1
|
Amirinezhadfard E, Arjmand P, Azizi H, Rahimi F. Understanding CD-117 gene expression in mouse testicular germ cells: in vitro and in vivo studies. ZYGOTE 2025:1-5. [PMID: 40091781 DOI: 10.1017/s0967199424000455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BACKGROUND The proto-oncogene tyrosine kinase receptor encoded by the W locus (CD-117) has been confirmed to be critical to the processes of germ cell proliferation, migration and survival in the rodent. The purpose of the present study was to examine the expression of germ cell-specific CD-117 marker in testis and germ line stem cells (GSCs). The aim of this study was analysis of CD-117 expression as germ cell marker in the seminiferous tubule of mice. MATERIALS AND METHODS In this experimental study, we employed a comprehensive array of techniques to scrutinize the expression of CD-117. Our analysis encompassed the utilization of immunocytochemistry, immunohistochemistry, Fluidigm real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR), and flow cytometry methodologies. RESULTS The Immuno-history-fluorescent analysis revealed the distribution of the germ cell marker CD-117 in the differentiated compartment of seminiferous tubules. High-magnification of confocal microscopy analysis showed surface expression of CD-117 in testis section. Whereas isolated GSCs colonies clearly express the germ-specific protein CD-117, TSCs (testicular stromal cells) were negative for this marker. Fluidigm real-time RT-PCR result demonstrated a significant expression (P < 0.001) of CD-117 in the neonate and adult GSCs compared to TSCs cells. Similarly, flow cytometry analysis confirmed expression of CD-117 in the GSCs colonies and testis cells. CONCLUSION These results discriminate in spite of stage-specific ectopic, expression of CD-117 is a specific germ cell marker for proliferation and differentiation of GSCs into sperm, and can be beneficial for understanding of the signalling pathways related to differentiation of GSCs.
Collapse
Affiliation(s)
- Elaheh Amirinezhadfard
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, PR China
| | - Pardis Arjmand
- Amol University of Special Modern Technologies, Amol, Iran
- Department of biology, Jahrom branch, Islamic Azad University, Jahrom, Iran
| | - Hossein Azizi
- Amol University of Special Modern Technologies, Amol, Iran
| | - Fatemeh Rahimi
- Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
2
|
Rehder P, Packeiser EM, Körber H, Goericke-Pesch S. Altered Sertoli Cell Function Contributes to Spermatogenic Arrest in Dogs with Chronic Asymptomatic Orchitis. Int J Mol Sci 2025; 26:1108. [PMID: 39940876 PMCID: PMC11817828 DOI: 10.3390/ijms26031108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Acquired infertility due to chronic asymptomatic orchitis (CAO) is a common finding in male dogs. It is characterized by spermatogenic arrest, a significant reduction in spermatogonia, immune cell infiltration and a disruption of the blood-testis barrier. Sertoli cells are a key factor for spermatogenesis and the testicular micromilieu. We hypothesize altered Sertoli cell function to be involved in the pathogenesis of canine CAO. Consequently, the aim was to gain further insights into the spermatogonial stem cell niche and Sertoli cell function in CAO-affected dogs. Therefore, the testicular expression of the Sertoli cell-derived factors bFGF, GDNF, WNT5A, BMP4, CXCL12 and LDHC were evaluated in 15 CAO testis tissues and 10 normospermic controls by relative quantitative real-time PCR (qPCR). Additionally, the protein expression patterns of bFGF, GDNF and WNT5A were visualized immunohistochemically (IHC). This study revealed an overexpression of bFGF (IHC, p < 0.0001), GDNF (qPCR, p = 0.0036), WNT5A (IHC, p = 0.0066) and CXCL12 (qPCR, p = 0.0003) and a reduction in BMP4 (qPCR, p = 0.0041) and LDHC (qPCR, p = 0.0003) in CAO-affected testis in dogs, clearly confirming impaired Sertoli cell function in canine CAO. Sertoli cell function is essential for spermatogenesis and must be considered for potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Sandra Goericke-Pesch
- Reproductive Unit—Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (P.R.); (E.-M.P.); (H.K.)
| |
Collapse
|
3
|
Zhao Y, Wu J, Li X, Zheng L, Chen Q, Zhang S, Chen J. Huangqi-Guizhi-Wuwutang protects against oligospermia in mice by promoting the proliferation of spermatogenic stem cells: A comprehensive study using HPLC-Q-TOF/MS and experimental pharmacology. Biomed Chromatogr 2024; 38:e6023. [PMID: 39390901 DOI: 10.1002/bmc.6023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
The classical traditional Chinese medicine formula Huangqi-Guizhi-Wuwutang (HGW) has been shown to enhance sperm production. However, the bioactive components and comprehensive mechanisms underlying the therapeutic effects remain unclear. The present study investigates the potential active ingredients and underlying mechanisms of HGW against spermatogenesis dysfunction. The chemical components of HGW were analyzed by mass spectrometry. And then the "components-targets-pathway-disease" network was constructed using network pharmacology research methods, which aimed to identify the key active components and potential targets of HGW in treating oligospermia. Experimental validation was finally conducted in animal model. The male-specific pathogen-free Kunming mice were divided into five groups: Sham group, Model group, and HGW groups (8, 16, and 32 g/kg of HGW by gavage for 35 days). Chemical profile and network pharmacology results revealed that potential bioactive compounds were dihydrocinnacasside, isomucronulatol, and 6-gingerol, and the mechanism of which was enriched in regulating spermatogenic stem cells (SSCs), endocrine function, and apoptosis. The administration of HGW significantly improved oligospermia in mice. HGW significantly upregulated the expression of marker proteins in SSCs and the potential targets within the testis simultaneously. Our data indicates that HGW enhances the proliferation of SSCs, and HGW can be a promising therapeutic candidate for oligospermia.
Collapse
Affiliation(s)
- Yuan Zhao
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jinru Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Xiangbin Li
- Shenzhen Zhongshan Obstetrics and Gynecology Hospital, Shenzhen, 518031, China
| | - Lin Zheng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Qiugu Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Shangbin Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jianping Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| |
Collapse
|
4
|
Majzoub A, Viana MC, Achermann APP, Ferreira IT, Laursen RJ, Humaidan P, Esteves SC. Non-Obstructive Azoospermia and Intracytoplasmic Sperm Injection: Unveiling the Chances of Success and Possible Consequences for Offspring. J Clin Med 2024; 13:4939. [PMID: 39201081 PMCID: PMC11355217 DOI: 10.3390/jcm13164939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is found in up to 15% of infertile men. While several causes for NOA have been identified, the exact etiology remains unknown in many patients. Advances in assisted reproductive technology, including intracytoplasmic sperm injection (ICSI) and testicular sperm retrieval, have provided hope for these patients. This review summarizes the chances of success with ICSI for NOA patients and examines preoperative factors and laboratory techniques associated with positive outcomes. Furthermore, we reviewed possible consequences for offspring by the use of ICSI with testicular sperm retrieved from NOA patients and the interventions that could potentially mitigate risks. Testicular sperm retrieved from NOA patients may exhibit increased chromosomal abnormalities, and although lower fertilization and pregnancy rates are reported in NOA patients compared to other forms of infertility, the available evidence does not suggest a significant increase in miscarriage rate, congenital malformation, or developmental delay in their offspring compared to the offspring of patients with less severe forms of infertility or the offspring of fertile men. However, due to limited data, NOA patients should receive specialized reproductive care and personalized management. Counseling of NOA patients is essential before initiating any fertility enhancement treatment not only to mitigate health risks associated with NOA but also to enhance the chances of successful outcomes and minimize possible risks to the offspring.
Collapse
Affiliation(s)
- Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha 3050, Qatar;
- Department of Clinical Urology, Weill Cornell Medicine-Qatar, Doha 3050, Qatar
| | - Marina C. Viana
- ANDROFERT, Andrology & Human Reproduction Clinic, Campinas 13075-460, SP, Brazil; (M.C.V.); (A.P.P.A.)
| | - Arnold P. P. Achermann
- ANDROFERT, Andrology & Human Reproduction Clinic, Campinas 13075-460, SP, Brazil; (M.C.V.); (A.P.P.A.)
| | - Isadora T. Ferreira
- Faculty of Medical Sciences, Pontifical Catholic University of Campinas, Campinas 13087-571, SP, Brazil;
| | - Rita J. Laursen
- Skive Fertility Clinic, Skive Regional Hospital, 7800 Skive, Denmark; (R.J.L.); (P.H.)
| | - Peter Humaidan
- Skive Fertility Clinic, Skive Regional Hospital, 7800 Skive, Denmark; (R.J.L.); (P.H.)
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
| | - Sandro C. Esteves
- ANDROFERT, Andrology & Human Reproduction Clinic, Campinas 13075-460, SP, Brazil; (M.C.V.); (A.P.P.A.)
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
- Department of Surgery, Division of Urology, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| |
Collapse
|
5
|
Jokar J, Abdulabbas HT, Alipanah H, Ghasemian A, Ai J, Rahimian N, Mohammadisoleimani E, Najafipour S. Tissue engineering studies in male infertility disorder. HUM FERTIL 2023; 26:1617-1635. [PMID: 37791451 DOI: 10.1080/14647273.2023.2251678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Infertility is an important issue among couples worldwide which is caused by a variety of complex diseases. Male infertility is a problem in 7% of all men. In vitro spermatogenesis (IVS) is the experimental approach that has been developed for mimicking seminiferous tubules-like functional structures in vitro. Currently, various researchers are interested in finding and developing a microenvironmental condition or a bioartificial testis applied for fertility restoration via gamete production in vitro. The tissue engineering (TE) has developed new approaches to treat male fertility preservation through development of functional male germ cells. This makes TE a possible future strategy for restoration of male fertility. Although 3D culture systems supply the perception of the effect of cellular interactions in the process of spermatogenesis, formation of a native gradient of autocrine/paracrine factors in 3D culture systems have not been considered. These results collectively suggest that maintaining the microenvironment of testicular cells even in the form of a 3D-culture system is crucial in achieving spermatogenesis ex vivo. It is also possible to engineer the testicular structures using biomaterials to provide a supporting scaffold for somatic and stem cells. The insemination of these cells with GFs is possible for temporally and spatially adjusted release to mimic the microenvironment of the in situ seminiferous epithelium. This review focuses on recent studies and advances in the application of TE strategies to cell-tissue culture on synthetic or natural scaffolds supplemented with growth factors.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | | | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Cui H, Culty M. Do macrophages play a role in the adverse effects of endocrine disrupting chemicals (EDCs) on testicular functions? FRONTIERS IN TOXICOLOGY 2023; 5:1242634. [PMID: 37720385 PMCID: PMC10501733 DOI: 10.3389/ftox.2023.1242634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
During the past decades, several endocrine disrupting chemicals (EDCs) have been confirmed to affect male reproductive function and fertility in animal studies. EDCs are suspected to exert similar effects in humans, based on strong associations between levels of antiandrogenic EDCs in pregnant women and adverse reproductive effects in infants. Testicular macrophages (tMΦ) play a vital role in modulating immunological privilege and maintaining normal testicular homeostasis as well as fetal development. Although tMΦ were not historically studied in the context of endocrine disruption, they have emerged as potential targets to consider due to their critical role in regulating cells such as spermatogonial stem cells (SSCs) and Leydig cells. Few studies have examined the impact of EDCs on the ability of testicular cells to communicate and regulate each other's functions. In this review, we recapitulate what is known about tMΦ functions and interactions with other cell types in the testis that support spermatogenesis and steroidogenesis. We also surveyed the literature for reports on the effects of the EDCs genistein and DEHP on tMΦ, SSCs, Sertoli and Leydig cells. Our goal is to explore the possibility that EDC disruption of tMΦ interactions with other cell types may play a role in their adverse effects on testicular developmental programming and functions. This approach will highlight gaps of knowledge, which, once resolved, should improve the risk assessment of EDC exposure and the development of safeguards to protect male reproductive functions.
Collapse
Affiliation(s)
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Li C, Yao Z, Ma L, Song X, Wang W, Wan C, Ren S, Chen D, Zheng Y, Zhu YT, Chang G, Wu S, Miao K, Luo F, Zhao XY. Lovastatin promotes the self-renewal of murine and primate spermatogonial stem cells. Stem Cell Reports 2023; 18:969-984. [PMID: 37044069 PMCID: PMC10147841 DOI: 10.1016/j.stemcr.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/14/2023] Open
Abstract
The spermatogonial stem cell (SSC) niche is critical for SSC maintenance and subsequent spermatogenesis. Numerous reproductive hazards impair the SSC niche, thereby resulting in aberrant SSC self-renewal and male infertility. However, promising agents targeting the impaired SSC niche to promote SSC self-renewal are still limited. Here, we screen out and assess the effects of Lovastatin on the self-renewal of mouse SSCs (mSSCs). Mechanistically, Lovastatin promotes the self-renewal of mSSCs and inhibits its inflammation and apoptosis through the regulation of isoprenoid intermediates. Remarkably, treatment by Lovastatin could promote the proliferation of undifferentiated spermatogonia in the male gonadotoxicity model generated by busulfan injection. Of note, we demonstrate that Lovastatin could enhance the proliferation of primate undifferentiated spermatogonia. Collectively, our findings uncover that lovastatin could promote the self-renewal of both murine and primate SSCs and have implications for the treatment of certain types of male infertility using small compounds.
Collapse
Affiliation(s)
- Chaohui Li
- Shunde Hospital of Southern Medical University, Shunde, Guangdong, China; State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaokai Yao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Linzi Ma
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuling Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dingyao Chen
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yong-Tong Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Shihao Wu
- Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | - Kai Miao
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, SAR, China.
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; Sino-America Joint Research Center for Translational Medicine in Developmental Disabilities, Guangzhou, China; Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; National Clinical Research Canter for Kidney Disease, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, China.
| |
Collapse
|
8
|
Prmt7 Downregulation in Mouse Spermatogonia Functions through miR-877-3p/ Col6a3. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081194. [PMID: 36013373 PMCID: PMC9410080 DOI: 10.3390/life12081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Protein arginine methyltransferases 7 (Prmt7) is expressed in male germ cells, including primordial germ cells, gonocytes, and spermatogonia. Our previous study demonstrated that Prmt7 downregulation reduced the proliferation of GC-1 cells (a cell line of mouse immortalized spermatogonia). However, how Prmt7 regulates spermatogonial proliferation through miRNA and the target gene remains elusive. Here, we experimentally reduced the Prmt7 expression in the GC-1 cells and subjected them to miRNA sequencing to explore the miRNA profile and its Prmt7-responsive members. In total, 48 differentially expressed miRNAs (DEmiRNAs), including 36 upregulated and 12 downregulated miRNAs, were identified. After verifying the validity of sequencing results through qRT-PCR assays in randomly selected DEmiRNAs, we predicted the target genes of these DEmiRNAs. Next, we combined DEmiRNA target genes and previously identified differentially expressed genes between Prmt7 knockdown and control groups of GC-1 cells, which resulted in seven miRNA/target gene pairs. Among these miRNA/target gene pairs, we further detected the expression of Col6a3 (collagen type VI alpha 3) as the target gene of mmu-miR-877-3p. The results suggested that Prmt7 downregulation in mouse spermatogonia might function through miR-877-3p/Col6a3. Overall, these findings provide new insights into the role of Prmt7 in male germ cell development through miRNA and target genes.
Collapse
|
9
|
TCFL5 deficiency impairs the pachytene to diplotene transition during spermatogenesis in the mouse. Sci Rep 2022; 12:10956. [PMID: 35768632 PMCID: PMC9242989 DOI: 10.1038/s41598-022-15167-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Spermatogenesis is a complex, multistep process during which spermatogonia give rise to spermatozoa. Transcription Factor Like 5 (TCFL5) is a transcription factor that has been described expressed during spermatogenesis. In order to decipher the role of TCFL5 during in vivo spermatogenesis, we generated two mouse models. Ubiquitous removal of TCFL5 generated by breeding TCFL5fl/fl with SOX2-Cre mice resulted in sterile males being unable to produce spermatozoa due to a dramatic alteration of the testis architecture presenting meiosis arrest and lack of spermatids. SYCP3, SYCP1 and H1T expression analysis showed that TCFL5 deficiency causes alterations during pachytene/diplotene transition resulting in a meiotic arrest in a diplotene-like stage. Even more, TCFL5 deficient pachytene showed alterations in the number of MLH1 foci and the condensation of the sexual body. In addition, tamoxifen-inducible TCFL5 knockout mice showed, besides meiosis phenotype, alterations in the spermatids elongation process resulting in aberrant spermatids. Furthermore, TCFL5 deficiency increased spermatogonia maintenance genes (Dalz, Sox2, and Dmrt1) but also increased meiosis genes (Syce1, Stag3, and Morc2a) suggesting that the synaptonemal complex forms well, but cannot separate and meiosis does not proceed. TCFL5 is able to bind to the promoter of Syce1, Stag3, Dmrt1, and Syce1 suggesting a direct control of their expression. In conclusion, TCFL5 plays an essential role in spermatogenesis progression being indispensable for meiosis resolution and spermatids maturation.
Collapse
|
10
|
Khanehzad M, Abolhasani F, Hassanzadeh G, Nourashrafeddin SM, Hedayatpour A. Determination of the Excitatory Effects of MicroRNA-30 in the Self-Renewal and Differentiation Process of Neonatal Mouse Spermatogonial Stem Cells. Galen Med J 2021; 9:e1829. [PMID: 34466599 PMCID: PMC8344142 DOI: 10.31661/gmj.v9i0.1829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/17/2020] [Accepted: 04/26/2020] [Indexed: 01/15/2023] Open
Abstract
Background: Spermatogonial stem cells (SSCs) are considered as special stem cells since they have the ability of self-renewal, differentiation, and transferring genetic information to the next generation. Also, they considered as vital players in initiating and preserving spermatogenesis. The fate decisions of SSCs are mediated by intrinsic and extrinsic factors, among which microRNAs (miRNAs) are one of the most essential factors in spermatogenesis among endogenous regulators. However, the mechanisms by which individual miRNAs regulate self-renewal and differentiation of SSCs are unclear. The present study aimed to evaluate the impact of miRNA-30 mimic on fate determinations of SSCs. Materials and Methods: The obtained SSCs from neonatal mice (3-6 days old) were purified by MACS and flow cytometry with a promyelocytic leukemia zinc-finger marker. Then, the cultured cells were transfected with miRNA- 30 mimic, and finally, the changes in expressing ID4 and c-kit proteins were assessed by western blot analysis. Results: According to flow cytometry findings, the percentage of SSC purity was about 98.32. The expression of ID4 protein and colonization increased significantly through the transfection of miRNA-30 mimic (P<0.05). Conclusion: The miRNA-30 controls spermatogonial stem cell self-renewal and differentiation, which may have significant implications for treating male infertility.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abolhasani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Correspondence to: Azim Hedayatpour Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran Telephone Number: +982166419072 Email Address:
| |
Collapse
|
11
|
Singh SP, Kharche SD, Pathak M, Ranjan R, Soni YK, Singh MK, Pourouchottamane R, Chauhan MS. Low oxygen tension potentiates proliferation and stemness but not multilineage differentiation of caprine male germline stem cells. Mol Biol Rep 2021; 48:5063-5074. [PMID: 34148207 DOI: 10.1007/s11033-021-06501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
The milieu of male germline stem cells (mGSCs) is characterized as a low-oxygen (O2) environment, whereas, their in-vitro expansion is typically performed under normoxia (20-21% O2). The comparative information about the effects of low and normal O2 levels on the growth and differentiation of caprine mGSCs (cmGSCs) is lacking. Thus, we aimed to investigate the functional and multilineage differentiation characteristics of enriched cmGSCs, when grown under hypoxia and normoxia. After enrichment of cmGSCs through multiple methods (differential platting and Percoll-density gradient centrifugation), the growth characteristics of cells [population-doubling time (PDT), viability, proliferation, and senescence], and expression of key-markers of adhesion (β-integrin and E-Cadherin) and stemness (OCT-4, THY-1 and UCHL-1) were evaluated under hypoxia (5% O2) and normoxia (21% O2). Furthermore, the extent of multilineage differentiation (neurogenic, adipogenic, and chondrogenic differentiation) under different culture conditions was assessed. The survival, viability, and proliferation were significantly (p < 0.05) improved, thus, yielding a significantly (p < 0.05) higher number of viable cells with larger colonies under hypoxia. Furthermore, the expression of stemness and adhesion markers were distinctly upregulated under lowered O2 conditions. Conversely, the differentiated regions and expression of differentiation-specific genes [C/EBPα (adipogenic), nestin and β-tubulin (neurogenic), and COL2A1 (chondrogenic)] were significantly (p < 0.05) reduced under hypoxia. Overall, the results demonstrate that culturing cmGSCs under hypoxia augments the growth characteristics and stemness but not the multilineage differentiation of cmGSCs, as compared with normoxia. These data are important to develop robust methodologies for ex-vivo expansion and lineage-committed differentiation of cmGSCs for clinical applications.
Collapse
Affiliation(s)
- Shiva Pratap Singh
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281122, India.
| | - Suresh Dinkar Kharche
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281122, India
| | - Manisha Pathak
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281122, India
| | - Ravi Ranjan
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281122, India
| | - Yogesh Kumar Soni
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281122, India
| | - Manoj Kumar Singh
- Animal Genetics and Breeding Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281122, India
| | - Ramasamy Pourouchottamane
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281122, India
| | | |
Collapse
|
12
|
Khanehzad M, Nourashrafeddin SM, Abolhassani F, Kazemzadeh S, Madadi S, Shiri E, Khanlari P, Khosravizadeh Z, Hedayatpour A. MicroRNA-30a-5p promotes differentiation in neonatal mouse spermatogonial stem cells (SSCs). Reprod Biol Endocrinol 2021; 19:85. [PMID: 34108007 PMCID: PMC8188658 DOI: 10.1186/s12958-021-00758-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The importance of spermatogonial stem cells (SSCs) in spermatogenesis is crucial and intrinsic factors and extrinsic signals mediate fate decisions of SSCs. Among endogenous regulators, microRNAs (miRNAs) play critical role in spermatogenesis. However, the mechanisms which individual miRNAs regulate self- renewal and differentiation of SSCs are unknown. The aim of this study was to investigate effects of miRNA-30a-5p inhibitor on fate determinations of SSCs. METHODS SSCs were isolated from testes of neonate mice (3-6 days old) and their purities were performed by flow cytometry with ID4 and Thy1 markers. Cultured cells were transfected with miRNA- 30a-5p inhibitor. Evaluation of the proliferation (GFRA1, PLZF and ID4) and differentiation (C-Kit & STRA8) markers of SSCs were accomplished by immunocytochemistry and western blot 48 h after transfection. RESULTS Based on the results of flow cytometry with ID4 and Thy1 markers, percentage of purity of SSCs was about 84.3 and 97.4 % respectively. It was found that expression of differentiation markers after transfection was significantly higher in miRNA-30a- 5p inhibitor group compared to other groups. The results of proliferation markers evaluation also showed decrease of GFRA1, PLZF and ID4 protein in SSCs transfected with miRNA-30a-5p inhibitor compared to the other groups. CONCLUSIONS It can be concluded that inhibition of miRNA-30a-5p by overexpression of differentiation markers promotes differentiation of Spermatogonial Stem Cells.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Soheila Madadi
- Department of Anatomy, School of Medicine, Arak University of Medical Science, Arak, Iran
| | - Elham Shiri
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parastoo Khanlari
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
13
|
Tao K, Sun Y, Chao Y, Xing L, Leng L, Zhou D, Zhu W, Fan L. β-estradiol promotes the growth of primary human fetal spermatogonial stem cells via the induction of stem cell factor in Sertoli cells. J Assist Reprod Genet 2021; 38:2481-2490. [PMID: 34050447 DOI: 10.1007/s10815-021-02240-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mammalian spermatogenesis is responsible for male fertility and is supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs). Sertoli cells provide a supportive microenvironment for SSCs, in part by the production of stem cell factor (SCF), which is a potent regulator of spermatogonia proliferation and survival. METHODS We investigated the novel role of β-estradiol in modulating the proliferation and apoptosis of fetal SSCs via the regulation of SCF secretion in Sertoli cells isolated from human fetal testes. The proliferation of SSCs in the co-culture system was determined by colony formation and BrdU incorporation assays. TUNEL assay was used to measure SSC apoptosis in co-culture in response to treatment with control, β-estradiol, or the combination of β-estradiol and the estrogen receptor inhibitor ICI 182780. RESULTS In the system with purified human fetal Sertoli cells (MIS+/c-Kit-/AP-), β-estradiol upregulated the production of SCF in a dose- and time-dependent manner. In the co-culture system of primary human fetal SSCs (c-Kit+/SSEA-4+/Oct-4+/AP+) and Sertoli cells (MIS+), β-estradiol markedly increased the proliferation of SSCs. Moreover, SSC apoptosis was significantly inhibited by β-estradiol and was completely reversed by the combination of β-estradiol and ICI 182780. CONCLUSION Here we report, for the first time, that β-estradiol can induce the increase of SCF expression in human fetal Sertoli cells and regulates the growth and survival of human fetal SSCs. These novel findings provide new perspectives on the current understanding of the role of estrogen in human spermatogenesis.
Collapse
Affiliation(s)
- Ke Tao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Yuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Yuanchi Chao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Liu Xing
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Lizhi Leng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Dai Zhou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Wenbing Zhu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China. .,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.
| |
Collapse
|
14
|
Pediatric and Adolescent Oncofertility in Male Patients-From Alpha to Omega. Genes (Basel) 2021; 12:genes12050701. [PMID: 34066795 PMCID: PMC8150386 DOI: 10.3390/genes12050701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
This article reviews the latest information about preserving reproductive potential that can offer enhanced prospects for future conception in the pediatric male population with cancer, whose fertility is threatened because of the gonadotoxic effects of chemotherapy and radiation. An estimated 400,000 children and adolescents aged 0–19 years will be diagnosed with cancer each year. Fertility is compromised in one-third of adult male survivors of childhood cancer. We present the latest approaches and techniques for fertility preservation, starting with fertility preservation counselling, a clinical practice guideline used around the world and finishing with recent advances in basic science and translational research. Improving strategies for the maturation of germ cells in vitro combined with new molecular techniques for gene editing could be the next scientific keystone to eradicate genetic diseases such as cancer related mutations in the offspring of cancer survivors.
Collapse
|
15
|
Li Y, Liu WS, Yi J, Kong SB, Ding JC, Zhao YN, Tian YP, Feng GS, Li CJ, Liu W, Wang HB, Lu ZX. The role of tyrosine phosphatase Shp2 in spermatogonial differentiation and spermatocyte meiosis. Asian J Androl 2020; 22:79-87. [PMID: 31210146 PMCID: PMC6958991 DOI: 10.4103/aja.aja_49_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transition from spermatogonia to spermatocytes and the initiation of meiosis are key steps in spermatogenesis and are precisely regulated by a plethora of proteins. However, the underlying molecular mechanism remains largely unknown. Here, we report that Src homology domain tyrosine phosphatase 2 (Shp2; encoded by the protein tyrosine phosphatase, nonreceptor type 11 [Ptpn11] gene) is abundant in spermatogonia but markedly decreases in meiotic spermatocytes. Conditional knockout of Shp2 in spermatogonia in mice using stimulated by retinoic acid gene 8 (Stra8)-cre enhanced spermatogonial differentiation and disturbed the meiotic process. Depletion of Shp2 in spermatogonia caused many meiotic spermatocytes to die; moreover, the surviving spermatocytes reached the leptotene stage early at postnatal day 9 (PN9) and the pachytene stage at PN11–13. In preleptotene spermatocytes, Shp2 deletion disrupted the expression of meiotic genes, such as disrupted meiotic cDNA 1 (Dmc1), DNA repair recombinase rad51 (Rad51), and structural maintenance of chromosome 3 (Smc3), and these deficiencies interrupted spermatocyte meiosis. In GC-1 cells cultured in vitro, Shp2 knockdown suppressed the retinoic acid (RA)-induced phosphorylation of extracellular-regulated protein kinase (Erk) and protein kinase B (Akt/PKB) and the expression of target genes such as synaptonemal complex protein 3 (Sycp3) and Dmc1. Together, these data suggest that Shp2 plays a crucial role in spermatogenesis by governing the transition from spermatogonia to spermatocytes and by mediating meiotic progression through regulating gene transcription, thus providing a potential treatment target for male infertility.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Wen-Sheng Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Jia Yi
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Shuang-Bo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361005, China
| | - Jian-Cheng Ding
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Yi-Nan Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Ying-Pu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Gen-Sheng Feng
- Department of Pathology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chao-Jun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
| | - Wen Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen 361005, China
| | - Hai-Bin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361005, China
| | - Zhong-Xian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen 361005, China
| |
Collapse
|
16
|
Leptin promotes proliferation of neonatal mouse stem/progenitor spermatogonia. J Assist Reprod Genet 2020; 37:2825-2838. [PMID: 32840762 DOI: 10.1007/s10815-020-01929-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To keep and increase spermatogonial stem cell number (SSC) is the only available option for pediatric cancer survivors to maintain fertility. Leptin is secreted by the epididymal white adipose tissue and has receptors on stem/progenitor spermatogonia. The purpose of this study is to demonstrate dose- and time-dependent proliferative effect of leptin on stem/progenitor spermatogonia cultures from prepubertal mice testes. METHODS CD90.2 (+) stem/progenitor spermatogonia were isolated from the C57BL/6 mouse testis on postnatal day 6 and placed in culture. The proliferative effect of leptin supplementation was assessed by colony formation (diameter and number), WST proliferation assays, and xCELLigence real-time cell analysis (RTCA) on days 3, 5, and 7 of culture. Expressions of p-ERK1/2, p-STAT3, total STAT3, and p-SHP2 levels were determined by western blot analysis. RESULTS Leptin supplementation of 100 ng/ml increased the diameter (p = 0.001) and number (p = 0.01) of colonies in stem/progenitor spermatogonial cultures and caused higher proliferation by WST-1 (p = 0.009) compared with the control on day 7. The EC50 was calculated as 114 ng/ml for leptin by RTCA. Proliferative dose of leptin induced increased expression of p-ERK1/2 (p = 0.009) and p-STAT3 (p = 0.023) on stem/progenitor spermatogonia when compared with the untreated group. CONCLUSION The results indicated that leptin supplementation exhibited a dose- and time-dependent proliferative effect on stem/progenitor spermatogonia that was associated with increased expression of ERK1/2 and STAT3 pathways while maintaining their undifferentiated state. This output presents a new agent that may help to expand the stem/progenitor spermatogonia pool from the neonatal testis in order to autotransplant after cancer treatment.
Collapse
|
17
|
Idrees M, Oh SH, Muhammad T, El-Sheikh M, Song SH, Lee KL, Kong IK. Growth Factors, and Cytokines; Understanding the Role of Tyrosine Phosphatase SHP2 in Gametogenesis and Early Embryo Development. Cells 2020; 9:cells9081798. [PMID: 32751109 PMCID: PMC7465981 DOI: 10.3390/cells9081798] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growth factors and cytokines have vital roles in germ cell development, gamete maturation, and early embryo development. Cell surface receptors are present for growth factors and cytokines to integrate with and trigger protein signaling in the germ and embryo intracellular milieu. Src-homology-2-containing phosphotyrosine phosphatase (SHP2) is a ubiquitously expressed, multifunctional protein that plays a central role in the signaling pathways involved in growth factor receptors, cytokine receptors, integrins, and G protein-coupled receptors. Over recent decades, researchers have recapitulated the protein signaling networks that influence gamete progenitor specification as well as gamete differentiation and maturation. SHP2 plays an indispensable role in cellular growth, survival, proliferation, differentiation, and migration, as well as the basic events in gametogenesis and early embryo development. SHP2, a classic cytosolic protein and a key regulator of signal transduction, displays unconventional nuclear expression in the genital organs. Several observations provided shreds of evidence that this behavior is essential for fertility. The growth factor and cytokine-dependent roles of SHP2 and its nuclear/cytoplasmic presence during gamete maturation, early embryonic development and embryo implantation are fascinating and complex subjects. This review is intended to summarize the previous and recent knowledge about the SHP2 functions in gametogenesis and early embryo development.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Tahir Muhammad
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Marwa El-Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Seok-Hwan Song
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
18
|
Xu B, Wei X, Chen M, Xie K, Zhang Y, Huang Z, Dong T, Hu W, Zhou K, Han X, Wu X, Xia Y. Glycylglycine plays critical roles in the proliferation of spermatogonial stem cells. Mol Med Rep 2019; 20:3802-3810. [PMID: 31485625 PMCID: PMC6755143 DOI: 10.3892/mmr.2019.10609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Glial cell line‑derived neurotrophic factor (GDNF) is critical for the proliferation of spermatogonial stem cells (SSCs), but the underlying mechanisms remain poorly understood. In this study, an unbiased metabolomic analysis was performed to examine the metabolic modifications in SSCs following GDNF deprivation, and 11 metabolites were observed to decrease while three increased. Of the 11 decreased metabolites identified, glycylglycine was observed to significantly rescue the proliferation of the impaired SSCs, while no such effect was observed by adding sorbitol. However, the expression of self‑renewal genes, including B‑cell CLL/lymphoma 6 member B, ETS variant 5, GDNF family receptor α1 and early growth response protein 4 remained unaltered following glycylglycine treatment. This finding suggests that although glycylglycine serves an important role in the proliferation of SSCs, it is not required for the self‑renewal of SSCs.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiang Wei
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
- Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
19
|
Talebi A, Sadighi Gilani MA, Koruji M, Ai J, Rezaie MJ, Navid S, Salehi M, Abbasi M. Colonization of Mouse Spermatogonial Cells in Modified Soft Agar Culture System Utilizing Nanofibrous Scaffold: A New Approach. Galen Med J 2019; 8:e1319. [PMID: 34466493 PMCID: PMC8343708 DOI: 10.31661/gmj.v8i0.1319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 01/23/2023] Open
Abstract
Background: Spermatogonial stem cells (SSCs) are considered in fertility management approaches of prepubertal boys facing cancer therapies. However, in vitro propagation has become an important issue due to a small number of SSCs in testicular tissue. The present study aimed to investigate a modified soft agar culture system by using a nanofibrous scaffold as a new approach to mimic in vivo conditions of SSCs development. Materials and Methods: The SSCs were isolated from neonate mouse testes, cultured on polycaprolactone scaffold, and covered by a layer of soft agar for 2 weeks. Then, the number and diameter of colonies formed in experimental groups were measured and spermatogonial markers (i.e., Plzf, Gfrα1, Id4, and c-Kit) in SSCs colonies were evaluated by a real-time polymerase chain reaction and immunostaining. Results: Our results indicated that the colonization rate of SSCs was significantly higher in the present modified soft agar culture system (P<0.05). Only Plzf indicated a significant increased at the levels (P<0.05), the gene expression levels of Id4, Plzf, and Gfrα1 were higher in the present culture system. In addition, the expression of the c-Kit gene as a differentiating spermatogonia marker was higher in presence of scaffold and soft agar compared with the amount of other experimental groups (P<0.05). Conclusion: The culture system by using nanofibrous scaffold and soft agar as a new culture method suggests the potential of this approach in SSCs enrichment and differentiation strategies for male infertility treatments, as well as in vitro spermatogenesis.
Collapse
Affiliation(s)
- Ali Talebi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Rezaie
- Department of Embryology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shadan Navid
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Correspondence to: Mehdi Abbasi, Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Telephone Number: +989125139314 Email Address:
| |
Collapse
|
20
|
Xia X, Zhou X, Quan Y, Hu Y, Xing F, Li Z, Xu B, Xu C, Zhang A. Germline deletion of Cdyl causes teratozoospermia and progressive infertility in male mice. Cell Death Dis 2019; 10:229. [PMID: 30850578 PMCID: PMC6408431 DOI: 10.1038/s41419-019-1455-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/02/2022]
Abstract
Chromodomain Y (CDY) is one of the candidate genes for male dyszoospermia related to Y chromosome microdeletion (YCM). However, the function of CDY in regulating spermatogenesis has not been completely determined. The mouse Cdyl (CDY-like) gene is the homolog of human CDY. In the present study, we generated a germline conditional knockout (cKO) model of mouse Cdyl. Significantly, the CdylcKO male mice suffered from the defects in spermatogonia maintenance and spermatozoon morphogenesis, demonstrating teratozoospermia and a progressive infertility phenotype in early adulthood. Importantly, patterns of specific histone methylation and acetylation were extensively changed, which disturbed the transcriptome in CdylcKO testis. Our findings indicated that Cdyl is crucial for spermatogenesis and male fertility, which provides novel insights into the function of CDY gene, as well as the pathogenesis of YCM-related reproductive failure.
Collapse
Affiliation(s)
- Xiaoyu Xia
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaowei Zhou
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yanmei Quan
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yanqin Hu
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Fengying Xing
- Department of Laboratory Animal Science, Shanghai Jiao Tong University, School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Zhengzheng Li
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Bufang Xu
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Chen Xu
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Aijun Zhang
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China. .,Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
21
|
A Novel Regulatory Axis, CHD1L-MicroRNA 486-Matrix Metalloproteinase 2, Controls Spermatogonial Stem Cell Properties. Mol Cell Biol 2019; 39:MCB.00357-18. [PMID: 30455250 DOI: 10.1128/mcb.00357-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are unipotent germ cells that are at the foundation of spermatogenesis and male fertility. However, the underlying molecular mechanisms governing SSC stemness and growth properties remain elusive. We have recently identified chromodomain helicase/ATPase DNA binding protein 1-like (Chd1l) as a novel regulator for SSC survival and self-renewal, but how these functions are controlled by Chd1l remains to be resolved. Here, we applied high-throughput small RNA sequencing to uncover the microRNA (miRNA) expression profiles controlled by Chd1l and showed that the expression levels of 124 miRNA transcripts were differentially regulated by Chd1l in SSCs. KEGG pathway analysis shows that the miRNAs that are differentially expressed upon Chd1l repression are significantly enriched in the pathways associated with stem cell pluripotency and proliferation. As a proof of concept, we demonstrate that one of the most highly upregulated miRNAs, miR-486, controls SSC stemness gene expression and growth properties. The matrix metalloproteinase 2 (MMP2) gene has been identified as a novel miR-486 target gene in the context of SSC stemness gene regulation and growth properties. Data from cotransfection experiments showed that Chd1l, miR-486, and MMP2 work in concert in regulating SSC stemness gene expression and growth properties. Finally, our data also revealed that MMP2 regulates SSC stemness gene expression and growth properties through activating β-catenin signaling by cleaving N-cadherin and increasing β-catenin nuclear translocation. Our data demonstrate that Chd1l-miR-486-MMP2 is a novel regulatory axis governing SSC stemness gene expression and growth properties, offering a novel therapeutic opportunity for treating male infertility.
Collapse
|
22
|
Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:15-40. [PMID: 29882209 DOI: 10.1007/5584_2018_217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Xu C, Wu S, Zhao W, Mipam T, Liu J, Liu W, Yi C, Shah MA, Yu S, Cai X. Differentially expressed microRNAs between cattleyak and yak testis. Sci Rep 2018; 8:592. [PMID: 29330490 PMCID: PMC5766512 DOI: 10.1038/s41598-017-18607-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022] Open
Abstract
Cattleyak are interspecific hybrids between cattle and yak, exhibiting the same prominent adaptability as yak and much higher performances than yak. However, male infertility of cattleyak resulted from spermatogenic arrest has greatly restricted their effective utilization in yak breeding. In past decades, much work has been done to investigate the mechanisms of spermatogenic arrest, but little is known about the differences of the post-transcriptional regulators between cattleyak and yak, which may contribute to the impaired spermatogenesis. MiRNAs, a class of endogenous non-coding small RNA, were revealed to play crucial roles in regulating gene expression at post-transcriptional level. In the present study, we identified 50 differentially expressed (DE) known miRNAs and 11 novel miRNAs by using Illumina HISeq and bioinformatic analysis. A total of 50 putative target sites for the 13 DE known miRNAs and 30 for the 6 DE novel miRNAs were identified, respectively. GO and KEGG analyses were performed to reveal the functions of target genes for DE miRNAs. In addition, RT-qPCR was performed to validate the expression of the DE miRNAs and its targets. The identification of these miRNAs may provide valuable information for a better understanding of spermatogenic arrest in cattleyak.
Collapse
Affiliation(s)
- Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - TserangDonko Mipam
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, Sichuan, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wenjing Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xin Cai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
24
|
Spermatogonial stem cell transplantation and male infertility: Current status and future directions. Arab J Urol 2017; 16:171-180. [PMID: 29713548 PMCID: PMC5922182 DOI: 10.1016/j.aju.2017.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/25/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
Objective To summarise the current state of research into spermatogonial stem cell (SSC) therapies with a focus on future directions, as SSCs show promise as a source for preserving or initiating fertility in otherwise infertile men. Materials and methods We performed a search for publications addressing spermatogonial stem cell transplantation in the treatment of male infertility. The search engines PubMed and Google Scholar were used from 1990 to 2017. Search terms were relevant for spermatogonial stem cell therapies. Titles of publications were screened for relevance; abstracts were read, if related and full papers were reviewed for directly pertinent original research. Results In all, 58 papers were found to be relevant to this review, and were included in appropriate subheadings. This review discusses the various techniques that SSCs are being investigated to treat forms of male infertility. Conclusions Evidence does not yet support clinical application of SSCs in humans. However, significant progress in the in vitro and in vivo development of SSCs, including differentiation into functional germ cells, gives reason for cautious optimism for future research.
Collapse
Key Words
- ART, assisted reproductive technologies
- Allograft
- BMP4, bone morphogenetic protein 4
- Bcl6b, B-Cell CLL/Lymphoma 6B
- CD(24)(34), cluster of differentiation (24)(34)
- FGF2, Fibroblast growth factor 2
- FISH, fluorescence in situ hybridisation
- Fertility preservation
- GDNF, glial cell line-derived neurotrophic factor
- ICSI, intracytoplasmic sperm injection
- ID4, inhibitor of differentiation 4
- KS, Klinefelter syndrome
- Male infertility
- Non-obstructive azoospermia
- Onco-fertility
- PGC, primordial germ cells
- PLZF, promyelocytic leukaemia zinc finger
- PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- RA(R), retinoic acid (receptor)
- SPG, spermatogonia
- SSC, spermatogonial stem cell
- Stem cell therapy
- Stra8, stimulated by RA 8
- ZBTB, zinc finger and broad complex/Tramtrack/bric-a-brac
- c-Kit, KIT Proto-oncogene receptor tyrosine kinase
Collapse
|
25
|
Identification of CHD1L as an Important Regulator for Spermatogonial Stem Cell Survival and Self-Renewal. Stem Cells Int 2016; 2016:4069543. [PMID: 28003832 PMCID: PMC5149700 DOI: 10.1155/2016/4069543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Chromodomain helicase/ATPase DNA binding protein 1-like gene (Chd1l) participates in chromatin-dependent processes, including transcriptional activation and DNA repair. In this study, we have found for the first time that Chd1l is mainly expressed in the testicular tissues of prepubertal and adult mice and colocalized with PLZF, OCT4, and GFRα1 in the neonatal mouse testis and THY1+ undifferentiated spermatogonia or spermatogonial stem cells (SSCs). Knockdown of endogenous Chd1l in cultured mouse undifferentiated SSCs inhibited the expression levels of Oct4, Plzf, Gfrα1, and Pcna genes, suppressed SSC colony formation, and reduced BrdU incorporation, while increasing SSC apoptosis. Moreover, the Chd1l gene expression is activated by GDNF in the cultured mouse SSCs, and the GDNF signaling pathway was modulated by endogenous levels of Chd1l; as demonstrated by the gene expression levels of GDNF, inducible transcripts Etv5, Bcl6b, Pou3f, and Lhx1, but not that of GDNF-independent gene, Taf4b, were significantly downregulated by Chd1l knockdown in mouse SSCs. Taken together, this study provides the first evidence to support the notion that Chd1l is an intrinsic and novel regulator for SSC survival and self-renewal, and it exerts such regulation at least partially through a GDNF signaling pathway.
Collapse
|