1
|
Park JS, Kim JH, Soh WC, Kim NY, Lee KS, Kim CH, Chung IJ, Lee S, Kim HR, Jun CD. Trogocytic molting of T cell microvilli upregulates T cell receptor surface expression and promotes clonal expansion. Nat Commun 2023; 14:2980. [PMID: 37221214 DOI: 10.1038/s41467-023-38707-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Although T cell activation is known to involve the internalization of the T cell antigen receptor (TCR), much less is known regarding the release of TCRs following T cell interaction with cognate antigen-presenting cells. In this study, we examine the physiological mechanisms underlying TCR release following T cell activation. We show that T cell activation results in the shedding of TCRs in T cell microvilli, which involves a combined process of trogocytosis and enzymatic vesiculation, leading to the loss of membrane TCRs and microvilli-associated proteins and lipids. Surprisingly, unlike TCR internalization, this event results in the rapid upregulation of surface TCR expression and metabolic reprogramming of cholesterol and fatty acid synthesis to support cell division and survival. These results demonstrate that TCRs are lost through trogocytic 'molting' following T cell activation and highlight this mechanism as an important regulator of clonal expansion.
Collapse
Affiliation(s)
- Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jun-Hyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Won-Chang Soh
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Na-Young Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kyung-Sik Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Chang-Hyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ik-Joo Chung
- Department of Hematology-Oncology, Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Kim HR, Park JS, Soh WC, Kim NY, Moon HY, Lee JS, Jun CD. T Cell Microvilli: Finger-Shaped External Structures Linked to the Fate of T Cells. Immune Netw 2023; 23:e3. [PMID: 36911802 PMCID: PMC9995986 DOI: 10.4110/in.2023.23.e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 03/07/2023] Open
Abstract
Microvilli are outer membrane organelles that contain cross-linked filamentous actin. Unlike well-characterized epithelial microvilli, T-cell microvilli are dynamic similar to those of filopodia, which grow and shrink intermittently via the alternate actin-assembly and -disassembly. T-cell microvilli are specialized for sensing Ags on the surface of Ag-presenting cells (APCs). Thus, these finger-shaped microprotrusions contain many signaling-related proteins and can serve as a signaling platforms that induce intracellular signals. However, they are not limited to sensing external information but can provide sites for parts of the cell-body to tear away from the cell. Cells are known to produce many types of extracellular vesicles (EVs), such as exosomes, microvesicles, and membrane particles. T cells also produce EVs, but little is known about under what conditions T cells generate EVs and which types of EVs are released. We discovered that T cells produce few exosomes but release large amounsts of microvilli-derived particles during physical interaction with APCs. Although much is unanswered as to why T cells use the same organelles to sense Ags or to produce EVs, these events can significantly affect T cell fate, including clonal expansion and death. Since TCRs are localized at microvilli tips, this membrane event also raises a new question regarding long-standing paradigm in T cell biology; i.e., surface TCR downmodulation following T cell activation. Since T-cell microvilli particles carry T-cell message to their cognate partner, these particles are termed T-cell immunological synaptosomes (TISs). We discuss the potential physiological role of TISs and their application to immunotherapies.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Won-Chang Soh
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Na-Young Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyun-Yoong Moon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ji-Su Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
3
|
Shevyrev DV, Tereshchenko VP, Sennikov SV. The Enigmatic Nature of the TCR-pMHC Interaction: Implications for CAR-T and TCR-T Engineering. Int J Mol Sci 2022; 23:ijms232314728. [PMID: 36499057 PMCID: PMC9740949 DOI: 10.3390/ijms232314728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The interaction of the T-cell receptor (TCR) with a peptide in the major histocompatibility complex (pMHC) plays a central role in the adaptive immunity of higher chordates. Due to the high specificity and sensitivity of this process, the immune system quickly recognizes and efficiently responds to the appearance of foreign and altered self-antigens. This is important for ensuring anti-infectious and antitumor immunity, in addition to maintaining self-tolerance. The most common parameter used for assessing the specificity of TCR-pMHC interaction is affinity. This thermodynamic characteristic is widely used not only in various theoretical aspects, but also in practice, for example, in the engineering of various T-cell products with a chimeric (CAR-T) or artificial (TCR-engineered T-cell) antigen receptor. However, increasing data reveal the fact that, in addition to the thermodynamic component, the specificity of antigen recognition is based on the kinetics and mechanics of the process, having even greater influence on the selectivity of the process and T lymphocyte activation than affinity. Therefore, the kinetic and mechanical aspects of antigen recognition should be taken into account when designing artificial antigen receptors, especially those that recognize antigens in the MHC complex. This review describes the current understanding of the nature of the TCR-pMHC interaction, in addition to the thermodynamic, kinetic, and mechanical principles underlying the specificity and high sensitivity of this interaction.
Collapse
Affiliation(s)
- D. V. Shevyrev
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Center for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Correspondence: ; Tel.: +7-9231345505
| | - V. P. Tereshchenko
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Center for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - S. V. Sennikov
- Laboratory of molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| |
Collapse
|
4
|
Kim HR, Park JS, Karabulut H, Yasmin F, Jun CD. Transgelin-2: A Double-Edged Sword in Immunity and Cancer Metastasis. Front Cell Dev Biol 2021; 9:606149. [PMID: 33898417 PMCID: PMC8060441 DOI: 10.3389/fcell.2021.606149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Transgelin-2, a small actin-binding protein, is the only transgelin family member expressed in immune cells. In T and B lymphocytes, transgelin-2 is constitutively expressed, but in antigen-presenting cells, it is significantly upregulated upon lipopolysaccharide stimulation. Transgelin-2 acts as a molecular staple to stabilize the actin cytoskeleton, and it competes with cofilin to bind filamentous (F)-actin. This action may enable immune synapse stabilization during T-cell interaction with cognate antigen-presenting cells. Furthermore, transgelin-2 blocks Arp2/3 complex-nucleated actin branching, which is presumably related to small filopodia formation, enhanced phagocytic function, and antigen presentation. Overall, transgelin-2 is an essential part of the molecular armament required for host defense against neoplasms and infectious diseases. However, transgelin-2 acts as a double-edged sword, as its expression is also essential for a wide range of tumor development, including drug resistance and metastasis. Thus, targeting transgelin-2 can also have a therapeutic advantage for cancer treatment; selectively suppressing transgelin-2 expression may prevent multidrug resistance in cancer chemotherapy. Here, we review newly discovered molecular characteristics of transgelin-2 and discuss clinical applications for cancer and immunotherapy.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Hatice Karabulut
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Fatima Yasmin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
5
|
Biolato AM, Filali L, Wurzer H, Hoffmann C, Gargiulo E, Valitutti S, Thomas C. Actin remodeling and vesicular trafficking at the tumor cell side of the immunological synapse direct evasion from cytotoxic lymphocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:99-130. [PMID: 33066877 DOI: 10.1016/bs.ircmb.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrea Michela Biolato
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cancer Research Center of Toulouse, INSERM, Toulouse, France
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Salvatore Valitutti
- Cancer Research Center of Toulouse, INSERM, Toulouse, France; Department of Pathology, Institut Universitaire du Cancer-Oncopole, Toulouse, France.
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
| |
Collapse
|
6
|
Wurzer H, Hoffmann C, Al Absi A, Thomas C. Actin Cytoskeleton Straddling the Immunological Synapse between Cytotoxic Lymphocytes and Cancer Cells. Cells 2019; 8:cells8050463. [PMID: 31100864 PMCID: PMC6563383 DOI: 10.3390/cells8050463] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The immune system is a fundamental part of the tumor microenvironment. In particular, cytotoxic lymphocytes, such as cytolytic T cells and natural killer cells, control tumor growth and disease progression by interacting and eliminating tumor cells. The actin cytoskeleton of cytotoxic lymphocytes engaged in an immunological synapse has received considerable research attention. It has been recognized as a central mediator of the formation and maturation of the immunological synapse, and its signaling and cytolytic activities. In comparison, fewer studies have explored the organization and function of actin filaments on the target cancer cell side of the immunological synapse. However, there is growing evidence that the actin cytoskeleton of cancer cells also undergoes extensive remodeling upon cytotoxic lymphocyte attack, and that such remodeling can alter physical and functional interactions at the immunological synapse. In this article, we review the current knowledge of actin organization and functions at both sides of the immunological synapse between cytotoxic lymphocytes and cancer cells, with particular focus on synapse formation, signaling and cytolytic activity, and immune evasion.
Collapse
Affiliation(s)
- Hannah Wurzer
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
- University of Luxembourg, Faculty of Science, Technology and Communication, 2 Avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg.
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
| | - Antoun Al Absi
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
- University of Strasbourg, 67081 Strasbourg, France.
| | - Clément Thomas
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
| |
Collapse
|
7
|
Jeon BN, Kim HR, Chung YS, Na BR, Park H, Hong C, Fatima Y, Oh H, Kim CH, Jun CD. Actin stabilizer TAGLN2 potentiates adoptive T cell therapy by boosting the inside-out costimulation via lymphocyte function-associated antigen-1. Oncoimmunology 2018; 7:e1500674. [PMID: 30524895 PMCID: PMC6279342 DOI: 10.1080/2162402x.2018.1500674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Correct temporal and spatial control of actin dynamics is essential for the cytotoxic T cell effector function against tumor cells. However, little is known whether actin engineering in tumor-targeted T cells can enhance their antitumor responses, thereby potentiating the adoptive T cell therapy. Here, we report that TAGLN2, a 22-KDa actin-stabilizing protein which is physically associated with lymphocyte function-associated antigen-1 (LFA-1), potentiates the OTI TCR CD8+ T cells to kill the intercellular adhesion molecule-1 (ICAM-1)-positive/OVA-presenting E0771 cells, but not ICAM-1-negative OVA-B16F10 cells, suggesting an 'inside-out' activation of LFA-1, which causes more efficient immunological synapse formation between T cells and tumor cells. Notably, recombinant TAGLN2 fused with the protein transduction domain (TG2P) overcame the disadvantages of viral gene delivery, leading to a significant reduction in tumor growth in mice. TG2P also potentiated the CD19-targeted, chimeric antigen receptor (CAR)-modified T cells to kill Raji B-lymphoma cells. Our findings indicate that activating the TAGLN2-actin-LFA-1 axis is an effective strategy to potentiate the adoptive T-cell immunotherapy.
Collapse
Affiliation(s)
- Bu-Nam Jeon
- School of Life Sciences, GIST, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, Korea
| | - Hye-Ran Kim
- School of Life Sciences, GIST, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, Korea
| | - Yun Shin Chung
- School of Life Sciences, GIST, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, Korea
| | - Bo-Ra Na
- School of Life Sciences, GIST, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, Korea
| | - Hyunkyung Park
- School of Life Sciences, GIST, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, Korea
| | - Chorong Hong
- School of Life Sciences, GIST, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, Korea
| | - Yasmin Fatima
- School of Life Sciences, GIST, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, Korea
| | - Hyeonju Oh
- School of Life Sciences, GIST, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, Korea
| | - Chang-Hyun Kim
- School of Life Sciences, GIST, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, Korea
| | - Chang-Duk Jun
- School of Life Sciences, GIST, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, GIST, Gwangju, Korea
| |
Collapse
|
8
|
The actin remodeling protein cofilin is crucial for thymic αβ but not γδ T-cell development. PLoS Biol 2018; 16:e2005380. [PMID: 29985916 PMCID: PMC6053251 DOI: 10.1371/journal.pbio.2005380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/19/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022] Open
Abstract
Cofilin is an essential actin remodeling protein promoting depolymerization and severing of actin filaments. To address the relevance of cofilin for the development and function of T cells in vivo, we generated knock-in mice in which T-cell-specific nonfunctional (nf) cofilin was expressed instead of wild-type (WT) cofilin. Nf cofilin mice lacked peripheral αβ T cells and showed a severe thymus atrophy. This was caused by an early developmental arrest of thymocytes at the double negative (DN) stage. Importantly, even though DN thymocytes expressed the TCRβ chain intracellularly, they completely lacked TCRβ surface expression. In contrast, nf cofilin mice possessed normal numbers of γδ T cells. Their functionality was confirmed in the γδ T-cell-driven, imiquimod (IMQ)-induced, psoriasis-like murine model. Overall, this study not only highlights the importance of cofilin for early αβ T-cell development but also shows for the first time that an actin-binding protein is differentially involved in αβ versus γδ T-cell development.
Collapse
|
9
|
TAGLN2 polymerizes G-actin in a low ionic state but blocks Arp2/3-nucleated actin branching in physiological conditions. Sci Rep 2018; 8:5503. [PMID: 29615809 PMCID: PMC5883021 DOI: 10.1038/s41598-018-23816-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/20/2018] [Indexed: 11/12/2022] Open
Abstract
TAGLN is an actin-binding protein family that comprises three isoforms with theorized roles in smooth muscle differentiation, tumour development, lymphocyte activation, and brain chemistry. However, their fundamental characteristics in regulation of the actin-based cytoskeleton are not fully understood. Here we show that TAGLN2 (including TAGLN1 and TAGLN3) extensively nucleates G-actin polymerization under low-salt conditions, where polymerization would be completely suppressed. The calponin homology domain and actin-binding loop are essential to mechanically connect two adjacent G-actins, thereby mediating multimeric interactions. However, TAGLN2 blocked the Arp2/3 complex binding to actin filaments under physiological salt conditions, thereby inhibiting branched actin nucleation. In HeLa and T cells, TAGLN2 enhanced filopodium-like membrane protrusion. Collectively, the dual functional nature of TAGLN2—G-actin polymerization and Arp2/3 complex inhibition—may account for the mechanisms of filopodia development at the edge of Arp2/3-rich lamellipodia in various cell types.
Collapse
|
10
|
Santos LC, Blair DA, Kumari S, Cammer M, Iskratsch T, Herbin O, Alexandropoulos K, Dustin ML, Sheetz MP. Actin polymerization-dependent activation of Cas-L promotes immunological synapse stability. Immunol Cell Biol 2016; 94:981-993. [PMID: 27359298 PMCID: PMC5121033 DOI: 10.1038/icb.2016.61] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023]
Abstract
The immunological synapse formed between a T-cell and an antigen-presenting cell is important for cell-cell communication during T-cell-mediated immune responses. Immunological synapse formation begins with stimulation of the T-cell receptor (TCR). TCR microclusters are assembled and transported to the center of the immunological synapse in an actin polymerization-dependent process. However, the physical link between TCR and actin remains elusive. Here we show that lymphocyte-specific Crk-associated substrate (Cas-L), a member of a force sensing protein family, is required for transport of TCR microclusters and for establishing synapse stability. We found that Cas-L is phosphorylated at TCR microclusters in an actin polymerization-dependent fashion. Furthermore, Cas-L participates in a positive feedback loop leading to amplification of Ca2+ signaling, inside-out integrin activation, and actomyosin contraction. We propose a new role for Cas-L in T-cell activation as a mechanical transducer linking TCR microclusters to the underlying actin network and coordinating multiple actin-dependent structures in the immunological synapse. Our studies highlight the importance of mechanotransduction processes in T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Luís C Santos
- Department of Biological Sciences, Columbia UniversityNew YorkNYUSA
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
- Icahn Medical Institute, Mount Sinai School of MedicineNew YorkNYUSA
| | - David A Blair
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
| | - Sudha Kumari
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
| | - Michael Cammer
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
| | - Thomas Iskratsch
- Department of Biological Sciences, Columbia UniversityNew YorkNYUSA
| | - Olivier Herbin
- Icahn Medical Institute, Mount Sinai School of MedicineNew YorkNYUSA
| | | | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
- Kennedy Institute of Rheumatology, University of OxfordHeadingtonUK
| | - Michael P Sheetz
- Department of Biological Sciences, Columbia UniversityNew YorkNYUSA
| |
Collapse
|
11
|
Wabnitz GH, Balta E, Schindler S, Kirchgessner H, Jahraus B, Meuer S, Samstag Y. The pro-oxidative drug WF-10 inhibits serial killing by primary human cytotoxic T-cells. Cell Death Discov 2016; 2:16057. [PMID: 27551545 PMCID: PMC4979520 DOI: 10.1038/cddiscovery.2016.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022] Open
Abstract
Cytotoxic T-cells (CTLs) play an important role in many immune-mediated inflammatory diseases. Targeting cytotoxicity of CTLs would allow to interfere with immune-mediated tissue destruction. Here we demonstrate that WF-10, a pro-oxidative compound, inhibits CTL-mediated cytotoxicity. WF-10 did not influence early steps of target-cell killing, but impaired the ability of CTLs to detach from the initial target cell and to move to a second target cell. This reduced serial killing was accompanied by stronger enrichment of the adhesion molecule LFA-1 in the cytolytic immune synapse. LFA-1 clustering requires activation of the actin-bundling protein L-plastin and was accordingly diminished in L-plastin knockdown cells. Interestingly, WF-10 likely acts through regulating L-plastin: (I) It induced L-plastin activation through phosphorylation leading to enhanced LFA-1-mediated cell adhesion, and, importantly, (II) WF-10 lost its influence on target-cell killing in L-plastin knockdown cells. Finally, we demonstrate that WF-10 can improve immunosuppression by conventional drugs. Thus, while cyclosporine A alone had no significant effect on cytotoxicity of CTLs, a combination of cyclosporine A and WF-10 blocked target-cell killing synergistically. Together, our findings suggest that WF-10 – either alone or in combination with conventional immunosuppressive drugs – may be efficient to control progression of diseases, in which CTLs are crucially involved.
Collapse
Affiliation(s)
- G H Wabnitz
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - E Balta
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - S Schindler
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - H Kirchgessner
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - B Jahraus
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - S Meuer
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| | - Y Samstag
- Institute of Immunology, Ruprecht-Karls-University , Im Neuenheimer Feld 305, Heidelberg D-69120, Germany
| |
Collapse
|
12
|
Na BR, Kwon MS, Chae MW, Kim HR, Kim CH, Jun CD, Park ZY. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates. PLoS One 2016; 11:e0156429. [PMID: 27232882 PMCID: PMC4883795 DOI: 10.1371/journal.pone.0156429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/14/2016] [Indexed: 01/09/2023] Open
Abstract
The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell-T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity.
Collapse
Affiliation(s)
- Bo-Ra Na
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Min-Sung Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- World Institute of Kimchi, Gwangju, Korea
| | - Myoung-Won Chae
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Hyun Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail: (CDJ); (ZYP)
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail: (CDJ); (ZYP)
| |
Collapse
|
13
|
Jiang H, Promchan K, Lin BR, Lockett S, Chen D, Marshall H, Badralmaa Y, Natarajan V. LZTFL1 Upregulated by All-Trans Retinoic Acid during CD4+ T Cell Activation Enhances IL-5 Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:1081-90. [PMID: 26700766 PMCID: PMC4724573 DOI: 10.4049/jimmunol.1500719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 11/17/2015] [Indexed: 01/05/2023]
Abstract
Retinoic acids, which are metabolites of vitamin A, have been shown to be involved in multiple T cell effector responses through their binding to the retinoic acid receptor, a ligand-activated transcription factor. Because the molecular mechanism of regulation by retinoic acid is still not fully uncovered, we investigated the gene expression profile of all-trans retinoic acid (ATRA)-treated human CD4(+) T cells. Leucine zipper transcription factor-like 1 (LZTFL1) was upregulated by ATRA in a dose- and time-dependent manner. The expression of LZTFL1 depended on both ATRA and TCR signaling. LZTFL1 accumulated in the plasma membrane compartment of human CD4(+) T cells, and, during immunological synapse formation, it transiently redistributed to the T cell and APC contact zone, indicating its role in T cell activation. Live-cell imaging demonstrates that at the initial stage of immunological synapse formation, LZTFL1 is concentrated at the APC contact site, and, during later stages, it relocates to the distal pole. Knockdown of LZTFL1 reduced the basal- and ATRA-induced levels of IL-5 in CD4(+) T cells, and overexpression of LZTFL1 enhanced the TCR-mediated NFAT signaling, suggesting that LZTFL1 is an important regulator of ATRA-induced T cell response. Together, these data indicate that LZTFL1 modulates T cell activation and IL-5 levels.
Collapse
Affiliation(s)
- Hong Jiang
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702; and
| | - Kanyarat Promchan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702; and
| | - Bor-Ruei Lin
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702; and
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - De Chen
- Optical Microscopy and Analysis Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Heather Marshall
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702; and
| | - Yunden Badralmaa
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702; and
| | - Ven Natarajan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702; and
| |
Collapse
|
14
|
Samstag Y, John I, Wabnitz GH. Cofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration. Immunol Rev 2013; 256:30-47. [PMID: 24117811 PMCID: PMC3884758 DOI: 10.1111/imr.12115] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cofilin is an actin-binding protein that depolymerizes and/or severs actin filaments. This dual function of cofilin makes it one of the major regulators of actin dynamics important for T-cell activation and migration. The activity of cofilin is spatio-temporally regulated. Its main control mechanisms comprise a molecular toolbox of phospho-, phospholipid, and redox regulation. Phosphorylated cofilin is inactive and represents the dominant cofilin fraction in the cytoplasm of resting human T cells. A fraction of dephosphorylated cofilin is kept inactive at the plasma membrane by binding to phosphatidylinositol 4,5-bisphosphate. Costimulation via the T-cell receptor/CD3 complex (signal 1) together with accessory receptors (signal 2) or triggering through the chemokine SDF1α (stromal cell-derived factor 1α) induce Ras-dependent dephosphorylation of cofilin, which is important for immune synapse formation, T-cell activation, and T-cell migration. Recently, it became evident that cofilin is also highly sensitive for microenvironmental changes, particularly for alterations in the redox milieu. Cofilin is inactivated by oxidation, provoking T-cell hyporesponsiveness or necrotic-like programmed cell death. In contrast, in a reducing environment, even phosphatidylinositol 4,5-bisphosphate-bound cofilin becomes active, leading to actin dynamics in the vicinity of the plasma membrane. In addition to the well-established three signals for T-cell activation, this microenvironmental control of cofilin delivers a modulating signal for T-cell-dependent immune reactions. This fourth modulating signal highly impacts both initial T-cell activation and the effector phase of T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Yvonne Samstag
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Isabel John
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Guido H Wabnitz
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| |
Collapse
|
15
|
Larbret F, Dubois N, Brau F, Guillemot E, Mahiddine K, Tartare-Deckert S, Verhasselt V, Deckert M. Technical advance: actin CytoFRET, a novel FRET flow cytometry method for detection of actin dynamics in resting and activated T cell. J Leukoc Biol 2013; 94:531-9. [PMID: 23794712 DOI: 10.1189/jlb.0113022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Actin cytoskeleton plays a critical role in regulating T cell motility and activation. However, the lack of a real-time quantitative method to analyze actin assembly has limited the progress toward understanding actin regulation. Here, we describe a novel approach to probe actin dynamics on living T cells using FRET combined with flow cytometry. We have first generated a Jurkat T cell line stably coexpressing EGFP and mOrange FPs fused to actin. The real-time variation of actin monomer assembly or disassembly into filaments was quantified using a ratiometric flow cytometry method measuring changes in the mOrange/EGFP emission ratio. The method was validated on resting T cells by using chemical compounds with known effects on actin filaments and comparison with conventional microscopy imaging. Our method also detected the rapid and transient actin assembly in T cells stimulated by anti-CD3/CD28-coated beads, demonstrating its robustness and high sensitivity. Finally, we provide evidence that lentiviral-mediated transduction of shRNAs in engineered Jurkat cells could be used as a strategy to identify regulators of actin remodeling. In conclusion, the flow cytometric FRET analysis of actin polymerization represents a new technical advance to study the dynamics of actin regulation in intact cells.
Collapse
Affiliation(s)
- Frédéric Larbret
- Tolérance Immunitaire, Université de Nice Sophia-Antipolis, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim YD, Kwon MS, Na BR, Kim HR, Lee HS, Jun CD. Swiprosin-1 Expression Is Up-Regulated through Protein Kinase C-θ and NF-κB Pathway in T Cells. Immune Netw 2013; 13:55-62. [PMID: 23700395 PMCID: PMC3659256 DOI: 10.4110/in.2013.13.2.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 12/01/2022] Open
Abstract
Swiprosin-1 exhibits the highest expression in CD8+ T cells and immature B cells and has been proposed to play a role in lymphocyte biology through actin remodeling. However, regulation of swiprosin-1 gene expression is poorly understood. Here we report that swiprosin-1 is up-regulated in T cells by PKC pathway. Targeted inhibition of the specific protein kinase C (PKC) isotypes by siRNA revealed that PKC-θ is involved in the expression of swiprosin-1 in the human T cells. In contrast, down-regulation of swiprosin-1 by A23187 or ionomycin suggests that calcium-signaling plays a negative role. Interestingly, swiprosin-1 expression is only reduced by treatment with NF-κB inhibitors but not by NF-AT inhibitor, suggesting that the NF-κB pathway is critical for regulation of swiprosin-1 expression. Collectively, these results suggest that swiprosin-1 is a PKC-θ-inducible gene and that it may modulate the late phase of T cell activation after antigen challenge.
Collapse
Affiliation(s)
- Young-Dae Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | |
Collapse
|