1
|
Aqeel A, Akram A, Ali M, Iqbal M, Aslam M, Rukhma, Shah FI. Mechanistic insights into impaired β-oxidation and its role in mitochondrial dysfunction: A comprehensive review. Diabetes Res Clin Pract 2025; 223:112129. [PMID: 40132731 DOI: 10.1016/j.diabres.2025.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Mitochondria, also known as the powerhouse of cells, have an important role in cellular metabolism and energy production. However, during Mitochondrial Dysfunction (MD), it is known to generate reactive oxidative species and induce cellular apoptosis. A number of research findings have linked MD to various diseases, highlighting its critical role in maintaining health and contributing to disease development. In this regard, recent research has revealed that disruptions in lipid metabolism, especially in fatty acid oxidation, are significant contributors to MD. However, the precise mechanisms by which these defects lead to disease remain poorly understood. This review explores how disruptions in lipid metabolism are responsible for triggering oxidative stress, inflammation, and cellular damage, leading to impaired mitochondrial function. By examining specific fatty acid oxidation disorders, such as carnitine palmitoyltransferase deficiency, medium-chain acyl-CoA dehydrogenase deficiency, and very long-chain acyl-CoA dehydrogenase deficiency, this review aims to uncover the underlying molecular pathways connecting lipid metabolism to mitochondrial dysfunction. Furthermore, MD is a common underlying mechanism in a wide array of diseases, including neurodegenerative disorders and metabolic syndromes. Understanding the mechanisms behind mitochondrial malfunction may aid in the development of tailored therapies to restore mitochondrial health and treat intricate health conditions.
Collapse
Affiliation(s)
- Amna Aqeel
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan; University Institute of Medical Lab Technology, the University of Lahore, Pakistan.
| | - Areeba Akram
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Minahil Ali
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Maryam Iqbal
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Mehral Aslam
- Department of Nutrition and Health Promotion, University of Home Economics Lahore, Pakistan
| | - Rukhma
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Fatima Iftikhar Shah
- University Institute of Medical Lab Technology, the University of Lahore, Pakistan
| |
Collapse
|
2
|
Zhang J, Zhou S, Jiang Y, Zhao W, Xu W, Zhang J, An T, Yan J, Duan C, Wang X, Yang S, Wang T, Dong D, Chen Y, Zou F, Yu X, Huang M, Fu S. 3D assessment of skeletal muscle and adipose tissue for prognosis of hepatocellular carcinoma: A multicenter cohort study. Clin Nutr ESPEN 2025; 67:626-634. [PMID: 40187734 DOI: 10.1016/j.clnesp.2025.03.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/21/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Changes in protein and lipid metabolism could provide additional prognostic information for hepatocellular carcinoma (HCC).This study aimed to explore whether 3D automatic assessment of skeletal muscle and adipose tissue can contribute to the precise prognosis for HCC. METHODS The data of 458 HCC patients from 6 hospitals were divided into training and external validation datasets. Preoperative CT Images were used for this study. First, we tested the stability of the 2D factors. Second, we tested whether standardization for volume assessment was necessary. Third, we compared the clinical (ModelC), skeletal muscle and adipose tissue (ModelNSA), and combined (ModelC-NSA) models by discrimination and calibration to identify the optimal model. Subgroup analysis was performed for the optimal model. RESULTS For the 16 2D factors, 13 factors were statistically different among the three 2D slices. Standardization of the volume factors was necessary. Among the three models, ModelC-NSA had a higher area under the curve [AUC] than ModelC and ModelNSA, both in the training dataset (0.809 vs. 0.649 vs. 0.797) and the validation dataset (0.770 vs. 0.718 vs. 0.719). For calibration, the performance of ModelC-NSA was similar to those of ModelC and ModelNSA. The performance of ModelC-NSA was not influenced by age (P = 0.753), sex (P = 0.781), treatments (P = 0.504), Barcelona Clinic Liver Cancer stage (P = 0.913), or Child-Pugh class (P = 0.580). CONCLUSIONS Compared to 2D evaluation, 3D assessment is more stable. 3D automatic assessment of skeletal muscle and adipose tissue can accurately predict progression in patients with HCC.
Collapse
Affiliation(s)
- Jinxiong Zhang
- Zhuhai Interventional Medical Center, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, China; Department of Interventional Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China; Zhuhai Engineering Technology Research Center of Intelligent Medical Imaging, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Shuoling Zhou
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yurong Jiang
- Zhuhai Interventional Medical Center, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, China; Zhuhai Engineering Technology Research Center of Intelligent Medical Imaging, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Guangzhou First People's Hospital, Guangzhou, China; Department of Management, School of Business, Macau University of Science and Technology, Macau, China
| | - Weiguo Xu
- Zhuhai Interventional Medical Center, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Jiawei Zhang
- Zhuhai Engineering Technology Research Center of Intelligent Medical Imaging, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China; Department of Radiology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Taixue An
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianfeng Yan
- Department of Radiology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Chongyang Duan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaojun Wang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Sihui Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tao Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Dandan Dong
- Department of Radiology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yuan Chen
- Department of Interventional Treatment, Zhongshan City People's Hospital, Zhongshan, China
| | - Feixiang Zou
- Department of Radiology, People's Hospital of Wuchuan Gelao and Miao Autonomous County, Guizhou, China
| | - Xiangrong Yu
- Zhuhai Engineering Technology Research Center of Intelligent Medical Imaging, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China; Department of Radiology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
| | - Meiyan Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
| | - Sirui Fu
- Zhuhai Engineering Technology Research Center of Intelligent Medical Imaging, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China; Department of Radiology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Sadikan MZ, Lambuk L, Reshidan NH, Abdul Ghani NA, Ahmad AI, Ahmad Kamal MS, Lazaldin MAM, Ahmad Hairi H, Mohamud R, Abdul Nasir NA. Age-Related Macular Degeneration Pathophysiology and Therapeutic Potential of Tocotrienols: An Update. J Ocul Pharmacol Ther 2025; 41:150-161. [PMID: 39895321 DOI: 10.1089/jop.2024.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Age-related macular degeneration (AMD) poses a significant threat to visual health among the elderly, necessitating urgent preventive measures as the global population ages. Extensive research has implicated oxidative stress (OS)-induced retinal damage as a primary contributor to AMD pathogenesis, prompting investigations into potential therapeutic interventions. Among the various nutrients studied for their potential in AMD risk reduction, antioxidants have shown promise, with initial findings from the Age-Related Eye Disease Study suggesting a correlation between antioxidant supplementation and decreased AMD progression. This article explores the scientific foundation supporting the therapeutic efficacy of tocotrienol-rich fraction (TRF) as a viable candidate for slowing AMD progression, based on interventional studies. AMD is characterized by OS, inflammation, dysregulated lipid metabolism, and angiogenesis, all of which TRF purportedly addresses through its potent anti-inflammatory, lipid-lowering, antiangiogenic, and antioxidant properties. The review underscores TRF's promising attributes, aiming to deepen understanding of AMD pathogenesis and advocate for TRF-based pharmacological interventions to enhance therapeutic outcomes. Given the pressing need for effective AMD treatments, TRF represents a promising avenue for intervention, offering hope for improved vision outcomes and enhanced quality of life for individuals affected by this debilitating condition.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Faculty of Medicine, Department of Pharmacology, Manipal University College Malaysia (MUCM), Melaka, Malaysia
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nur Hidayah Reshidan
- Faculty of Applied Sciences, School of Biology, Universiti Teknologi MARA, Selangor, Malaysia
| | - Nurliyana Ain Abdul Ghani
- Faculty of Medicine, Department of Ophthalmology, Universiti Teknologi MARA Malaysia, Selangor, Malaysia
| | - Azral Ismawy Ahmad
- International Medical School, Management & Science University, Selangor, Malaysia
| | | | | | - Haryati Ahmad Hairi
- Faculty of Medicine, Department of Biochemistry, Manipal University College Malaysia (MUCM), Melaka, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurul Alimah Abdul Nasir
- Faculty of Medicine, Department of Medical Education, Universiti Teknologi MARA Malaysia, Selangor, Malaysia
- Faculty of Medicine, Centre for Neuroscience Research (NeuRon), Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
4
|
Yuan X, Hou Y, Qin N, Xiang L, Jiang Z, Bao X. Flaxseed-derived peptide, Ile-Pro-Pro-Phe (IPPF), ameliorates hepatic cholesterol metabolism to treat metabolic dysfunction-associated steatotic liver disease by promoting cholesterol conversion and excretion. Food Funct 2025; 16:2808-2823. [PMID: 40094418 DOI: 10.1039/d4fo04478a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Flaxseed-derived peptide IPPF has been reported to effectively inhibit cholesterol micellization and reduce cholesterol accumulation in vitro. However, its effects on hepatic cholesterol accumulation and related dysfunction-associated steatotic liver disease (MASLD) in vivo, along with the underlying mechanisms and specific molecular targets, remain unclear. This study investigated the impact of IPPF on hepatic cholesterol accumulation to ameliorate MASLD and its potential mechanisms in vivo. Six-week-old male C57BL/6J mice were fed a high-cholesterol, high-fat diet and treated with different doses of IPPF via oral gavage for six weeks. IPPF intervention significantly reduced hepatic cholesterol levels and oxidative stress damage while increasing fecal cholesterol and bile acid excretion. Non-targeted metabolomics analysis revealed that IPPF primarily affected pathways related to ABC transporters and bile acid metabolism. IPPF intake upregulated the mRNA expression of Abcg5/8 and Cyp7a1 in the liver. Molecular docking, dynamics and Surface plasmon resonance (SPR) simulations demonstrated that IPPF binds strongly to ABCG5/8 and CYP7A1, forming stable complexes. Furthermore, cholesterol accumulation and MASLD in HepG2 cells induced by palmitic acid (PA) was alleviated by IPPF, but this effect was partly stopped when CYP7A1 or ABCG5/8 was inhibited. In conclusion, flaxseed-derived peptide IPPF targets CYP7A1 and ABCG5/8, promoting cholesterol conversion and excretion, thereby reducing hepatic cholesterol accumulation and offering a potential nutritional treatment for MASLD. IPPF can be used as a novel dietary cholesterol-lowering functional ingredient. This study provides a scientific basis and new perspective for the development of cholesterol-lowering functional foods and dietary supplements.
Collapse
MESH Headings
- Animals
- Male
- Mice, Inbred C57BL
- Mice
- Flax/chemistry
- Liver/metabolism
- Liver/drug effects
- Cholesterol/metabolism
- Cholesterol 7-alpha-Hydroxylase/metabolism
- Cholesterol 7-alpha-Hydroxylase/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- Humans
- ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics
- Diet, High-Fat/adverse effects
- Bile Acids and Salts/metabolism
- Hep G2 Cells
- Molecular Docking Simulation
- Peptides/pharmacology
- Peptides/chemistry
- Oxidative Stress/drug effects
- Lipoproteins
Collapse
Affiliation(s)
- Xingyu Yuan
- Department of life science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Yifeng Hou
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongoli, P. R. China.
| | - Narisu Qin
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongoli, P. R. China.
| | - Lu Xiang
- Department of life science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Zhe Jiang
- Department of life science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Xiaolan Bao
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongoli, P. R. China.
| |
Collapse
|
5
|
Long H, Huang R, Zhu S, Wang Z, Liu X, Zhu Z. Polysaccharide from Caulerpa lentillifera alleviates hyperlipidaemia through altering bile acid metabolism mediated by gut microbiota. Int J Biol Macromol 2025; 306:141663. [PMID: 40044008 DOI: 10.1016/j.ijbiomac.2025.141663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/07/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Polysaccharide from Caulerpa lentillifera (CLP) offers preventative health benefits, but its efficacy against hyperlipidaemia and underlying mechanisms still elusive. This investigation assessed CLP's potential to mitigate high-fat diet (HFD)-induced hyperlipidaemia via the gut microbiota-bile acid (BA) axis. In hyperlipidaemic mice, 8 weeks of CLP treatment improved body weight, lipid profiles, and hepatic function, correlating with shifts in BA concentrations. Additionally, CLP not only repaired HFD-induced gut dysbiosis by increasing SCFA-producing bacteria but also positively modulated gut metabolites, including acetic and butyric acids. Spearman's correlation analysis illustrated strong associations between the altered microbes, metabolites, and the expression of genes involved in BA metabolism. Remarkably, CLP significantly influenced BA levels related to hyperlipidaemia, partly by augmenting the population of Parabacteroides and associated butyric acid level. These results indicate that CLP may serve as a functional food to guard against dyslipidaemia through impacting specific gut microbes and metabolites such as Parabacteroides and butyrate, and thus presenting promising therapeutic prospects for diseases associated with BA metabolism.
Collapse
Affiliation(s)
- Hairong Long
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239001, Anhui, PR China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Rui Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Shuangjie Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239001, Anhui, PR China
| | - Zuhan Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239001, Anhui, PR China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, PR China.
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, PR China.
| |
Collapse
|
6
|
Dakal TC, Xiao F, Bhusal CK, Sabapathy PC, Segal R, Chen J, Bai X. Lipids dysregulation in diseases: core concepts, targets and treatment strategies. Lipids Health Dis 2025; 24:61. [PMID: 39984909 PMCID: PMC11843775 DOI: 10.1186/s12944-024-02425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/30/2024] [Indexed: 02/23/2025] Open
Abstract
Lipid metabolism is a well-regulated process essential for maintaining cellular functions and energy homeostasis. Dysregulation of lipid metabolism is associated with various conditions, including cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. This review explores the mechanisms underlying lipid metabolism, emphasizing the roles of key lipid species such as triglycerides, phospholipids, sphingolipids, and sterols in cellular physiology and pathophysiology. It also examines the genetic and environmental factors contributing to lipid dysregulation and the challenges of diagnosing and managing lipid-related disorders. Recent advancements in lipid-lowering therapies, including PCSK9 inhibitors, ezetimibe, bempedoic acid, and olpasiran, provide promising treatment options. However, these advancements are accompanied by challenges related to cost, accessibility, and patient adherence. The review highlights the need for personalized medicine approaches to address the interplay between genetics and environmental factors in lipid metabolism. As lipidomics and advanced diagnostic tools continue to progress, a deeper understanding of lipid-related disorders could pave the way for more effective therapeutic strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia, University, Udaipur, 313001, India
| | - Feng Xiao
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Chandra Kanta Bhusal
- Aarupadai Veedu Medical College and Hospital, VMRF-DU, Pondicherry, 607402, India
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Rakesh Segal
- Aarupadai Veedu Medical College and Hospital, VMRF-DU, Pondicherry, 607402, India
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Juan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China.
| | - Xiaodong Bai
- Department of Plastic Surgery, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Lu Y, Xu Q, Pang L, Liu Y, Li L, Yan J, Zhang Y, Huang Z. HMG-CoA reductase inhibitor from the endophytic fungus Colletotrichum Capsici. Nat Prod Res 2025; 39:749-757. [PMID: 38105709 DOI: 10.1080/14786419.2023.2289085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
Two new fungal polyketides with unusual skeleton, collecapsins A and B (1-2), along with two known macrolactins A and B (3-4), were isolated from the rice cultures of an endophytic fungus Colletotrichum capsici obtained from the fresh Siegesbeckia pubescens Makino. Their structures were established by a combination of NMR, HRESIMS, and IR analysis. The absolute configurations of 1 and 2 were determined on the detailed analysis of the modified Mosher's derivatives' spectra and its key NOEs correlations. In this case, the absolute configurations of all chiral centres of 1 were determined for the first time, showed that 1 is a C-6/C-8 epimer of colletruncoic acid methyl ester. Compounds 1-2 demonstrated promising lipid lowing activity via the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase with IC50 values of 8.72 and 15.28 μM. Compounds 3-4 exhibited antibacterial activity with MIC values ranging from 0.25-25.8 μM.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Xu
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangfang Pang
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yarui Liu
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangxia Li
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayan Yan
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziming Huang
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Wei H, Rui J, Yan X, Xu R, Chen S, Zhang B, Wang L, Zhang Z, Zhu C, Ma M, Xiao H. Plant polyphenols as natural bioactives for alleviating lipid metabolism disorder: Mechanisms and application challenges. Food Res Int 2025; 203:115682. [PMID: 40022310 DOI: 10.1016/j.foodres.2025.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 03/03/2025]
Abstract
Lipid metabolism disorders will trigger various chronic diseases, which posing a serious threat to human health. Therefore, maintaining lipid metabolism balance is a key preventive and therapeutic strategy against various chronic and metabolic diseases. Various researches have proved that plant polyphenols play a significantly important role in regulating lipid metabolism. However, the mechanisms and application challenges of polyphenols in lipid metabolism disorders have rarely been elucidated. This review elucidates the definition, classification and function of plant polyphenols, summarize the kinds of polyphenols that can be used to regulate lipid metabolism, paying particular attention to the mechanisms for regulating lipid metabolism by plant polyphenols. Moreover, the limitations of polyphenols in the regulation of lipid metabolism are described and the trend of their development is prospective. This review will provide guidance to polyphenols in regulating metabolic diseases.
Collapse
Affiliation(s)
- Haiying Wei
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China
| | - Jinsheng Rui
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Xinke Yan
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Ruyan Xu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Simeng Chen
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Baiming Zhang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Lei Wang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Zhisong Zhang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Chengwen Zhu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China.
| | - Mengtao Ma
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
9
|
Sayed A, Eswara K, Teles K, Boudellioua A, Fischle W. Nuclear lipids in chromatin regulation: Biological roles, experimental approaches and existing challenges. Biol Cell 2025; 117:e2400103. [PMID: 39648467 PMCID: PMC11758486 DOI: 10.1111/boc.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Lipids are crucial for various cellular functions. Besides the storage of energy equivalents, these include forming membrane bilayers and serving as signaling molecules. While significant progress has been made in the comprehension of the molecular and cellular biology of lipids, their functions in the cell nucleus remain poorly understood. The main role of the eukaryotic cell nucleus is to provide an environment for the storage and regulation of chromatin which is a complex of DNA, histones, and associated proteins. Recent studies suggest that nuclear lipids play a role in chromatin regulation and epigenetics. Here, we discuss various experimental methods in lipid-chromatin research, including biophysical, structural, and cell biology approaches, pointing out their strengths and weaknesses. We take the view that nuclear lipids have a far more widespread impact on chromatin than is currently acknowledged. This gap in comprehension is mostly due to existing experimental challenges in the study of lipid-chromatin biology. Several new, interdisciplinary approaches are discussed that could aid in elucidating the roles of nuclear lipids in chromatin regulation and gene expression.
Collapse
Affiliation(s)
- Ahmed Sayed
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- Chemistry DepartmentFaculty of ScienceAssiut UniversityAssiutEgypt
| | - Karthik Eswara
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Kaian Teles
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Ahlem Boudellioua
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Wolfgang Fischle
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| |
Collapse
|
10
|
Barnette D, Inselman AL, Kaldhone P, Lee GS, Davis K, Sarkar S, Malhi P, Fisher JE, Hanig JP, Beger RD, Jones EE. The incorporation of MALDI mass spectrometry imaging in studies to identify markers of toxicity following in utero opioid exposures in mouse fetuses. FRONTIERS IN TOXICOLOGY 2024; 6:1452974. [PMID: 39691158 PMCID: PMC11651024 DOI: 10.3389/ftox.2024.1452974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction In 2015, the FDA released a Drug Safety Communication regarding a possible link between opioid exposure during early pregnancy and an increased risk of fetal neural tube defects (NTDs). At the time, the indications for opioid use during pregnancy were not changed due to incomplete maternal toxicity data and limitations in human and animal studies. To assess these knowledge gaps, largescale animal studies are ongoing; however, state-of-the-art technologies have emerged as promising tools to assess otherwise non-standard endpoints. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a dynamic approach capable of generating 2D ion images to visualize the distribution of an analyte of interest across a tissue section. Methods Given the importance of lipid metabolism and neurotransmitters in the developing central nervous system, this study incorporates MALDI MSI to assess lipid distributions across mouse gestational day (GD) 18 fetuses, with and without observable NTDs following maternal exposure on GD 8 to morphine (400 mg/kg BW) or the NTD positive control valproic acid (VPA) (500 mg/kg BW). Results Analysis of whole-body mouse fetuses revealed differential lipid distributions localized mainly in the brain and spinal cord, which included several phosphatidylcholine (PC) species such as PCs 34:1, 34:0, and 36:2 localized to the cortex or hippocampus and lyso PC 16:0 across all brain regions. Overall, differential lipids increased in with maternal morphine and VPA exposure. Neurotransmitter distributions across the brain using FMP-10 derivatizing agent were also assessed, revealing morphine-specific changes. Discussion The observed differential glycerophospholipid distributions in relation to treatment and NTD development in mouse fetuses provide potential targets for further investigation of molecular mechanisms of opioid-related developmental effects. Overall, these findings support the feasibility of incorporating MALDI MSI to assess non-standard endpoints of opioid exposure during gestation.
Collapse
Affiliation(s)
- Dustyn Barnette
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Amy L. Inselman
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Pravin Kaldhone
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Grace S. Lee
- Center for Drug Evaluation and Research (CDER), Office of Testing and Research, Silver Spring, MD, United States
| | - Kelly Davis
- National Center for Toxicological Research (FDA), Toxicologic Pathology Associates, Jefferson, AR, United States
| | - Sumit Sarkar
- National Center for Toxicological Research (FDA), Division of Neurotoxicology, Jefferson, AR, United States
| | - Pritpal Malhi
- National Center for Toxicological Research (FDA), Toxicologic Pathology Associates, Jefferson, AR, United States
| | - J. Edward Fisher
- Center for Drug Evaluation and Research (CDER), Office of Testing and Research, Silver Spring, MD, United States
| | - Joseph P. Hanig
- Center for Drug Evaluation and Research (CDER), Division of Pharmacology Toxicology for Neuroscience, Silver Spring, MD, United States
| | - Richard D. Beger
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - E. Ellen Jones
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| |
Collapse
|
11
|
Wang Y, Li S. Lipid metabolism disorders and albuminuria risk: insights from National Health and Nutrition Examination Survey 2001-2018 and Mendelian randomization analyses. Ren Fail 2024; 46:2420841. [PMID: 39491271 PMCID: PMC11536668 DOI: 10.1080/0886022x.2024.2420841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Previous studies have revealed an underlying connection between abnormal lipid metabolism and albuminuria. We aim to investigate the causal relationship between lipid metabolism disorders and the risk of albuminuria from both a population and genetic perspective. METHODS A cross-sectional study was conducted by using data from the National Health and Nutrition Examination Survey (NHANES) 2001-2018. Multivariable-adjusted logistic regression, subgroup analysis, interaction tests and restricted cubic spline (RCS) were employed statistically. Mendelian randomization (MR) analysis was performed to validate the causal relationship between exposure and outcome to mitigate confounding factors and reverse causation interference. RESULTS After adjusting for confounders, HDL levels (1.03-2.07 nmol/L) were associated with a reduced risk of albuminuria. In contrast, elevated cholesterol levels (>6.2 nmol/L) and triglyceride levels (>2.3 nmol/L) were associated with an increased risk of albuminuria. Serum triglyceride concentration emerged as a potential risk factor for albuminuria. In MR analysis, a reduced risk of albuminuria was associated with serum total HDL level (IVW: OR = 0.91, 95% CI = 0.86-0.97, p = 0.002). In contrast, cholesterol esters in medium VLDL (IVW: OR = 1.05, 95% CI = 1.00-1.10, p = 0.032), chylomicrons and extremely large VLDL (IVW: OR = 1.08, 95% CI = 1.03-1.14, p = 0.003), and triglycerides (IVW: OR = 1.14, 95% CI = 1.09-1.19, p < 0.001) were associated with an increased risk of albuminuria. CONCLUSION A causal relationship exists between serum lipid metabolism disorder and albuminuria risk. Further validation of additional blood lipid metabolism biomarkers is imperative for future studies.
Collapse
Affiliation(s)
- Yangyang Wang
- Second Medical College of Wenzhou Medical University, Wenzhou, China
| | - Sen Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Li Y, Xu K, Zhou A, Xu Z, Wu J, Peng X, Mei S, Chen H. Integrative Transcriptomics and Proteomics Analysis Reveals THRSP's Role in Lipid Metabolism. Genes (Basel) 2024; 15:1562. [PMID: 39766829 PMCID: PMC11675175 DOI: 10.3390/genes15121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Abnormalities in lipid metabolism and endoplasmic reticulum (ER) stress are strongly associated with the development of a multitude of pathological conditions, including nonalcoholic fatty liver disease (NAFLD), diabetes mellitus, and obesity. Previous studies have indicated a potential connection between thyroid hormone responsive (THRSP) and lipid metabolism and that ER stress may participate in the synthesis of key regulators of adipogenesis. However, the specific mechanisms remain to be investigated. Methods: In this study, we explored the roles of THRSP in lipid metabolism by interfering with THRSP gene expression in mouse mesenchymal stem cells, comparing the effects on adipogenesis between control and interfered groups, and by combining transcriptomic and proteomic analysis. Results: Our results showed that the number of lipid droplets was significantly reduced after interfering with THRSP, and the expression levels of key regulators of adipogenesis, such as LPL, FABP4, PLIN1, and CIDEC, were significantly downregulated. Both transcriptomic and proteomic results showed that the differential genes (proteins) were enriched in the processes of lipolytic regulation, ER stress, cholesterol metabolism, sphingolipid metabolism, PPAR signaling pathway, and glycerophospholipid metabolism. The ER stress marker gene, ATF6, was the most significantly downregulated transcription factor. In addition, RT-qPCR validation indicated that the expression levels of PPAR signaling pathway gene SCD1; key genes of lipid droplet generation including LIPE, DGAT1, and AGPAT2; and ER stress marker gene ATF6 were significantly downregulated. Conclusions: These suggest that THRSP is involved in regulating ER stress and the PPAR signaling pathway, which is closely related to lipid synthesis and metabolism. Interfering with the expression of THRSP may be helpful in ameliorating the occurrence of diseases related to abnormalities in lipid metabolism.
Collapse
Affiliation(s)
- Yujie Li
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Ke Xu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhong Xu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Junjing Wu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Xianwen Peng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Shuqi Mei
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
13
|
Zheng Y, Wang L, Wu J, Xiang L, Gao Y, Chen H, Sun H, Pan Y, Zhao H. Integrated non-targeted metabolomics and lipidomics reveal mechanisms of fluorotelomer sulfonates-induced toxicity in human hepatocytes. ENVIRONMENT INTERNATIONAL 2024; 193:109092. [PMID: 39486253 DOI: 10.1016/j.envint.2024.109092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Fluorotelomer sulfonates (FTSs) are widely used as novel substitutes for perfluorooctane sulfonate, inevitably leading to FTSs accumulation in various environmental media and subsequent exposure to humans. This accumulation eventually poses environmental hazards and health risks. However, their toxicity mechanisms remain unclear. Herein, the mechanisms of two FTSs (6:2 and 8:2 FTS) induced toxicity in human hepatocellular carcinoma cells were investigated via non-targeted metabolomics and lipidomics based on liquid chromatography-high resolution mass spectrometry. Our results revealed that amino acid, purine, acylcarnitine and lipid levels were significantly perturbed by 6:2 and 8:2 FTS exposure. The effects of 8:2 FTS exposure were largely characterized by up-regulation of pyruvate metabolism pathway and down-regulation of purine metabolism pathway, whereas the opposite trends were induced by 6:2 FTS exposure. The opposite trends were confirmed by the mRNA expression levels of four key genes (glyoxalase 1, adenylosuccinate lyase, inosine monophosphate dehydrogenase 1 (IMPDH1) and IMPDH2) determined by real-time PCR. Common lipid perturbations included significantly increased ceramide/sphingomyelin ratios, and obvious accumulation of hexosylceramides and lysoglycerophospholipids. 6:2 FTS exposure induced sharp accumulation of glycerides, including monoglycerides, diglycerides and triglycerides. 8:2 FTS exposure induced decreased levels of acylcarnitines and fatty acids. Both of 6:2 and 8:2 FTS exposure induced increased levels of intracellular reactive oxygen species, an imbalance in energy metabolism homeostasis, and mitochondrial dysfunction. The results of integrated omics analysis are expected to serve as valuable information for the health risk assessment of 6:2 FTS and 8:2 FTS.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lu Wang
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Jianing Wu
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yafei Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Rouvray S, Drummond RA. The role of lipids in regulating macrophage antifungal immunity. mBio 2024; 15:e0305723. [PMID: 39207168 PMCID: PMC11481918 DOI: 10.1128/mbio.03057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Macrophages are critical components of the antifungal immune response. Disturbance in the number or function of these innate immune cells can significantly increase susceptibility to invasive fungal infections. Pathogenic fungi cause billions of infections every year and have an unmet clinical need, with many infections associated with unacceptably high mortality rates that primarily affect vulnerable patients with underlying immune defects. Lipid metabolism has been increasingly appreciated to significantly influence macrophage function, particularly of macrophages residing in lipid-rich organs, such as the brain, or macrophages specialized at clearing dead cells including alveolar macrophages in the lungs. In this review, we provide an overview of macrophage lipid metabolism, and discuss how lipid recycling and dysregulation affect key macrophage functions relevant for antifungal immunity including phagocytosis, functional polarization, and inflammasome activation. We focus on the fungal pathogen Cryptococcus neoformans, as this is the most common cause of death from fungal infection in humans and because several lines of evidence have already linked lipid metabolism in the regulation of C. neoformans and macrophage interactions.
Collapse
Affiliation(s)
- Sophie Rouvray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Silwal P, Nguyen-Thai AM, Alexander PG, Sowa GA, Vo NV, Lee JY. Cellular and Molecular Mechanisms of Hypertrophy of Ligamentum Flavum. Biomolecules 2024; 14:1277. [PMID: 39456209 PMCID: PMC11506588 DOI: 10.3390/biom14101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Hypertrophy of the ligamentum flavum (HLF) is a common contributor to lumbar spinal stenosis (LSS). Fibrosis is a core pathological factor of HLF resulting in degenerative LSS and associated low back pain. Although progress has been made in HLF research, the specific molecular mechanisms that promote HLF remain to be defined. The molecular factors involved in the onset of HLF include increases in inflammatory cytokines such as transforming growth factor (TGF)-β, matrix metalloproteinases, and pro-fibrotic growth factors. In this review, we discuss the current understanding of the mechanisms involved in HLF with a particular emphasis on aging and mechanical stress. We also discuss in detail how several pathomechanisms such as fibrosis, proliferation and apoptosis, macrophage infiltration, and autophagy, in addition to several molecular pathways involving TGF-β1, mitogen-activated protein kinase (MAPKs), and nuclear factor-κB (NF-κB) signaling, PI3K/AKT signaling, Wnt signaling, micro-RNAs, extracellular matrix proteins, reactive oxygen species (ROS), etc. are involved in fibrosis leading to HLF. We also present a summary of the current advancements in preclinical animal models for HLF research. In addition, we update the current and potential therapeutic targets/agents against HLF. An improved understanding of the molecular processes behind HLF and a novel animal model are key to developing effective LSS prevention and treatment strategies.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Peter G. Alexander
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gwendolyn A. Sowa
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Cancer, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
16
|
Schwenzfeier J, Weischer S, Bessler S, Soltwisch J. Introducing FISCAS, a Tool for the Effective Generation of Single Cell MALDI-MSI Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39383330 DOI: 10.1021/jasms.4c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
We introduce Fluorescence Integrated Single-Cell Analysis Script (FISCAS), which combines fluorescence microscopy with MALDI-MSI to streamline single-cell analysis. FISCAS enables automated selection of tight measurement regions, thereby reducing the acquisition of off-target pixels, and makes use of established algorithms for cell segmentation and coregistration to rapidly compile single-cell spectra. MALDI-compatible staining of membranes, nuclei, and lipid droplets allows the collection of fluorescence data prior to the MALDI-MSI measurement on a timsTOF fleX MALDI-2. Usefulness of the software is demonstrated by the example of THP-1 cells during stimulated differentiation into macrophages at different time points. In this proof-of-principle study, FISCAS was used to automatically generate single-cell mass spectra along with a wide range of morphometric parameters for a total number of roughly 1300 cells collected at 24, 48, and 72 h after the onset of stimulation. Data analysis of the combined morphometric and single-cell mass spectrometry data shows significant molecular heterogeneity within the cell population at each time point, indicating an independent differentiation of each individual cell rather than a synchronized mechanism. Here, the grouping of cells based on their molecular phenotype revealed an overall clearer distinction of the different phases of differentiation into macrophages and delivered an increased number of lipid signals as possible markers compared with traditional bulk analysis. Utilizing the linkage between mass spectrometric data and fluorescence microscopy confirmed the expected positive correlation between lipid droplet staining and the overall signal for triacylglyceride (TG), demonstrating the usefulness of this multimodal approach.
Collapse
Affiliation(s)
- Jan Schwenzfeier
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Sarah Weischer
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Münster, 48148 Münster, Germany
| | | | - Jens Soltwisch
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| |
Collapse
|
17
|
Muzammil AN, Barathan M, Yazid MD, Sulaiman N, Makpol S, Mohamed Ibrahim N, Jaafar F, Abdullah NAH. A systematic scoping review of the multifaceted role of phoenixin in metabolism: insights from in vitro and in vivo studies. Front Endocrinol (Lausanne) 2024; 15:1406531. [PMID: 39398330 PMCID: PMC11466790 DOI: 10.3389/fendo.2024.1406531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Phoenixin (PNX) is an emerging neuropeptide that plays a significant role in regulating metabolism and reproduction. This comprehensive review examines findings from human, in vivo, and in vitro studies to elucidate the functions of PNX in metabolic processes. PNX has been identified as a key player in essential metabolic pathways, including energy homeostasis, glucose, lipid and electrolyte metabolism, and mitochondrial dynamics. It modulates food and fluid intake, influences glucose and lipid profiles, and affects mitochondrial biogenesis and function. PNX is abundantly expressed in the hypothalamus, where it plays a crucial role in regulating reproductive hormone secretion and maintaining energy balance. Furthermore, PNX is also expressed in peripheral tissues such as the heart, spleen, and pancreas, indicating its involvement in the regulation of metabolism across central and peripheral systems. PNX is a therapeutic peptide that operates through the G protein-coupled receptor 173 (GPR173) at the molecular level. It activates signaling pathways such as cAMP-protein kinase A (PKA) and Epac-ERK, which are crucial for metabolic regulation. Research suggests that PNX may be effective in managing metabolic disorders like obesity and type 2 diabetes, as well as reproductive health issues like infertility. Since metabolic processes are closely linked to reproduction, further understanding of PNX's role in these areas is necessary to develop effective management/treatments. This review aims to highlight PNX's involvement in metabolism and identify gaps in current knowledge regarding its impact on human health. Understanding the mechanisms of PNX's action is crucial for the development of novel therapeutic strategies for the treatment of metabolic disorders and reproductive health issues, which are significant public health concerns globally.
Collapse
Affiliation(s)
- Adiba Najwa Muzammil
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Nur Atiqah Haizum Abdullah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Mandal AK, Sahoo A, Almalki WH, Almujri SS, Alhamyani A, Aodah A, Alruwaili NK, Abdul Kadir SZBS, Mandal RK, Almalki RA, Lal JA, Rahman M. Phytoactives for Obesity Management: Integrating Nanomedicine for Its Effective Delivery. Nutr Rev 2024:nuae136. [PMID: 39331591 DOI: 10.1093/nutrit/nuae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Obesity is a global health concern that requires urgent investigation and management. While synthetic anti-obesity medications are available, they come with a high risk of side-effects and variability in their efficacy. Therefore, natural compounds are increasingly being used to treat obesity worldwide. The proposition that naturally occurring compounds, mainly polyphenols, can be effective and safer for obesity management through food and nutrient fortification is strongly supported by extensive experimental research. This review focuses on the pathogenesis of obesity while reviewing the efficacy of an array of phytoactives used for obesity treatment. It details mechanisms such as enzyme inhibition, energy expenditure, appetite suppression, adipocyte differentiation, lipid metabolism, and modulation of gut microbiota. Comprehensive in vitro, in vivo, and preclinical studies underscore the promise of phytoactives in combating obesity, which have been thoroughly reviewed. However, challenges, such as poor bioavailability and metabolism, limit their potential. Advances in nanomedicines may overcome these constraints, offering a new avenue for enhancing the efficacy of phytoactives. Nonetheless, rigorous and targeted clinical trials are essential before applying phytoactives as a primary treatment for obesity.
Collapse
Affiliation(s)
- Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | | | | | - Rami A Almalki
- Clinical Pharmacy Unit, Pharmaceutical Care Department, King Faisal Hospital, Makkah Health Cluster, Makkah 24382, Saudi Arabia
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
19
|
Wang J, Xu P, Liu X, Cao C, Sheng Y, Wang J. Sweet pepper extract reduces fat storage in Caenorhabditis elegans by SREBP-SCD axis based on multiomics analysis. Food Sci Nutr 2024; 12:6284-6297. [PMID: 39554335 PMCID: PMC11561784 DOI: 10.1002/fsn3.4266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 11/19/2024] Open
Abstract
Sweet pepper, a globally commercialized horticultural crop, has been demonstrated to impede fat accumulation, but its mechanism remains incompletely understood. This study was designed to explore the potential mechanism of sweet pepper in reducing fat accumulation in Caenorhabditis elegans through RNA-seq and metabolome analysis. A total of 22 metabolites were identified from sweet pepper by UHPLC-ESI-TOF-MS analysis. In vivo, sweet pepper significantly inhibited α-glucosidase activity and reduced the levels of glucose, triglycerides (TG), total cholesterol (TC), and the area stained with oil red O. Additionally, it increased body length and the number of head swings in C. elegans compared to the control group. The KEGG enrichment analysis revealed significant enrichment of the biosynthesis of unsaturated fatty acids signaling pathway among the differentially expressed genes and metabolites. Furthermore, the mRNA levels of sterol regulatory element-binding proteins (SREBPs) ortholog SBP-1, as well as the stearyl CoA desaturase-1 (SCD1), including fat-5, fat-6, and fat-7, were significantly decreased after treatment with sweet pepper. Collectively, sweet pepper effectively reduces fat accumulation, which is probably related to downregulating the SREBP-SCD axis, offering new insights for future functional food development.
Collapse
Affiliation(s)
- Junyi Wang
- Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Peng Xu
- Hangzhou Normal University of Basic MedicineHangzhouChina
| | - Xinhua Liu
- Jinhua Academy of Agricultural SciencesJinhuaChina
| | - Chunxin Cao
- Jinhua Academy of Agricultural SciencesJinhuaChina
| | - Yingkun Sheng
- Xingzhi CollegeZhejiang Normal UniversityJinhuaChina
| | - Jianfeng Wang
- Life SciencesZhejiang Normal UniversityJinhuaChina
- Xingzhi CollegeZhejiang Normal UniversityJinhuaChina
| |
Collapse
|
20
|
Yang Y, Ye H, Yan H, Zhang C, Li W, Li Z, Jing H, Li X, Liang J, Xie G, Liang W, Ou Y, Li X, Guo W. Potential correlations between asymmetric disruption of functional connectivity and metabolism in major depressive disorder. Brain Res 2024; 1838:148977. [PMID: 38705556 DOI: 10.1016/j.brainres.2024.148977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Previous research has suggested a connection between major depressive disorder (MDD) and certain comorbidities, including gastrointestinal issues, thyroid dysfunctions, and glycolipid metabolism abnormalities. However, the relationships between these factors and asymmetrical alterations in functional connectivity (FC) in adults with MDD remain unclear. METHOD We conducted a study on a cohort of 42 MDD patients and 42 healthy controls (HCs). Participants underwent comprehensive clinical assessments, including evaluations of blood lipids and thyroid hormone levels, as well as resting-state functional magnetic resonance imaging (Rs-fMRI) scans. Data analysis involved correlation analysis to compute the parameter of asymmetry (PAS) for the entire brain's functional connectome. We then examined the interrelationships between abnormal PAS regions in the brain, thyroid hormone levels, and blood lipid levels. RESULTS The third-generation ultra-sensitive thyroid stimulating hormone (TSH3UL) level was found to be significantly lower in MDD patients compared to HCs. The PAS score of the left inferior frontal gyrus (IFG) decreased, while the bilateral posterior cingulate cortex (Bi-PCC) PAS increased in MDD patients relative to HCs. Notably, the PAS score of the left IFG negatively correlated with both TSH and total cholesterol (CHOL) levels. However, these correlations lose significance after the Bonferroni correction. CONCLUSION MDD patients demonstrated abnormal asymmetry in resting-state FC (Rs-FC) within the fronto-limbic system, which may be associated with CHOL and thyroid hormone levels.
Collapse
Affiliation(s)
- Yu Yang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haibiao Ye
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wenxuan Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Zhijian Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Huang Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
21
|
Buxbaum Grice AS, Sloofman L, Levy T, Walker H, Ganesh G, Rodriguez de Los Santos M, Amini P, Buxbaum JD, Kolevzon A, Kostic A, Breen MS. Transient peripheral blood transcriptomic response to ketamine treatment in children with ADNP syndrome. Transl Psychiatry 2024; 14:307. [PMID: 39054328 PMCID: PMC11272924 DOI: 10.1038/s41398-024-03005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) syndrome is a rare neurodevelopmental disorder resulting in intellectual disability, developmental delay and autism spectrum disorder (ASD) and is due to mutations in the ADNP gene. Ketamine treatment has emerged as a promising therapeutic option for ADNP syndrome, showing safety and apparent behavioral improvements in a first open label study. However, the molecular perturbations induced by ketamine remain poorly understood. Here, we investigated the longitudinal effect of ketamine on the blood transcriptome of 10 individuals with ADNP syndrome. Transcriptomic profiling was performed before and at multiple time points after a single low-dose intravenous ketamine infusion (0.5 mg/kg). We show that ketamine triggers immediate and profound gene expression alterations, with specific enrichment of monocyte-related expression patterns. These acute alterations encompass diverse signaling pathways and co-expression networks, implicating upregulation of immune and inflammatory-related processes and down-regulation of RNA processing mechanisms and metabolism. Notably, these changes exhibit a transient nature, returning to baseline levels 24 hours to 1 week after treatment. These findings enhance our understanding of ketamine's molecular effects and lay the groundwork for further research elucidating its specific cellular and molecular targets. Moreover, they contribute to the development of therapeutic strategies for ADNP syndrome and potentially, ASD more broadly.
Collapse
Affiliation(s)
- Ariela S Buxbaum Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Walker
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gauri Ganesh
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Rodriguez de Los Santos
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pardis Amini
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Kostic
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Li J, Zhao J, Tian C, Dong L, Kang Z, Wang J, Zhao S, Li M, Tong X. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: effects on short-chain fatty acids. Nutr Metab (Lond) 2024; 21:49. [PMID: 39026248 PMCID: PMC11256480 DOI: 10.1186/s12986-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Natural compounds can positively impact health, and various studies suggest that they regulate glucose‒lipid metabolism by influencing short-chain fatty acids (SCFAs). This metabolism is key to maintaining energy balance and normal physiological functions in the body. This review explores how SCFAs regulate glucose and lipid metabolism and the natural compounds that can modulate these processes through SCFAs. This provides a healthier approach to treating glucose and lipid metabolism disorders in the future. METHODS This article reviews relevant literature on SCFAs and glycolipid metabolism from PubMed and the Web of Science Core Collection (WoSCC). It also highlights a range of natural compounds, including polysaccharides, anthocyanins, quercetins, resveratrols, carotenoids, and betaines, that can regulate glycolipid metabolism through modulation of the SCFA pathway. RESULTS Natural compounds enrich SCFA-producing bacteria, inhibit harmful bacteria, and regulate operational taxonomic unit (OTU) abundance and the intestinal transport rate in the gut microbiota to affect SCFA content in the intestine. However, most studies have been conducted in animals, lack clinical trials, and involve fewer natural compounds that target SCFAs. More research is needed to support the conclusions and to develop healthier interventions. CONCLUSIONS SCFAs are crucial for human health and are produced mainly by the gut microbiota via dietary fiber fermentation. Eating foods rich in natural compounds, including fruits, vegetables, tea, and coarse fiber foods, can hinder harmful intestinal bacterial growth and promote beneficial bacterial proliferation, thus increasing SCFA levels and regulating glucose and lipid metabolism. By investigating how these compounds impact glycolipid metabolism via the SCFA pathway, novel insights and directions for treating glucolipid metabolism disorders can be provided.
Collapse
Affiliation(s)
- Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chuanxi Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Lishuo Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingshuo Wang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolin Tong
- Guang'anmen Hospital, Academician of Chinese Academy of Sciences, China Academy of Traditional Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
23
|
Li A, Hu H, Huang Y, Yang F, Mi Q, Jin L, Liu H, Zhang Q, Pan H. Effects of dietary metabolizable energy level on hepatic lipid metabolism and cecal microbiota in aged laying hens. Poult Sci 2024; 103:103855. [PMID: 38796988 PMCID: PMC11153248 DOI: 10.1016/j.psj.2024.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Lipid metabolic capacity, feed utilization, and the diversity of gut microbiota are reduced in the late laying stage for laying hens. This experiment aimed to investigate the effects of different levels of dietary metabolizable energy (ME) on hepatic lipid metabolism and cecal microbiota in late laying hens. The 216 Peking Pink laying hens (57-wk-old) were randomly assigned to experimental diets of 11.56 (HM = high ME), 11.14 (MM = medium ME), or 10.72 (LM = low ME) MJ of ME/kg, with each dietary treatment containing 6 replicates per group and 12 chickens per replicate. The HM group showed higher triglyceride (TG), total cholesterol (T-CHO), and low-density lipoprotein cholesterol (LDL-C) concentrations in the liver compared with the LM group; second, the HM group showed higher TG concentration and the LM group showed lower T-CHO concentration compared with MM group; finally, the HM group showed a lower hepatic lipase (HL) activity compared with the MM and LM groups (P < 0.05). There was a significant difference in the microbial community structure of the cecum between the HM and MM groups (P < 0.05). The decrease of dietary ME level resulted in a gradual decrease relative abundance of Proteobacteria. At the genus level, beneficial bacteria were significantly enriched in the LM group compared to the MM group, including Faecalibacterium, Lactobacillus, and Bifidobacterium, (linear discriminant analysis [LDA] >2, P <0.05). In addition, at the species level, Lactobacillus crispatus, Parabacteroides gordonii, Blautia caecimuris, and Lactobacillus johnsonii were significantly enriched in the LM group (LDA>2, P < 0.05). The HM group had a higher abundance of Sutterella spp. compared to the LM group (LDA>2, P <0.05). In conclusion, this research suggests that the reduction in dietary energy level did not adversely affect glycolipid metabolism or low dietary ME (10.72 MJ/kg). The findings can be helpful for maintaining intestinal homeostasis and increasing benefit for gut microbiota in late laying hens.
Collapse
Affiliation(s)
- Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Fuyan Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qianhui Mi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liqiang Jin
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongli Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiang Zhang
- WOD Poultry Research Institute, Beijing, 100193, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; WOD Poultry Research Institute, Beijing, 100193, China.
| |
Collapse
|
24
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
25
|
Zeng X, Chen L, Zheng B. Extrusion and chlorogenic acid treatment increase the ordered structure and resistant starch levels in rice starch with amelioration of gut lipid metabolism in obese rats. Food Funct 2024; 15:5224-5237. [PMID: 38623646 DOI: 10.1039/d3fo05416k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Dietary interventions are receiving increasing attention for maintaining host health and diminishing disease risk. This study endeavored to elucidate the intervention effect of chlorogenic acid coupled with extruded rice starch (CGA-ES) in mitigating lipid metabolism disorders induced by a high-fat diet (HFD) in rats. First, a significant increase in resistant starch (RS) and a decrease in the predicted glycemic index (pGI) were observed in CGA-ES owing to the formation of an ordered structure (Dm, single helix, and V-type crystalline structure) and partly released CGA. Compared to a physical mixture of starch and chlorogenic acid (CGA + S), CGA-ES showed a more potent effect in alleviating lipid metabolism disorders, manifesting as reduced levels of blood glucose, serum total cholesterol (TC), triglycerides (TG), aspartate aminotransferase (AST), alanine transaminase (ALT) and alkaline phosphatase (AKP), as well as body weight. It is correlated with an improvement in the gut microecology, featuring bacteria known for cholesterol reduction and butyrate production (Butyricicoccus, Bifidobacterium, Fusicatenibacter, Turicibacter, and Enterorhabdus), along with bile acid, butyrate and PG (PG (17:0/16:0) and PG (18:1/16:0)). The RS fraction of CGA-ES was found to be the main contributor. These findings would provide evidence for future studies to regulate lipid metabolism disorders, and even obesity using CGA-ES.
Collapse
Affiliation(s)
- Xixi Zeng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
26
|
Sharma A, Sharma C, Sharma L, Wal P, Mishra P, Sachdeva N, Yadav S, Vargas De-La Cruz C, Arora S, Subramaniyan V, Rawat R, Behl T, Nandave M. Targeting the vivid facets of apolipoproteins as a cardiovascular risk factor in rheumatoid arthritis. Can J Physiol Pharmacol 2024; 102:305-317. [PMID: 38334084 DOI: 10.1139/cjpp-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Mostly, cardiovascular diseases are blamed for casualties in rheumatoid arthritis (RA) patients. Customarily, dyslipidemia is probably the most prevalent underlying cause of untimely demise in people suffering from RA as it hastens the expansion of atherosclerosis. The engagement of inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), etc., is crucial in the progression and proliferation of both RA and abnormal lipid parameters. Thus, lipid abnormalities should be monitored frequently in patients with both primary and advanced RA stages. An advanced lipid profile examination, i.e., direct role of apolipoproteins associated with various lipid molecules is a more dependable approach for better understanding of the disease and selecting suitable therapeutic targets. Therefore, studying their apolipoproteins is more relevant than assessing RA patients' altered lipid profile levels. Among the various apolipoprotein classes, Apo A1 and Apo B are primarily being focused. In addition, it also addresses how calculating Apo B:Apo A1 ratio can aid in analyzing the disease's risk. The marketed therapies available to control lipid abnormalities are associated with many other risk factors. Hence, directly targeting Apo A1 and Apo B would provide a better and safer option.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Chakshu Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Preeti Mishra
- Raja Balwant Singh Engineering Technical Campus, Bichpuri, Agra, India
| | - Nitin Sachdeva
- Department of Anesthesia, Mediclinic Aljowhara Hospital, Al Ain, United Arab Emirates
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Celia Vargas De-La Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Sandeep Arora
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Ravi Rawat
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Delhi, India
| |
Collapse
|
27
|
Huang P, Zhang H, Liu Y, Li L. Rapid Characterization of Phospholipids from Biological Matrix Enabled by Indium Tin Oxide (ITO) Coated Slide Assisted Enrichment MALDI Mass Spectrometry. ANALYSIS & SENSING 2024; 4:e202300097. [PMID: 39309316 PMCID: PMC11415247 DOI: 10.1002/anse.202300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 09/25/2024]
Abstract
Lipidomic analysis of human serum is essential to monitor the individual's health status. Herein, we develop a facile strategy for rapid characterization of phospholipids in human serum via indium tin oxide (ITO) coated glass slide solid phase extraction MALDI mass spectrometry (ITO-SPE-MALDI-MS). Phospholipid species are retained on ITO slide via solid phase extraction owing to the unique property of the ITO material; the measurement of phospholipid species from 1 μl human serum within 2 min is achievable. A comparison of ITO-SPE strategy with conventional extraction methods was further carried out using liquid chromatography-mass spectrometry (LC-MS) and ion-mobility mass spectrometry (IM-MS), resulting in a comparable enrichment performance for the phospholipid analysis. Furthermore, rapid lipidomic profiling of serum samples from human colorectal cancer patients and cell lines was demonstrated. Our results indicate that ITO-SPE-MALDI-MS provides a higher throughput strategy for the analysis of phospholipid species in complex biological mixtures, showcasing its potential for applications in the analysis of clinical biofluids.
Collapse
Affiliation(s)
- Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705 (USA)
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705 (USA)
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705 (USA)
| |
Collapse
|
28
|
Jensen M, Liu S, Stepula E, Martella D, Birjandi AA, Farrell‐Dillon K, Chan KLA, Parsons M, Chiappini C, Chapple SJ, Mann GE, Vercauteren T, Abbate V, Bergholt MS. Opto-Lipidomics of Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302962. [PMID: 38145965 PMCID: PMC11005704 DOI: 10.1002/advs.202302962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Lipid metabolism and signaling play pivotal functions in biology and disease development. Despite this, currently available optical techniques are limited in their ability to directly visualize the lipidome in tissues. In this study, opto-lipidomics, a new approach to optical molecular tissue imaging is introduced. The capability of vibrational Raman spectroscopy is expanded to identify individual lipids in complex tissue matrices through correlation with desorption electrospray ionization (DESI) - mass spectrometry (MS) imaging in an integrated instrument. A computational pipeline of inter-modality analysis is established to infer lipidomic information from optical vibrational spectra. Opto-lipidomic imaging of transient cerebral ischemia-reperfusion injury in a murine model of ischemic stroke demonstrates the visualization and identification of lipids in disease with high molecular specificity using Raman scattered light. Furthermore, opto-lipidomics in a handheld fiber-optic Raman probe is deployed and demonstrates real-time classification of bulk brain tissues based on specific lipid abundances. Opto-lipidomics opens a host of new opportunities to study lipid biomarkers for diagnostics, prognostics, and novel therapeutic targets.
Collapse
Affiliation(s)
- Magnus Jensen
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Shiyue Liu
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- Institute of Pharmaceutical ScienceKing's College LondonLondonSE1 9NHUK
| | - Elzbieta Stepula
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Davide Martella
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Anahid A. Birjandi
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Keith Farrell‐Dillon
- King's British Heart Foundation Centre of Research ExcellenceSchool of Cardiovascular and Metabolic Medicine & SciencesFaculty of Life Sciences & MedicineKing's College London150 Stamford StreetLondonSE1 9NHUK
| | | | - Maddy Parsons
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonSE1 1ULUK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Sarah J. Chapple
- Institute of Pharmaceutical ScienceKing's College LondonLondonSE1 9NHUK
- King's British Heart Foundation Centre of Research ExcellenceSchool of Cardiovascular and Metabolic Medicine & SciencesFaculty of Life Sciences & MedicineKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Giovanni E. Mann
- Institute of Pharmaceutical ScienceKing's College LondonLondonSE1 9NHUK
- King's British Heart Foundation Centre of Research ExcellenceSchool of Cardiovascular and Metabolic Medicine & SciencesFaculty of Life Sciences & MedicineKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonWC2R 2LSUK
| | - Vincenzo Abbate
- Department of AnalyticalEnvironmental and Forensic SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Mads S. Bergholt
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| |
Collapse
|
29
|
Papadaki S, Tricha N, Panagiotopoulou M, Krokida M. Innovative Bioactive Products with Medicinal Value from Microalgae and Their Overall Process Optimization through the Implementation of Life Cycle Analysis-An Overview. Mar Drugs 2024; 22:152. [PMID: 38667769 PMCID: PMC11050870 DOI: 10.3390/md22040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae are being recognized as valuable sources of bioactive chemicals with important medical properties, attracting interest from multiple industries, such as food, feed, cosmetics, and medicines. This review study explores the extensive research on identifying important bioactive chemicals from microalgae, and choosing the best strains for nutraceutical manufacturing. It explores the most recent developments in recovery and formulation strategies for creating stable, high-purity, and quality end products for various industrial uses. This paper stresses the significance of using Life Cycle Analysis (LCA) as a strategic tool with which to improve the entire process. By incorporating LCA into decision-making processes, researchers and industry stakeholders can assess the environmental impact, cost-effectiveness, and sustainability of raw materials of several approaches. This comprehensive strategy will allow for the choosing of the most effective techniques, which in turn will promote sustainable practices for developing microalgae-based products. This review offers a detailed analysis of the bioactive compounds, strain selection methods, advanced processing techniques, and the incorporation of LCA. It will serve as a valuable resource for researchers and industry experts interested in utilizing microalgae for producing bioactive products with medicinal properties.
Collapse
Affiliation(s)
- Sofia Papadaki
- DIGNITY Private Company, 30-32 Leoforos Alexandrou Papagou, Zografou, 157 71 Athens, Greece
| | - Nikoletta Tricha
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Margarita Panagiotopoulou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Magdalini Krokida
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| |
Collapse
|
30
|
Senthilkumar S, Solan ME, Fernandez-Luna MT, Lavado R. Cannabidiol and Indole-3-carbinol Reduce Intracellular Lipid Droplet
Accumulation in HepaRG, A Human Liver Cell Line, as well as in Human
Adipocytes. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/2210315513666230526100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 01/03/2025]
Abstract
Introduction:
An increase in obesity-related diseases is becoming an alarming worldwide problem. Therefore, new therapeutic methods are constantly sought to prevent, treat, and alleviate symptoms of the diseases associated with obesity.
Method:
This study investigates the effects of two natural compounds (indole-3-carbinol, I3C, a bioactive indolic compound found in cruciferous vegetables; cannabidiol, CBD, the active ingredient derived from the hemp plant) on the fatty acid accumulation in the human liver cell line HepaRG, a well-established model for non-alcoholic fatty liver disease (NAFLD) and in human pre-adipocytes (adipose-derived mesenchymal stem cells, MSC).
Results:
EC50s of each compound were in the high µM range (approximately 30 mg/L), showing the low toxicity of these compounds. Determination of the selected compounds in cell media showed no significant differences during the exposure, suggesting that no significant metabolism or degradation happened during the exposure time. Quantification of the bioaccumulation of lipid droplets on exposed HepaRG revealed a significant reduction and mitigation of fatty acid accumulation when exposed to 1 nM of I3C and 100 nM of CBD.). On MSC cells a significant inhibition of lipogenesis and adipocyte differentiation was observed in cells exposed to 0.1 nM of I3C and 1 nM of CBD.
Conclusion:
This study provides a significant contribution to advancing the understanding of preventative dietary strategies that target adipocyte differentiation and NAFLD.
Collapse
Affiliation(s)
| | - Megan E. Solan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | | | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
31
|
Holbrook JH, Kemper GE, Hummon AB. Quantitative mass spectrometry imaging: therapeutics & biomolecules. Chem Commun (Camb) 2024; 60:2137-2151. [PMID: 38284765 PMCID: PMC10878071 DOI: 10.1039/d3cc05988j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly utilized in the analysis of biological molecules. MSI grants the ability to spatially map thousands of molecules within one experimental run in a label-free manner. While MSI is considered by most to be a qualitative method, recent advancements in instrumentation, sample preparation, and development of standards has made quantitative MSI (qMSI) more common. In this feature article, we present a tailored review of recent advancements in qMSI of therapeutics and biomolecules such as lipids and peptides/proteins. We also provide detailed experimental considerations for conducting qMSI studies on biological samples, aiming to advance the methodology.
Collapse
Affiliation(s)
- Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
32
|
Gerhardtova I, Jankech T, Majerova P, Piestansky J, Olesova D, Kovac A, Jampilek J. Recent Analytical Methodologies in Lipid Analysis. Int J Mol Sci 2024; 25:2249. [PMID: 38396926 PMCID: PMC10889185 DOI: 10.3390/ijms25042249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Lipids represent a large group of biomolecules that are responsible for various functions in organisms. Diseases such as diabetes, chronic inflammation, neurological disorders, or neurodegenerative and cardiovascular diseases can be caused by lipid imbalance. Due to the different stereochemical properties and composition of fatty acyl groups of molecules in most lipid classes, quantification of lipids and development of lipidomic analytical techniques are problematic. Identification of different lipid species from complex matrices is difficult, and therefore individual analytical steps, which include extraction, separation, and detection of lipids, must be chosen properly. This review critically documents recent strategies for lipid analysis from sample pretreatment to instrumental analysis and data interpretation published in the last five years (2019 to 2023). The advantages and disadvantages of various extraction methods are covered. The instrumental analysis step comprises methods for lipid identification and quantification. Mass spectrometry (MS) is the most used technique in lipid analysis, which can be performed by direct infusion MS approach or in combination with suitable separation techniques such as liquid chromatography or gas chromatography. Special attention is also given to the correct evaluation and interpretation of the data obtained from the lipid analyses. Only accurate, precise, robust and reliable analytical strategies are able to bring complex and useful lipidomic information, which may contribute to clarification of some diseases at the molecular level, and may be used as putative biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
| | - Juraj Piestansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 05 Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 68/73, SK-041 81 Kosice, Slovakia
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
33
|
Wang H, Shen M, Shu X, Guo B, Jia T, Feng J, Lu Z, Chen Y, Lin J, Liu Y, Zhang J, Zhang X, Sun D. Cardiac Metabolism, Reprogramming, and Diseases. J Cardiovasc Transl Res 2024; 17:71-84. [PMID: 37668897 DOI: 10.1007/s12265-023-10432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Cardiovascular diseases (CVD) account for the largest bulk of deaths worldwide, posing a massive burden on societies and the global healthcare system. Besides, the incidence and prevalence of these diseases are on the rise, demanding imminent action to revert this trend. Cardiovascular pathogenesis harbors a variety of molecular and cellular mechanisms among which dysregulated metabolism is of significant importance and may even proceed other mechanisms. The healthy heart metabolism primarily relies on fatty acids for the ultimate production of energy through oxidative phosphorylation in mitochondria. Other metabolites such as glucose, amino acids, and ketone bodies come next. Under pathological conditions, there is a shift in metabolic pathways and the preference of metabolites, termed metabolic remodeling or reprogramming. In this review, we aim to summarize cardiovascular metabolism and remodeling in different subsets of CVD to come up with a new paradigm for understanding and treatment of these diseases.
Collapse
Affiliation(s)
- Haichang Wang
- Heart Hospital, Xi'an International Medical Center, Xi'an, China
| | - Min Shen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiaofei Shu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Baolin Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Tengfei Jia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiaxu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Zuocheng Lu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yanyan Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yue Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xuan Zhang
- Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
34
|
Hjazi A, Hsu CY, Al-Attar WM, Almajidi YQ, Hussien BM, Alzahrani AA, Kareem AK, Abdulhussien Alazbjee AA, Meng X. The association of exposure to polychlorinated biphenyls with lipid profile and liver enzymes in umbilical cord blood samples. CHEMOSPHERE 2024; 350:141096. [PMID: 38176591 DOI: 10.1016/j.chemosphere.2023.141096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Evidence on prenatal exposure to polychlorinated biphenyls (PCBs) and its effects on newborns and potential biological mechanisms is not well defined yet. Therefore, this study aimed to examine whether PCBs are associated with lipid profile and non-invasive markers of hepatocyte injuries in samples of blood obtained from the umbilical cord. This study included 450 mothers-newborn pairs. Umbilical levels of PCBs were measured using Gas Chromatography/Mass Spectrophotometry (GC/MS). Lipid profile including low-density lipoprotein (LDL-C), total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL-C), as well as liver enzymes i.e., alanine amino transferase (ALT), aspartate amino transferase (AST), γ-glutamyl-transferase (GGT) and alkaline phosphatase (ALP) were determined from umbilical cord blood samples. Quantile g-computation analysis was applied to evaluate the collective influence of PCBs on both lipid profiles and liver enzymes, along with the impact of lipid profiles on liver enzymes. Exposure to the mixture of PCBs was significantly associated with increases in ALP, AST, ALT, and GGT levels in cord blood samples, with increments of 90.38 U/L (95%CI: 65.08, 115.70, p < 0.01), 11.88 U/L (95%CI: 9.03, 14.74, p < 0.01), 2.19 U/L (95%CI:1.43, 2.94, p < 0.01), and 50.67 U/L (95%CI: 36.32, 65.03, p < 0.01), respectively. Additionally, combined PCBs exposure was correlated with significant increases in umbilical TG, TC, and LDL-C levels, with values of 3.97 mg/dL (95%CI: 0.86, 7.09, p = 0.01), 6.30 mg/dL (95%CI: 2.98, 9.61, p < 0.01), and 4.63 mg/dL (95%CI: 2.04, 7.23, p < 0.01) respectively. Exposure to the mixture of lipids was linked to elevated levels of AST and GGT in umbilical cord blood samples. Furthermore, a noteworthy mediating role of TC and LDL-C was observed in the association between total PCBs exposure and umbilical cord blood liver enzyme levels. Overall our findings suggested that higher levels of umbilical cord blood PCBs and lipid profile could affect liver function in newborns.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Yasir Qasim Almajidi
- Lecturer Dr and Dean Assistant of Baghdad College of Medical Sciences-department of Pharmacy (pharmaceutics), Baghdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq; Medical Laboratory Technology Department, College of Medical Technology, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technology Department, College of Medical Technology, the Islamic University of Babylon, Babylon, Iraq
| | | | - A K Kareem
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hillah, Iraq
| | | | - Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Hepatobiliary Surgery Department, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, Hebei, 065001, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
35
|
Jia Y, Wang H, Ma B, Zhang Z, Wang J, Wang J, Chen O. Lipid metabolism-related genes are involved in the occurrence of asthma and regulate the immune microenvironment. BMC Genomics 2024; 25:129. [PMID: 38297226 PMCID: PMC10832186 DOI: 10.1186/s12864-023-09795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/08/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Lipid metabolism plays a pivotal role in asthma pathogenesis. However, a comprehensive analysis of the importance of lipid metabolism-related genes (LMRGs) in regulating the immune microenvironment in asthma remains lacking. The transcriptome matrix was downloaded from the Gene Expression Omnibus (GEO) dataset. Differentially expressed analysis and weighted gene coexpression network analysis (WGCNA) were conducted on the GSE74986 dataset to select hub LMRGs, and gene set enrichment analysis (GSEA) was conducted to explore their biological functions. The CIBERSORT algorithm was used to determine immune infiltration in the asthma and control groups, and the correlation of diagnostic biomarkers and immune cells was performed via Spearman correlation analysis. Subsequently, a competitive endogenous RNA (ceRNA) network was constructed to investigate the hidden molecular mechanism of asthma. The expression levels of the hub genes were further validated in the GSE143192 dataset, and RT‒qPCR and immunofluorescence were performed to verify the reliability of the results in the OVA asthma model. Lastly, the ceRNA network was confirmed by qRT-PCR and RNAi experiments in the characteristic cytokine (IL-13)-induced asthma cellular model. RESULTS ASAH1, ACER3 and SGPP1 were identified as hub LMRGs and were mainly involved in protein secretion, mTORC1 signaling, and fatty acid metabolism. We found more infiltration of CD8+ T cells, activated NK cells, and monocytes and less M0 macrophage infiltration in the asthma group than in the healthy control group. In addition, ASAH1, ACER3, and SGPP1 were negatively correlated with CD8+ T cells and activated NK cells, but positively correlated with M0 macrophages. Within the ceRNA network, SNHG9-hsa-miR-615-3p-ACER3, hsa-miR-212-5p and hsa-miR-5682 may play crucial roles in asthma pathogenesis. The low expression of ASAH1 and SGPP1 in asthma was also validated in the GSE74075 dataset. After SNHG9 knockdown, miR-615-3p expression was significantly upregulated, while that of ACER3 was significantly downregulated. CONCLUSION ASAH1, ACER3 and SGPP1 might be diagnostic biomarkers for asthma, and are associated with increased immune system activation. In addition, SNHG9-hsa-miR-615-3p-ACER3 may be viewed as effective therapeutic targets for asthma. Our findings might provide a novel perspective for future research on asthma.
Collapse
Affiliation(s)
- Yuanmin Jia
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China
| | - Haixia Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China
| | - Bin Ma
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China
| | - Zeyi Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China
| | - Jingjing Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China
| | - Jin Wang
- Department of Pediatrics, Jinan Maternity and Child Care Hospital, No. 2, Jianguo Xiaojing 3Rd Road, Shizhong District, Jinan City, Shandong Province, China.
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Lixia District, Jinan City, Shandong Province, China.
| |
Collapse
|
36
|
Grice ASB, Sloofman L, Levy T, Walker H, Ganesh G, de Los Santos MR, Armini P, Buxbaum JD, Kolevzon A, Kostic A, Breen MS. Transient peripheral blood transcriptomic response to ketamine treatment in children with ADNP syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.29.24301949. [PMID: 38352457 PMCID: PMC10863029 DOI: 10.1101/2024.01.29.24301949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Activity-dependent neuroprotective protein (ADNP) syndrome is a rare neurodevelopmental disorder resulting in intellectual disability, developmental delay and autism spectrum disorder (ASD) and is due to mutations in the ADNP gene. Ketamine treatment has emerged as a promising therapeutic option for ADNP syndrome, showing safety and apparent behavioral improvements in a first open label study. However, the molecular perturbations induced by ketamine remain poorly understood. Here, we investigated the longitudinal effect of ketamine on the blood transcriptome of 10 individuals with ADNP syndrome. Transcriptomic profiling was performed before and at multiple time points after a single low-dose intravenous ketamine infusion (0.5mg/kg). We show that ketamine triggers immediate and profound gene expression alterations, with specific enrichment of monocyte-related expression patterns. These acute alterations encompass diverse signaling pathways and co-expression networks, implicating up-regulation of immune and inflammatory-related processes and down-regulation of RNA processing mechanisms and metabolism. Notably, these changes exhibit a transient nature, returning to baseline levels 24 hours to 1 week after treatment. These findings enhance our understanding of ketamine's molecular effects and lay the groundwork for further research elucidating its specific cellular and molecular targets. Moreover, they contribute to the development of therapeutic strategies for ADNP syndrome and potentially, ASD more broadly.
Collapse
Affiliation(s)
- Ariela S Buxbaum Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Walker
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gauri Ganesh
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Rodriguez de Los Santos
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pardis Armini
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Kostic
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
37
|
Li CP, Song YX, Lin ZJ, Ma ML, He LP. Essential Trace Elements in Patients with Dyslipidemia: A Meta-analysis. Curr Med Chem 2024; 31:3604-3623. [PMID: 37132140 PMCID: PMC11327741 DOI: 10.2174/0929867330666230428161653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lipid metabolism is a complex process that includes lipid uptake, transport, synthesis, and degradation. Trace elements are vital in maintaining normal lipid metabolism in the human body. This study explores the relationship between serum trace elements and lipid metabolism. METHODS In this study, we reviewed articles on the relationship between alterations in somatic levels of zinc, iron, calcium, copper, chrome, manganese, selenium, and lipid metabolism. In this systematic review and mate-analysis, databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), Wanfang was searched for articles on the relationship published between January 1, 1900, and July 12, 2022. The meta-analysis was performed using Review Manager5.3 (Cochrane Collaboration). RESULTS No significant association was found between serum zinc and dyslipidemia, while other serum trace elements (iron, selenium, copper, chromium, and manganese) were associated with hyperlipidemia. CONCLUSION The present study suggested that the human body's zinc, copper, and calcium content may be related to lipid metabolism. However, findings on lipid metabolism and Iron, Manganese have not been conclusive. In addition, the relationship between lipid metabolism disorders and selenium levels still needs to be further studied. Further research is needed on treating lipid metabolism diseases by changing trace elements.
Collapse
Affiliation(s)
- Cui-Ping Li
- School of Medicine, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Yu-Xin Song
- School of Medicine, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Zi-Jun Lin
- School of Medicine, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Mei-Lin Ma
- School of Medicine, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Lian-Ping He
- School of Medicine, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| |
Collapse
|
38
|
Huang Q, Zhang Y, Chu Q, Song H. The Influence of Polysaccharides on Lipid Metabolism: Insights from Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300522. [PMID: 37933720 DOI: 10.1002/mnfr.202300522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Polysaccharides are complex molecules of more than ten monosaccharide residues interconnected through glycosidic linkages formed via condensation reactions. Polysaccharides are widely distributed in various food resources and have gained considerable attention due to their diverse biological activities. This review presented a critical analysis of the existing research literature on anti-obesity polysaccharides and investigates the complex interplay between their lipid-lowering activity and the gut microbiota, aiming to provide a comprehensive overview of the lipid-lowering properties of polysaccharides and the underlying mechanisms of action. METHODS AND RESULTS In this review, the study summarized the roles of polysaccharides in improving lipid metabolism via gut microbiota, including the remodeling of the intestinal barrier, reduction of inflammation, inhibition of pathogenic bacteria, reduction of trimethylamine N-oxide (TMAO) production, and regulation of the metabolism of short-chain fatty acids (SCFAs) and bile acids (BAs). CONCLUSION These mechanisms collectively contributed to the beneficial effects of polysaccharides on lipid metabolism and overall metabolic health. Furthermore, polysaccharide-based nanocarriers combined with gut microbiota have broad prospects for developing targeted and personalized therapies for hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yanhui Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| |
Collapse
|
39
|
Yang C, Xie Z, Liu H, Wang X, Zhang Z, Du L, Xie C. Efficacy and mechanism of Shenqi Compound in inhibiting diabetic vascular calcification. Mol Med 2023; 29:168. [PMID: 38093172 PMCID: PMC10720156 DOI: 10.1186/s10020-023-00767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Shenqi Compound (SQC) has been used in clinic for several decades in the prevention and treatment of diabetes and its complications. But this is merely a heritage of experience. The primary aim of this study is to scientifically validate the therapeutic effects of SQC on diabetic vascular calcification (DVC) in an animal model and, simultaneously, uncover its potential underlying mechanisms. METHOD Spontaneous diabetic rat- Goto Kakizaki (GK) rats were selected for rat modeling. We meticulously designed three distinct groups: a control group, a model group, and an SQC treatment group to rigorously evaluate the influence of SQC. Utilizing a comprehensive approach that encompassed methods such as pathological staining, western blot analysis, qRT-PCR, and RNA sequencing, we thoroughly investigated the therapeutic advantages and the underlying mechanistic pathways associated with SQC in the treatment of DVC. RESULT The findings from this investigation have unveiled the extraordinary efficacy of SQC treatment in significantly mitigating DVC. The underlying mechanisms driving this effect encompass multifaceted facets, including the restoration of aberrant glucose and lipid metabolism, the prevention of phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteogenic-like states, the subsequent inhibition of cell apoptosis, the modulation of inflammation responses, the remodeling of the extracellular matrix (ECM), and the activation of the Hippo-YAP signaling pathway. Collectively, these mechanisms lead to the dissolution of deposited calcium salts, ultimately achieving the desired inhibition of DVC. CONCLUSION Our study has provided compelling and robust evidence of the remarkable efficacy of SQC treatment in significantly reducing DVC. This reduction is attributed to a multifaceted interplay of mechanisms, each playing a crucial role in the observed therapeutic effects. Notably, our findings illuminate prospective directions for further research and potential clinical applications in the field of cardiovascular health.
Collapse
Affiliation(s)
- Chan Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Ziyan Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Hanyu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xueru Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Zehua Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Lian Du
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
40
|
Guo Y, Livelo C, Melkani G. Time-restricted feeding regulates lipid metabolism under metabolic challenges. Bioessays 2023; 45:e2300157. [PMID: 37850554 PMCID: PMC10841423 DOI: 10.1002/bies.202300157] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Dysregulation of lipid metabolism is a commonly observed feature associated with metabolic syndrome and leads to the development of negative health outcomes such as obesity, diabetes mellitus, non-alcoholic fatty liver disease, or atherosclerosis. Time-restricted feeding/eating (TRF/TRE), an emerging dietary intervention, has been shown to promote pleiotropic health benefits including the alteration of diurnal expression of genes associated with lipid metabolism, as well as levels of lipid species. Although TRF likely induces a response in multiple organs leading to the modulation of lipid metabolism, a majority of the studies related to TRF effects on lipids have focused only on individual tissues, and furthermore there is a lack of insight into potential underlying mechanisms. In this review, we summarize the current insights regarding TRF effects on lipid metabolism and the potential mechanisms in adipose tissue, liver, skeletal muscle, and heart, and conclude by outlining possible avenues for future exploration.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher Livelo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
41
|
Preeti, Sambhakar S, Saharan R, Narwal S, Malik R, Gahlot V, Khalid A, Najmi A, Zoghebi K, Halawi MA, Albratty M, Mohan S. Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review. Saudi Pharm J 2023; 31:101870. [PMID: 38053738 PMCID: PMC10694332 DOI: 10.1016/j.jsps.2023.101870] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
This review aims to provide a thorough examination of the benefits, challenges, and advancements in utilizing lipids for more effective drug delivery, ultimately contributing to the development of innovative approaches in pharmaceutical science. Lipophilic drugs, characterized by low aqueous solubility, present a formidable challenge in achieving effective delivery and absorption within the human body. To address this issue, one promising approach involves harnessing the potential of lipids. Lipids, in their diverse forms, serve as carriers, leveraging their unique capacity to enhance solubility, stability, and absorption of these challenging drugs. By facilitating improved intestinal solubility and selective lymphatic absorption of porously permeable drugs, lipids offer an array of possibilities for drug delivery. This versatile characteristic not only bolsters the pharmacological efficacy of drugs with low bioavailability but also contributes to enhanced therapeutic performance, ultimately reducing the required dose size and associated costs. This comprehensive review delves into the strategic formulation approaches that employ lipids as carriers to ameliorate drug solubility and bioavailability. Emphasis is placed on the critical considerations of lipid type, composition, and processing techniques when designing lipid-based formulations. This review meticulously examines the multifaceted challenges that come hand in hand with lipid-based formulations for lipophilic drugs, offering an insightful perspective on future trends. Regulatory considerations and the broad spectrum of potential applications are also thoughtfully discussed. In summary, this review presents a valuable repository of insights into the effective utilization of lipids as carriers, all aimed at elevating the bioavailability of lipophilic drugs.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
| | - Renu Saharan
- Maharishi Markandeswar Deemed to be University, Mullana, Ambala, Haryana 133203, India
| | - Sonia Narwal
- Panipat Institute of Engineering & Technology, Department of Pharmacy, GT Road, Samalkha, Panipat 132102, Haryana, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Vinod Gahlot
- HIMT College of Pharmacy, Knowledge Park - 1, Greater Noida, District - Gautam Buddh Nagar, UP 201310, India
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum 11111, Sudan
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Maryam A. Halawi
- Department of Cinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| |
Collapse
|
42
|
Gao W, Du L, Li N, Li Y, Wu J, Zhang Z, Chen H. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury in hyperlipidemic rats by inhibiting inflammation, oxidative stress and NF-κB. Chem Biol Drug Des 2023; 102:1176-1185. [PMID: 37604597 DOI: 10.1111/cbdd.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
The present study was conducted to determine the protective effect of Dexmedetomidine (DEX) in myocardial ischemia-reperfusion injury in hyperlipidemic rats. Towards this, the effect of DEX was first evaluated on the infarct size and the histopathology of cardiac tissues using TTC and H and E staining, and it was found that DEX significantly improved the infarct size and architecture of the myocardial tissues following the I/R injury. DEX also showed significant improvement in various examined hemodynamic parameters (e.g., LVSP, and ± dp/dtmax ) in a dose-dependent manner. The lipid profile (LDL, VLDL, TC, TG, and HDL level) of the rats were also found significantly improved in DEX-treated rats. The level of various pro-inflammatory cytokines (IL-1β, IL-6, IL-10, IL-17, and TNF-α), cardiac injury (CK, CK-MB, Troponin I AST, ALT, and LDH), and oxidative stress (MDA, SOD, and GSH) biomarkers were also found to be restored near to the normal in DEX-treated group. It has been found that DEX also significantly reduces apoptosis of rat cardiomyocytes. In western blot analysis, DEX showed a significant reduction in the activation of NF-κB. In conclusion, our study demonstrated the protective effect of Dexmedetomidine in myocardial ischemia-reperfusion injury in hyperlipidemic rats possibly via amelioration of oxidative stress, and inflammation apoptosis.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Du
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nan Li
- Operating Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yating Li
- Pharmacy Intravenous Admixture Services, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinfang Wu
- Operating Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ze Zhang
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huan Chen
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
43
|
Ottensmann L, Tabassum R, Ruotsalainen SE, Gerl MJ, Klose C, Widén E, Simons K, Ripatti S, Pirinen M. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat Commun 2023; 14:6934. [PMID: 37907536 PMCID: PMC10618167 DOI: 10.1038/s41467-023-42532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
The human plasma lipidome captures risk for cardiometabolic diseases. To discover new lipid-associated variants and understand the link between lipid species and cardiometabolic disorders, we perform univariate and multivariate genome-wide analyses of 179 lipid species in 7174 Finnish individuals. We fine-map the associated loci, prioritize genes, and examine their disease links in 377,277 FinnGen participants. We identify 495 genome-trait associations in 56 genetic loci including 8 novel loci, with a considerable boost provided by the multivariate analysis. For 26 loci, fine-mapping identifies variants with a high causal probability, including 14 coding variants indicating likely causal genes. A phenome-wide analysis across 953 disease endpoints reveals disease associations for 40 lipid loci. For 11 coronary artery disease risk variants, we detect strong associations with lipid species. Our study demonstrates the power of multivariate genetic analysis in correlated lipidomics data and reveals genetic links between diseases and lipid species beyond the standard lipids.
Collapse
Affiliation(s)
- Linda Ottensmann
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Rubina Tabassum
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Elisabeth Widén
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Samuli Ripatti
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
44
|
Wen W, Zheng H, Li W, Huang G, Chen P, Zhu X, Cao Y, Li J, Huang X, Huang Y. Transcription factor EB: A potential integrated network regulator in metabolic-associated cardiac injury. Metabolism 2023; 147:155662. [PMID: 37517793 DOI: 10.1016/j.metabol.2023.155662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
With the worldwide pandemic of metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD), cardiometabolic disease (CMD) has become a significant cause of death in humans. However, the pathophysiology of metabolic-associated cardiac injury is complex and not completely clear, and it is important to explore new strategies and targets for the treatment of CMD. A series of pathophysiological disturbances caused by metabolic disorders, such as insulin resistance (IR), hyperglycemia, hyperlipidemia, mitochondrial dysfunction, oxidative stress, inflammation, endoplasmic reticulum stress (ERS), autophagy dysfunction, calcium homeostasis imbalance, and endothelial dysfunction, may be related to the incidence and development of CMD. Transcription Factor EB (TFEB), as a transcription factor, has been extensively studied for its role in regulating lysosomal biogenesis and autophagy. Recently, the regulatory role of TFEB in other biological processes, including the regulation of glucose homeostasis, lipid metabolism, etc. has been gradually revealed. In this review, we will focus on the relationship between TFEB and IR, lipid metabolism, endothelial dysfunction, oxidative stress, inflammation, ERS, calcium homeostasis, autophagy, and mitochondrial quality control (MQC) and the potential regulatory mechanisms among them, to provide a comprehensive summary for TFEB as a potential new therapeutic target for CMD.
Collapse
Affiliation(s)
- Weixing Wen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Guolin Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Peng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Xiaolin Zhu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation Research, Guangzhou, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| |
Collapse
|
45
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
46
|
Liu L, Kong Q, Xiang Z, Kuang X, Wang H, Zhou L, Feng S, Chen T, Ding C. Integrated Analysis of Transcriptome and Metabolome Provides Insight into Camellia oleifera Oil Alleviating Fat Accumulation in High-Fat Caenorhabditis elegans. Int J Mol Sci 2023; 24:11615. [PMID: 37511379 PMCID: PMC10380387 DOI: 10.3390/ijms241411615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Camellia oil (CO) is a high medicinal and nutritional value edible oil. However, its ability to alleviate fat accumulation in high-fat Caenorhabditis elegans has not been well elucidated. Therefore, this study aimed to investigate the effect of CO on fat accumulation in high-fat C. elegans via transcriptome and metabolome analysis. The results showed that CO significantly reduced fat accumulation in high-fat C. elegans by 10.34% (Oil Red O method) and 11.54% (TG content method), respectively. Furthermore, CO primarily altered the transcription levels of genes involved in longevity regulating pathway. Specifically, CO decreased lipid storage in high-fat C. elegans by inhibiting fat synthesis. In addition, CO supplementation modulated the abundance of metabolic biomarkers related to pyrimidine metabolism and riboflavin metabolism. The integrated transcriptome and metabolome analyses indicated that CO supplementation could alleviate fat accumulation in high-fat C. elegans by regulating retinol metabolism, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, ascorbate and aldarate metabolism, and pentose and glucuronate interconversions. Overall, these findings highlight the potential health benefits of CO that could potentially be used as a functional edible oil.
Collapse
Affiliation(s)
- Li Liu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qingbo Kong
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhuoya Xiang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xuekun Kuang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Heng Wang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
47
|
Qu Y, Wang W, Xiao MZX, Zheng Y, Liang Q. The interplay between lipid droplets and virus infection. J Med Virol 2023; 95:e28967. [PMID: 37496184 DOI: 10.1002/jmv.28967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
As an intracellular parasite, the virus usurps cellular machinery and modulates cellular metabolism pathways to replicate itself in cells. Lipid droplets (LDs) are universally conserved energy storage organelles that not only play vital roles in maintaining lipid homeostasis but are also involved in viral replication. Increasing evidence has demonstrated that viruses take advantage of cellular lipid metabolism by targeting the biogenesis, hydrolysis, and lipophagy of LD during viral infection. In this review, we summarize the current knowledge about the modulation of cellular LD by different viruses, with a special emphasis on the Hepatitis C virus, Dengue virus, and SARS-CoV-2.
Collapse
Affiliation(s)
- Yafei Qu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai University of Traditional Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Medicine, Shanghai, China
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Mataramvura H, Bunders MJ, Duri K. Human immunodeficiency virus and antiretroviral therapy-mediated immune cell metabolic dysregulation in children born to HIV-infected women: potential clinical implications. Front Immunol 2023; 14:1182217. [PMID: 37350953 PMCID: PMC10282157 DOI: 10.3389/fimmu.2023.1182217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Commencing lifelong antiretroviral therapy (ART) immediately following HIV diagnosis (Option B+) has dramatically improved the health of HIV-infected women and their children, with the majority being of HIV-exposed children born uninfected (HEU). This success has led to an increasing population of HIV-infected women receiving ART during pregnancy and children exposed to ART in utero. Nonetheless, a small proportion of children are still infected with HIV (HEI) each year. HEI children suffer from reduced immunocompetence and host-defence, due to CD4+ T lymphocyte depletion, but also dysregulation of other immune cells including CD8+ T lymphocytes, natural killer (NK) cells, macrophages including B lymphocytes. Furthermore, although HEU children are uninfected, altered immune responses are observed and associated with increased vulnerability to infections. The mechanisms underlying immune dysregulation in HEU children remain poorly described. Building on early studies, emerging data suggests that HIV/ART exposure early in life affects cell metabolic function of HEU children. Prenatal HIV/ART exposure has been associated with dysregulation of mitochondria, including impaired DNA polymerase activity. Furthermore, dysregulation of oxidative phosphorylation (OXPHOS) causes a decreased generation of adenosine triphosphate (ATP) and increased production of reactive oxygen species (ROS), resulting in oxidative stress. These altered metabolic processes can affect immune cell viability and immune responses. Recent studies have indicated that immune-metabolic dysregulation may contribute to HIV-associated pathogenesis and clinical observations associated with HIV and ART exposure in HEU/HEI children. Given the critical role metabolic processes in immune cell functioning, immune-metabolic dysregulation in HEU and HEI children may have implications in effective host-defence responses against pathogens, as well as efficacy of standard ART regimens and future novel HIV cure approaches in HEI children. At the same time, targeting metabolic pathways of immune cells may provide safer and novel approaches for HIV cure strategies. Here, we review the current literature investigating immune-metabolic dysregulation in paediatric HIV pathogenesis.
Collapse
Affiliation(s)
- Hope Mataramvura
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Madeleine J. Bunders
- III. Medical Department, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerina Duri
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
49
|
Skrzypski M, Kołodziejski PA. Special Issue: Lipid Metabolism, Adipogenesis and Fat Tissue Metabolism: Gene Regulation. Genes (Basel) 2023; 14:genes14051121. [PMID: 37239481 DOI: 10.3390/genes14051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Lipid metabolism is pivotal in controlling energy homeostasis [...].
Collapse
Affiliation(s)
- Marek Skrzypski
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Paweł A Kołodziejski
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| |
Collapse
|
50
|
Yang JH, Bai TC, Shi LL, Hou B, Tang R, Zhang RP, Chen XL. Antihyperlipidemic effect of Vaccinium dunalianum buds based on biological activity screening and LC-MS. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116190. [PMID: 36693548 DOI: 10.1016/j.jep.2023.116190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The buds of Vaccinium dunalianum Wight are used as folk medicine in the Yi settlement of the Yunnan Province, China. It has long been used as herbal tea in the local area owing to its effects of lowering blood lipids and body weight. However, there are only a few studies on its antihyperlipidemic effects, effective substances and mechanisms, especially its effectiveness in diet-induced hyperlipidemia. AIM OF THE STUDY This study aimed to elucidate the therapeutic effects, pharmacodynamic material bases, and mechanisms of V. dunalianum buds on diet-induced hyperlipidemia. MATERIALS AND METHODS A high-fat diet-induced hyperlipidemic Sprague-Dawley (SD) rat model was established. Rats were gavaged with different doses of aqueous extract of V. dunalianum(VDW) for 8 weeks and their sera and organ samples were collected. The antihyperlipidemic effect of VDW on SD rats was evaluated based on the biochemical indices and histopathological outcomes. Liquid chromatography-mass spectrometry(LC-MS) was used to determine the main components in VDW, which were separated and purified using sequential chromatographic methods. Their chemical structures were determined using high-resolution electrospray ionization mass spectroscopy and nuclear magnetic resonance spectroscopy. 6'-O-caffeoyl-arbutin, as the principal component of VDW, was also evaluated for its antihyperlipidemic activity using an approach similar to that used for VDW. Lastly, the potential targets of VDW and 6'-O-caffeoyl-arbutin in lowering blood lipids were screened out using network pharmacology, and the selected targets were docked with arbutin derivatives. The expression of target proteins was determined using western blotting to illustrate the antihyperlipidemic mechanisms of VDW and 6'-O-caffeoyl-arbutin. RESULTS VDW reduced triglyceride, total cholesterol, low-density lipoprotein, alanine transaminase, and aspartate transaminase levels in the serum of modeled rats, and increased high-density lipoprotein levels. There was an improvement in steatoses, and lipid droplet accumulation decreased in vivo after VDW intervention. LC-MS revealed that VDW mainly contained arbutin and chlorogenic acid derivatives. Sixteen compounds were isolated and identified. 6'-O-caffeoyl-arbutin was the main compound of VDW (>21.67%) that showed obvious antihyperlipidemic effect with low hepatic damage at different doses. PTGS2, ADH1C, and MAOB were screened out using network pharmacology and they showed strong correlations with arbutin derivative through molecular docking. Results from WB showed that VDW and 6'-O-caffeoyl-arbutin could reduce blood lipid levels by reducing the protein expression of PTGS2, ADH1C, and MAOB. CONCLUSIONS 6'-O-caffeoyl-arbutin was the main component of V. dunalianum buds. VDW and 6'-O-caffeoyl-arbutin could regulate blood lipid levels in the high-fat diet-induced rat model of hyperlipidemia without damaging their vital organs. Furthermore, they could regulate the expression of PTGS2, ADH1C, and MAOB proteins and play a role in lowering blood lipids. The findings of this study lay a foundation for the further development of V. dunalianum and 6'-O-caffeoyl-arbutin as health supplements or drugs for the management of hyperlipidemia.
Collapse
Affiliation(s)
- Jin-Han Yang
- School of Chinese Materia Medica, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Tong-Chen Bai
- School of Chinese Materia Medica, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Lu-Li Shi
- School of Chinese Materia Medica, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Bo Hou
- School of Chinese Materia Medica, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Ran Tang
- College of Tropical Crops, Yunnan Agricultural University, Puer, 665099, PR China
| | - Rong-Ping Zhang
- School of Chinese Materia Medica, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| | - Xing-Long Chen
- School of Chinese Materia Medica, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| |
Collapse
|