1
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Elton AC, Cedarstrom V, Quraishi A, Wuertz B, Murray K, Markowski TW, Seabloom D, Ondrey FG. Metabolic and Metabolomic Effects of Metformin in Murine Model of Pulmonary Adenoma Formation. Nutr Cancer 2023; 75:1014-1027. [PMID: 36688306 DOI: 10.1080/01635581.2023.2165692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epidemiologic studies of diabetic patients treated with metformin identified significantly lower incidences of cancer. From this, there is growing interest in the use of metformin to treat and prevent cancer. Studies have investigated chemopreventive mechanisms including alterations in calorie intake, cancer metabolism, and cell signaling. Repurposing the drug is challenging due to its metabolic effects and non-uniform effects on different types of cancer. In our previously published studies, we observed that benzo[a]pyrene treated mice receiving metformin significantly reduced lung adenomas; however, mice had reduced weight gain. In this study, we compared chemoprevention diets with and without metformin to evaluate the effects of diet vs. effects of metformin. We also performed tandem mass spectrometry on mouse serum to assess metabolomic alterations associated with metformin treatment. In metformin cohorts, the rate of weight gain was reduced, but weights did not vary between diets. There was no weight difference between diets without metformin. Interestingly, caloric intake was increased in metformin treated mice. Metabolomic analysis revealed metabolite alterations consistent with metformin treatment. Based on these results, we conclude that previous reductions in lung adenomas may have been occurred from anticancer effects of metformin rather than a potentially toxic effect such as calorie restriction.
Collapse
Affiliation(s)
- Andrew C Elton
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Vannesa Cedarstrom
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Arman Quraishi
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Beverly Wuertz
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kevin Murray
- Center for Mass Spectrometry & Proteomics, Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd W Markowski
- Center for Mass Spectrometry & Proteomics, Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Donna Seabloom
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Frank G Ondrey
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Ferreira V, Folgueira C, Guillén M, Zubiaur P, Navares M, Sarsenbayeva A, López-Larrubia P, Eriksson JW, Pereira MJ, Abad-Santos F, Sabio G, Rada P, Valverde ÁM. Modulation of hypothalamic AMPK phosphorylation by olanzapine controls energy balance and body weight. Metabolism 2022; 137:155335. [PMID: 36272468 DOI: 10.1016/j.metabol.2022.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. METHODS Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPKα1 in mice were also analyzed. RESULTS Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i.p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. CONCLUSION Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| |
Collapse
|
4
|
Stephan D, Taege N, Dore R, Folberth J, Jöhren O, Schwaninger M, Lehnert H, Schulz C. Knockdown of Endogenous Nucb2/Nesfatin-1 in the PVN Leads to Obese-Like Phenotype and Abolishes the Metformin- and Stress-Induced Thermogenic Response in Rats. Horm Metab Res 2022; 54:768-779. [PMID: 36195118 DOI: 10.1055/a-1926-7280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Nesfatin-1, the cleavage product of nucleobindin-2, is an anorexigenic peptide and major regulator of energy homeostasis. Beyond reducing food intake and increasing energy expenditure, it is also involved in regulating the stress response. Interaction of nucleobindin-2/nesfatin-1 and glucose homeostasis has been observed and recent findings suggest a link between the action of the antidiabetic drug metformin and the nesfatinergic system. Hence, this study aimed to clarify the role of nucleobindin-2/nesfatin-1 in the paraventricular nucleus of the hypothalamus in energy homeostasis as well as its involvement in stress- and metformin-mediated changes in energy expenditure. Knockdown of nucleobindin-2/nesfatin-1 in male Wistar rats led to significantly increased food intake, body weight, and reduced energy expenditure compared to controls. Nucleobindin-2/nesfatin-1 knockdown animals developed an obese-like phenotype represented by significantly increased fat mass and overall increase of circulating lipids. Concomitantly, expression of nucleobindin-2 and melanocortin receptor type 3 and 4 mRNA in the paraventricular nucleus was decreased indicating successful knockdown and impairment at the level of the melanocortin system. Additionally, stress induced activation of interscapular brown adipose tissue was significantly decreased in nucleobindin-2/nesfatin-1 knockdown animals and accompanied by lower adrenal weight. Finally, intracerebroventricular administration of metformin significantly increased energy expenditure in controls and this effect was absent in nucleobindin-2/nesfatin-1 knockdown animals. Overall, we clarified the crucial role of nucleobindin-2/nesfatin-1 in the paraventricular nucleus of the hypothalamus in the regulation of energy homeostasis. The nesfatinergic system was further identified as important mediator in stress- and metformin-induced thermogenesis.
Collapse
Affiliation(s)
- Daniel Stephan
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Department of Oral- and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Natalie Taege
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Institute of Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Lübeck, Germany
| | - Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Julica Folberth
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Rektorat, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Carla Schulz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Chan A, Willard A, Mulloy S, Ibrahim N, Sciaccotta A, Schonfeld M, Spencer SM. Metformin in nucleus accumbens core reduces cue-induced cocaine seeking in male and female rats. Addict Biol 2022; 27:e13165. [PMID: 35470560 PMCID: PMC9285471 DOI: 10.1111/adb.13165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
This study investigated the potential therapeutic effects of the FDA‐approved drug metformin on cue‐induced reinstatement of cocaine seeking. Metformin (dimethyl‐biguanide) is a first‐line treatment for type II diabetes that, among other mechanisms, is involved in the activation of adenosine monophosphate activated protein kinase (AMPK). Cocaine self‐administration and extinction is associated with decreased levels of phosphorylated AMPK within the nucleus accumbens core (NAcore). Previously, it was shown that increasing AMPK activity in the NAcore decreased cue‐induced reinstatement of cocaine seeking. Decreasing AMPK activity produced the opposite effect. The goal of the present study was to determine if metformin in the NAcore reduces cue‐induced cocaine seeking in adult male and female Sprague Dawley rats. Rats were trained to self‐administer cocaine followed by extinction prior to cue‐induced reinstatement trials. Metformin microinjected in the NAcore attenuated cue‐induced reinstatement in male and female rats. Importantly, metformin's effects on cocaine seeking were not due to a general depression of spontaneous locomotor activity. In female rats, metformin's effects did generalize to a reduction in cue‐induced reinstatement of sucrose seeking. These data support a potential role for metformin as a pharmacotherapy for cocaine use disorder but warrant caution given the potential for metformin's effects to generalize to a natural reward in female rats.
Collapse
Affiliation(s)
- Amy Chan
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland Oregon USA
| | - Alexis Willard
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Medical Discovery Team on Addiction University of Minnesota Minneapolis Minnesota USA
| | - Sarah Mulloy
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Medical Discovery Team on Addiction University of Minnesota Minneapolis Minnesota USA
- Graduate Program in Neuroscience University of Minnesota Minneapolis Minnesota USA
| | - Noor Ibrahim
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
| | - Allegra Sciaccotta
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
| | - Mark Schonfeld
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Medical Discovery Team on Addiction University of Minnesota Minneapolis Minnesota USA
- Graduate Program in Pharmacology University of Minnesota Minneapolis Minnesota USA
| | - Sade M. Spencer
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Medical Discovery Team on Addiction University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
6
|
Wang X, Huang H, Zhu Y, Li S, Zhang P, Jiang J, Xi C, Wu L, Gao X, Fu Y, Zhang D, Chen Y, Hu S, Lai J. Metformin acts on the gut-brain axis to ameliorate antipsychotic-induced metabolic dysfunction. Biosci Trends 2021; 15:321-329. [PMID: 34588398 DOI: 10.5582/bst.2021.01317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antipsychotic-induced metabolic dysfunction (AIMD) is an intractable clinical challenge worldwide. The situation is becoming more critical as second-generation antipsychotics (SGAs), to a great extent, have replaced the role of first-generation antipsychotics in managing major psychiatric disorders. Although the exact mechanisms for developing AIMD is intricate, emerging evidence has indicated the involvement of the microbiota-gut-brain axis in AIMD. SGAs treatment may change the diversity and compositions of intestinal flora (e.g., decreased abundance of Bacteroidetes and Akkermansia muciniphila, and increased Firmicutes). Short-chain fatty acids and other metabolites derived from gut microbiota, on the one hand, can regulate the activity of intestinal endocrine cells and their secretion of satiety hormones (e.g., glucagon-like peptide 1, peptide YY, cholecystokinin and ghrelin); on the other hand, can activate the vagus nerve or transport into the brain to exert a central modulation of foraging behaviors via binding to neuropeptide receptors. Interestingly, metformin, a classical antidiabetic agent, is capable of alleviating AIMD possibly by regulating the microbiota-gut-brain axis. That is, metformin can not only partially reverse the alterations of gut microbial communities due to SGAs treatment, but also play a positive role in rectifying the disturbances of peripheral and central satiety-related neuropeptides. Current evidence has indicated a promising role for metformin on ameliorating AMID, but further verifications in well-designed clinical trials are still warranted.
Collapse
Affiliation(s)
- Xiaorong Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, Zhejiang, China.,Brain Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| | - Huimin Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyi Zhu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shaoli Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peifen Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajun Jiang
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Caixi Xi
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingling Wu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xingle Gao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yaoyang Fu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiqing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, Zhejiang, China.,Brain Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, Zhejiang, China.,Brain Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Therapeutic effect of treatment with metformin and/or 4-hydroxychalcone in male Wistar rats with nonalcoholic fatty liver disease. Eur J Pharmacol 2019; 863:172699. [DOI: 10.1016/j.ejphar.2019.172699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022]
|
8
|
Luo C, Wang X, Huang H, Mao X, Zhou H, Liu Z. Effect of Metformin on Antipsychotic-Induced Metabolic Dysfunction: The Potential Role of Gut-Brain Axis. Front Pharmacol 2019; 10:371. [PMID: 31024322 PMCID: PMC6465968 DOI: 10.3389/fphar.2019.00371] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Antipsychotics are the first-line medications prescribed for patients with schizophrenia or other mental disorders. Cumulative evidence has revealed that metabolic dysfunctions frequently occur in patients receiving antipsychotics, especially second-generation antipsychotics, and these effects may decrease patient compliance and increase health costs. Metformin is an effective pharmaceutical adjuvant for ameliorating antipsychotic-induced metabolic dysfunction (AIMD) in clinical practice. However, the mechanism of the effects of metformin on AIMD remains unclear. The gut-brain axis is a bidirectional communication system between the gastrointestinal tract and the central nervous system and has been associated with many pathological and physiological conditions, such as those related to metabolism. Antipsychotics interact with and have affinity for dopamine receptors and other receptors in the brain, and treatment with these antipsychotics has been shown to influence gut microbiota metabolism and composition, as observed in both animal and human studies. Metformin exerts an antidiabetic effect that is correlated with activation of AMP-kinase in the hypothalamus, and metformin also influences gut flora. Therefore, the gut-brain axis may play a role in the effect of metformin on AIMD. Since no direct evidence is available, this perspective may provide a direction for further research.
Collapse
Affiliation(s)
- Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| | - Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A. The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 2019; 14:e0213779. [PMID: 30870482 PMCID: PMC6417728 DOI: 10.1371/journal.pone.0213779] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
In diet-induced obesity, metformin (MF) has weight-lowering effect and improves glucose homeostasis and insulin sensitivity. However, there is no information on the efficiency of MF and the mechanisms of its action in melanocortin-type obesity. We studied the effect of the 10-day treatment with MF at the doses of 200, 400 and 600 mg/kg/day on the food intake and the metabolic and hormonal parameters in female C57Bl/6J (genotype Ay/a) agouti-mice with melanocortin-type obesity, and the influence of MF on the hypothalamic signaling in obese animals at the most effective metabolic dose (600 mg/kg/day). MF treatment led to a decrease in food intake, the body and fat weights, the plasma levels of glucose, insulin and leptin, all increased in agouti-mice, to an improvement of the lipid profile and glucose sensitivity, and to a reduced fatty liver degeneration. In the hypothalamus of obese agouti-mice, the leptin and insulin content was reduced and the expression of the genes encoding leptin receptor (LepR), MC3- and MC4-melanocortin receptors and pro-opiomelanocortin (POMC), the precursor of anorexigenic melanocortin peptides, was increased. The activities of AMP-activated kinase (AMPK) and the transcriptional factor STAT3 were increased, while Akt-kinase activity did not change from control C57Bl/6J (a/a) mice. In the hypothalamus of MF-treated agouti-mice (10 days, 600 mg/kg/day), the leptin and insulin content was restored, Akt-kinase activity was increased, and the activities of AMPK and STAT3 were reduced and did not differ from control mice. In the hypothalamus of MF-treated agouti-mice, the Pomc gene expression was six times higher than in control, while the gene expression for orexigenic neuropeptide Y was decreased by 39%. Thus, we first showed that MF treatment leads to an improvement of metabolic parameters and a decrease of hyperleptinemia and hyperinsulinaemia in genetically-induced melanocortin obesity, and the specific changes in the hypothalamic signaling makes a significant contribution to this effect of MF.
Collapse
Affiliation(s)
- Kira Derkach
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Zakharova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Inna Zorina
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrey Bakhtyukov
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Romanova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Liubov Bayunova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander Shpakov
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
10
|
Shpakov AO, Derkach KV. Molecular Mechanisms of the Effects of Metformin on the Functional Activity of Brain Neurons. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11055-018-0657-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Dantas‐Ferreira RF, Raingard H, Dumont S, Schuster‐Klein C, Guardiola‐Lemaitre B, Pevet P, Challet E. Melatonin potentiates the effects of metformin on glucose metabolism and food intake in high-fat-fed rats. Endocrinol Diabetes Metab 2018; 1:e00039. [PMID: 30815567 PMCID: PMC6354841 DOI: 10.1002/edm2.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Melatonin is a hormone synthesized mainly by the pineal gland, and secreted only at night. Melatonin has been proposed as a modulator of glucose metabolism. METHODS Here we studied the metabolic effects of melatonin administration alone (s.c. 10 mg/kg) or in combination with metformin (p.o. 300 mg/kg), a widely used anti-diabetic drug. These treatments were tested on glucose tolerance, insulin sensitivity and food intake in Zucker fatty rats (i.e., bearing a missense mutation in the leptin receptor gene) and high-fat fed Sprague-Dawley rats. RESULTS Melatonin alone or in combination did not significantly modify glucose tolerance in either model. Melatonin alone in high-fat fed Sprague-Dawley improved insulin sensitivity to the level of metformin. In addition, combined treatment further ameliorated insulin sensitivity (+13%), especially during the late phase of rising glycemia. The lack of similar effects in Zucker rats suggests an involvement of leptin signaling in mediating the positive effects of melatonin. Body mass gain in Sprague-Dawley rats was decreased by both metformin, and combined metformin and melatonin. While melatonin alone did not markedly affect food intake, its combination with metformin led to a more pronounced anorexia (-17% food intake during the last week), as compared to metformin alone. CONCLUSIONS Melatonin improves the beneficial effects of metformin on insulin sensitivity and body mass gain in high-fat fed Sprague-Dawley rats. Therefore, the combination of melatonin and metformin could be beneficial to develop dual therapies to treat or delay type 2 diabetes associated with obesity.
Collapse
Affiliation(s)
- Rosana F. Dantas‐Ferreira
- Circadian Clocks & Metabolism teamInstitute of Cellular and Integrative NeurosciencesCentre National de la Recherche Scientifique (CNRS)University of StrasbourgStrasbourgFrance
| | - Helene Raingard
- Circadian Clocks & Metabolism teamInstitute of Cellular and Integrative NeurosciencesCentre National de la Recherche Scientifique (CNRS)University of StrasbourgStrasbourgFrance
| | - Stephanie Dumont
- Circadian Clocks & Metabolism teamInstitute of Cellular and Integrative NeurosciencesCentre National de la Recherche Scientifique (CNRS)University of StrasbourgStrasbourgFrance
| | | | | | - Paul Pevet
- Circadian Clocks & Metabolism teamInstitute of Cellular and Integrative NeurosciencesCentre National de la Recherche Scientifique (CNRS)University of StrasbourgStrasbourgFrance
| | - Etienne Challet
- Circadian Clocks & Metabolism teamInstitute of Cellular and Integrative NeurosciencesCentre National de la Recherche Scientifique (CNRS)University of StrasbourgStrasbourgFrance
| |
Collapse
|
12
|
Taghizadehghalehjoughi A, Hacimuftuoglu A, Cetin M, Ugur AB, Galateanu B, Mezhuev Y, Okkay U, Taspinar N, Taspinar M, Uyanik A, Gundogdu B, Mohammadzadeh M, Nalci KA, Stivaktakis P, Tsatsakis A, Jung TW, Jeong JH, El-Aty AMA. Effect of metformin/irinotecan-loaded poly-lactic-co-glycolic acid nanoparticles on glioblastoma: in vitro and in vivo studies. Nanomedicine (Lond) 2018; 13:1595-1606. [DOI: 10.2217/nnm-2017-0386] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: The present study was designed to evaluate the effects of irinotecan hydrochloride (IRI)- or metformin hydrochloride (MET)-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) for the treatment of glioblastoma multiforme using in vitro neuron and U-87 MG glioblastoma cell cultures and in vivo animal model. Methods: The cytotoxic and neurotoxic effects of pure drugs, blank NPs and MET- and IRI-loaded PLGA NPs were investigated in vitro (using methylthiazolyldiphenyl-tetrazolium bromide assay) and in vivo (using Cavalieri's principle for estimation of cancer volume).Results: 1 and 2 mM doses of MET and MET-loaded PLGA NPs, respectively, significantly reduced the volume of extracted cancer. Conclusion: Consequently, MET- and IRI-loaded PLGA NPs may be a promising approach for the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Ali Taghizadehghalehjoughi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Science, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Meltem Cetin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240, Erzurum, Turkey
| | - Afife Busra Ugur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240, Erzurum, Turkey
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, District 5, Bucharest, Romania
| | - Yaroslav Mezhuev
- Center of Biomaterials, D Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Numan Taspinar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Mehmet Taspinar
- Department of Medical Biology, School of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Abdullah Uyanik
- Department of Nephrology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Maryam Mohammadzadeh
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Kemal Alp Nalci
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Polychronis Stivaktakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
- Toxplus SA, University of Crete Spin-Off, 71601, Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
- Toxplus SA, University of Crete Spin-Off, 71601, Heraklion, Greece
| | - Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - AM Abd El-Aty
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
13
|
Affiliation(s)
- Lev M Berstein
- a Laboratory of Oncoendocrinology , N.N.Petrov National Medical Research Center of Oncology , St.Petersburg , Russia
| |
Collapse
|
14
|
Derkach KV, Zakharova IO, Romanova IV, Zorina II, Mikhrina AL, Shpakov AO. Metabolic parameters and functional state of hypothalamic signaling systems in AY/a mice with genetic predisposition to obesity and the effect of metformin. DOKL BIOCHEM BIOPHYS 2018; 477:377-381. [DOI: 10.1134/s1607672917060096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/22/2022]
|
15
|
Kang D, Jing Z, Li R, Hei G, Shao T, Li L, Sun M, Yang Y, Wang Y, Wang X, Long Y, Huang X, Wu R. Effect of Betahistine and Metformin on Antipsychotic-Induced Weight Gain: An Analysis of Two Clinical Trials. Front Psychiatry 2018; 9:620. [PMID: 30542300 PMCID: PMC6277778 DOI: 10.3389/fpsyt.2018.00620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/02/2018] [Indexed: 01/16/2023] Open
Abstract
Antipsychotic-induced weight gain is one of the most common adverse effects of antipsychotic treatment. However, there are no well-established interventions for the weight gain yet. In this study, we pooled the data from two clinical trials, which were originally examining the efficacy of betahistine and the efficacy of metformin in treating antipsychotic-induced weight gain and insulin resistance. A total of 67 people with schizophrenia or bipolar disorder treated with antipsychotics were assigned to 36 mg day-1 betahistine (n = 13) or 1,000 mg day-1 metformin (n = 25) or placebo (n = 29) treatment for 12 weeks, with evaluation at baseline and week 12. The primary outcome was the body mass index (BMI). After treatment, metformin group had a mean decrease in BMI of 1.46 ± 0.14 (p < 0.001) and insulin resistance index (IRI) of 4.30 ± 2.02 (p < 0.001). The betahistine group had no significant alteration in BMI or IRI. However, placebo group had a mean increase in BMI of 1.27 ± 0.77 (p < 0.001) and IRI of 0.45 ± 0.86 (p < 0.001). Between the two treatment groups, metformin significantly decreased weight, BMI, fasting glucose, insulin level, and IRI but not waist circumference when compared with betahistine. Moreover, metformin significantly decreased weight, BMI, waist circumference, fasting glucose, insulin level, and IRI when compared with placebo, whereas betahistine significantly decreased body weight, waist circumference, BMI, insulin level, and IRI but not fasting glucose when compared with placebo. In this study, we found that both metformin treatment and betahistine treatment were efficacious in improving antipsychotic-induced weight gain and insulin resistance, and metformin was more efficacious in preventing and revising the weight gain induced by antipsychotics. Clinical Trial Registration: www.ClinicalTrials.gov, NCT00451399(Study 1), NCT00709202(Study 2).
Collapse
Affiliation(s)
- Dongyu Kang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Zhihui Jing
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Ranran Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Gangrui Hei
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Tiannan Shao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Li Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Mengxi Sun
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Ye Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Ying Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Xiaoyi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Yujun Long
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China
| | - Xiansheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,The China National Clinical Research Center for Mental Health Disorders, Changsha, China.,National Technology Institute of Psychiatry, Changsha, China.,Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China.,Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Tokubuchi I, Tajiri Y, Iwata S, Hara K, Wada N, Hashinaga T, Nakayama H, Mifune H, Yamada K. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS One 2017; 12:e0171293. [PMID: 28158227 PMCID: PMC5291441 DOI: 10.1371/journal.pone.0171293] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Metformin is known to have a beneficial effect on body weight and body composition, although the precise mechanism has not been elucidated yet. The aim of this study is to investigate the effects of metformin on energy metabolism and anthropometric factors in both human subjects and rats. METHODS In human studies, metformin (1500mg/day) was administered to 23 healthy subjects and 18 patients with type 2 diabetes for 2 weeks. Metabolic parameters and energy metabolism were measured during a meal tolerance test in the morning before and after the treatment of metformin. In animal studies, 13 weeks old SD rats were fed 25-26 g of standard chow only during 12-hours dark phase with either treated by metformin (2.5mg/ml in drinking water) or not for 2 weeks, and metabolic parameters, anthropometric factors and energy metabolism together with expressions related to fat oxidation and adaptive thermogenesis were measured either in fasting or post-prandial state at 15 weeks old. RESULTS Post-prandial plasma lactate concentration was significantly increased after the metformin treatment in both healthy subjects and diabetic patients. Although energy expenditure (EE) did not change, baseline respiratory quotient (RQ) was significantly decreased and post-prandial RQ was significantly increased vice versa following the metformin treatment in both groups. By the administration of metformin to SD rats for 2 weeks, plasma levels of lactate and pyruvate were significantly increased in both fasting and post-prandial states. RQ during a fasting state was significantly decreased in metformin-treated rats compared to controls with no effect on EE. Metformin treatment brought about a significant reduction of visceral fat mass compared to controls accompanied by an up-regulation of fat oxidation-related enzyme in the liver, UCP-1 in the brown adipose tissue and UCP-3 in the skeletal muscle. CONCLUSION From the results obtained, beneficial effects of metformin on visceral fat reduction has been demonstrated probably through a mechanism for a potential shift of fuel resource into fat oxidation and an upregulation of adaptive thermogenesis independent of an anorexigenic effect of this drug.
Collapse
Affiliation(s)
- Ichiro Tokubuchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yuji Tajiri
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shimpei Iwata
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kento Hara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Nobuhiko Wada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toshihiko Hashinaga
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hitomi Nakayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hiroharu Mifune
- Institute of Animal Experimentation, Kurume University School of Medicine, Kurume, Japan
| | - Kentaro Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
17
|
Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice. Behav Brain Res 2015; 301:1-9. [PMID: 26698400 DOI: 10.1016/j.bbr.2015.12.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
Long-term use of anti-diabetic agents has become commonplace as rates of obesity, metabolic syndrome and diabetes continue to escalate. Metformin, a commonly used anti-diabetic drug, has been shown to have many beneficial effects outside of its therapeutic regulation of glucose metabolism and insulin sensitivity. Studies on metformin's effects on the central nervous system are limited and predominantly consist of in vitro studies and a few in vivo studies with short-term treatment in relatively young animals; some provide support for metformin as a neuroprotective agent while others show evidence that metformin may be deleterious to neuronal survival. In this study, we examined the effect of long-term metformin treatment on brain neurotrophins and cognition in aged male C57Bl/6 mice. Mice were fed control (C), high-fat (HF) or a high-fat diet supplemented with metformin (HFM) for 6 months. Metformin decreased body fat composition and attenuated declines in motor function induced by a HF diet. Performance in the Morris water maze test of hippocampal based memory function, showed that metformin prevented impairment of spatial reference memory associated with the HF diet. Quantitative RT-PCR on brain homogenates revealed decreased transcription of BDNF, NGF and NTF3; however protein levels were not altered. Metformin treatment also decreased expression of the antioxidant pathway regulator, Nrf2. The decrease in transcription of neurotrophic factors and Nrf2 with chronic metformin intake, cautions of the possibility that extended metformin use may alter brain biochemistry in a manner that creates a vulnerable brain environment and warrants further investigation.
Collapse
|
18
|
Song YM, Lee YH, Kim JW, Ham DS, Kang ES, Cha BS, Lee HC, Lee BW. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy 2015; 11:46-59. [PMID: 25484077 DOI: 10.4161/15548627.2014.984271] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metformin activates both PRKA and SIRT1. Furthermore, autophagy is induced by either the PRKA-MTOR-ULK1 or SIRT1-FOXO signaling pathways. We aimed to elucidate the mechanism by which metformin alleviates hepatosteatosis by examining the molecular interplay between SIRT1, PRKA, and autophagy. ob/ob mice were divided into 3 groups: one with ad libitum feeding of a standard chow diet, one with 300 mg/kg intraperitoneal metformin injections, and one with 3 g/d caloric restriction (CR) for a period of 4 wk. Primary hepatocytes or HepG2 cells were treated with oleic acid (OA) plus high glucose in the absence or presence of metformin. Both CR and metformin significantly improved body weight and glucose homeostasis, along with hepatic steatosis, in ob/ob mice. Furthermore, CR and metformin both upregulated SIRT1 expression and also stimulated autophagy induction and flux in vivo. Metformin also prevented OA with high glucose-induced suppression of both SIRT1 expression and SIRT1-dependent activation of autophagy machinery, thereby alleviating intracellular lipid accumulation in vitro. Interestingly, metformin treatment upregulated SIRT1 expression and activated PRKA even after siRNA-mediated knockdown of PRKAA1/2 and SIRT1, respectively. Taken together, these results suggest that metformin alleviates hepatic steatosis through PRKA-independent, SIRT1-mediated effects on the autophagy machinery.
Collapse
Key Words
- 3MA, 3-methyladenine
- CQ, chloroquine
- CR, caloric restriction
- GOT1/AST, glutamic-oxaloacetic transaminase 1, soluble
- GPT/ALT, glutamic-pyruvate transaminase (alanine aminotransferase)
- IPGTTs, intraperitoneal glucose tolerance tests
- MTOR, mechanistic target of rapamycin
- Met, metformin
- NAFLD, nonalcoholic fatty liver disease
- OA, oleic acid
- ORO, Oil Red O
- PRKA
- PRKA, protein kinase, AMP-activated
- SIRT1
- SIRT1, sirtuin 1
- T-CHO, total cholesterol
- TG, triglyceride
- autophagy
- hepatoseatosis
- metformin
- siRNA, short interfering RNA
Collapse
Affiliation(s)
- Young Mi Song
- a Brain Korea 21 PLUS Project for Medical Science ; Yonsei University College of Medicine ; Seoul , Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Intracerebroventricular metformin decreases body weight but has pro-oxidant effects and decreases survival. Neurochem Res 2014; 40:514-23. [PMID: 25492133 DOI: 10.1007/s11064-014-1496-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Metformin (Met), which is an insulin-sensitizer, decreases insulin resistance and fasting insulin levels. The precise molecular target of Met is unknown; however, several reports have shown an inhibitory effect on mitochondrial complex I of the electron transport chain (ETC), which is a related site for reactive oxygen species production. In addition to peripheral effects, Met is capable of crossing the blood-brain barrier, thus regulating the central mechanism involved in appetite control. The present study explores the effects of intracerebroventricular (i.c.v.) infusion of Met on ROS production on brain, insulin sensitivity and metabolic and oxidative stress outcomes in CF1 mice. Metformin (Met 50 and 100 µg) was injected i.c.v. in mice daily for 7 days; the brain mitochondrial H2O2 production, food intake, body weight and fat pads were evaluated. The basal production of H2O2 of isolated mitochondria from the hippocampus and hypothalamus was significantly increased by Met (100 µg). There was increased peripheral sensitivity to insulin (Met 100 µg) and glucose tolerance tests (Met 50 and 100 µg). Moreover, Met decreased food intake, body weight, body temperature, fat pads and survival rates. Additionally, Met (1, 4 or 10 mM) decreased mitochondrial viability and increased the production of H2O2 in neuronal cell cultures. In summary, our data indicate that a high dose of Met injected directly into the brain has remarkable neurotoxic effects, as evidenced by hypothermia, hypoglycemia, disrupted mitochondrial ETC flux and decreased survival rate.
Collapse
|
20
|
Rouquet T, Clément P, Gaigé S, Tardivel C, Roux J, Dallaporta M, Bariohay B, Troadec JD, Lebrun B. Acute oral metformin enhances satiation and activates brainstem nesfatinergic neurons. Obesity (Silver Spring) 2014; 22:2552-62. [PMID: 25236366 DOI: 10.1002/oby.20902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/18/2014] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The study was designed to determine metformin effects on meal pattern, gastric emptying, energy expenditure, and to identify metformin-sensitive neurons and their phenotype. METHODS This study was performed on C57BL/6J and obese/diabetic (db/db) mice. Metformin (300 mg/kg) was administered by oral gavage. Food intake, meal pattern, oxygen consumption (VO2 ), and carbon dioxide production (VCO2 ) were obtained using an Oxylet Physiocage System. Gastric emptying assay and real-time RT-PCR from dorsal vagal complex extracts were also performed. C-Fos expression was used as a marker of neuronal activation. Phenotypic characterization of activated neurons was performed using either proopiomelanocortin (POMC)-Tau-Topaz GFP transgenic mice or NUCB2/nesfatin-1 and tyrosine hydroxylase (TH) labeling. RESULTS Acute per os metformin treatment slowed down gastric emptying, reduced meal size, but not meal number in a leptin-independent manner, and transiently decreased energy expenditure in a leptin-dependent manner. Metformin specifically activated central circuitry within the brainstem, independently of vagal afferents. Finally, while POMC neurons seemed sparsely activated, we report that a high proportion of the c-Fos positive cells were nesfatinergic neurons, some of which coexpressing TH. CONCLUSIONS Altogether, these results show that metformin modifies satiation by activating brainstem circuitry and suggest that NUCB2/nesfatin-1 could be involved in this metformin effect.
Collapse
Affiliation(s)
- Thaïs Rouquet
- EA 4674, Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif, FST St Jérôme, Aix-Marseille Université, Marseille, France; Biomeostasis CRO, FST St Jérôme, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Despite the known glucose-lowering effects of metformin, more recent clinical interest lies in its potential as a weight loss drug. Herein, we discuss the potential mechanisms by which metformin decreases appetite and opposes unfavorable fat storage in peripheral tissues. RECENT FINDINGS Many individuals struggle to maintain clinically relevant weight loss from lifestyle and bariatric surgery interventions. Long-term follow-up from the Diabetes Prevention Program demonstrates that metformin produces durable weight loss, and decreased food intake by metformin is the primary weight loss mechanism. Although the effect of metformin on appetite is likely to be multifactorial, changes in hypothalamic physiology, including leptin and insulin sensitivity, have been documented. In addition, novel work in obesity highlights the gastrointestinal physiology and circadian rhythm changes by metformin as not only affecting food intake, but also the regulation of fat oxidation and storage in liver, skeletal muscle, and adipose tissue. SUMMARY Metformin induces modest weight loss in overweight and obese individuals at risk for diabetes. A more detailed understanding of how metformin induces weight loss will likely lead to optimal co-prescription of lifestyle modification with pharmacology for the treatment of obesity independent of diabetes.
Collapse
Affiliation(s)
- Steven K Malin
- aDepartment of Pathobiology, Lerner Research Institute, Cleveland Clinic bDepartment of Endocrinology, Diabetes and Metabolism, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
22
|
Duan Y, Zhang R, Zhang M, Sun L, Dong S, Wang G, Zhang J, Zhao Z. Metformin inhibits food intake and neuropeptide Y gene expression in the hypothalamus. Neural Regen Res 2014; 8:2379-88. [PMID: 25206548 PMCID: PMC4146045 DOI: 10.3969/j.issn.1673-5374.2013.25.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/06/2013] [Indexed: 12/25/2022] Open
Abstract
Metformin may reduce food intake and body weight, but the anorexigenic effects of metformin are still poorly understood. In this study, Sprague-Dawley rats were administered a single intracere-broventricular dose of metformin and compound C, in a broader attempt to investigate the regula-tory effects of metformin on food intake and to explore the possible mechanism. Results showed that central administration of metformin significantly reduced food intake and body weight gain, par-ticularly after 4 hours. A reduction of neuropeptide Y expression and induction of AMP-activated protein kinase phosphorylation in the hypothalamus were also observed 4 hours after metformin administration, which could be reversed by compound C, a commonly-used antagonist of AMP-activated protein kinase. Furthermore, metformin also improved lipid metabolism by reducing plasma low-density lipoprotein. Our findings suggest that under normal physiological conditions, central regulation of appetite by metformin is related to a decrease in neuropeptide Y gene expres-sion, and that the activation of AMP-activated protein kinase may simply be a response to the anorexigenic effect of metformin.
Collapse
Affiliation(s)
- Yale Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Rui Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Lijuan Sun
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Suzhen Dong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Gang Wang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| |
Collapse
|
23
|
Ashabi G, Khodagholi F, Khalaj L, Goudarzvand M, Nasiri M. Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats: interference of AMPK/PGC-1α pathway. Metab Brain Dis 2014; 29:47-58. [PMID: 24435937 DOI: 10.1007/s11011-013-9475-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/16/2013] [Indexed: 12/25/2022]
Abstract
Here, we have investigated the effect of metformin pretreatment in the rat models of global cerebral ischemia. Cerebral ischemia which leads to brain dysfunction is one of the main causes of neurodegeneration and death worldwide. Metformin is used in clinical drug therapy protocols of diabetes. It is suggested that metformin protects cells under hypoxia and ischemia in non-neuronal contexts. Protective effects of metformin may be modulated via activating the AMP activated protein kinase (AMPK). Our results showed that induction of 30 min global cerebral I/R injury using 4-vesseles occlusion model led to significant cell death in the rat brain. Metformin pretreatment (200 mg kg/once/day, p.o., 2 weeks) attenuated apoptotic cell death and induced mitochondrial biogenesis proteins in the ischemic rats, analyzed using histological and Western blot assays. Besides, inhibition of AMPK by compound c showed that metformin resulted in apoptosis attenuation via AMPK activation. Interestingly, AMPK activation was also involved in the induction of mitochondrial biogenesis proteins using metformin, inhibition of AMPK by compound c reversed such effect, further supporting the role of AMPK upstream of mitochondrial biogenesis proteins. In summary, Metformin pretreatment is able to modulate mitochondrial biogenesis and apoptotic cell death pathways through AMPK activation in the context of global cerebral ischemia, conducting the outcome towards neuroprotection.
Collapse
Affiliation(s)
- Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | | | | |
Collapse
|
24
|
Abstract
Metformin has been the mainstay of therapy for diabetes mellitus for many years; however, the mechanistic aspects of metformin action remained ill-defined. Recent advances revealed that this drug, in addition to its glucose-lowering action, might be promising for specifically targeting metabolic differences between normal and abnormal metabolic signalling. The knowledge gained from dissecting the principal mechanisms by which metformin works can help us to develop novel treatments. The centre of metformin's mechanism of action is the alteration of the energy metabolism of the cell. Metformin exerts its prevailing, glucose-lowering effect by inhibiting hepatic gluconeogenesis and opposing the action of glucagon. The inhibition of mitochondrial complex I results in defective cAMP and protein kinase A signalling in response to glucagon. Stimulation of 5'-AMP-activated protein kinase, although dispensable for the glucose-lowering effect of metformin, confers insulin sensitivity, mainly by modulating lipid metabolism. Metformin might influence tumourigenesis, both indirectly, through the systemic reduction of insulin levels, and directly, via the induction of energetic stress; however, these effects require further investigation. Here, we discuss the updated understanding of the antigluconeogenic action of metformin in the liver and the implications of the discoveries of metformin targets for the treatment of diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Ida Pernicova
- Department of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1A 6BQ, UK
| | - Márta Korbonits
- Department of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1A 6BQ, UK
| |
Collapse
|
25
|
Goshadrou F, Kermani M, Ronaghi A, Sajjadi S. The effect of ghrelin on MK-801 induced memory impairment in rats. Peptides 2013; 44:60-5. [PMID: 23538209 DOI: 10.1016/j.peptides.2013.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 11/24/2022]
Abstract
Accumulating evidence indicates that the brain-gut peptide ghrelin which is expressed in hippocampus improves memory and learning processes. The MK-801, a noncompetitive NMDA receptor antagonist, has also shown amnesic properties in animal model. The current study was to find out whether intracerebroventricular administration of ghrelin can prevent amnesia induced by MK-801 in rats. A week after the surgery, during which cannuals were implanted in the lateral ventricular, the animals were trained and tested in a step-through type passive avoidance task. Memory retrieval was measured by step-through latency (STL) and total time in dark compartments (TDC). In the first series of experiments, we established a dose-response relationship for ghrelin on the passive avoidance paradigm. In the second set of experiments, animals were divided to two groups. In the first group, MK-801 (0.075, 0.15 and 0.3mg/kg) was injected intraperitoneally (i.p.) immediately after the acquisition session and in the second group MK-801 (same doses) was injected (i.p.) 30 min before the retention session. Analysis of data showed that in both groups, MK-801 impaired learning and memory. In the third set of experiments, administration of ghrelin (200 ng/rat) right after the acquisition session (i.e. before MK-801 injection) improved the MK-801 induced memory impairment, but administration of ghrelin before retrieval session did not affect the MK-801 induced memory impairment. These results show an interaction between ghrelin and glutamatergic system. A novel finding in this study is that ghrelin can prevent amnesia produced by NMDA antagonist in rats when injected in post-training phase.
Collapse
Affiliation(s)
- Fatemeh Goshadrou
- Physiology Department, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|