Med 2024; 16:1284-1309. [PMID: 38783166 PMCID: PMC11178908 DOI: 10.1038/s44321-024-00079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) arises from diminished blood flow and oxygen to the neonatal brain during labor, leading to infant mortality or severe brain damage, with a global incidence of 1.5 per 1000 live births. Glucagon-like Peptide 1 Receptor (GLP1-R) agonists, used in type 2 diabetes treatment, exhibit neuroprotective effects in various brain injury models, including HIE. In this study, we observed enhanced neurological outcomes in post-natal day 10 mice with surgically induced hypoxic-ischaemic (HI) brain injury after immediate systemic administration of exendin-4 or semaglutide. Short- and long-term assessments revealed improved neuropathology, survival rates, and locomotor function. We explored the mechanisms by which GLP1-R agonists trigger neuroprotection and reduce inflammation following oxygen-glucose deprivation and HI in neonatal mice, highlighting the upregulation of the PI3/AKT signalling pathway and increased cAMP levels. These findings shed light on the neuroprotective and anti-inflammatory effects of GLP1-R agonists in HIE, potentially extending to other neurological conditions, supporting their potential clinical use in treating infants with HIE.
Collapse
Affiliation(s)
- Laura Poupon-Bejuit
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Amy Geard
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Nathan Millicheap
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
12
|
Lee Y, Chowdhury T, Kim S, Yu HJ, Kim KM, Kang H, Kim MS, Kim JW, Kim YH, Ji SY, Hwang K, Han JH, Hwang J, Yoo SK, Lee KS, Choe G, Won JK, Park SH, Lee YK, Shin JH, Park CK, Kim CY, Kim JI. Central neurocytoma exhibits radial glial cell signatures with FGFR3 hypomethylation and overexpression. Exp Mol Med 2024; 56:975-986. [PMID: 38609519 PMCID: PMC11059271 DOI: 10.1038/s12276-024-01204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 04/14/2024] Open
Abstract
We explored the genomic events underlying central neurocytoma (CN), a rare neoplasm of the central nervous system, via multiomics approaches, including whole-exome sequencing, bulk and single-nuclei RNA sequencing, and methylation sequencing. We identified FGFR3 hypomethylation leading to FGFR3 overexpression as a major event in the ontogeny of CN that affects crucial downstream events, such as aberrant PI3K-AKT activity and neuronal development pathways. Furthermore, we found similarities between CN and radial glial cells based on analyses of gene markers and CN tumor cells and postulate that CN tumorigenesis is due to dysregulation of radial glial cell differentiation into neurons. Our data demonstrate the potential role of FGFR3 as one of the leading drivers of tumorigenesis in CN.
Collapse
Affiliation(s)
- Yeajina Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Tamrin Chowdhury
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sojin Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeon Jong Yu
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung-Min Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ho Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min-Sung Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong-Hwy Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - So Young Ji
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jung Ho Han
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jinha Hwang
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Seong-Keun Yoo
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kyu Sang Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chul-Kee Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Kim JS, Kim MG, Ryu JE, Lee YB, Liu QF, Kim KK, Cho SH, Shin SJ, Koo BS, Choi HK. Effect of woohwangchungsimwon and donepezil co-treatment on cognitive function and serum metabolic profiles in a scopolamine-induced model of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117359. [PMID: 37924999 DOI: 10.1016/j.jep.2023.117359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Woohwangchungsimwon (WCW) is a traditional medicine used in East Asian countries to treat central nervous system disorders. Reported pharmacological properties include antioxidant effects, enhanced learning and memory, and protection against ischemic neuronal cell death, supporting its use in treating neurodegenerative diseases like Alzheimer's disease (AD). AIM OF THE STUDY The study aims to assess the effects of co-treatment with WCW and donepezil on cognitive functions and serum metabolic profiles in a scopolamine-induced AD model. MATERIALS AND METHODS Cell viability and reactive oxygen species (ROS) levels were measured in amyloid β-peptide25-35 (Aβ25-35)-induced SH-SY5Y cells. An AD model was established in ICR mice by intraperitoneal scopolamine administration. Animals underwent the step-through passive avoidance test (PAT) and Morris water maze (MWM) test. Hippocampal tissues were collected to examine specific protein expression. Serum metabolic profiles were analyzed using nuclear magnetic resonance (NMR) spectroscopy. RESULTS Co-treatment with WCW and donepezil increased cell viability and reduced ROS production in Aβ25-35-induced SH-SY5Y cells compared to that with donepezil treatment alone. Co-treatment improved cognitive functions and was comparable to donepezil treatment alone in the PAT and MWM tests. Pathways related to tyrosine, phenylalanine, and tryptophan biosynthesis, phenylalanine metabolism, and cysteine and methionine metabolism were altered by co-treatment. Levels of tyrosine and methionine, major serum metabolites in these pathways, were significantly reduced after co-treatment. CONCLUSIONS Co-treatment with WCW and donepezil shows promise as a therapeutic strategy for AD and is comparable to donepezil alone in improving cognitive function. Reduced tyrosine and methionine levels after co-treatment may enhance cognitive function by mitigating hypertyrosinemia and hyperhomocysteinemia, known risk factors for AD. The serum metabolic profiles obtained in this study can serve as a foundation for developing other bioactive compounds using a scopolamine-induced mouse model.
Collapse
Affiliation(s)
- Jung-Seop Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Man-Gi Kim
- Department of Neuropsychiatry, College of Korean Medicine, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea
| | - Ji Eun Ryu
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ye-Been Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Quan Feng Liu
- Department of Neuropsychiatry, College of Korean Medicine, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea
| | - Kwang Ki Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Gyeonggi-do, Republic of Korea
| | - Seung-Hun Cho
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Joon Shin
- Division of Nephrology, Department of Internal Medicine, Medical Cannabis Center, Dongguk University Ilsan Hospital, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea
| | - Byung-Soo Koo
- Department of Neuropsychiatry, College of Korean Medicine, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea.
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Niemsiri V, Rosenthal SB, Nievergelt CM, Maihofer AX, Marchetto MC, Santos R, Shekhtman T, Alliey-Rodriguez N, Anand A, Balaraman Y, Berrettini WH, Bertram H, Burdick KE, Calabrese JR, Calkin CV, Conroy C, Coryell WH, DeModena A, Eyler LT, Feeder S, Fisher C, Frazier N, Frye MA, Gao K, Garnham J, Gershon ES, Goes FS, Goto T, Harrington GJ, Jakobsen P, Kamali M, Kelly M, Leckband SG, Lohoff FW, McCarthy MJ, McInnis MG, Craig D, Millett CE, Mondimore F, Morken G, Nurnberger JI, Donovan CO, Øedegaard KJ, Ryan K, Schinagle M, Shilling PD, Slaney C, Stapp EK, Stautland A, Tarwater B, Zandi PP, Alda M, Fisch KM, Gage FH, Kelsoe JR. Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis. Mol Psychiatry 2024; 29:6-19. [PMID: 36991131 PMCID: PMC11078741 DOI: 10.1038/s41380-022-01909-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 03/31/2023]
Abstract
Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.
Collapse
Grants
- R01 MH095741 NIMH NIH HHS
- UL1 TR001442 NCATS NIH HHS
- I01 BX003431 BLRD VA
- U19 MH106434 NIMH NIH HHS
- U01 MH092758 NIMH NIH HHS
- T32 MH018399 NIMH NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- Department of Veterans Affairs | Veterans Affairs San Diego Healthcare System (VA San Diego Healthcare System)
- The Halifax group (MA, CVC, JG, CO, and CS) is supported by grants from Canadian Institutes of Health Research (#166098), ERA PerMed project PLOT-BD, Research Nova Scotia, Genome Atlantic, Nova Scotia Health Authority and Dalhousie Medical Research Foundation (Lindsay Family Fund).
- U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
- U19MH106434, part of the National Cooperative Reprogrammed Cell Research Groups (NCRCRG) to Study Mental Illness. AHA-Allen Initiative in Brain Health and Cognitive Impairment Award (19PABH134610000). The JPB Foundation, Bob and Mary Jane Engman, Annette C Merle-Smith, R01 MH095741, and Lynn and Edward Streim.
Collapse
Affiliation(s)
- Vipavee Niemsiri
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | | | - Adam X Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, La Jolla, CA, USA
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Renata Santos
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- University of Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1261266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, Northwestern University, Chicago, IL, USA
| | - Amit Anand
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yokesh Balaraman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Holli Bertram
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Katherine E Burdick
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Calabrese
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Cynthia V Calkin
- Department of Psychiatry and Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Carla Conroy
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Anna DeModena
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Feeder
- Department of Psychiatry, The Mayo Clinic, Rochester, MN, USA
| | - Carrie Fisher
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicole Frazier
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mark A Frye
- Department of Psychiatry, The Mayo Clinic, Rochester, MN, USA
| | - Keming Gao
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mood Disorders Program, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Toyomi Goto
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Petter Jakobsen
- Norment, Division of Psychiatry, Haukeland University Hospital and Department of Clinical medicine, University of Bergen, Bergen, Norway
| | - Masoud Kamali
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Marisa Kelly
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Susan G Leckband
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Falk W Lohoff
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J McCarthy
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Caitlin E Millett
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francis Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Gunnar Morken
- Division of Mental Health Care, St Olavs University Hospital, and Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Ketil J Øedegaard
- Norment, Division of Psychiatry, Haukeland University Hospital and Department of Clinical medicine, University of Bergen, Bergen, Norway
| | - Kelly Ryan
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Martha Schinagle
- Mood Disorders Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Emma K Stapp
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrea Stautland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bruce Tarwater
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Mishra D, Reddy I, Dey CS. PKCα Isoform Inhibits Insulin Signaling and Aggravates Neuronal Insulin Resistance. Mol Neurobiol 2023; 60:6642-6659. [PMID: 37470970 DOI: 10.1007/s12035-023-03486-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Overexpression of PKCα has been linked to inhibit insulin signaling disrupting IRS-1 and Akt phosphorylations in skeletal muscle. PKCα inhibits IRS-1 and Akt phosphorylations, but not required for insulin-stimulated glucose transport in skeletal muscles. Inhibition of PKCα increased whereas in some studies decreased GLUT-4 levels at the plasma membrane in skeletal muscles and adipocytes. Controversial studies have reported opposite expression pattern of PKCα expression in insulin-resistant skeletal muscles. These findings indicate that the role of PKCα on insulin signaling is controversial and could be tissue specific. Evidently, studies are required to decipher the role of PKCα in regulating insulin signaling and preferably in other cellular systems. Utilizing neuronal cells, like Neuro-2a, SHSY-5Y and insulin-resistant diabetic mice brain tissues; we have demonstrated that PKCα inhibits insulin signaling, through IRS-Akt pathway in PP2A-dependent mechanism by an AS160-independent route involving 14-3-3ζ. Inhibition and silencing of PKCα improves insulin sensitivity by increasing GLUT-4 translocation to the plasma membrane and glucose uptake. PKCα regulates GSK3 isoforms in an opposite manner in insulin-sensitive and in insulin-resistant condition. Higher activity of PKCα aggravates insulin-resistant neuronal diabetic condition through GSK3β but not GSK3α. Our results mechanistically explored the contribution of PKCα in regulating neuronal insulin resistance and diabetes, which opens up new avenues in dealing with metabolic disorders and neurodegenerative disorders.
Collapse
Affiliation(s)
- Devanshi Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, Hauz Khas, -110016, India
| | - Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, Hauz Khas, -110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, Hauz Khas, -110016, India.
| |
Collapse
|
16
|
Alberry B, Silveira PP. Brain insulin signaling as a potential mediator of early life adversity effects on physical and mental health. Neurosci Biobehav Rev 2023; 153:105350. [PMID: 37544390 DOI: 10.1016/j.neubiorev.2023.105350] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In numerous brain structures, insulin signaling modulates the homeostatic processes, sensitivity to reward pathways, executive function, memory, and cognition. Through human studies and animal models, mounting evidence implicates central insulin signaling in the metabolic, physiological, and psychological consequences of early life adversity. In this review, we describe the consequences of early life adversity in the brain where insulin signaling is a key factor and how insulin may moderate the effects of adversity on psychiatric and cardio-metabolic health outcomes. Further understanding of how early life adversity and insulin signaling impact specific brain regions and mental and physical health outcomes will assist in prevention, diagnosis, and potential intervention following early life adversity.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Diaz Quiroz JF, Siskel LD, Rosenthal JJC. Site-directed A → I RNA editing as a therapeutic tool: moving beyond genetic mutations. RNA (NEW YORK, N.Y.) 2023; 29:498-505. [PMID: 36669890 PMCID: PMC10019371 DOI: 10.1261/rna.079518.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adenosine deamination by the ADAR family of enzymes is a natural process that edits genetic information as it passes through messenger RNA. Adenosine is converted to inosine in mRNAs, and this base is interpreted as guanosine during translation. Realizing the potential of this activity for therapeutics, a number of researchers have developed systems that redirect ADAR activity to new targets, ones that are not normally edited. These site-directed RNA editing (SDRE) systems can be broadly classified into two categories: ones that deliver an antisense RNA oligonucleotide to bind opposite a target adenosine, creating an editable structure that endogenously expressed ADARs recognize, and ones that tether the catalytic domain of recombinant ADAR to an antisense RNA oligonucleotide that serves as a targeting mechanism, much like with CRISPR-Cas or RNAi. To date, SDRE has been used mostly to try and correct genetic mutations. Here we argue that these applications are not ideal SDRE, mostly because RNA edits are transient and genetic mutations are not. Instead, we suggest that SDRE could be used to tune cell physiology to achieve temporary outcomes that are therapeutically advantageous, particularly in the nervous system. These include manipulating excitability in nociceptive neural circuits, abolishing specific phosphorylation events to reduce protein aggregation related to neurodegeneration or reduce the glial scarring that inhibits nerve regeneration, or enhancing G protein-coupled receptor signaling to increase nerve proliferation for the treatment of sensory disorders like blindness and deafness.
Collapse
Affiliation(s)
- Juan F Diaz Quiroz
- Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Louise D Siskel
- Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Joshua J C Rosenthal
- Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
19
|
Khoramipour K, Bejeshk MA, Rajizadeh MA, Najafipour H, Dehghan P, Farahmand F. High-Intensity Interval Training Ameliorates Molecular Changes in the Hippocampus of Male Rats with the Diabetic Brain: the Role of Adiponectin. Mol Neurobiol 2023; 60:3486-3495. [PMID: 36877358 DOI: 10.1007/s12035-023-03285-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/10/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is closely related to type 2 diabetes (T2D). This study investigated the impact of high-intensity interval training (HIIT) on diabetes-induced disturbances in AD-related factors (including AMP-activated protein kinase (AMPK), glycogen synthase kinase-3β (GSK3β), and tau protein) in the hippocampus, with the main focus on adiponectin signaling.In total, 28 male Wistar rats at the age of 8 weeks were randomly assigned to four groups (n = 7 in each group): control (Con), type 2 diabetes (T2D), HIIT (Ex), and type 2 diabetes + HIIT (T2D + Ex). T2D was induced by a high-fat diet plus a single dose of streptozotocin (STZ). Rats in Ex and T2D + Ex groups performed 8 weeks of HIIT (running at 8-95% of Vmax, 4-10 intervals). Insulin and adiponectin levels in serum and hippocampus were measured along with hippocampal expression of insulin and adiponectin receptors, phosphorylated AMPK, dephosphorylated GSK3β, and phosphorylated tau. Homeostasis model assessment for insulin resistance (HOMA-IR), homeostasis model assessment for insulin resistance beta (HOMA-β), and quantitative insulin sensitivity check index (QUICKI) were calculated to assess insulin resistance and sensitivity. T2D decreased insulin and adiponectin levels in serum and hippocampus, as well as the hippocampal levels of insulin and adiponectin receptors and AMPK, but increased GSK3β and tau in the hippocampus. HIIT reversed diabetes-induced impairments and consequently decreased tau accumulation in the hippocampus of diabetic rats. HOMA-IR, HOMA-β, and QUICKI were improved in Ex and T2D + Ex groups. Overall, our results confirmed that T2D has undesirable effects on the levels of some Alzheimer's-related factors in the hippocampus, and HIIT could ameliorate these impairments in the hippocampus.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Padideh Dehghan
- Department of Alternative Medicine, Resalat Hospital, Tehran, Iran
| | - Fattaneh Farahmand
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
20
|
Yan P, Liu J, Ma H, Feng Y, Cui J, Bai Y, Huang X, Zhu Y, Wei S, Lai J. Effects of glycogen synthase kinase-3β activity inhibition on cognitive, behavioral, and hippocampal ultrastructural deficits in adulthood associated with adolescent methamphetamine exposure. Front Mol Neurosci 2023; 16:1129553. [PMID: 36949769 PMCID: PMC10025487 DOI: 10.3389/fnmol.2023.1129553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Objective Glycogen synthase kinase-3β (GSK3β) has been implicated in the maintenance of synaptic plasticity, memory process, and psychostimulant-induced behavioral effects. Hyperactive GSK3β in the Cornu Ammonis 1 (CA1) subregion of the dorsal hippocampus (DHP) was associated with adolescent methamphetamine (METH) exposure-induced behavioral and cognitive deficits in adulthood. This study aimed to evaluate the possible therapeutic effects of GSK3β inhibition in adulthood on adolescent METH exposure-induced long-term neurobiological deficits. Methods Adolescent male mice were treated with METH from postnatal day (PND) 45-51. In adulthood, three intervention protocols (acute lithium chloride systemic administration, chronic lithium chloride systemic administration, and chronic SB216763 administration within CA1) were used for GSK3β activity inhibition. The effect of GSK3β intervention on cognition, behavior, and GSK3β activity and synaptic ultrastructure in the DHP CA1 subregion were detected in adulthood. Results In adulthood, all three interventions reduced adolescent METH exposure-induced hyperactivity (PND97), while only chronic systemic and chronic within CA1 administration ameliorated the induced impairments in spatial (PND99), social (PND101) and object (PND103) recognition memory. In addition, although three interventions reversed the aberrant GSK3β activity in the DHP CA1 subregion (PND104), only chronic systemic and chronic within CA1 administration rescued adolescent METH exposure-induced synaptic ultrastructure changes in the DHP CA1 subregion (PND104) in adulthood. Conclusion Rescuing synaptic ultrastructural abnormalities in the dHIP CA1 subregion by chronic administration of a GSK3β inhibitor may be a suitable therapeutic strategy for the treatment of behavioral and cognitive deficits in adulthood associated with adolescent METH abuse.
Collapse
Affiliation(s)
- Peng Yan
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haotian Ma
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yue Feng
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Cui
- Forensic Identification Institute, The Fourth People’s Hospital of Yancheng, Yancheng, China
| | - Yuying Bai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xin Huang
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yongsheng Zhu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Shuguang Wei
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shuguang Wei,
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- Jianghua Lai,
| |
Collapse
|
21
|
Sun W, Lu Z, Chen X, Yang, Mei Y, Li X, An L. Aluminum Oxide Nanoparticles Impair Working Memory and Neuronal Activity through the GSK3β/BDNF Signaling Pathway of Prefrontal Cortex in Rats. ACS Chem Neurosci 2022; 13:3352-3361. [PMID: 36444509 DOI: 10.1021/acschemneuro.2c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies demonstrated that alumina nanoparticles (alumina NPs) impair spatial cognition and hippocampus-dependent synaptic plasticity. Although alumina NPs accumulate in the prefrontal cortex (PFC), their effects on PFC-mediated neuronal and cognitive function have been not yet documented. Here, alumina NPs (10 or 20 μg/kg of body weight) were bilaterally injected into the medial PFC (mPFC) of adult rats, and the levels of glycogen synthase kinase 3β (GSK3β) and the brain-derived neurotrophic factor (BDNF) were detected. The PFC-dependent working memory task with one-minute or three-minute delay time was conducted. Meanwhile, the neuronal correlates of working memory performance were recorded. The specific expression of neuronal BDNF was assessed by colabeled BDNF expression with the neuronal nuclear antigen (NeuN). Whole-cell patch-clamp recordings were employed to detect neuronal excitability. Intra-mPFC alumina NP infusions significantly enhanced the expression of GSK3β but reduced the phosphorylation of GSK3β (pGSK3β) and BDNF levels more severely at a dose of 20 μg/kg. Alumina NPs acted in a dose-dependent manner to impair working memory. The neuronal expression of BDNF in the 20 μg/kg group was markedly declined compared with the 10 μg/kg group. During the delay time, the neuronal frequency of pyramidal cells but not interneurons was significantly weakened. Furthermore, both the frequency and amplitude of the excitatory postsynaptic currents (EPSCs) were descended in the mPFC slices. Additionally, the infusion of GSK3β inhibitor SB216763 or BDNF could effectively attenuate the impairments in neuronal correlate, neuronal activity, and working memory. From the perspective of the identified GSK3β/BDNF pathway, these findings demonstrated for the first time that alumina NPs exposure can be a risk factor for prefrontal neuronal and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Zhenzhong Lu
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Xiao Chen
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| |
Collapse
|
22
|
Yadav Y, Dey CS. Ser/Thr phosphatases: One of the key regulators of insulin signaling. Rev Endocr Metab Disord 2022; 23:905-917. [PMID: 35697962 DOI: 10.1007/s11154-022-09727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Protein phosphorylation is an important post-translational modification that regulates several cellular processes including insulin signaling. The evidences so far have already portrayed the importance of balanced actions of kinases and phosphatases in regulating the insulin signaling cascade. Therefore, elucidating the role of both kinases and phosphatases are equally important. Unfortunately, the role of phosphatases is less studied as compared to kinases. Since brain responds to insulin and insulin signaling is reported to be crucial for many neuronal processes, it is important to understand the role of neuronal insulin signaling regulators. Ser/Thr phosphatases seem to play significant roles in regulating neuronal insulin signaling. Therefore, in this review, we discussed the involvement of Ser/Thr phosphatases in regulating insulin signaling and insulin resistance in neuronal system at the backdrop of the same phosphatases in peripheral insulin sensitive tissues.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
23
|
Campbell IH, Campbell H, Smith DJ. Insulin signaling as a therapeutic mechanism of lithium in bipolar disorder. Transl Psychiatry 2022; 12:350. [PMID: 36038539 PMCID: PMC9424309 DOI: 10.1038/s41398-022-02122-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
In this paper, we propose that lithium may exert its therapeutic effect in bipolar disorder by acting on insulin signaling pathways. Specifically, we assess the importance of the phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) insulin signaling pathway and we assess how the action of lithium on both glycogen synthase kinase-3 (GSK3) and the phosphatidylinositol cycle may lead to mood stabilization mediated by PI3K/Akt insulin signaling. We also highlight evidence that several other actions of lithium (including effects on Akt, Protein kinase C (PKC), and sodium myo-inositol transporters) are putative mediators of insulin signaling. This novel mode of action of lithium is consistent with an emerging consensus that energy dysregulation represents a core deficit in bipolar disorder. It may also provide context for the significant co-morbidity between bipolar disorder, type 2 diabetes, and other forms of metabolic illness characterized by impaired glucose metabolism. It is suggested that developments in assessing neuronal insulin signaling using extracellular vesicles would allow for this hypothesis to be tested in bipolar disorder patients.
Collapse
Affiliation(s)
- Iain H. Campbell
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel J. Smith
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Poupon-Bejuit L, Hughes MP, Liu W, Geard A, Faour-Slika N, Whaler S, Massaro G, Rahim AA. A GLP1 receptor agonist diabetes drug ameliorates neurodegeneration in a mouse model of infantile neurometabolic disease. Sci Rep 2022; 12:13825. [PMID: 35970890 PMCID: PMC9378686 DOI: 10.1038/s41598-022-17338-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare paediatric neurodegenerative condition caused by mutations in the PLA2G6 gene, which is also the causative gene for PARK14-linked young adult-onset dystonia parkinsonism. INAD patients usually die within their first decade of life, and there are currently no effective treatments available. GLP1 receptor (GLP-1R) agonists are licensed for treating type 2 diabetes mellitus but have also demonstrated neuroprotective properties in a clinical trial for Parkinson's disease. Therefore, we evaluated the therapeutic efficacy of a new recently licensed GLP-1R agonist diabetes drug in a mouse model of INAD. Systemically administered high-dose semaglutide delivered weekly to juvenile INAD mice improved locomotor function and extended the lifespan. An investigation into the mechanisms underlying these therapeutic effects revealed that semaglutide significantly increased levels of key neuroprotective molecules while decreasing those involved in pro-neurodegenerative pathways. The expression of mediators in both the apoptotic and necroptotic pathways were also significantly reduced in semaglutide treated mice. A reduction of neuronal loss and neuroinflammation was observed. Finally, there was no obvious inflammatory response in wild-type mice associated with the repeated high doses of semaglutide used in this study.
Collapse
Affiliation(s)
- L Poupon-Bejuit
- UCL School of Pharmacy, University College London, London, UK
| | - M P Hughes
- UCL School of Pharmacy, University College London, London, UK
| | - W Liu
- UCL School of Pharmacy, University College London, London, UK
| | - A Geard
- UCL School of Pharmacy, University College London, London, UK
| | - N Faour-Slika
- UCL School of Pharmacy, University College London, London, UK
| | - S Whaler
- UCL School of Pharmacy, University College London, London, UK
| | - G Massaro
- UCL School of Pharmacy, University College London, London, UK.
| | - A A Rahim
- UCL School of Pharmacy, University College London, London, UK.
| |
Collapse
|
25
|
Dutta BJ, Singh S, Seksaria S, Das Gupta G, Singh A. Inside the diabetic brain: Insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies. Pharmacol Res 2022; 182:106358. [PMID: 35863719 DOI: 10.1016/j.phrs.2022.106358] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) the most prevalent metabolic disease that has evolved into a major public health issue. Concerning about its secondary complications, a growing body of evidence links T2DM to cognitive impairment and neurodegenerative disorders. The underlying pathology behind this secondary complication disease is yet to be fully known. Nonetheless, they are likely to be associated with poor insulin signaling as a result of insulin resistance. We have combed through a rising body of literature on insulin signaling in the normal and diabetic brains along with various factors like insulin resistance, hyperglycemia, obesity, oxidative stress, neuroinflammation and Aβ plaques which can act independently or synergistically to link T2DM with cognitive impairments. Finally, we explored several pharmacological and non-pharmacological methods in the hopes of accelerating the rational development of medications for cognitive impairment in T2DM by better understanding these shared pathways.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
26
|
Zappelli E, Daniele S, Ceccarelli L, Vergassola M, Ragni L, Mangano G, Martini C. α-glyceryl-phosphoryl-ethanolamine protects human hippocampal neurons from aging-induced cellular alterations. Eur J Neurosci 2022; 56:4514-4528. [PMID: 35902984 PMCID: PMC9545488 DOI: 10.1111/ejn.15783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
Brain ageing has been related to a decrease in cellular metabolism, to an accumulation of misfolded proteins and to an alteration of the lipid membrane composition. These alterations act as contributive aspects of age‐related memory decline by reducing membrane excitability and neurotransmitter release. In this sense, precursors of phospholipids (PLs) can restore the physiological composition of cellular membranes and ameliorate the cellular defects associated with brain ageing. In particular, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have been shown to restore mitochondrial function, reduce the accumulation of amyloid beta (Aβ) and, at the same time, provide the amount of acetylcholine needed to reduce memory deficit. Among PL precursors, alpha‐glycerylphosphorylethanolamine (GPE) has shown to protect astrocytes from Aβ injuries and to slow‐down ageing of human neural stem cells. GPE has been evaluated in aged human hippocampal neurons, which are implicated in learning and memory, and constitute a good in vitro model to investigate the beneficial properties of GPE. In order to mimic cellular ageing, the cells have been maintained 21 days in vitro and challenged with GPE. Results of the present paper showed GPE ability to increase PE and PC content, glucose uptake and the activity of the chain respiratory complex I and of the GSK‐3β pathway. Moreover, the nootropic compound showed an increase in the transcriptional/protein levels of neurotrophic and well‐being related genes. Finally, GPE counteracted the accumulation of ageing‐related misfolded proteins (a‐synuclein and tau). Overall, our data underline promising effects of GPE in counteracting cellular alterations related to brain ageing and cognitive decline.
Collapse
Affiliation(s)
| | | | | | | | - Lorella Ragni
- Global R&D PLCM -Angelini Pharma S.p.A, Ancona, Italy
| | | | | |
Collapse
|
27
|
Pietrzak D, Kasperek K, Rękawek P, Piątkowska-Chmiel I. The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022; 14:1952. [PMID: 35565918 PMCID: PMC9102882 DOI: 10.3390/nu14091952] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate and adequate-protein diet that has gained popularity in recent years in the context of neurological diseases (NDs). The complexity of the pathogenesis of these diseases means that effective forms of treatment are still lacking. Conventional therapy is often associated with increasing tolerance and/or drug resistance. Consequently, more effective therapeutic strategies are being sought to increase the effectiveness of available forms of therapy and improve the quality of life of patients. For the moment, it seems that KD can provide therapeutic benefits in patients with neurological problems by effectively controlling the balance between pro- and antioxidant processes and pro-excitatory and inhibitory neurotransmitters, and modulating inflammation or changing the composition of the gut microbiome. In this review we evaluated the potential therapeutic efficacy of KD in epilepsy, depression, migraine, Alzheimer's disease and Parkinson's disease. In our opinion, KD should be considered as an adjuvant therapeutic option for some neurological diseases.
Collapse
Affiliation(s)
- Diana Pietrzak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| | | | | | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| |
Collapse
|
28
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
29
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
30
|
Banach E, Szczepankiewicz A, Kaczmarek L, Jaworski T, Urban-Ciećko J. Dysregulation of miRNAs levels in GSK3β overexpressing mice and the role of miR-221-5p in synaptic function. Neuroscience 2022; 490:287-295. [PMID: 35331845 DOI: 10.1016/j.neuroscience.2022.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/01/2023]
Abstract
Glycogen Synthase Kinase-3β (GSK-3β) is a highly expressed kinase in the brain, where it has an important role in synaptic plasticity. Aberrant activity of GSK-3β leads to synaptic dysfunction which results in the development of several neuropsychiatric and neurological diseases. Notably, overexpression of constitutively active form of GSK-3β (GSK-3β[S9A]) in mice recapitulates the cognitive and structural defects characteristic for neurological and psychiatric disorders. However, the mechanisms by which GSK-3β regulates synaptic functions are not clearly known. Here, we investigate the effects of GSK-3β overactivity on neuronal miRNA expression in the mouse hippocampus. We found that GSK-3β overactivity downregulates miRNA network with a potent effect on miR-221-5p (miR-221*). Next, characterization of miR-221* function in primary hippocampal cell culture transfected by miR-221* inhibitor, showed no structural changes in dendritic spine shape and density. Using electrophysiological methods, we found that downregulation of miR-221* increases excitatory synaptic transmission in hippocampal neurons, probably via postsynaptic mechanisms. Thus, our data reveal potential mechanism by which GSK-3β and miRNAs might regulate synaptic function and therefore also synaptic plasticity.
Collapse
Affiliation(s)
- Ewa Banach
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Animal Models, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | | - Leszek Kaczmarek
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland
| | - Joanna Urban-Ciećko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
31
|
Wang YL, Chio CC, Kuo SC, Yeh CH, Ma JT, Liu WP, Lin MT, Lin KC, Chang CP. Exercise Rehabilitation and/or Astragaloside Attenuate Amyloid-beta Pathology by Reversing BDNF/TrkB Signaling Deficits and Mitochondrial Dysfunction. Mol Neurobiol 2022; 59:3091-3109. [PMID: 35262870 DOI: 10.1007/s12035-022-02728-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
We aim to investigate the mechanisms underlying the beneficial effects of exercise rehabilitation (ER) and/or astragaloside (AST) in counteracting amyloid-beta (Aβ) pathology. Aβ oligomers were microinjected into the bilateral ventricles to induce Aβ neuropathology in rats. Neurobehavioral functions were evaluated. Cortical and hippocampal expressions of both BDNF/TrkB and cathepsin D were determined by the western blotting method. The rat primary cultured cortical neurons were incubated with BDNF and/or AST and ANA12 followed by exposure to aggregated Aβ for 24 h. In vivo results showed that ER and/or AST reversed neurobehavioral disorders, downregulation of cortical and hippocampal expression of both BDNF/TrkB and cathepsin D, neural pathology, Aβ accumulation, and altered microglial polarization caused by Aβ. In vitro studies also confirmed that topical application of BDNF and/or AST reversed the Aβ-induced cytotoxicity, apoptosis, mitochondrial distress, and synaptotoxicity and decreased expression of p-TrkB, p-Akt, p-GSK3β, and β-catenin in rat cortical neurons. The beneficial effects of combined ER (or BDNF) and AST therapy in vivo and in vitro were superior to ER (or BDNF) or AST alone. Furthermore, we observed that any gains from ER (or BDNF) and/or AST could be significantly eliminated by ANA-12, a potent BDNF/TrkB antagonist. These results indicate that whereas ER (or BDNF) and/or AST attenuate Aβ pathology by reversing BDNF/TrkB signaling deficits and mitochondrial dysfunction, combining these two potentiates each other's therapeutic effects. In particular, AST can be an alternative therapy to replace ER.
Collapse
Affiliation(s)
- Yu-Ling Wang
- Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan.,Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chung-Ching Chio
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Shu-Chun Kuo
- Department of Ophthalmology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chao-Hung Yeh
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Jui-Ti Ma
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd, Yongkang District, Tainan City 710, Taiwan
| | - Wen-Pin Liu
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd, Yongkang District, Tainan City 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd, Yongkang District, Tainan City 710, Taiwan
| | - Kao-Chang Lin
- Department of Holistic Care, Chi Mei Medical Center, No. 901, Zhonghua Rd, Yongkang District, Tainan City 710, Taiwan. .,Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan.
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd, Yongkang District, Tainan City 710, Taiwan.
| |
Collapse
|
32
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
33
|
Shilovsky GA. Lability of the Nrf2/Keap/ARE Cell Defense System in Different Models of Cell Aging and Age-Related Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:70-85. [PMID: 35491021 DOI: 10.1134/s0006297922010060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The level of oxidative stress in an organism increases with age. Accumulation of damages resulting in the disruption of genome integrity can be the cause of many age-related diseases and appearance of phenotypic and physiological signs of aging. In this regard, the Nrf2 system, which regulates expression of numerous enzymes responsible for the antioxidant defense and detoxification, is of great interest. This review summarizes and analyzes the data on the age-related changes in the Nrf2 system in vivo and in vitro in various organs and tissues. Analysis of published data suggests that the capacity for Nrf2 activation (triggered by the increased level of oxidative stress) steadily declines with age. At the same time, changes in the Nrf2 activity under the stress-free conditions do not have such unambiguous directionality; in many studies, these changes were statistically insignificant, although it is commonly accepted that the level of oxidative stress steadily increases with aging. This review examines the role of cell regulatory systems limiting the ability of Nrf2 to respond to oxidative stress. Senescent cells are extremely susceptible to the oxidative damage due to the impaired Nrf2 signaling. Activation of the Nrf2 pathway is a promising target for new pharmacological or genetic therapeutic strategies. Suppressors of the Nrf2 expression, such as Keap1, GSK3, c-Myc, and Bach1, may contribute to the age-related impairments in the induction of Nrf2-regulated antioxidant genes. Understanding the mechanisms of regulatory cascades linking the programs responsible for the maintenance of homeostasis and cell response to the oxidative stress will contribute to the elucidation of molecular mechanisms underlying aging and longevity.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| |
Collapse
|
34
|
Doust YV, Sumargo N, Ziebell JM, Premilovac D. Insulin Resistance in the Brain: Evidence Supporting a Role for Inflammation, Reactive Microglia, and the Impact of Biological Sex. Neuroendocrinology 2022; 112:1027-1038. [PMID: 35279657 DOI: 10.1159/000524059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022]
Abstract
Increased intake of highly processed, energy-dense foods combined with a sedentary lifestyle are helping fuel the current overweight and obesity crisis, which is more prevalent in women than in men. Although peripheral organs such as adipose tissue contribute to the physiological development of obesity, emerging work aims to understand the role of the central nervous system to whole-body energy homeostasis and development of weight gain and obesity. The present review discusses the impact of insulin, insulin resistance, free fatty acids, and inflammation on brain function and how these differ between the males and females in the context of obesity. We highlight the potential of microglia, the resident immune cells in the brain, as mediators of neuronal insulin resistance that drive reduced satiety, increased food intake, and thus, obesity.
Collapse
Affiliation(s)
- Yasmine V Doust
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Sumargo
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Dino Premilovac
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
35
|
Oleanolic Acid Alleviates Cerebral Ischemia/Reperfusion Injury via Regulation of the GSK-3β/HO-1 Signaling Pathway. Pharmaceuticals (Basel) 2021; 15:ph15010001. [PMID: 35056059 PMCID: PMC8781522 DOI: 10.3390/ph15010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
Oleanolic acid (OA), a bioactive ingredient of Panax ginseng, exhibits neuroprotective pharmacological effects. However, the protective role of OA in cerebral ischemia and involved mechanisms remain unclear. This study attempted to explore the therapeutic effects of OA both in vitro and in vivo. OA attenuated cytotoxicity and overproduction of intracellular reactive oxygen species (ROS) by regulation of glycogen synthase kinase-3β (GSK-3β)/heme oxygenase-1 (HO-1) signal in oxygen-glucose deprivation/reoxygenation (OGD/R)-exposed SH-SY5Y cells. Additionally, OA administration significantly reduced the area of cerebral infarction and the neurological scores in the rat models of cerebral ischemia with middle cerebral artery occlusion (MCAO). The OA administration group showed a higher percentage of Nissl+ and NeuN+ cells, along with lower TUNEL+ ratios in the infarct area of MCAO rats. Moreover, OA administration reduced ROS production while it suppressed the GSK-3β activation and upregulated the HO-1 expression in infarcted tissue. Our results illustrated that OA significantly counteracted cerebral ischemia-mediated injury through antioxidant effects induced by the regulation of the GSK-3β/HO-1 signaling pathway, implicating OA as a promising neuroprotective drug for the therapy of ischemic stroke.
Collapse
|
36
|
GSK3β Activity in Reward Circuit Functioning and Addiction. NEUROSCI 2021. [DOI: 10.3390/neurosci2040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, is a molecular hub linking numerous signaling pathways and regulates many cellular processes like cytoskeletal rearrangement, cell migration, apoptosis, and proliferation. In neurons, the kinase is engaged in molecular events related to the strengthening and weakening of synapses, which is a subcellular manifestation of neuroplasticity. Dysregulation of GSK3β activity has been reported in many neuropsychiatric conditions, like schizophrenia, major depressive disorder, bipolar disorder, and Alzheimer’s disease. In this review, we describe the kinase action in reward circuit-related structures in health and disease. The effect of pharmaceuticals used in the treatment of addiction in the context of GSK3β activity is also discussed.
Collapse
|
37
|
Verma V, Kumar MJV, Sharma K, Rajaram S, Muddashetty R, Manjithaya R, Behnisch T, Clement JP. Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1 +/- mice. Exp Brain Res 2021; 240:289-309. [PMID: 34739555 DOI: 10.1007/s00221-021-06254-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1+/- mice might be due to abnormalities in K+-Cl- co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1+/- recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14-15 as illustrated by decreased Cl- reversal potential in Syngap1+/- mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14-15. The GSK-3β inhibitor, 6-bromoindirubin-3'-oxime (6BIO) that crosses the blood-brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1+/- mice. In summary, altered GABAergic function in Syngap1+/- mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kavita Sharma
- International Centre for Material Sciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Sridhar Rajaram
- International Centre for Material Sciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Ravi Muddashetty
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - Ravi Manjithaya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.,Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Thomas Behnisch
- Institutes of Brain Sciences, Fudan University, Shanghai, 200032, China
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
38
|
Shilovsky GA, Putyatina TS, Morgunova GV, Seliverstov AV, Ashapkin VV, Sorokina EV, Markov AV, Skulachev VP. A Crosstalk between the Biorhythms and Gatekeepers of Longevity: Dual Role of Glycogen Synthase Kinase-3. BIOCHEMISTRY (MOSCOW) 2021; 86:433-448. [PMID: 33941065 PMCID: PMC8033555 DOI: 10.1134/s0006297921040052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review discusses genetic and molecular pathways that link circadian timing with metabolism, resulting in the emergence of positive and negative regulatory feedback loops. The Nrf2 pathway is believed to be a component of the anti-aging program responsible for the healthspan and longevity. Nrf2 enables stress adaptation by activating cell antioxidant defense and other metabolic processes via control of expression of over 200 target genes in response to various types of stress. The GSK3 system represents a “regulating valve” that controls fine oscillations in the Nrf2 level, unlike Keap1, which prevents significant changes in the Nrf2 content in the absence of oxidative stress and which is inactivated by the oxidative stress. Furthermore, GSK3 modifies core circadian clock proteins (Bmal1, Clock, Per, Cry, and Rev-erbα). Phosphorylation by GSK3 leads to the inactivation and degradation of circadian rhythm-activating proteins (Bmal1 and Clock) and vice versa to the activation and nuclear translocation of proteins suppressing circadian rhythms (Per and Rev-erbα) with the exception of Cry protein, which is likely to be implicated in the fine tuning of biological clock. Functionally, GSK3 appears to be one of the hubs in the cross-regulation of circadian rhythms and antioxidant defense. Here, we present the data on the crosstalk between the most powerful cell antioxidant mechanism, the Nrf2 system, and the biorhythm-regulating system in mammals, including the impact of GSK3 overexpression and knockout on the Nrf2 signaling. Understanding the interactions between the regulatory cascades linking homeostasis maintenance and cell response to oxidative stress will help in elucidating molecular mechanisms that underlie aging and longevity.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Galina V Morgunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Seliverstov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Vasily V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Sorokina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
39
|
Khayachi A, Ase A, Liao C, Kamesh A, Kuhlmann N, Schorova L, Chaumette B, Dion P, Alda M, Séguéla P, Rouleau G, Milnerwood A. Chronic lithium treatment alters the excitatory/ inhibitory balance of synaptic networks and reduces mGluR5-PKC signalling in mouse cortical neurons. J Psychiatry Neurosci 2021; 46:E402-E414. [PMID: 34077150 PMCID: PMC8327978 DOI: 10.1503/jpn.200185] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background Bipolar disorder is characterized by cyclical alternation between mania and depression, often comorbid with psychosis and suicide. Compared with other medications, the mood stabilizer lithium is the most effective treatment for the prevention of manic and depressive episodes. However, the pathophysiology of bipolar disorder and lithium’s mode of action are yet to be fully understood. Evidence suggests a change in the balance of excitatory and inhibitory activity, favouring excitation in bipolar disorder. In the present study, we sought to establish a holistic understanding of the neuronal consequences of lithium exposure in mouse cortical neurons, and to identify underlying mechanisms of action. Methods We used a range of technical approaches to determine the effects of acute and chronic lithium treatment on mature mouse cortical neurons. We combined RNA screening and biochemical and electrophysiological approaches with confocal immunofluorescence and live-cell calcium imaging. Results We found that only chronic lithium treatment significantly reduced intracellular calcium flux, specifically by activating metabotropic glutamatergic receptor 5. This was associated with altered phosphorylation of protein kinase C and glycogen synthase kinase 3, reduced neuronal excitability and several alterations to synapse function. Consequently, lithium treatment shifts the excitatory–inhibitory balance toward inhibition. Limitations The mechanisms we identified should be validated in future by similar experiments in whole animals and human neurons. Conclusion Together, the results revealed how lithium dampens neuronal excitability and the activity of the glutamatergic network, both of which are predicted to be overactive in the manic phase of bipolar disorder. Our working model of lithium action enables the development of targeted strategies to restore the balance of overactive networks, mimicking the therapeutic benefits of lithium but with reduced toxicity.
Collapse
Affiliation(s)
- Anouar Khayachi
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Ariel Ase
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Calwing Liao
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Anusha Kamesh
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Naila Kuhlmann
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Lenka Schorova
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Boris Chaumette
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Patrick Dion
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Martin Alda
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Philippe Séguéla
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Guy Rouleau
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| | - Austen Milnerwood
- From the Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Que., Canada (Khayachi, Ase, Liao, Kamesh, Kuhlmann, Dion, Séguéla Rouleau, Milnerwood); the Department of Human Genetics, McGill University, Montréal, Que., Canada (Rouleau); McGill University Health Centre Research Institute, Montréal, Que., Canada (Schorova); the Université de Paris, Institut de Psychiatrie et Neuroscience of Paris (IPNP), INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Paris, France (Chaumette); the Department of Psychiatry, McGill University, Montréal Que., Canada (Chaumette); and the Department of Psychiatry, Dalhousie University, Halifax, NS, Canada (Alda)
| |
Collapse
|
40
|
Loi M, Gennaccaro L, Fuchs C, Trazzi S, Medici G, Galvani G, Mottolese N, Tassinari M, Rimondini Giorgini R, Milelli A, Ciani E. Treatment with a GSK-3β/HDAC Dual Inhibitor Restores Neuronal Survival and Maturation in an In Vitro and In Vivo Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2021; 22:5950. [PMID: 34073043 PMCID: PMC8198396 DOI: 10.3390/ijms22115950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a rare neurodevelopmental disorder characterized by early-onset seizures and severe cognitive, motor, and visual impairments. To date there are no therapies for CDKL5 deficiency disorder (CDD). In view of the severity of the neurological phenotype of CDD patients it is widely assumed that CDKL5 may influence the activity of a variety of cellular pathways, suggesting that an approach aimed at targeting multiple cellular pathways simultaneously might be more effective for CDD. Previous findings showed that a single-target therapy aimed at normalizing impaired GSK-3β or histone deacetylase (HDAC) activity improved neurodevelopmental and cognitive alterations in a mouse model of CDD. Here we tested the ability of a first-in-class GSK-3β/HDAC dual inhibitor, Compound 11 (C11), to rescue CDD-related phenotypes. We found that C11, through inhibition of GSK-3β and HDAC6 activity, not only restored maturation, but also significantly improved survival of both human CDKL5-deficient cells and hippocampal neurons from Cdkl5 KO mice. Importantly, in vivo treatment with C11 restored synapse development, neuronal survival, and microglia over-activation, and improved motor and cognitive abilities of Cdkl5 KO mice, suggesting that dual GSK-3β/HDAC6 inhibitor therapy may have a wider therapeutic benefit in CDD patients.
Collapse
Affiliation(s)
- Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| | | | - Andrea Milelli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy; (M.L.); (L.G.); (C.F.); (S.T.); (G.M.); (G.G.); (N.M.); (M.T.)
| |
Collapse
|
41
|
Jankowska A, Satała G, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Multifunctional Ligands with Glycogen Synthase Kinase 3 Inhibitory Activity as a New Direction in Drug Research for Alzheimer's Disease. Curr Med Chem 2021; 28:1731-1745. [PMID: 32338201 DOI: 10.2174/0929867327666200427100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) belongs to the most common forms of dementia that causes a progressive loss of brain cells and leads to memory impairment and decline of other thinking skills. There is yet no effective treatment for AD; hence, the search for new drugs that could improve memory and other cognitive functions is one of the hot research topics worldwide. Scientific efforts are also directed toward combating behavioral and psychological symptoms of dementia, which are an integral part of the disease. Several studies have indicated that glycogen synthase kinase 3 beta (GSK3β) plays a crucial role in the pathogenesis of AD. Moreover, GSK3β inhibition provided beneficial effects on memory improvement in multiple animal models of AD. The present review aimed to update the most recent reports on the discovery of novel multifunctional ligands with GSK3β inhibitory activity as potential drugs for the symptomatic and disease-modifying therapy of AD. Compounds with GSK3β inhibitory activity seem to be an effective pharmacological approach for treating the causes and symptoms of AD as they reduced neuroinflammation and pathological hallmarks in animal models of AD and provided relief from cognitive and neuropsychiatric symptoms. These compounds have the potential to be used as drugs for the treatment of AD, but their precise pharmacological, pharmacokinetic, toxicological and clinical profiles need to be defined.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | - GraŻyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
42
|
Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer's disease. 3 Biotech 2021; 11:179. [PMID: 33927970 DOI: 10.1007/s13205-021-02738-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, also regarded as "type 3 diabetes" for the last few years because of the brain insulin resistance (IR) and dysregulation of insulin signaling in the brain, which can further promote pathological progression of AD. IRS-1/PI3K/Akt insulin signaling pathway disorder and its downstream cascade reaction are responsible for cognitive decline in the brain. In recent years, a growing number of studies has documented that dysregulation of insulin signaling is a key feature of AD and has crucial correlations with serine/tyrosine (Ser/Tyr) phosphorylation of insulin receptor substance-1(IRS-1). Phosphorylation of this protein has been identified as an important molecule involved in the process of amyloid-β (Aβ) deposition into senile plaques (SPs) and tau hyperphosphorylation into neurofibrillary tangles (NFTs). In this paper, we review the links between IRS-1 and the PI3K/Akt insulin signaling pathway, and highlight phosphorylated IRS-1 which negatively regulated by downstream effector of Akt such as mTOR, S6K, and JNK, among others in AD. Furthermore, anti-diabetic drugs including metformin, thiazolidinediones, and glucagon-like peptide-1 (GLP-1) analogue could modulate IRS-1 phosphorylation, brain IR, PI3K/Akt insulin signaling pathway, and other pathologic processes of AD. The above suggest that anti-diabetic drugs may be promising strategies for AD disease-modifying treatments.
Collapse
|
43
|
Beddows CA, Dodd GT. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 2021; 33:e12947. [PMID: 33687120 DOI: 10.1111/jne.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Insulin signals to the brain where it coordinates multiple physiological processes underlying energy and glucose homeostasis. This review explores where and how insulin interacts within the brain parenchyma, how brain insulin signalling functions to coordinate energy and glucose homeostasis and how this contributes to the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Creo AL, Cortes TM, Jo HJ, Huebner AR, Dasari S, Tillema JM, Lteif AN, Klaus KA, Ruegsegger GN, Kudva YC, Petersen RC, Port JD, Nair KS. Brain functions and cognition on transient insulin deprivation in type 1 diabetes. JCI Insight 2021; 6:144014. [PMID: 33561011 PMCID: PMC8021100 DOI: 10.1172/jci.insight.144014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/03/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a risk factor for dementia and structural brain changes. It remains to be determined whether transient insulin deprivation that frequently occurs in insulin-treated individuals with T1D alters brain function. METHODS We therefore performed functional and structural magnetic resonance imaging, magnetic resonance spectroscopy, and neuropsychological testing at baseline and following 5.4 ± 0.6 hours of insulin deprivation in 14 individuals with T1D and compared results with those from 14 age-, sex-, and BMI-matched nondiabetic (ND) participants with no interventions. RESULTS Insulin deprivation in T1D increased blood glucose, and β-hydroxybutyrate, while reducing bicarbonate levels. Participants with T1D showed lower baseline brain N-acetyl aspartate and myo-inositol levels but higher cortical fractional anisotropy, suggesting unhealthy neurons and brain microstructure. Although cognitive functions did not differ between participants with T1D and ND participants at baseline, significant changes in fine motor speed as well as attention and short-term memory occurred following insulin deprivation in participants with T1D. Insulin deprivation also reduced brain adenosine triphosphate levels and altered the phosphocreatine/adenosine triphosphate ratio. Baseline differences in functional connectivity in brain regions between participants with T1D and ND participants were noted, and on insulin deprivation further alterations in functional connectivity between regions, especially cortical and hippocampus-caudate regions, were observed. These alterations in functional connectivity correlated to brain metabolites and to changes in cognition. CONCLUSION Transient insulin deprivation therefore caused alterations in executive aspects of cognitive function concurrent with functional connectivity between memory regions and the sensory cortex. These findings have important clinical implications, as many patients with T1D inadvertently have periods of transient insulin deprivation. TRIAL REGISTRATION ClinicalTrials.gov NCT03392441. FUNDING Clinical and Translational Science Award (UL1 TR002377) from the National Center for Advancing Translational Science; NIH grants (R21 AG60139 and R01 AG62859); the Mayo Foundation.
Collapse
Affiliation(s)
- Ana L Creo
- Division of Pediatric Endocrinology and Metabolism
| | | | | | | | | | | | - Aida N Lteif
- Division of Pediatric Endocrinology and Metabolism
| | | | | | - Yogish C Kudva
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition
| | | | - John D Port
- Division of Neuroradiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
45
|
Izzo NJ, Yuede CM, LaBarbera KM, Limegrover CS, Rehak C, Yurko R, Waybright L, Look G, Rishton G, Safferstein H, Hamby ME, Williams C, Sadlek K, Edwards HM, Davis CS, Grundman M, Schneider LS, DeKosky ST, Chelsky D, Pike I, Henstridge C, Blennow K, Zetterberg H, LeVine H, Spires-Jones TL, Cirrito JR, Catalano SM. Preclinical and clinical biomarker studies of CT1812: A novel approach to Alzheimer's disease modification. Alzheimers Dement 2021; 17:1365-1382. [PMID: 33559354 PMCID: PMC8349378 DOI: 10.1002/alz.12302] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Amyloid beta (Aβ) oligomers are one of the most toxic structural forms of the Aβ protein and are hypothesized to cause synaptotoxicity and memory failure as they build up in Alzheimer's disease (AD) patients' brain tissue. We previously demonstrated that antagonists of the sigma-2 receptor complex effectively block Aβ oligomer toxicity. CT1812 is an orally bioavailable, brain penetrant small molecule antagonist of the sigma-2 receptor complex that appears safe and well tolerated in healthy elderly volunteers. We tested CT1812's effect on Aβ oligomer pathobiology in preclinical AD models and evaluated CT1812's impact on cerebrospinal fluid (CSF) protein biomarkers in mild to moderate AD patients in a clinical trial (ClinicalTrials.gov NCT02907567). METHODS Experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer binding to synapses in vitro, to human AD patient post mortem brain tissue ex vivo, and in living APPSwe /PS1dE9 transgenic mice in vivo. Additional experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer-induced deficits in membrane trafficking rate, synapse number, and protein expression in mature hippocampal/cortical neurons in vitro. The impact of CT1812 on cognitive function was measured in transgenic Thy1 huAPPSwe/Lnd+ and wild-type littermates. A multicenter, double-blind, placebo-controlled parallel group trial was performed to evaluate the safety, tolerability, and impact on protein biomarker expression of CT1812 or placebo given once daily for 28 days to AD patients (Mini-Mental State Examination 18-26). CSF protein expression was measured by liquid chromatography with tandem mass spectrometry or enzyme-linked immunosorbent assay in samples drawn prior to dosing (Day 0) and at end of dosing (Day 28) and compared within each patient and between pooled treated versus placebo-treated dosing groups. RESULTS CT1812 significantly and dose-dependently displaced Aβ oligomers bound to synaptic receptors in three independent preclinical models of AD, facilitated oligomer clearance into the CSF, increased synaptic number and protein expression in neurons, and improved cognitive performance in transgenic mice. CT1812 significantly increased CSF concentrations of Aβ oligomers in AD patient CSF, reduced concentrations of synaptic proteins and phosphorylated tau fragments, and reversed expression of many AD-related proteins dysregulated in CSF. DISCUSSION These preclinical studies demonstrate the novel disease-modifying mechanism of action of CT1812 against AD and Aβ oligomers. The clinical results are consistent with preclinical data and provide evidence of target engagement and impact on fundamental disease-related signaling pathways in AD patients, supporting further development of CT1812.
Collapse
Affiliation(s)
| | | | | | | | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Lora Waybright
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | | | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | - Kelsey Sadlek
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | | | - Michael Grundman
- Global R&D Partners, San Diego, California, USA.,University of California San Diego, San Diego, California, USA
| | - Lon S Schneider
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Steven T DeKosky
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Kaj Blennow
- University of Gothenburg, Mölndal, Sweden.,Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- University of Gothenburg, Mölndal, Sweden.,Sahlgrenska University Hospital, Mölndal, Sweden.,UCL Institute of Neurology, London, UK
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
46
|
De Simone A, Tumiatti V, Andrisano V, Milelli A. Glycogen Synthase Kinase 3β: A New Gold Rush in Anti-Alzheimer's Disease Multitarget Drug Discovery? J Med Chem 2020; 64:26-41. [PMID: 33346659 PMCID: PMC8016207 DOI: 10.1021/acs.jmedchem.0c00931] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Alzheimer’s
disease (AD), like other multifactorial diseases,
is the result of a systemic breakdown of different physiological networks.
As result, several lines of evidence suggest that it could be more
efficiently tackled by molecules directed toward different dysregulated
biochemical targets or pathways. In this context, the selection of
targets to which the new molecules will be directed is crucial. For
years, the design of such multitarget-directed ligands (MTDLs) has
been based on the selection of main targets involved in the “cholinergic”
and the “β-amyloid” hypothesis. Recently, there
have been some reports on MTDLs targeting the glycogen synthase kinase
3β (GSK-3β) enzyme, due to its appealing properties. Indeed,
this enzyme is involved in tau hyperphosphorylation, controls a multitude
of CNS-specific signaling pathways, and establishes strict connections
with several factors implicated in AD pathogenesis. In the present
Miniperspective, we will discuss the reasons behind the development
of GSK-3β-directed MTDLs and highlight some of the recent efforts
to obtain these new classes of MTDLs as potential disease-modifying
agents.
Collapse
Affiliation(s)
- Angela De Simone
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
47
|
Spinelli M, Fusco S, Grassi C. Brain insulin resistance impairs hippocampal plasticity. VITAMINS AND HORMONES 2020; 114:281-306. [PMID: 32723548 DOI: 10.1016/bs.vh.2020.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutrient-related signals have been demonstrated to influence brain development and cognitive functions. In particular, insulin signaling has been shown to impact on molecular cascades underlying hippocampal plasticity, learning and memory. Alteration of brain insulin signaling interferes with the maintenance of neural stem cell niche and neuronal activity in the hippocampus. Brain insulin resistance is also emerging as key factor causing the cognitive impairment observed in metabolic and neurodegenerative diseases. Here, we review the molecular mechanisms involved in the insulin modulation of both adult neurogenesis and synaptic activity in the hippocampus. We also summarize the effects of altered insulin sensitivity on hippocampal plasticity. Finally, we reassume the experimental and epidemiological evidence highlighting the critical role of brain insulin resistance at the crossroad between type 2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
48
|
Prati F, Buonfiglio R, Furlotti G, Cavarischia C, Mangano G, Picollo R, Oggianu L, di Matteo A, Olivieri S, Bovi G, Porceddu PF, Reggiani A, Garrone B, Di Giorgio FP, Ombrato R. Optimization of Indazole-Based GSK-3 Inhibitors with Mitigated hERG Issue and In Vivo Activity in a Mood Disorder Model. ACS Med Chem Lett 2020; 11:825-831. [PMID: 32435391 DOI: 10.1021/acsmedchemlett.9b00633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorders still represent a global unmet medical need and pose a requirement for novel effective treatments. In this respect, glycogen synthase kinase 3β (GSK-3β) aberrant activity has been linked to the pathophysiology of several disease conditions, including mood disorders. Therefore, the development of GSK-3β inhibitors with good in vivo efficacy and safety profile associated with high brain exposure is required. Accordingly, we have previously reported the selective indazole-based GSK-3 inhibitor 1, which showed excellent efficacy in a mouse model of mania. Despite the favorable preclinical profile, analog 1 suffered from activity at the hERG ion channel, which prevented its further progression. Herein, we describe our strategy to improve this off-target liability through modulation of physicochemical properties, such as lipophilicity and basicity. These efforts led to the potent inhibitor 14, which possessed reduced hERG affinity, promising in vitro ADME properties, and was very effective in a mood stabilizer in vivo model.
Collapse
Affiliation(s)
- Federica Prati
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | - Guido Furlotti
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | | | | | - Laura Oggianu
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | - Anna di Matteo
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | - Graziella Bovi
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | - Pier Francesca Porceddu
- D3Validation Research Line, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Angelo Reggiani
- D3Validation Research Line, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | | | | | | |
Collapse
|
49
|
Bellad A, Bandari AK, Pandey A, Girimaji SC, Muthusamy B. A Novel Missense Variant in PHF6 Gene Causing Börjeson-Forssman-Lehman Syndrome. J Mol Neurosci 2020; 70:1403-1409. [PMID: 32399860 DOI: 10.1007/s12031-020-01560-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022]
Abstract
Börjeson-Forssman-Lehman Syndrome (BFLS) is a rare X-linked recessive syndrome characterized by intellectual disability, developmental delay, obesity, epilepsy, swelling of the subcutaneous tissues of the face, large but not deformed ears, hypogonadism, and gynecomastia. Pathogenic mutations in PHD finger protein 6 (PHF6) have been reported to cause BFLS. In this study, we describe two male siblings with mild intellectual disability, global developmental delay, short stature, microcephaly, and nyctalopia. Whole exome sequencing of the affected siblings and the parents identified a missense variant (c.413C > G) in the PHF6 gene, which leads to alteration of a serine residue at position 138 to cysteine. This mutation is located in a highly conserved region. Sanger sequencing confirmed the segregation of this mutation in the family in an X-linked recessive fashion. Multiple mass spectrometry-based proteomic studies have reported phosphorylation at serine 138 that describes the possible role of serine 138 in signaling. This novel variant in PHF6 gene helped in establishing a diagnosis of BFLS.
Collapse
Affiliation(s)
- Anikha Bellad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aravind K Bandari
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Satish Chandra Girimaji
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Child and Adolescent Psychiatry, NIMHANS, Hosur Road, Bangalore, 560029, India.
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
50
|
Induction of LTM following an Insulin Injection. eNeuro 2020; 7:ENEURO.0088-20.2020. [PMID: 32291265 PMCID: PMC7218004 DOI: 10.1523/eneuro.0088-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The pond snail Lymnaea stagnalis learns conditioned taste aversion (CTA) and consolidates it into long-term memory (LTM). One-day food-deprived snails (day 1 snails) show the best CTA learning and memory, whereas more severely food-deprived snails (5 d) do not express good memory. However, previous studies showed that CTA-LTM was indeed formed in 5-d food-deprived snails (day 5 snails), but its recall was prevented by the effects of food deprivation. CTA-LTM recall in day 5 snails was expressed following 7 d of feeding and then 1 d of food deprivation (day 13 snails). In the present study, we thus hypothesized that memory recall occurs because day 13 snails are in an optimal internal state. One day of food deprivation before the memory test in day 13 snails increased the mRNA level of molluscan insulin-related peptide (MIP) in the CNS. Thus, we further hypothesized that an injection of insulin into day 5 snails following seven additional days with access to food (day 12 snails) activates CTA neurons and mimics the food deprivation state before the memory test in day 13 snails. Day 12 snails injected with insulin could recall the memory. In addition, the simultaneous injection of an anti-insulin receptor antibody and insulin into day 12 snails did not allow memory recall. Insulin injection also decreased the hemolymph glucose concentration. Together, the results suggest that an optimal internal state (i.e., a spike in insulin release and specific glucose levels) are necessary for LTM recall following CTA training in snails.
Collapse
|