1
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
2
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
3
|
Gong Y, Li H. CDK7 in breast cancer: mechanisms of action and therapeutic potential. Cell Commun Signal 2024; 22:226. [PMID: 38605321 PMCID: PMC11010440 DOI: 10.1186/s12964-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.
Collapse
Affiliation(s)
- Ying Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiping Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
4
|
Hassan S, Thacharodi A, Priya A, Meenatchi R, Hegde TA, R T, Nguyen HT, Pugazhendhi A. Endocrine disruptors: Unravelling the link between chemical exposure and Women's reproductive health. ENVIRONMENTAL RESEARCH 2024; 241:117385. [PMID: 37838203 DOI: 10.1016/j.envres.2023.117385] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
An Endocrine Disrupting Chemical (EDC) is any compound that disrupts the function of the endocrine system in humans and is ubiquitous in the environment either as a result of natural events or through anthropogenic activities. Bisphenol A, phthalates, parabens, pesticides, triclosan, polychlorinated biphenyls, and heavy metals, which are frequently found in the pharmaceutical, cosmetic, and packaging sectors, are some of the major sources of EDC pollutants. EDCs have been identified to have a deteriorating effect on the female reproductive system, as evidenced by the increasing number of reproductive disorders such as endometriosis, uterine fibroids, polycystic ovary syndrome, premature ovarian failure, menstrual irregularity, menarche, and infertility. Studying EDCs in relation to women's health is essential for understanding the complex interactions between environmental factors and health outcomes. It enables the development of strategies to mitigate risks, protect reproductive and overall health, and inform public policy decisions to safeguard women's well-being. Healthcare professionals must know the possible dangers of EDC exposure and ask about environmental exposures while evaluating patients. This may result in more precise diagnosis and personalized treatment regimens. This review summarises the existing understanding of prevalent EDCs that impact women's health and involvement in female reproductive dysfunction and underscores the need for more research. Further insights on potential mechanisms of action of EDCs on female has been emphasized in the article. We also discuss the role of nutritional intervention in reducing the effect of EDCs on women's reproductive health. EDC pollution can be further reduced by adhering to strict regulations prohibiting the release of estrogenic substances into the environment.
Collapse
Affiliation(s)
- Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Anshu Priya
- SRF-ICMR, CSIR-Institute of Genomics and Integrative Biology (IGIB), South Campus, New Delhi, 110025, India
| | - R Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Thanushree A Hegde
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Thangamani R
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - H T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
5
|
Sitte Z, Miranda Buzetta AA, Jones SJ, Lin ZW, Whitman NA, Lockett MR. Paper-Based Coculture Platform to Evaluate the Effects of Fibroblasts on Estrogen Signaling in ER+ Breast Cancers. ACS MEASUREMENT SCIENCE AU 2023; 3:479-487. [PMID: 38145029 PMCID: PMC10740124 DOI: 10.1021/acsmeasuresciau.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 12/26/2023]
Abstract
Cell-based assays enable molecular-level studies of cellular responses to drug candidates or potential toxins. Transactivation assays quantify the activation or inhibition of nuclear receptors, key transcriptional regulators of gene targets in mamalian cells. One such assay couples the expression of luciferase to the transcriptional activity of estrogen receptor-alpha (ERα). While this assay is regularly used to screen for agonists and antagonists of the estrogen signaling pathway, the setup relies on monolayer cultures in which cells are plated directly onto the surface of cell-compatible plasticware. The tumor microenvironment is more than a collection of cancerous cells and is profoundly influenced by tissue architecture, the presence of extracellular matrices, and intercellular signaling molecules produced by non-cancerous neighboring cells (e.g., fibroblasts). There exists a need for three-dimensional culture platforms that can be rapidly prototyped to assess new configurations and readily produced in the large numbers needed for translational studies and screening applications. Here, we demonstrate the utility of the paper-based culture platform to probe the effects of intercellular signaling between two cell types. We used paper scaffolds to generate tumor-like environments, forming a defined volume of breast cancer cells suspended in collagen. By placing the paper scaffolds in commercial 96-well plates, we compared monocultures of only breast cancer cells with coculture configurations containing fibroblasts in different locations that mimicked the stages of breast cancer progression. We show that ERα transactivation in the T47D-KBluc cell line is affected by the presence, number, and proximity of fibroblasts, and is a consequence of intercellular signaling molecules. After screening a small library of fibroblast-secreted signaling molecules, we showed that interleukin-6 (IL-6) was the primary driver of reduced estradiol sensitivity. These effects were mitigated in the coculture configurations by the addition of an IL-6 neutralizing antibody. We also assessed estrogen receptor expression and transcriptional regulation, further demonstrating the utility of the paper-based platform for detailed mechanistic studies.
Collapse
Affiliation(s)
- Zachary
R. Sitte
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Abel Andre Miranda Buzetta
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Sarina J. Jones
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Zhi-Wei Lin
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Nathan Ashbrook Whitman
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew R. Lockett
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, North Carolina 27599-7295, United States
| |
Collapse
|
6
|
Kim SJ, Seo I, Kim MH, Park JW, Kim S, Park WJ. Ceramide synthase 4 overexpression exerts oncogenic properties in breast cancer. Lipids Health Dis 2023; 22:183. [PMID: 37885013 PMCID: PMC10605224 DOI: 10.1186/s12944-023-01930-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Ceramide, a bioactive signaling sphingolipid, has long been implicated in cancer. Members of the ceramide synthase (CerS) family determine the acyl chain lengths of ceramides, with ceramide synthase 4 (CerS4) primarily generating C18-C20-ceramide. Although CerS4 is known to be overexpressed in breast cancer, its role in breast cancer pathogenesis is not well established. METHODS To investigate the role of CerS4 in breast cancer, public datasets, including The Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus (GEO) datasets (GSE115577 and GSE96058) were analyzed. Furthermore, MCF-7 cells stably overexpressing CerS4 (MCF-7/CerS4) as a model for luminal subtype A (LumA) breast cancer were produced, and doxorubicin (also known as Adriamycin [AD])-resistant MCF-7/ADR cells were generated after prolonged treatment of MCF-7 cells with doxorubicin. Kaplan-Meier survival analysis assessed the clinical significance of CERS4 expression, while Student's t-tests or Analysis of Variance (ANOVA) compared gene expression and cell viability in different MCF-7 cell lines. RESULTS Analysis of the public datasets revealed elevated CERS4 expression in breast cancer, especially in the most common breast cancer subtype, LumA. Persistent CerS4 overexpression in MCF-7 cells activated multiple cancer-associated pathways, including pathways involving sterol regulatory element-binding protein, nuclear factor kappa B (NF-κB), Akt/mammalian target of rapamycin (mTOR), and β-catenin. Furthermore, MCF-7/CerS4 cells acquired doxorubicin, paclitaxel, and tamoxifen resistance, with concomitant upregulation of ATP-binding cassette (ABC) transporter genes, such as ABCB1, ABCC1, ABCC2, ABCC4, and ABCG2. MCF-7/CerS4 cells were characterized by increased cell migration and epithelial-mesenchymal transition (EMT). Finally, CERS4 knockdown in doxorubicin-resistant MCF-7/ADR cells resulted in reduced activation of cancer-associated pathways (NF-κB, Akt/mTOR, β-catenin, and EMT) and diminished chemoresistance, accompanied by ABCB1 and ABCC1 downregulation. CONCLUSIONS Chronic CerS4 overexpression may exert oncogenic effects in breast cancer via alterations in signaling, EMT, and chemoresistance. Therefore, CerS4 may represent an attractive target for anticancer therapy, especially in LumA breast cancer.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Heukseok-lo 84, DongJak-gu, Seoul, 06974, Republic of Korea
| | - Incheol Seo
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Min Hee Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu, 42601, Republic of Korea.
| | - Woo-Jae Park
- Department of Biochemistry, Chung-Ang University College of Medicine, Heukseok-lo 84, DongJak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
8
|
Sankofi BM, Valencia-Rincón E, Sekhri M, Ponton-Almodovar AL, Bernard JJ, Wellberg EA. The impact of poor metabolic health on aggressive breast cancer: adipose tissue and tumor metabolism. Front Endocrinol (Lausanne) 2023; 14:1217875. [PMID: 37800138 PMCID: PMC10548218 DOI: 10.3389/fendo.2023.1217875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Obesity and type 2 diabetes are chronic metabolic diseases that impact tens to hundreds of millions of adults, especially in developed countries. Each condition is associated with an elevated risk of breast cancer and with a poor prognosis after treatment. The mechanisms connecting poor metabolic health to breast cancer are numerous and include hyperinsulinemia, inflammation, excess nutrient availability, and adipose tissue dysfunction. Here, we focus on adipose tissue, highlighting important roles for both adipocytes and fibroblasts in breast cancer progression. One potentially important mediator of adipose tissue effects on breast cancer is the fibroblast growth factor receptor (FGFR) signaling network. Among the many roles of FGFR signaling, we postulate that key mechanisms driving aggressive breast cancer include epithelial-to-mesenchymal transition and cellular metabolic reprogramming. We also pose existing questions that may help better understand breast cancer biology in people with obesity, type 2 diabetes, and poor metabolic health.
Collapse
Affiliation(s)
- Barbara Mensah Sankofi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Estefania Valencia-Rincón
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Malika Sekhri
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adriana L. Ponton-Almodovar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
9
|
Bideh M, Safari S, Khedri A, Zangooei M. The effect of hesperetin on estrogen receptor gene expression and its relationship with the downstream pathways of estrogen receptor alpha. Mol Biol Rep 2023; 50:7225-7236. [PMID: 37418087 DOI: 10.1007/s11033-023-08616-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Estrogen receptor (ER) is a transcription factor that affects the expression of some genes involved in the progression and development of breast cancer (BC). Hesperetin (Hst) is a flavonoid that inhibits the proliferation of BC cells. In this study, we investigated the effect of Hst on the cell viability of MCF-7 cells and the gene expression of the ERα, ERβ, IL-6, Ps2, and Cyclin D1. METHODS In this study, cell viability was determined by MTT assay. The cells were seeded in RPMI-1640 medium and then exposed to different concentrations of Hst (0, 25, 50, 100, 200, and 400 µM) for 24 h, and IC50 was calculated. Real-time PCR was used to assess the expression of ERα, ERβ, pS2, Cyclin D1, and IL-6 mRNA. MCF-7 cells were seeded in RPMI-1640 medium and then exposed to different concentrations of Hst (0, 25, 50, 100, and 200 µM) for 24 h. Real-time PCR was carried out using a Step One Real-Time PCR System (ABI, USA) and Amplicon SYBR Green reagents. RESULTS The MTT assay revealed increased cytotoxicity with higher concentrations of Hst, and the IC50 was calculated at 200 µM. Real-time PCR analysis following treatment with Hst showed a significant increase in ERα gene expression at 25 µM of Hst and a decrease in expression at 50, 100, and 200 µM of Hst (p < 0.0001). ERβ gene expression significantly decreased across all concentrations of Hst (p < 0.0001), while IL-6 gene expression decreased significantly in all concentrations (p < 0.0001). pS2 gene expression increased significantly with all concentrations of Hst (p < 0.0001), while Cyclin D1 gene expression did not significantly decrease upon Hst exposure (p > 0.05). CONCLUSIONS The results of our study demonstrate that Hst has the ability to induce cell death in MCF-7 cells. Furthermore, it was observed that Hst reduces the expression of the ER gene and enhances its activity, which can affect the downstream pathways of the ER.
Collapse
Affiliation(s)
- Milad Bideh
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Safari
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Azam Khedri
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - Mohammad Zangooei
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
10
|
Kobayashi R, Kawabata-Iwakawa R, Terakawa J, Sugiyama M, Morita S, Horii T, Hatada I. Aberrant activation of estrogen receptor-α signaling in Mettl14-deficient uteri impairs embryo implantation. FASEB J 2023; 37:e23093. [PMID: 37440278 DOI: 10.1096/fj.202300735r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
The precise control of endometrial receptivity is crucial for successful embryo implantation, which is strictly regulated by the ovarian steroid hormones estrogen and progesterone. Despite our improved understanding of the genetic regulation of implantation downstream of the action of hormones, we do not know much about the epigenetic regulation that occurs during early pregnancy. To investigate the role of the N6-methyladenosine (m6A) RNA modification in embryo implantation, we generated mice with conditional deletion of Mettl14, a core component of the m6A writer complex, in the uterus. These mice were infertile due to implantation failure. We showed that Mettl14-deficient uteri had aberrant upregulation of estrogen receptor α (ERα) signaling and ERα phosphorylation, but progesterone receptor (PGR) signaling was largely unaffected. Additionally, Mettl14 deletion led to abnormal activation of the innate immune pathway in Mettl14-deficient uteri. This effect was accompanied by the infiltration of immune cells, such as macrophages and dendritic cells, into the basal region of the endometrial epithelium. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed that genes involved in the innate immune response had decreased m6A peaks in Mettl14-deficient mice. These results suggest that Mettl14 plays a crucial role in successful implantation by precisely regulating both ERα signaling and innate immunity in the uterus.
Collapse
Affiliation(s)
- Ryosuke Kobayashi
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Jumpei Terakawa
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | - Makoto Sugiyama
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| |
Collapse
|
11
|
Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. SCIENCE ADVANCES 2023; 9:eadd3685. [PMID: 37172090 PMCID: PMC10181187 DOI: 10.1126/sciadv.add3685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In breast cancer, resistance to endocrine therapies that target estrogen receptor α (ERα), such as tamoxifen and fulvestrant, remains a major clinical problem. Whether and how ERα+ breast cancers switch from being estrogen-dependent to estrogen-independent remains unclear. With a genome-wide CRISPR-Cas9 knockout screen, we identified previously unknown biomarkers and potential therapeutic targets of endocrine resistance. We demonstrate that high levels of PAICS, an enzyme involved in the de novo biosynthesis of purines, can shift the balance of ERα activity to be more estrogen-independent and tamoxifen-resistant. We find that this may be due to elevated activities of cAMP-activated protein kinase A and mTOR, kinases known to phosphorylate ERα specifically and to stimulate its activity. Genetic or pharmacological targeting of PAICS sensitizes tamoxifen-resistant cells to tamoxifen. Addition of purines renders them more resistant. On the basis of these findings, we propose the combined targeting of PAICS and ERα as a new, effective, and potentially safe therapeutic regimen.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
| |
Collapse
|
12
|
Pecar G, Liu S, Hooda J, Atkinson JM, Oesterreich S, Lee AV. RET signaling in breast cancer therapeutic resistance and metastasis. Breast Cancer Res 2023; 25:26. [PMID: 36918928 PMCID: PMC10015789 DOI: 10.1186/s13058-023-01622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
RET, a single-pass receptor tyrosine kinase encoded on human chromosome 10, is well known to the field of developmental biology for its role in the ontogenesis of the central and enteric nervous systems and the kidney. In adults, RET alterations have been characterized as drivers of non-small cell lung cancer and multiple neuroendocrine neoplasms. In breast cancer, RET signaling networks have been shown to influence diverse functions including tumor development, metastasis, and therapeutic resistance. While RET is known to drive the development and progression of multiple solid tumors, therapeutic agents selectively targeting RET are relatively new, though multiple multi-kinase inhibitors have shown promise as RET inhibitors in the past; further, RET has been historically neglected as a potential therapeutic co-target in endocrine-refractory breast cancers despite mounting evidence for a key pathologic role and repeated description of a bi-directional relationship with the estrogen receptor, the principal driver of most breast tumors. Additionally, the recent discovery of RET enrichment in breast cancer brain metastases suggests a role for RET inhibition specific to advanced disease. This review assesses the status of research on RET in breast cancer and evaluates the therapeutic potential of RET-selective kinase inhibitors across major breast cancer subtypes.
Collapse
Affiliation(s)
- Geoffrey Pecar
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Simeng Liu
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jagmohan Hooda
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Jennifer M Atkinson
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Hany D, Zoetemelk M, Bhattacharya K, Nowak-Sliwinska P, Picard D. Network-informed discovery of multidrug combinations for ERα+/HER2-/PI3Kα-mutant breast cancer. Cell Mol Life Sci 2023; 80:80. [PMID: 36869202 PMCID: PMC10032341 DOI: 10.1007/s00018-023-04730-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21311, Egypt
| | - Marloes Zoetemelk
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
| | - Patrycja Nowak-Sliwinska
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland.
| |
Collapse
|
14
|
Abu-Khalaf MM, Alex Hodge K, Hatzis C, Baldelli E, El Gazzah E, Valdes F, Sikov WM, Mita MM, Denduluri N, Murphy R, Zelterman D, Liotta L, Dunetz B, Dunetz R, Petricoin EF, Pierobon M. AKT/mTOR signaling modulates resistance to endocrine therapy and CDK4/6 inhibition in metastatic breast cancers. NPJ Precis Oncol 2023; 7:18. [PMID: 36797347 PMCID: PMC9935518 DOI: 10.1038/s41698-023-00360-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Endocrine therapy (ET) in combination with CDK4/6 inhibition is routinely used as first-line treatment for HR+/HER2- metastatic breast cancer (MBC) patients. However, 30-40% of patients quickly develop disease progression. In this open-label multicenter clinical trial, we utilized a hypothesis-driven protein/phosphoprotein-based approach to identify predictive markers of response to ET plus CDK4/6 inhibition in pre-treatment tissue biopsies. Pathway-centered signaling profiles were generated from microdissected tumor epithelia and surrounding stroma/immune cells using the reverse phase protein microarray. Phosphorylation levels of the CDK4/6 downstream substrates Rb (S780) and FoxM1 (T600) were higher in patients with progressive disease (PD) compared to responders (p = 0.02). Systemic PI3K/AKT/mTOR activation in tumor epithelia and stroma/immune cells was detected in patients with PD. This activation was not explained by underpinning genomic alterations alone. As the number of FDA-approved targeted compounds increases, functional protein-based signaling analyses may become a critical component of response prediction and treatment selection for MBC patients.
Collapse
Affiliation(s)
- Maysa M. Abu-Khalaf
- grid.415231.00000 0004 0577 7855Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA USA
| | - K. Alex Hodge
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | | | - Elisa Baldelli
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | - Emna El Gazzah
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | - Frances Valdes
- grid.419791.30000 0000 9902 6374Sylvester Comprehensive Cancer Center (UM SCCC), University of Miami, Miami, FL USA
| | - William M. Sikov
- grid.241223.4Women and Infants Hospital of Rhode Island, Providence, RI USA
| | - Monica M. Mita
- grid.50956.3f0000 0001 2152 9905Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Neelima Denduluri
- grid.492966.60000 0004 0481 8256Virginia Cancer Specialists, Fairfax, VA USA
| | - Rita Murphy
- grid.415231.00000 0004 0577 7855Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA USA
| | | | - Lance Liotta
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | | | - Rick Dunetz
- grid.490989.5Side Out Foundation, Fairfax, VA USA
| | - Emanuel F. Petricoin
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | - Mariaelena Pierobon
- School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
15
|
Muñoz JP, Araya-Osorio R, Mera-Adasme R, Calaf GM. Glyphosate mimics 17β-estradiol effects promoting estrogen receptor alpha activity in breast cancer cells. CHEMOSPHERE 2023; 313:137201. [PMID: 36379430 DOI: 10.1016/j.chemosphere.2022.137201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate, the active ingredient in several broad-spectrum herbicide formulations, has been validated and widely used throughout the world. Recent reports have questioned its safety, showing that glyphosate may act as an endocrine disruptor by promoting estrogenic activity. However, the molecular mechanism involved in this phenomenon remains unclear. Therefore, here we aimed to elucidate the mechanism by which glyphosate induces estrogenic activity using estrogen-sensitive breast cancer cell line models. Our results show that glyphosate mimics the cell effects of 17β-estradiol (E2), promoting estrogen receptor α (ERα) phosphorylation, its degradation, and transcriptional activity at high concentrations. The molecular mechanism seems involved in the ERα ligand-binding domain (LBD). Molecular simulations suggest a plausible interaction between glyphosate and the LBD through a coordinated complex involving divalent cations such as Zn (II). In addition, glyphosate exposure alters the level of Cyclin-dependent kinase 7 that contribute to ERα phosphorylation. Finally, glyphosate increases cell proliferation rate and levels of cell cycle regulators, accompanied by an increase in anchorage-independent growth capacity. These findings suggest that glyphosate at high concentrations, induces estrogen-like effects through an ERα ligand binding site-dependent mechanism, leading to cellular responses resulting from a complex interplay of genomic and non-genomic events.
Collapse
Affiliation(s)
- Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| | - Rocío Araya-Osorio
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Chile.
| | - Raúl Mera-Adasme
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Chile.
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| |
Collapse
|
16
|
Nakadai T, Yang L, Kumegawa K, Maruyama R. Estrogen receptor α K303R mutation reorganizes its binding to forkhead box protein A1 regions and induces chromatin opening. Mol Biol Rep 2023; 50:1209-1220. [PMID: 36436079 PMCID: PMC9889408 DOI: 10.1007/s11033-022-08089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Estrogen receptor alpha (ERα) is a frequently mutated gene in breast cancer (BC). While many studies have investigated molecular dysregulation by hotspot mutations at Y537 and D538, which exhibit an estrogen-independent constitutively active phenotype, the functional abnormalities of other mutations remain obscure. The K303R mutation in primary invasive BC has been implicated with endocrine resistance, tumor size, and lymph node positivity. However, the impact of the K303R mutation on the cell epigenome is yet unknown. METHODS AND RESULTS We introduced the K303R ERα mutant in ERα-negative MDA-MB-453 cells to monitor ERα-dependent transactivation and to perform epigenomic analyses. ATAC-seq and ChIP-Seq analyses indicated that both wild-type (WT) and the K303R mutant associated with Forkhead box (Fox) protein family motif regions at similar rates, even without an ERα-binding sequence, but only the K303R mutant induced chromatin opening at those regions. Biochemical analyses demonstrated that the WT and the K303R mutant can be tethered on DNA by FoxA1 indirectly, but only the K303R/FoxA1/DNA complex can induce associations with the nuclear receptor cofactor 2 (NCOA2). CONCLUSIONS These findings suggest that the K303R mutant induces chromatin opening at the Fox binding region through the FoxA1-dependent associations of the K303R mutant to NCOA2 and then probably disrupts the regulation of Fox-target genes, resulting in K303R-related BC events.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-Ku, Tokyo, 135-8550, Japan
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
17
|
Andrade de Oliveira K, Sengupta S, Yadav AK, Clarke R. The complex nature of heterogeneity and its roles in breast cancer biology and therapeutic responsiveness. Front Endocrinol (Lausanne) 2023; 14:1083048. [PMID: 36909339 PMCID: PMC9997040 DOI: 10.3389/fendo.2023.1083048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Heterogeneity is a complex feature of cells and tissues with many interacting components. Depending on the nature of the research context, interacting features of cellular, drug response, genetic, molecular, spatial, temporal, and vascular heterogeneity may be present. We describe the various forms of heterogeneity with examples of their interactions and how they play a role in affecting cellular phenotype and drug responses in breast cancer. While cellular heterogeneity may be the most widely described and invoked, many forms of heterogeneity are evident within the tumor microenvironment and affect responses to the endocrine and cytotoxic drugs widely used in standard clinical care. Drug response heterogeneity is a critical determinant of clinical response and curative potential and also is multifaceted when encountered. The interactive nature of some forms of heterogeneity is readily apparent. For example, the process of metastasis has the properties of both temporal and spatial heterogeneity within the host, whereas each individual metastatic deposit may exhibit cellular, genetic, molecular, and vascular heterogeneity. This review describes the many forms of heterogeneity, their integrated activities, and offers some insights into how heterogeneity may be understood and studied in the future.
Collapse
Affiliation(s)
- Karla Andrade de Oliveira
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Department of Biochemistry and Pharmacology, Universidade Federal do Piaui, Piauí, Brazil
| | - Surojeet Sengupta
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Anil Kumar Yadav
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Robert Clarke
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- *Correspondence: Robert Clarke,
| |
Collapse
|
18
|
Proteomics-Based Identification of Dysregulated Proteins in Breast Cancer. Proteomes 2022; 10:proteomes10040035. [PMID: 36278695 PMCID: PMC9590004 DOI: 10.3390/proteomes10040035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Immunohistochemistry (IHC) is still widely used as a morphology-based assay for in situ analysis of target proteins as specific tumor antigens. However, as a very heterogeneous collection of neoplastic diseases, breast cancer (BC) requires an accurate identification and characterization of larger panels of candidate biomarkers, beyond ER, PR, and HER2 proteins, for diagnosis and personalized treatment, without the limited availability of antibodies that are required to identify specific proteins. Top-down, middle-down, and bottom-up mass spectrometry (MS)-based proteomics approaches complement traditional histopathological tissue analysis to examine expression, modification, and interaction of hundreds to thousands of proteins simultaneously. In this review, we discuss the proteomics-based identification of dysregulated proteins in BC that are essential for the following issues: discovery and validation of new biomarkers by analysis of solid and liquid/non-invasive biopsies, cell lines, organoids and xenograft models; identification of panels of biomarkers for early detection and accurate discrimination between cancer, benign and normal tissues; identification of subtype-specific and stage-specific protein expression profiles in BC grading and measurement of disease progression; characterization of new subtypes of BC; characterization and quantitation of post-translational modifications (PTMs) and aberrant protein-protein interactions (PPI) involved in tumor development; characterization of the global remodeling of BC tissue homeostasis, diagnosis and prognostic information; and deciphering of molecular functions, biological processes and mechanisms through which the dysregulated proteins cause tumor initiation, invasion, and treatment resistance.
Collapse
|
19
|
Chen Z, Xia X, Chen H, Huang H, An X, Sun M, Yao Q, Kim K, Zhang H, Chu M, Chen R, Bhutia YD, Ganapathy V, Kou L. Carbidopa suppresses estrogen receptor-positive breast cancer via AhR-mediated proteasomal degradation of ERα. Invest New Drugs 2022; 40:1216-1230. [PMID: 36070108 DOI: 10.1007/s10637-022-01289-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
Estrogen receptor-α (ERα) promotes breast cancer, and ER-positive cancer accounts for ~ 80% of breast cancers. This subtype responds positively to hormone/endocrine therapies involving either inhibition of estrogen synthesis or blockade of estrogen action. Carbidopa, a drug used to potentiate the therapeutic efficacy of L-DOPA in Parkinson's disease, is an agonist for aryl hydrocarbon receptor (AhR). Pharmacotherapy in Parkinson's disease decreases the risk for cancers, including breast cancer. The effects of carbidopa on ER-positive breast cancer were evaluated in cell culture and in mouse xenografts. The assays included cell proliferation, apoptosis, cell migration/invasion, subcellular localization of AhR, proteasomal degradation, and tumor growth in xenografts. Carbidopa decreased proliferation and migration of ER-positive human breast cancer cells in vitro with no significant effect on ER-negative breast cancer cells. Treatment of ER-positive cells with carbidopa promoted nuclear localization of AhR and expression of AhR target genes; it also decreased cellular levels of ERα via proteasomal degradation in an AhR-dependent manner. In vivo, carbidopa suppressed the growth of ER-positive breast cancer cells in mouse xenografts; this was associated with increased apoptosis and decreased cell proliferation. Carbidopa has therapeutic potential for ER-positive breast cancer either as a single agent or in combination with other standard chemotherapies.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Korea
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xing Xia
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Heyan Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Xingsi An
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Meng Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
- Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Maoping Chu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China.
- Pediatric Research Institute, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China.
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Vadivel Ganapathy
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China.
| |
Collapse
|
20
|
Anticancer activity of herbal formula Jisilhaebaekgyeji-Tang against human breast cancer cells and its mechanism. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Teo T, Kasirzadeh S, Albrecht H, Sykes MJ, Yang Y, Wang S. An Overview of CDK3 in Cancer: Clinical Significance and Pharmacological Implications. Pharmacol Res 2022; 180:106249. [DOI: 10.1016/j.phrs.2022.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
22
|
Wang X, Wang S. Identification of key genes involved in tamoxifen-resistant breast cancer using bioinformatics analysis. Transl Cancer Res 2022; 10:5246-5257. [PMID: 35116374 PMCID: PMC8798269 DOI: 10.21037/tcr-21-1276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Background The purpose of the present study was to investigate the molecular mechanisms of tamoxifen resistance in breast cancer and to identify potential targets for antitamoxifen resistance. Methods Differentially expressed genes (DEGs) in tamoxifen-resistant and tamoxifen-sensitive breast cancer cells were assessed using the GSE67916 dataset acquired from the Gene Expression Omnibus database. Gene ontology (GO) and pathway enrichment analyses were applied to investigate the functions and pathways of the DEGs. Subsequently, the protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and subnetworks were further analyzed by Molecular Complex Detection (MCODE). The PPI network and subnetworks were visualized using Cytoscape software. Results In total, 438 DEGs were identified, of which 300 were upregulated and 138 were downregulated. The DEGs were significantly enriched in the protein binding, cellular response to estradiol stimulus, and immune response GO terms while the most significant pathways included the mitogen-activated protein kinase (MAPK) signaling pathway in cancer. The PPI network of DEGs was constructed with 288 nodes and 629 edges, and 2 subnetworks were screened out from the entire network. Conclusions A number of significant hub DEGs were identified based on their degree of connectivity in the PPI network, , included MAPK1 (node degree 36), ESR1 (node degree 27), SMARCA4 (node degree 27), RANBP2 (node degree 25), and PRKCA (node degree 21). These critical hub genes were found to be related to tamoxifen resistance in breast cancer. The results of this study further the understanding of tamoxifen resistance at the molecular level and identify potential therapeutic targets for tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Outpatient and Emergency, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shixia Wang
- Department of Outpatient and Emergency, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
23
|
Pardeshi J, McCormack N, Gu L, Ryan CS, Schröder M. DDX3X functionally and physically interacts with Estrogen Receptor-alpha. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194787. [PMID: 35121200 DOI: 10.1016/j.bbagrm.2022.194787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022]
Abstract
DEAD-box protein 3X (DDX3X) is a human DEAD-box protein with conventional roles in RNA metabolism and unconventional functions in signalling pathways that do not require its enzymatic activity. For example, DDX3X acts as a multifunctional adaptor molecule in anti-viral innate immune signalling pathways, where it interacts with and regulates the kinase IKB-kinase-epsilon (IIKKε). Interestingly, both DDX3X and IKKɛ have also independently been shown to act as breast cancer oncogenes. IKKɛ's oncogenic functions are likely multifactorial, but it was suggested to phosphorylate the transcription factor Estrogen receptor alpha (ERα) at Serine 167, which drives expression of Erα target genes in an estrogen-independent manner. In this study, we identified a novel physical interaction between DDX3X and ERα that positively regulates ERα activation. DDX3X knockdown in ER+ breast cancer cell lines resulted in reduced ERα phosphorylation, reduced Estrogen Response Element (ERE)-controlled reporter gene expression, decreased expression of ERα target genes, and decreased cell proliferation. Vice versa, overexpression of DDX3X resulted in enhanced ERα phosphorylation and activity. Furthermore, we provide evidence that DDX3X physically binds to ERα from co-immunoprecipitation and pulldown experiments. Based on our data, we propose that DDX3X acts as an adaptor to facilitate IKKε-mediated ERα activation, akin to the mechanism we previously elucidated for IKKε-mediated Interferon Regulatory factor 3 (IRF3) activation in innate immune signalling. In conclusion, our research provides a novel molecular mechanism that might contribute to the oncogenic effect of DDX3X in breast cancer, potentially linking it to the development of resistance against endocrine therapy.
Collapse
Affiliation(s)
- Jyotsna Pardeshi
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Niamh McCormack
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Lili Gu
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Cathal S Ryan
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Martina Schröder
- Biology Department, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
24
|
Wright RHG, Vastolo V, Oliete JQ, Carbonell-Caballero J, Beato M. Global signalling network analysis of luminal T47D breast cancer cells in response to progesterone. Front Endocrinol (Lausanne) 2022; 13:888802. [PMID: 36034422 PMCID: PMC9403329 DOI: 10.3389/fendo.2022.888802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Breast cancer cells enter into the cell cycle following progestin exposure by the activation of signalling cascades involving a plethora of enzymes, transcription factors and co-factors that transmit the external signal from the cell membrane to chromatin, ultimately leading to a change of the gene expression program. Although many of the events within the signalling network have been described in isolation, how they globally team up to generate the final cell response is unclear. METHODS In this study we used antibody microarrays and phosphoproteomics to reveal a dynamic global signalling map that reveals new key regulated proteins and phosphor-sites and links between previously known and novel pathways. T47D breast cancer cells were used, and phospho-sites and pathways highlighted were validated using specific antibodies and phenotypic assays. Bioinformatic analysis revealed an enrichment in novel signalling pathways, a coordinated response between cellular compartments and protein complexes. RESULTS Detailed analysis of the data revealed intriguing changes in protein complexes involved in nuclear structure, epithelial to mesenchyme transition (EMT), cell adhesion, as well as transcription factors previously not associated with breast cancer cell proliferation. Pathway analysis confirmed the key role of the MAPK signalling cascade following progesterone and additional hormone regulated phospho-sites were identified. Full network analysis shows the activation of new signalling pathways previously not associated with progesterone signalling in T47D breast cancer cells such as ERBB and TRK. As different post-translational modifications can mediate complex crosstalk mechanisms and massive PARylation is also rapidly induced by progestins, we provide details of important chromatin regulatory complexes containing both phosphorylated and PARylated proteins. CONCLUSIONS This study contributes an important resource for the scientific community, as it identifies novel players and connections meaningful for breast cancer cell biology and potentially relevant for cancer management.
Collapse
Affiliation(s)
- Roni H. G. Wright
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- *Correspondence: Roni H. G. Wright, ; Miguel Beato,
| | - Viviana Vastolo
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Javier Quilez Oliete
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - José Carbonell-Caballero
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- *Correspondence: Roni H. G. Wright, ; Miguel Beato,
| |
Collapse
|
25
|
Baek HS, Kwon TU, Shin S, Kwon YJ, Chun YJ. Steroid sulfatase deficiency causes cellular senescence and abnormal differentiation by inducing Yippee-like 3 expression in human keratinocytes. Sci Rep 2021; 11:20867. [PMID: 34675221 PMCID: PMC8531280 DOI: 10.1038/s41598-021-00051-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Human steroid sulfatase (STS) is an enzyme that catalyzes the hydrolysis of dehydroepiandrosterone sulfate (DHEAS), estrone sulfate (E1S), and cholesterol sulfate. Abnormal expression of STS causes several diseases including colorectal, breast, and prostate cancer and refractory skin disease. In particular, accumulation of intracellular cholesterol sulfate by STS deficiency leads to a skin disorder with abnormal keratinization called X-linked ichthyosis (XLI). To determine the detailed mechanisms of XLI, we performed RNA sequencing (RNA-seq) analysis using human keratinocyte HaCaT cells treated with cholesterol and cholesterol sulfate. Of the genes with expression changes greater than 1.5-fold, Yippee-like 3 (YPEL3), a factor expected to affect cell differentiation, was found. Induction of YPEL3 causes permanent growth arrest, cellular senescence, and inhibition of metastasis in normal and tumor cells. In this study, we demonstrate that YPEL3 expression was induced by STS deficiency and, using the CRISPR/Cas9 system, a partial knock-out (STS+/−) cell line was constructed to establish a disease model for XLI studies. Furthermore, we show that increased expression of YPEL3 in STS-deficient cell lines promoted cellular senescence and expression of keratinization-related proteins such as involucrin and loricrin. Our results suggest that upregulation of YPEL3 expression by STS deficiency may play a crucial role in inducing cellular senescence and abnormal differentiation in human keratinocytes.
Collapse
Affiliation(s)
- Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Sangyun Shin
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul, Republic of Korea, 06974.
| |
Collapse
|
26
|
Dittmer J. Nuclear Mechanisms Involved in Endocrine Resistance. Front Oncol 2021; 11:736597. [PMID: 34604071 PMCID: PMC8480308 DOI: 10.3389/fonc.2021.736597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Endocrine therapy is a standard treatment offered to patients with ERα (estrogen receptor α)-positive breast cancer. In endocrine therapy, ERα is either directly targeted by anti-estrogens or indirectly by aromatase inhibitors which cause estrogen deficiency. Resistance to these drugs (endocrine resistance) compromises the efficiency of this treatment and requires additional measures. Endocrine resistance is often caused by deregulation of the PI3K/AKT/mTOR pathway and/or cyclin-dependent kinase 4 and 6 activities allowing inhibitors of these factors to be used clinically to counteract endocrine resistance. The nuclear mechanisms involved in endocrine resistance are beginning to emerge. Exploring these mechanisms may reveal additional druggable targets, which could help to further improve patients' outcome in an endocrine resistance setting. This review intends to summarize our current knowledge on the nuclear mechanisms linked to endocrine resistance.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
27
|
Wang X, Veeraraghavan J, Liu CC, Cao X, Qin L, Kim JA, Tan Y, Loo SK, Hu Y, Lin L, Lee S, Shea MJ, Mitchell T, Li S, Ellis MJ, Hilsenbeck SG, Schiff R, Wang XS. Therapeutic Targeting of Nemo-like Kinase in Primary and Acquired Endocrine-resistant Breast Cancer. Clin Cancer Res 2021; 27:2648-2662. [PMID: 33542078 DOI: 10.1158/1078-0432.ccr-20-2961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/29/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Endocrine resistance remains a major clinical challenge in estrogen receptor (ER)-positive breast cancer. Despite the encouraging results from clinical trials for the drugs targeting known survival signaling, relapse is still inevitable. There is an unmet need to discover new drug targets in the unknown escape pathways. Here, we report Nemo-like kinase (NLK) as a new actionable kinase target that endows previously uncharacterized survival signaling in endocrine-resistant breast cancer. EXPERIMENTAL DESIGN The effects of NLK inhibition on the viability of endocrine-resistant breast cancer cell lines were examined by MTS assay. The effect of VX-702 on NLK activity was verified by kinase assay. The modulation of ER and its coactivator, SRC-3, by NLK was examined by immunoprecipitation, kinase assay, luciferase assay, and RNA sequencing. The therapeutic effects of VX-702 and everolimus were tested on cell line- and patient-derived xenograft (PDX) tumor models. RESULTS NLK overexpression endows reduced endocrine responsiveness and is associated with worse outcome of patients treated with tamoxifen. Mechanistically, NLK may function, at least in part, via enhancing the phosphorylation of ERα and its key coactivator, SRC-3, to modulate ERα transcriptional activity. Through interrogation of a kinase profiling database, we uncovered and verified a highly selective dual p38/NLK inhibitor, VX-702. Coadministration of VX-702 with the mTOR inhibitor, everolimus, demonstrated a significant therapeutic effect in cell line-derived xenograft and PDX tumor models of acquired or de novo endocrine resistance. CONCLUSIONS Together, this study reveals the potential of therapeutic modulation of NLK for the management of the endocrine-resistant breast cancers with active NLK signaling.
Collapse
Affiliation(s)
- Xian Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Chia-Chia Liu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Xixi Cao
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Lanfang Qin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jin-Ah Kim
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ying Tan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Yiheng Hu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ling Lin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martin J Shea
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Tamika Mitchell
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine at St Louis, St. Louis, Missouri
| | - Matthew J Ellis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Khatpe AS, Adebayo AK, Herodotou CA, Kumar B, Nakshatri H. Nexus between PI3K/AKT and Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2021; 13:369. [PMID: 33498407 PMCID: PMC7864210 DOI: 10.3390/cancers13030369] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Signaling from estrogen receptor alpha (ERα) and its ligand estradiol (E2) is critical for growth of ≈70% of breast cancers. Therefore, several drugs that inhibit ERα functions have been in clinical use for decades and new classes of anti-estrogens are continuously being developed. Although a significant number of ERα+ breast cancers respond to anti-estrogen therapy, ≈30% of these breast cancers recur, sometimes even after 20 years of initial diagnosis. Mechanism of resistance to anti-estrogens is one of the intensely studied disciplines in breast cancer. Several mechanisms have been proposed including mutations in ESR1, crosstalk between growth factor and ERα signaling, and interplay between cell cycle machinery and ERα signaling. ESR1 mutations as well as crosstalk with other signaling networks lead to ligand independent activation of ERα thus rendering anti-estrogens ineffective, particularly when treatment involved anti-estrogens that do not degrade ERα. As a result of these studies, several therapies that combine anti-estrogens that degrade ERα with PI3K/AKT/mTOR inhibitors targeting growth factor signaling or CDK4/6 inhibitors targeting cell cycle machinery are used clinically to treat recurrent ERα+ breast cancers. In this review, we discuss the nexus between ERα-PI3K/AKT/mTOR pathways and how understanding of this nexus has helped to develop combination therapies.
Collapse
Affiliation(s)
- Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher A. Herodotou
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Shomali M, Cheng J, Sun F, Koundinya M, Guo Z, Hebert AT, McManus J, Levit MN, Hoffmann D, Courjaud A, Arrebola R, Cao H, Pollard J, Lee JS, Besret L, Caron A, Bangari DS, Abecassis PY, Schio L, El-Ahmad Y, Halley F, Tabart M, Certal V, Thompson F, McCort G, Filoche-Rommé B, Cheng H, Garcia-Echeverria C, Debussche L, Bouaboula M. SAR439859, a Novel Selective Estrogen Receptor Degrader (SERD), Demonstrates Effective and Broad Antitumor Activity in Wild-Type and Mutant ER-Positive Breast Cancer Models. Mol Cancer Ther 2020; 20:250-262. [PMID: 33310762 DOI: 10.1158/1535-7163.mct-20-0390] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Primary treatment for estrogen receptor-positive (ER+) breast cancer is endocrine therapy. However, substantial evidence indicates a continued role for ER signaling in tumor progression. Selective estrogen receptor degraders (SERD), such as fulvestrant, induce effective ER signaling inhibition, although clinical studies with fulvestrant report insufficient blockade of ER signaling, possibly due to suboptimal pharmaceutical properties. Furthermore, activating mutations in the ER have emerged as a resistance mechanism to current endocrine therapies. New oral SERDs with improved drug properties are under clinical investigation, but the biological profile that could translate to improved therapeutic benefit remains unclear. Here, we describe the discovery of SAR439859, a novel, orally bioavailable SERD with potent antagonist and degradation activities against both wild-type and mutant Y537S ER. Driven by its fluoropropyl pyrrolidinyl side chain, SAR439859 has demonstrated broader and superior ER antagonist and degrader activities across a large panel of ER+ cells, compared with other SERDs characterized by a cinnamic acid side chain, including improved inhibition of ER signaling and tumor cell growth. Similarly, in vivo treatment with SAR439859 demonstrated significant tumor regression in ER+ breast cancer models, including MCF7-ESR1 wild-type and mutant-Y537S mouse tumors, and HCI013, a patient-derived tamoxifen-resistant xenograft tumor. These findings indicate that SAR439859 may provide therapeutic benefit to patients with ER+ breast cancer, including those who have resistance to endocrine therapy with both wild-type and mutant ER.
Collapse
Affiliation(s)
| | - Jane Cheng
- Sanofi, Research and Development, Cambridge, Massachusetts
| | - Fangxian Sun
- Sanofi, Research and Development, Cambridge, Massachusetts
| | | | - Zhuyan Guo
- Sanofi, Research and Development, Cambridge, Massachusetts
| | | | | | | | | | | | | | - Hui Cao
- Sanofi, Research and Development, Cambridge, Massachusetts
| | - Jack Pollard
- Sanofi, Research and Development, Cambridge, Massachusetts
| | - Joon Sang Lee
- Sanofi, Research and Development, Cambridge, Massachusetts
| | - Laurent Besret
- Sanofi, Research and Development, Vitry-sur-Seine, France
| | - Anne Caron
- Sanofi, Research and Development, Vitry-sur-Seine, France
| | | | | | - Laurent Schio
- Sanofi, Research and Development, Vitry-sur-Seine, France
| | | | - Frank Halley
- Sanofi, Research and Development, Vitry-sur-Seine, France
| | - Michel Tabart
- Sanofi, Research and Development, Vitry-sur-Seine, France
| | - Victor Certal
- Sanofi, Research and Development, Vitry-sur-Seine, France
| | | | - Gary McCort
- Sanofi, Research and Development, Vitry-sur-Seine, France
| | | | - Hong Cheng
- Sanofi, Research and Development, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
30
|
Lasagna M, Hielpos MS, Ventura C, Mardirosian MN, Martín G, Miret N, Randi A, Núñez M, Cocca C. Chlorpyrifos subthreshold exposure induces epithelial-mesenchymal transition in breast cancer cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111312. [PMID: 32956863 DOI: 10.1016/j.ecoenv.2020.111312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos (CPF) is one of the most frequently used pesticide in extensive agriculture around the world and can be incorporated by humans and animals with possible consequences on health. The effects of this pesticide on carcinogenesis are not clear and there is no consensus concerning the risks of this compound. In previous work, we demonstrated that CPF induces proliferation of breast cancer cells both in vivo and in vitro. In this work we investigate whether CPF promotes the epithelial-mesenchymal transition (EMT) in breast cancer cells. Herein, we demonstrate that 50 μM CFP induces invasion in MCF-7 and MDA-MB-231 cells. In addition, 0.05 and 50 μM CPF increases migration in both cell lines. In MCF-7 cells, 0.05 and 50 μM CPF increase the metalloprotease MMP2 expression and decrease E-Cadherin and β-Catenin expression diminishing their membrane location. Furthermore, 50 μM CPF induces Vimentin expression and Slug nuclear translocation in MCF-7 cells. 0.05 and 50 μM CPF increase MMP2 gelatinolytic activity and expression, decrease β-Catenin expression and increase Vimentin expression in MDA-MB-231 cells. Inhibition of the oncoprotein c-Src reverses all the effects induced by CPF in MDA-MB-231 but not in MCF-7 indicating that c-Src is a kinase with a crucial role in the cells which grow in an estrogen-independent way. In MCF-7 cells both c-Src and estrogen receptor alpha must be blocked to completly inhibit the CPF-mediated effects. Our results show for the first time that the exposure to subthreshold concentrations of CPF promotes the modulation of EMT-molecular markers and pathways. These results, together with the ubiquitous distribution of the pesticide CPF, make it of utmost importance to take measures to minimize the risk of exposure to this compound.
Collapse
Affiliation(s)
- M Lasagna
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina; Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M S Hielpos
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Ventura
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP) CONICET-UNLP, La Plata, Argentina
| | - M N Mardirosian
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina
| | - G Martín
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - N Miret
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A Randi
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Núñez
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Cocca
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina; Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Tian Z, Tang J, Liao X, Gong Y, Yang Q, Wu Y, Wu G. TRIM8 inhibits breast cancer proliferation by regulating estrogen signaling. Am J Cancer Res 2020; 10:3440-3457. [PMID: 33163282 PMCID: PMC7642662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023] Open
Abstract
Breast cancer (BC) is the most common female malignancy worldwide, and 70% of which are estrogen receptor α (ERα) positive. Endocrine treatment, such as tamoxifen, is a primary adjuvant therapy for patients with ER-positive BC. However, some patients will develop acquired resistance following long-time treatment. Further research on estrogen signaling is important to improve the therapy of these patients. In this study, we report that the E3 ubiquitin ligase tripartite motif 8 (TRIM8) acts as a novel regulator of ERα signaling. TRIM8 is downregulated in BC and is associated with poor prognosis. In addition, the protein level of TRIM8 is negatively correlated with ERα. RNA sequencing revealed that estrogen signaling maybe a potential target of TRIM8. Moreover, knockdown of TRIM8 can significantly enhance BC cell proliferation and migration both in vitro and in vivo. And this effect can be reversed by ERα depletion. Further mechanistic studies showed that TRIM8 interacts with AF1 domain of ERα via its RING domain in the cytoplasm and increases poly-ubiquitination of the ERα protein. In conclusion, our study reveals an interesting post-translational mechanism between ERα and TRIM8 in ER-positive BC, which suggests that TRIM8 may be a potential therapeutic target in the treatment of BC.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan, China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan, China
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan, China
| | - Yumin Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan, China
| |
Collapse
|
32
|
Li L, Lin L, Veeraraghavan J, Hu Y, Wang X, Lee S, Tan Y, Schiff R, Wang XS. Therapeutic role of recurrent ESR1-CCDC170 gene fusions in breast cancer endocrine resistance. Breast Cancer Res 2020; 22:84. [PMID: 32771039 PMCID: PMC7414578 DOI: 10.1186/s13058-020-01325-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/27/2020] [Indexed: 01/07/2023] Open
Abstract
Background Endocrine therapy is the most common treatment for estrogen receptor (ER)-positive breast cancer, but its effectiveness is limited by high rates of primary and acquired resistance. There are likely many genetic causes, and recent studies suggest the important role of ESR1 mutations and fusions in endocrine resistance. Previously, we reported a recurrent ESR1 fusion called ESR1-CCDC170 in 6–8% of the luminal B breast cancers that has a worse clinical outcome after endocrine therapy. Despite being the most frequent ESR1 fusion, its functional role in endocrine resistance has not been studied in vivo, and the engaged mechanism and therapeutic relevance remain uncharacterized. Methods The endocrine sensitivities of HCC1428 or T47D breast cancer cells following genetic perturbations of ESR1-CCDC170 were assessed using clonogenic assays and/or xenograft mouse models. The underlying mechanisms were investigated by reverse phase protein array, western blotting, immunoprecipitation, and bimolecular fluorescence complementation assays. The sensitivity of ESR1-CCDC170 expressing breast cancer cells to concomitant treatments of tamoxifen and HER/SRC inhibitors was assessed by clonogenic assays. Results Our results suggested that different ESR1-CCDC170 fusions endow different levels of reduced endocrine sensitivity in vivo, resulting in significant survival disadvantages. Further investigation revealed a novel mechanism that ESR1-CCDC170 binds to HER2/HER3/SRC and activates SRC/PI3K/AKT signaling. Silencing of ESR1-CCDC170 in the fusion-positive cell line, HCC1428, downregulates HER2/HER3, represses pSRC/pAKT, and improves endocrine sensitivity. More important, breast cancer cells expressing ectopic or endogenous ESR1-CCDC170 are highly sensitive to treatment regimens combining endocrine agents with the HER2 inhibitor lapatinib and/or the SRC inhibitor dasatinib. Conclusion ESR1-CCDC170 may endow breast cancer cell survival under endocrine therapy via maintaining/activating HER2/HER3/SRC/AKT signaling which implies a potential therapeutic strategy for managing these fusion positive tumors.
Collapse
Affiliation(s)
- Li Li
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.,Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ling Lin
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yiheng Hu
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xian Wang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sanghoon Lee
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Ying Tan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Song Wang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA. .,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA. .,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, USA.
| |
Collapse
|
33
|
Ferraiuolo RM, Wagner KU. Regulation and New Treatment Strategies in Breast Cancer. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:23-38. [PMID: 32095785 PMCID: PMC7039658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Breast cancer classifications are based on the presence or absence of estrogen receptor and progesterone receptor along with the overexpression or amplification of the Her2 receptor. Although the overall 5-year survival rate of breast cancer patients has increased due to the use of targeted therapies, a subset of patients can acquire resistance over time or are unresponsive when presented in the clinic. Novel therapies focusing on molecular pathways and cell cycle regulation currently being used in the clinic may lead to increased response in this subset of patients.
Collapse
Affiliation(s)
- Rosa-Maria Ferraiuolo
- Karmanos Cancer Institute at Wayne State University
School of Medicine, Detroit, MI 48202
| | - Kay-Uwe Wagner
- Karmanos Cancer Institute at Wayne State University
School of Medicine, Detroit, MI 48202
| |
Collapse
|
34
|
Comprehensive Analysis of ERK1/2 Substrates for Potential Combination Immunotherapies. Trends Pharmacol Sci 2019; 40:897-910. [DOI: 10.1016/j.tips.2019.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
|
35
|
Kruger DT, Alexi X, Opdam M, Schuurman K, Voorwerk L, Sanders J, van der Noort V, Boven E, Zwart W, Linn SC. IGF-1R pathway activation as putative biomarker for linsitinib therapy to revert tamoxifen resistance in ER-positive breast cancer. Int J Cancer 2019; 146:2348-2359. [PMID: 31490549 PMCID: PMC7065127 DOI: 10.1002/ijc.32668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
Preclinical studies indicate that activated IGF-1R can drive endocrine resistance in ER-positive (ER+) breast cancer, but its clinical relevance is unknown. We studied the effect of IGF-1R signaling on tamoxifen benefit in patients and we searched for approaches to overcome IGF-1R-mediated tamoxifen failure in cell lines. Primary tumor blocks from postmenopausal ER+ breast cancer patients randomized between adjuvant tamoxifen versus nil were recollected. Immunohistochemistry for IGF-1R, p-IGF-1R/InsR, p-ERα(Ser118), p-ERα(Ser167) and PI3K/MAPK pathway proteins was performed. Multivariate Cox models were employed to assess tamoxifen efficacy. The association between p-IGF-1R/InsR and PI3K/MAPK pathway activation in MCF-7 and T47D cells was analyzed with Western blots. Cell proliferation experiments were performed under various growth-stimulating and -inhibiting conditions. Patients with ER+, IGF-1R-positive breast cancer without p-IGF-1R/InsR staining (n = 242) had tamoxifen benefit (HR 0.41, p = 0.0038), while the results for p-IGF-1R/InsR-positive patients (n = 125) were not significant (HR 0.95, p = 0.3). High p-ERα(Ser118) or p-ERα(Ser167) expression was associated with less tamoxifen benefit. In MCF-7 cells, IGF-1R stimulation increased phosphorylation of PI3K/MAPK proteins and ERα(Ser167) regardless of IGF-1R overexpression. This could be abrogated by the dual IGF-1R/InsR inhibitor linsitinib, but not by the IGF-IR-selective antibody 1H7. In MCF-7 and T47D cells, stimulation of the IGF-1R/InsR pathway resulted in cell proliferation regardless of tamoxifen. Abrogation of cell growth was regained by addition of linsitinib. In conclusion, p-IGF-1R/InsR positivity in ER+ breast cancer is associated with reduced benefit from adjuvant tamoxifen in postmenopausal patients. In cell lines, stimulation rather than overexpression of IGF-1R is driving tamoxifen resistance to be abrogated by linsitinib.
Collapse
Affiliation(s)
- Dinja T Kruger
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam/Cancer Center Amsterdam, Amsterdam, The Netherlands.,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Xanthippi Alexi
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leonie Voorwerk
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vincent van der Noort
- Division of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Epie Boven
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam/Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, The National Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
36
|
Rodriguez D, Ramkairsingh M, Lin X, Kapoor A, Major P, Tang D. The Central Contributions of Breast Cancer Stem Cells in Developing Resistance to Endocrine Therapy in Estrogen Receptor (ER)-Positive Breast Cancer. Cancers (Basel) 2019; 11:cancers11071028. [PMID: 31336602 PMCID: PMC6678134 DOI: 10.3390/cancers11071028] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer stem cells (BCSC) play critical roles in the acquisition of resistance to endocrine therapy in estrogen receptor (ER)-positive (ER + ve) breast cancer (BC). The resistance results from complex alterations involving ER, growth factor receptors, NOTCH, Wnt/β-catenin, hedgehog, YAP/TAZ, and the tumor microenvironment. These mechanisms are likely converged on regulating BCSCs, which then drive the development of endocrine therapy resistance. In this regard, hormone therapies enrich BCSCs in ER + ve BCs under both pre-clinical and clinical settings along with upregulation of the core components of “stemness” transcriptional factors including SOX2, NANOG, and OCT4. SOX2 initiates a set of reactions involving SOX9, Wnt, FXY3D, and Src tyrosine kinase; these reactions stimulate BCSCs and contribute to endocrine resistance. The central contributions of BCSCs to endocrine resistance regulated by complex mechanisms offer a unified strategy to counter the resistance. ER + ve BCs constitute approximately 75% of BCs to which hormone therapy is the major therapeutic approach. Likewise, resistance to endocrine therapy remains the major challenge in the management of patients with ER + ve BC. In this review we will discuss evidence supporting a central role of BCSCs in developing endocrine resistance and outline the strategy of targeting BCSCs to reduce hormone therapy resistance.
Collapse
Affiliation(s)
- David Rodriguez
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Marc Ramkairsingh
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, Hamilton, ON L8S 4K1, Canada
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, ON, L8V 5C2, Canada
| | - Damu Tang
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
37
|
Szijgyarto Z, Flach KD, Opdam M, Palmieri C, Linn SC, Wesseling J, Ali S, Bliss JM, Cheang MCU, Zwart W, Coombes RC. Dissecting the predictive value of MAPK/AKT/estrogen-receptor phosphorylation axis in primary breast cancer to treatment response for tamoxifen over exemestane: a Translational Report of the Intergroup Exemestane Study (IES)-PathIES. Breast Cancer Res Treat 2019; 175:149-163. [PMID: 30680659 PMCID: PMC6491661 DOI: 10.1007/s10549-018-05110-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE The prognostic and predictive values of the MAPK/AKT/ERα phosphorylation axis (pT202/T204MAPK, pT308AKT, pS473AKT, pS118ERα and pS167ERα) in primary tumours were assessed to determine whether these markers can differentiate between patient responses for switching adjuvant endocrine therapy after 2-3 years from tamoxifen to exemestane and continued tamoxifen monotherapy in the Intergroup Exemestane Study (IES). METHODS Of the 4724 patients in IES, 1506 were managed in a subset of centres (N = 89) participating in PathIES. These centres recruited 1282 (85%, 1282/1506) women into PathIES of whom 1036 had phospho-marker data. All phospho-markers were analysed by immunohistochemistry staining. Multivariable Cox proportional hazards models of the phospho-markers for disease-free survival (DFS) and overall survival (OS) were adjusted for clinicopathological factors. Treatment effects on the biomarker expression were determined by interaction tests. Benjamini-Hochberg adjustment for multiple testing with a false discovery rate of 10% was applied (pBH). RESULTS Phospho-T202/T204MAPK, pS118ERα and pS167ERα were all found to be correlated (pBH = 0.0002). These markers were not associated with either DFS or OS when controlling for the established clinicopathological factors. Interaction terms between the phospho-markers and treatment strategies for either DFS or OS were not statistically significant (pBH > 0.05 for all). CONCLUSIONS This PathIES study confirmed previously described associations between the phosphorylation site markers of AKT, MAPK and ERα activity in postmenopausal breast cancer patients. No prognostic correlations between the phosphorylation markers and clinical outcome were found, nor were they predictive for clinical outcomes among patients who switched therapy over those treated with tamoxifen alone.
Collapse
Affiliation(s)
- Zsolt Szijgyarto
- Clinical Trials and Statistics Unit (ICR-CTSU), Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG UK
| | - Koen D. Flach
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 3BX UK
- Academic Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, CH63 4JY UK
- Department of Cancer and Surgery, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN UK
| | - Sabine C. Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Department of Medical Onology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Simak Ali
- Department of Cancer and Surgery, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN UK
| | - Judith M. Bliss
- Clinical Trials and Statistics Unit (ICR-CTSU), Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG UK
| | - Maggie Chon U. Cheang
- Clinical Trials and Statistics Unit (ICR-CTSU), Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG UK
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - R. Charles Coombes
- Department of Cancer and Surgery, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN UK
| |
Collapse
|
38
|
Role of Hedgehog Signaling in Breast Cancer: Pathogenesis and Therapeutics. Cells 2019; 8:cells8040375. [PMID: 31027259 PMCID: PMC6523618 DOI: 10.3390/cells8040375] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality in women, only followed by lung cancer. Given the importance of BC in public health, it is essential to identify biomarkers to predict prognosis, predetermine drug resistance and provide treatment guidelines that include personalized targeted therapies. The Hedgehog (Hh) signaling pathway plays an essential role in embryonic development, tissue regeneration, and stem cell renewal. Several lines of evidence endorse the important role of canonical and non-canonical Hh signaling in BC. In this comprehensive review we discuss the role of Hh signaling in breast development and homeostasis and its contribution to tumorigenesis and progression of different subtypes of BC. We also examine the efficacy of agents targeting different components of the Hh pathway both in preclinical models and in clinical trials. The contribution of the Hh pathway in BC tumorigenesis and progression, its prognostic role, and its value as a therapeutic target vary according to the molecular, clinical, and histopathological characteristics of the BC patients. The evidence presented here highlights the relevance of the Hh signaling in BC, and suggest that this pathway is key for BC progression and metastasis.
Collapse
|
39
|
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:135-170. [PMID: 31036290 DOI: 10.1016/bs.apcsb.2019.01.001] [Citation(s) in RCA: 565] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary female sex hormones, estrogens, are responsible for the control of functions of the female reproductive system, as well as the development of secondary sexual characteristics that appear during puberty and sexual maturity. Estrogens exert their actions by binding to specific receptors, the estrogen receptors (ERs), which in turn activate transcriptional processes and/or signaling events that result in the control of gene expression. These actions can be mediated by direct binding of estrogen receptor complexes to specific sequences in gene promoters (genomic effects), or by mechanisms that do not involve direct binding to DNA (non-genomic effects). Whether acting via direct nuclear effects, indirect non-nuclear actions, or a combination of both, the effects of estrogens on gene expression are controlled by highly regulated complex mechanisms. In this chapter, we summarize the knowledge gained in the past 60years since the discovery of the estrogen receptors on the mechanisms governing estrogen-mediated gene expression. We provide an overview of estrogen biosynthesis, and we describe the main mechanisms by which the female sex hormone controls gene transcription in different tissues and cell types. Specifically, we address the molecular events governing regulation of gene expression via the nuclear estrogen receptors (ERα, and ERβ) and the membrane estrogen receptor (GPER1). We also describe mechanisms of cross-talk between signaling cascades activated by both nuclear and membrane estrogen receptors. Finally, we discuss natural compounds that are able to target specific estrogen receptors and their implications for human health and medical therapeutics.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States; The University of North Carolina at Chapel Hill, School of Nursing, Chapel Hill, NC, United States.
| |
Collapse
|
40
|
Gao P, Wang X, Jin Y, Hu W, Duan Y, Shi A, Du Y, Song D, Yang M, Li S, Han B, Zhao G, Zhang H, Fan Z, Miao QR. Nogo-B receptor increases the resistance to tamoxifen in estrogen receptor-positive breast cancer cells. Breast Cancer Res 2018; 20:112. [PMID: 30208932 PMCID: PMC6134690 DOI: 10.1186/s13058-018-1028-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/19/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUNDS Tamoxifen is typically used to treat patients with estrogen receptor alpha (ERα)-positive breast cancer. However, 30% of these patients gain acquired resistance to tamoxifen during or after tamoxifen treatment. As a Ras modulator, Nogo-B receptor (NgBR) is required for tumorigenesis through the signaling crosstalk with epidermal growth factor (EGF) receptor (EGFR)-mediated pathways. NgBR is highly expressed in many types of cancer cells and regulates the sensitivity of hepatocellular carcinoma to chemotherapy. In this study, we found the expression of NgBR is increased in tamoxifen-resistant ERα-positive breast cancer cells. METHODS Tamoxifen-resistant ERα-positive MCF-7 and T47D breast cancer cell lines were established by culturing with gradually increased concentration of 4-hydroxytamoxifen (4-OHT). The effects of NgBR on tamoxifen resistance was determined by depleting NgBR in these cell lines using previously validated small interfering RNA (siRNA). The effects of 4-OHT on cell viability and apoptosis were determined using well-accepted methods such as clonogenic survival assay and Annexin V/propidium iodide staining. The alteration of EGF-stimulated signaling and gene expression was determined by western blot analysis and real-time PCR, respectively. RESULTS NgBR knockdown with siRNA attenuates EGF-induced phosphorylation of ERα and restores the sensitivity to tamoxifen in ERα-positive breast cancer cells. Mechanistically, our data demonstrated that NgBR knockdown increases the protein levels of p53 and decreases survivin, which is an apoptosis inhibitor. CONCLUSIONS These results suggested that NgBR is a potential therapeutic target for increasing the sensitivity of ERα-positive breast cancer to tamoxifen.
Collapse
Affiliation(s)
- Pin Gao
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Xiang Wang
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Wenquan Hu
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Yajun Duan
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Ye Du
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Dong Song
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Ming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Bing Han
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Gang Zhao
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191 China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, 71 Xinmin street, Changchun, 130021 Jilin Province China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- Division of Pediatric Pathology, Department of Pathology, Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226 USA
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| |
Collapse
|
41
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Polyubiquitination inhibition of estrogen receptor alpha and its implications in breast cancer. World J Clin Oncol 2018; 9:60-70. [PMID: 30148069 PMCID: PMC6107474 DOI: 10.5306/wjco.v9.i4.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor alpha (ERα) is detected in more than 70% of the cases of breast cancer. Nuclear activity of ERα, a transcriptional regulator, is linked to the development of mammary tumors, whereas the extranuclear activity of ERα is related to endocrine therapy resistance. ERα polyubiquitination is induced by the estradiol hormone, and also by selective estrogen receptor degraders, resulting in ERα degradation via the ubiquitin proteasome system. Moreover, polyubiquitination is related to the ERα transcription cycle, and some E3-ubiquitin ligases also function as coactivators for ERα. Several studies have demonstrated that ERα polyubiquitination is inhibited by multiple mechanisms that include posttranslational modifications, interactions with coregulators, and formation of specific protein complexes with ERα. These events are responsible for an increase in ERα protein levels and deregulation of its signaling in breast cancers. Thus, ERα polyubiquitination inhibition may be a key factor in the progression of breast cancer and resistance to endocrine therapy.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama (PICM), Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México 04510, México
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510, México
| |
Collapse
|
42
|
Gelsomino L, Panza S, Giordano C, Barone I, Gu G, Spina E, Catalano S, Fuqua S, Andò S. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines. Cancer Lett 2018; 428:12-20. [DOI: 10.1016/j.canlet.2018.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
|
43
|
Zangooei M, Nourbakhsh M, Ghahremani MH, Meshkani R, Khedri A, Shadboorestan A, Shokri Afra H, Shahmohamadnejad S, Mirmiranpour H, Khaghani S. Investigating the effect of visfatin on ERalpha phosphorylation (Ser118 and Ser167) and ERE-dependent transcriptional activity. EXCLI JOURNAL 2018; 17:516-525. [PMID: 30034315 PMCID: PMC6046625 DOI: 10.17179/excli2018-1299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 01/09/2023]
Abstract
Obesity is associated with higher postmenopausal breast cancer incidence. Visfatin level alteration is one of the mechanisms by which obesity promotes cancer. Ligand-independent activation of estrogen receptor alpha (ERα) is also associated with carcinogenesis. The activity of ERα is modulated through phosphorylation on multiple sites by a number of protein kinases. Here we investigated the effect of visfatin as a novel adipocytokine on the phosphorylation and activity of ERα in MCF-7 breast cancer cells. We showed that exogenous administration of visfatin significantly increased the phosphorylation of ERα at serine 118 (Ser118) and 167 (Ser167) residues. Visfatin-induced Ser118 phosphorylation was diminished after treatment of cells with U0126 (MEK1/2 inhibitor). Furthermore, our results showed that visfatin-induced Ser167 phosphorylation is mediated through both MAPK and PI3K/Akt signaling pathways. Inhibition of the enzymatic activity of visfatin by FK866 had no effect on phosphorylation of ERα. We also showed that visfatin enhanced the estrogen response element (ERE)-dependent activity of ER in the presence of 17-β estradiol (E2). Additional study on T47D cells showed that visfatin also increased Ser118 and Ser167 phosphorylation of ERα and enhanced ERE-dependent activity in the presence of E2 in these cells.
Collapse
Affiliation(s)
- Mohammad Zangooei
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Khedri
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hajar Shokri Afra
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Shahmohamadnejad
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mirmiranpour
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Khaghani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Timeless Is a Novel Estrogen Receptor Co-activator Involved in Multiple Signaling Pathways in MCF-7 Cells. J Mol Biol 2018; 430:1531-1543. [DOI: 10.1016/j.jmb.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023]
|
45
|
Diao Y, Azatyan A, Rahman MFU, Zhao C, Zhu J, Dahlman-Wright K, Zaphiropoulos PG. Blockade of the Hedgehog pathway downregulates estrogen receptor alpha signaling in breast cancer cells. Oncotarget 2018; 7:71580-71593. [PMID: 27689403 PMCID: PMC5342103 DOI: 10.18632/oncotarget.12259] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023] Open
Abstract
Anti-estrogen treatment, exemplified by tamoxifen, is a well-established adjuvant therapy for estrogen receptor alpha (ERα)-positive breast cancer. However, the effectiveness of this drug is limited due to the development of resistance. The Hedgehog (HH) signaling pathway is critical in embryonic development, and aberrant activation of this transduction cascade is linked to various malignancies. However, it remains unclear whether HH signaling is activated in human breast cancer and related to tamoxifen resistance. Deciphering how this pathway may be involved in breast cancer is a crucial step towards the establishment of targeted combinatorial treatments for this disease. Here, we show that the expression of the HH signaling effector protein GLI1 is higher in tamoxifen resistant compared to sensitive cells. Tamoxifen resistant cells have stronger ERα transcriptional activity relative to sensitive cells, even though the ERα expression is similar in both cell types. Knockdown of GLI1 attenuates cell proliferation and reduces ERα transcriptional activity in both sensitive and resistant cells, irrespective of estrogen stimulation. Combinatorial treatment of tamoxifen and the GLI antagonist GANT61 further suppresses the growth of sensitive and resistant cells relative to administration of only tamoxifen, and this was irrespective of estrogen stimulation. Moreover, a positive correlation between GLI1 and ERα expression was identified in breast cancer samples. Additionally, high GLI1 expression predicted worse distant metastasis-free survival in breast cancer patients. These data suggest that the HH pathway may be a new candidate for therapeutic targeting and prognosis in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Yumei Diao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ani Azatyan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jian Zhu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | |
Collapse
|
46
|
Jin Y, Hu W, Liu T, Rana U, Aguilera-Barrantes I, Kong A, Kumar SN, Wang B, Gao P, Wang X, Duan Y, Shi A, Song D, Yang M, Li S, Han B, Zhao G, Fan Z, Miao QR. Nogo-B receptor increases the resistance of estrogen receptor positive breast cancer to paclitaxel. Cancer Lett 2018; 419:233-244. [PMID: 29373839 DOI: 10.1016/j.canlet.2018.01.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/20/2017] [Accepted: 01/19/2018] [Indexed: 12/28/2022]
Abstract
Intrinsic or acquired chemoresistance is a hurdle in oncology. Only 7%-16% of estrogen receptor α (ERα) positive breast cancer cases achieve a pathological complete response (pCR) after neo-adjuvant chemotherapy. Nogo-B receptor (NgBR) is a cell surface receptor that binds farnesylated Ras and promotes Ras translocation to the plasma membrane. Here, we demonstrate NgBR as a potential therapeutic target for ERα positive breast cancer patients to attenuate paclitaxel resistance. NgBR knockdown enhanced paclitaxel-induced cell apoptosis by modulating expression of p53 and survivin in ERα positive breast cancer cells via NgBR-mediated PI3K/Akt and MAPK/ERK signaling pathways. NgBR knockdown attenuated either 17β-estradiol or epidermal growth factor stimulated phosphorylation of ERα at Serine 118 residue. The ChIP-PCR assay further demonstrated that NgBR knockdown decreased ERα binding to the estrogen response element (ERE) of the ERα target gene and increased the binding of p53 to the promoter region of survivin to attenuate survivin transcription. In summary, our data suggest that NgBR expression is essential to promoting ERα positive breast cancer cell resistance to paclitaxel. Findings from this study implicate a novel therapeutic target for treating ERα positive breast cancer in neo-adjuvant/adjuvant chemotherapy.
Collapse
Affiliation(s)
- Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Wenquan Hu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Tong Liu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin, 130033, China
| | - Ujala Rana
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Irene Aguilera-Barrantes
- Department of Pathology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Amanda Kong
- Department of Surgery, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Suresh N Kumar
- Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Pin Gao
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Xiang Wang
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Yajun Duan
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Dong Song
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Bing Han
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Gang Zhao
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
47
|
Zheng L, Meng X, Li X, Zhang Y, Li C, Xiang C, Xing Y, Xia Y, Xi T. miR-125a-3p inhibits ERα transactivation and overrides tamoxifen resistance by targeting CDK3 in estrogen receptor-positive breast cancer. FASEB J 2018; 32:588-600. [PMID: 28939591 DOI: 10.1096/fj.201700461rr] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tamoxifen (TAM) is a major adjuvant therapy for patients who are diagnosed with estrogen receptor-α (ER)-positive breast cancer; however, TAM resistance occurs often during treatment and the underlying mechanism is unclear. Here, we report that miR-125a-3p inhibits ERα transcriptional activity and, thus, ER+ breast cancer cell proliferation, which causes cell-cycle arrest at the G1/S stage, inducing apoptosis and suppressing tumor growth by targeting cyclin-dependent kinase 3 (CDK3) in vitro and in vivo. In addition, CDK3 and miR-125a-3p expression levels were measured in 37 cancerous tissues paired with noncancerous samples, and their expression levels were negatively associated with miR-125a-3p level. Of interest, miR-125a-3p level is down-regulated in MCF-7 TAM-resistant (TamR) cells. Of more importance, up-regulation of miR-125a-3p resensitizes MCF-7 TamR cells to TAM, which is dependent on CDK3 expression. These results suggest that miR-125a-3p can function as a novel tumor suppressor in ER+ breast cancer by targeting CDK3, which may be a potential therapeutic approach for TamR breast cancer therapy.-Zheng, L., Meng, X., Li, X., Zhang, Y., Li, C., Xiang, C., Xing, Y., Xia, Y., Xi, T. miR-125a-3p inhibits ERα transactivation and overrides tamoxifen resistance by targeting CDK3 in estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology of Chinese Materia Medica, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Xia Meng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Cheng Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Chenxi Xiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
48
|
Park J, Lee Y. Hypoxia induced phosphorylation of estrogen receptor at serine 118 in the absence of ligand. J Steroid Biochem Mol Biol 2017; 174:146-152. [PMID: 28847747 DOI: 10.1016/j.jsbmb.2017.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
The estrogen receptor (ER) plays an important role in breast cancer development and progression. Hypoxia modulates the level of ERα expression and induces ligand-independent transcriptional activation of ERα, which is closely related with the biology of breast carcinomas. Since phosphorylation itself affects the transcriptional activity and stabilization of ERα, we examined changes in ERα phosphorylation under hypoxic conditions. Hypoxia induced phosphorylation of ERα at serine residue 118 (S118) in the absence of estrogen through the mitogen-activated protein kinase (MAPK)/ERK1/2 pathway. Cell proliferation was significantly decreased under normoxia or hypoxia when ERα harboring the S118A mutation was overexpressed. Our previous studies showed that ER degradation is the most prominent phenomenon under hypoxia. E2-induced ER protein downregulation is dependent on phosphorylation of S118. However, hypoxia-induced ERα degradation did not involve S118 phosphorylation. Our study implies the existence of a differential mechanism between E2 and hypoxia-mediated ERα protein degradation. Understanding the mechanistic behavior of ER under hypoxia will likely facilitate understanding of endocrine therapy resistance and development of treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Joonwoo Park
- College of Life Science, Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 143-747, South Korea
| | - YoungJoo Lee
- College of Life Science, Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 143-747, South Korea.
| |
Collapse
|
49
|
FGFR2-Driven Signaling Counteracts Tamoxifen Effect on ERα-Positive Breast Cancer Cells. Neoplasia 2017; 19:791-804. [PMID: 28869838 PMCID: PMC5964976 DOI: 10.1016/j.neo.2017.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Signaling mediated by growth factors receptors has long been suggested as one of the key factors responsible for failure of endocrine treatment in breast cancer (BCa). Herein we present that in the presence of tamoxifen, FGFs (Fibroblast Growth Factors) promote BCa cell growth with the strongest effect being produced by FGF7. FGFR2 was identified as a mediator of FGF7 action and the FGFR2-induced signaling was found to underlie cancer-associated fibroblasts-dependent resistance to tamoxifen. FGF7/FGFR2-triggered pathway was shown to induce ER phosphorylation, ubiquitination and subsequent ER proteasomal degradation which counteracted tamoxifen-promoted ER stabilization. We also identified activation of PI3K/AKT signaling targeting ER-Ser167 and regulation of Bcl-2 expression as a mediator of FGFR2-promoted resistance to tamoxifen. Analysis of tissue samples from patients with invasive ductal carcinoma revealed an inversed correlation between expression of FGFR2 and ER, thus supporting our in vitro data. These results unveil the complexity of ER regulation by FGFR2-mediated signaling likely to be associated with BCa resistance to endocrine therapy.
Collapse
|
50
|
Zhuang T, Yu S, Zhang L, Yang H, Li X, Hou Y, Liu Z, Shi Y, Wang W, Yu N, Li A, Li X, Li X, Niu G, Xu J, Hasni MS, Mu K, Wang H, Zhu J. SHARPIN stabilizes estrogen receptor α and promotes breast cancer cell proliferation. Oncotarget 2017; 8:77137-77151. [PMID: 29100376 PMCID: PMC5652769 DOI: 10.18632/oncotarget.20368] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022] Open
Abstract
Estrogen receptor α is expressed in the majority of breast cancers and promotes estrogen-dependent cancer progression. In our study, we identified the novel E3 ubiquitin ligase SHARPIN function to facilitate ERα signaling. SHARPIN is highly expressed in human breast cancer and correlates with ERα protein level by immunohistochemistry. SHARPIN expression level correlates with poor prognosis in ERα positive breast cancer patients. SHARPIN depletion based RNA-sequence data shows that ERα signaling is a potential SHARPIN target. SHARPIN depletion significantly decreases ERα protein level, ERα target genes expression and estrogen response element activity in breast cancer cells, while SHARPIN overexpression could reverse these effects. SHARPIN depletion significantly decreases estrogen stimulated cell proliferation in breast cancer cells, which effect could be further rescued by ERα overexpression. Further mechanistic study reveals that SHARPIN mainly localizes in the cytosol and interacts with ERα both in the cytosol and the nuclear. SHARPIN regulates ERα signaling through protein stability, not through gene expression. SHARPIN stabilizes ERα protein via prohibiting ERα protein poly-ubiquitination. Further study shows that SHARPIN could facilitate the mono-ubiquitinaiton of ERα at K302/303 sites and facilitate ERE luciferase activity. Together, our findings propose a novel ERα modulation mechanism in supporting breast cancer cell growth, in which SHARPIN could be one suitable target for development of novel therapy for ERα positive breast cancer.
Collapse
Affiliation(s)
- Ting Zhuang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sifan Yu
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Renal Cancer and Melanoma, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Lichen Zhang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Huijie Yang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xin Li
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yingxiang Hou
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhenhua Liu
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Synthetic Biology Remaking Engineering and Application Laboratory, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuanyuan Shi
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Weilong Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China
| | - Na Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China
| | - Anqi Li
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,School of International Education, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuefeng Li
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xiumin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China
| | - Gang Niu
- Department of Cancer genomics, LemonData biotech (Shenzhen) Ltd, Shenzhen, Guangdong, China.,Phil Rivers Technology (Beijing) Ltd. Beijing, China.,Institute of Biochemistry University of Balochistan, Quetta, Pakistan
| | - Juntao Xu
- Department of Cancer genomics, LemonData biotech (Shenzhen) Ltd, Shenzhen, Guangdong, China.,Phil Rivers Technology (Beijing) Ltd. Beijing, China.,Institute of Biochemistry University of Balochistan, Quetta, Pakistan
| | - Muhammad Sharif Hasni
- Institute of Biochemistry University of Balochistan, Quetta, Pakistan.,Department of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Kun Mu
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Wang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jian Zhu
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|