1
|
Shim D, Bak Y, Choi HG, Lee S, Park SC. Effects of Panax species and their bioactive components on allergic airway diseases. J Ginseng Res 2024; 48:354-365. [PMID: 39036733 PMCID: PMC11258390 DOI: 10.1016/j.jgr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 07/23/2024] Open
Abstract
Panax species include Panax ginseng Meyer, Panax quinquefolium L., Panax notoginseng, Panax japonicum, Panax trifolium, and Panax pseudoginseng, which contain bioactive components (BCs) such as ginsenosides and polysaccharides. Recently, growing evidence has revealed the pharmacological effects of Panax species and their BCs on allergic airway diseases (AADs), including allergic asthma (AA) and allergic rhinitis (AR). AADs are characterized by damaged epithelium, sustained acquired immune responses with enforced Th2 responses, allergen-specific IgE production, and enhanced production of histamine and leukotrienes by activated mast cells and basophils. In this review, we summarize how Panax species and their BCs modulate acquired immune responses involving interactions between dendritic cells and T cells, reduce the pro-inflammatory responses of epithelial cells, and reduce allergenic responses from basophils and mast cells in vitro. In addition, we highlight the current understanding of the alleviative effects of Panax species and their BCs against AA and AR in vivo. Moreover, we discuss the unmet needs of research and considerations for the treatment of patients to provide basic scientific knowledge for the treatment of AADs using Panax species and their BCs.
Collapse
Affiliation(s)
- Dahee Shim
- Industry-Academic Cooperation Foundation, Hallym University, Chuncheon, Republic of Korea
| | - Yeeun Bak
- Department of Biomedical Science, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seunghyun Lee
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Chul Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Yang C, Qu L, Wang R, Wang F, Yang Z, Xiao F. Multi-layered effects of Panax notoginseng on immune system. Pharmacol Res 2024; 204:107203. [PMID: 38719196 DOI: 10.1016/j.phrs.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.
Collapse
Affiliation(s)
- Chunhao Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Rui Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Zhaoxiang Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China.
| |
Collapse
|
3
|
Chen Y, Fan W, Zhao Y, Liu M, Hu L, Zhang W. Progress in the Regulation of Immune Cells in the Tumor Microenvironment by Bioactive Compounds of Traditional Chinese Medicine. Molecules 2024; 29:2374. [PMID: 38792234 PMCID: PMC11124165 DOI: 10.3390/molecules29102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The tumor microenvironment (TME) can aid tumor cells in evading surveillance and clearance by immune cells, creating an internal environment conducive to tumor cell growth. Consequently, there is a growing focus on researching anti-tumor immunity through the regulation of immune cells within the TME. Various bioactive compounds in traditional Chinese medicine (TCM) are known to alter the immune balance by modulating the activity of immune cells in the TME. In turn, this enhances the body's immune response, thus promoting the effective elimination of tumor cells. This study aims to consolidate recent findings on the regulatory effects of bioactive compounds from TCM on immune cells within the TME. The bioactive compounds of TCM regulate the TME by modulating macrophages, dendritic cells, natural killer cells and T lymphocytes and their immune checkpoints. TCM has a long history of having been used in clinical practice in China. Chinese medicine contains various chemical constituents, including alkaloids, polysaccharides, saponins and flavonoids. These components activate various immune cells, thereby improving systemic functions and maintaining overall health. In this review, recent progress in relation to bioactive compounds derived from TCM will be covered, including TCM alkaloids, polysaccharides, saponins and flavonoids. This study provides a basis for further in-depth research and development in the field of anti-tumor immunomodulation using bioactive compounds from TCM.
Collapse
Affiliation(s)
- Yuqian Chen
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Wenshuang Fan
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
| | - Yanyan Zhao
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Meijun Liu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Linlin Hu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| |
Collapse
|
4
|
Miao K, Liu W, Xu J, Qian Z, Zhang Q. Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front Immunol 2023; 14:1277243. [PMID: 38035069 PMCID: PMC10684919 DOI: 10.3389/fimmu.2023.1277243] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
At present, cancer is the largest culprit that endangers human health. The current treatment options for cancer mainly include surgical resection, adjuvant radiotherapy and chemotherapy, but their therapeutic effects and long-term prognosis are unsatisfactory. Immunotherapy is an emerging therapy that has completely transformed the therapeutic landscape of advanced cancers, and has tried to occupy a place in the neoadjuvant therapy of resectable tumors. However, not all patients respond to immunotherapy due to the immunological and molecular features of the tumors. Traditional Chinese Medicine (TCM) provides a new perspective for cancer treatment and is considered to have the potential as promising anti-tumor drugs considering its immunoregulatory properties. This review concludes commonly used TCM monomers and compounds from the perspective of immune regulatory pathways, aiming to clearly introduce the basic mechanisms of TCM in boosting cancer immunotherapy and mechanisms of several common TCM. In addition, we also summarized closed and ongoing trials and presented prospects for future development. Due to the significant role of immunotherapy in the treatment of non-small cell lung cancer (NSCLC), TCM combined with immunotherapy should be emphasized in NSCLC.
Collapse
Affiliation(s)
- Keyan Miao
- Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingtong Xu
- The First School of Clinical Medicine, Nanjing Medical University. Nanjing, Jiangsu, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Qinglin Zhang
- Department of Gastroenterology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Wang Y, Han Q, Zhang S, Xing X, Sun X. New perspective on the immunomodulatory activity of ginsenosides: Focus on effective therapies for post-COVID-19. Biomed Pharmacother 2023; 165:115154. [PMID: 37454595 DOI: 10.1016/j.biopha.2023.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
More than 700 million confirmed cases of Coronavirus Disease-2019 (COVID-19) have been reported globally, and 10-60% of patients are expected to exhibit "post-COVID-19 symptoms," which will continue to affect human life and health. In the absence of safer, more specific drugs, current multiple immunotherapies have failed to achieve satisfactory efficacy. Ginseng, a traditional Chinese medicine, is often used as an immunomodulator and has been used in COVID-19 treatment as a tonic to increase blood oxygen saturation. Ginsenosides are the main active components of ginseng. In this review, we summarize the multiple ways in which ginsenosides affect post-COVID-19 symptoms, including inhibition of lipopolysaccharide, tumor necrosis factor signaling, modulation of chemokine receptors and inflammasome activation, induction of macrophage polarization, effects on Toll-like receptors, nuclear factor kappa-B, the mitogen-activated protein kinase pathway, lymphocytes, intestinal flora, and epigenetic regulation. Ginsenosides affect virus-mediated tissue damage, local or systemic inflammation, immune modulation, and other links, thus alleviating respiratory and pulmonary symptoms, reducing the cardiac burden, protecting the nervous system, and providing new ideas for the rehabilitation of patients with post-COVID-19 symptoms. Furthermore, we analyzed its role in strengthening body resistance to eliminate pathogenic factors from the perspective of ginseng-epidemic disease and highlighted the challenges in clinical applications. However, the benefit of ginsenosides in modulating organismal imbalance post-COVID-19 needs to be further evaluated to better validate the pharmacological mechanisms associated with their traditional efficacy and to determine their role in individualized therapy.
Collapse
Affiliation(s)
- Yixin Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Qin Han
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| |
Collapse
|
6
|
Yang T, Xu W, Wei X, Zhang Z, Sun Y, Liu H, Yu P, Li W, Yu D. Determination of ginsenoside Rh3 in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2021; 36:e5268. [PMID: 34676576 DOI: 10.1002/bmc.5268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/07/2022]
Abstract
Ginsenoside Rh3 (GRh3) is a bacterial metabolite of ginsenoside Rg5, which is the main component of hot-processed ginseng. A simple, efficient and sensitive method was developed and validated for the determination of GRh3 in rat plasma by LC-tandem mass spectrometry. After protein precipitation with methanol/acetonitrile (1:1, vol/vol) using propranolol as the internal standard, the target analytes were separated on an XDB C18 column, with methanol containing 0.1% formic acid and water containing 0.1% formic acid used as mobile phases for gradient elution. Mass spectrometry was performed in electrospray ion source-positive ion mode and multiple reaction monitoring mode, monitoring the transitions m/z 622.5 → 425.5 and m/z 260.1 → 116.1 for GRh3 and internal standard, respectively. The concentration range of GRh3 was 20-20,000 ng/mL and the correlation coefficient (r2 ) was greater than 0.99. The accuracy error and relative standard deviation were below 15%. The extraction recovery and matrix effect were 74.2% to 78.7% and 96.9% to 108.4%, respectively. Under different conditions, GRh3 was stable in the range of 1.8%-8.7%. This method has been successfully applied to study the pharmacokinetics of GRh3 with an oral dose of 10.0 mg/kg and an intravenous dose of 2.0 mg/kg in rats, respectively. The absolute bioavailability of GRh3 was 37.6%.
Collapse
Affiliation(s)
- Ting Yang
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Wenwu Xu
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Xiyu Wei
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Zhenzhen Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Yue Sun
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Houru Liu
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Peihua Yu
- Canada Royal Enoch Phytomedicine Ltd, Vancouver, BC, Canada
| | - Wei Li
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Dehong Yu
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| |
Collapse
|
7
|
Wang Y, Zhang X, Wang Y, Zhao W, Li H, Zhang L, Li X, Zhang T, Zhang H, Huang H, Liu C. Application of immune checkpoint targets in the anti-tumor novel drugs and traditional Chinese medicine development. Acta Pharm Sin B 2021; 11:2957-2972. [PMID: 34729298 PMCID: PMC8546663 DOI: 10.1016/j.apsb.2021.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoints are the crucial regulators of immune system and play essential roles in maintaining self-tolerance, preventing autoimmune responses, and minimizing tissue damage by regulating the duration and intensity of the immune response. Furthermore, immune checkpoints are usually overexpressed in cancer cells or noninvasive cells in tumor tissues and are capable of suppressing the antitumor response. Based on substantial physiological analyses as well as preclinical and clinical studies, checkpoint molecules have been evaluated as potential therapeutic targets for the treatment of multiple types of cancers. In the last few years, extensive evidence has supported the immunoregulatory effects of traditional Chinese medicines (TCMs). The main advantage of TCMs and natural medicine is that they usually contain multiple active components, which can act on multiple targets at the same time, resulting in additive or synergistic effects. The strong immune regulation function of traditional Chinese medicine on immune checkpoints has also been of great interest. For example, Astragalus membranaceus polysaccharides can induce anti-PD-1 antibody responses in animals, and these antibodies can overcome the exhaustion of immune cells under tumor immune evasion. Furthermore, many other TCM molecules could also be novel and effective drug candidates for the treatment of cancers. Therefore, it is essential to assess the application of immune checkpoints in the development of new drugs and TCMs. In this review, we focus on research progress in the field of immune checkpoints based on three topics: (1) immune checkpoint targets and pathways, (2) development of novel immune checkpoint-based drugs, and (3) application of immune checkpoints in the development of TCMs.
Collapse
Affiliation(s)
- Yuli Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
| | - Xingyan Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193 China
| | - Yuyan Wang
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Beijing Institute of Cancer Research, Beijing 100142 China
| | - Wenjing Zhao
- Department of Pharmacology, Tianjin Medical University, Tianjin 300070, China
| | - Huling Li
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
| | - Lixing Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinping Li
- MITRO Biotech Co., Ltd., Nanjing 211100, China
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
| | - Hongbing Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
| | - He Huang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
| |
Collapse
|
8
|
Zhang LY, Zhang JG, Yang X, Cai MH, Zhang CW, Hu ZM. Targeting Tumor Immunosuppressive Microenvironment for the Prevention of Hepatic Cancer: Applications of Traditional Chinese Medicines in Targeted Delivery. Curr Top Med Chem 2021; 20:2789-2800. [PMID: 33076809 DOI: 10.2174/1568026620666201019111524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese Medicine (TCM) is one of the ancient and most accepted alternative medicinal systems in the world for the treatment of health ailments. World Health Organization recognizes TCM as one of the primary healthcare practices followed across the globe. TCM utilizes a holistic approach for the diagnosis and treatment of cancers. The tumor microenvironment (TME) surrounds cancer cells and plays pivotal roles in tumor development, growth, progression, and therapy resistance. TME is a hypoxic and acidic environment that includes immune cells, pericytes, fibroblasts, endothelial cells, various cytokines, growth factors, and extracellular matrix components. Targeting TME using targeted drug delivery and nanoparticles is an attractive strategy for the treatment of solid tumors and recently has received significant research attention under precise medicine concept. TME plays a pivotal role in the overall survival and metastasis of a tumor by stimulating cell proliferation, preventing the tumor clearance by the immune cells, enhancing the oncogenic potential of the cancer cells, and promoting tumor invasion. Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-associated deaths affecting millions of individuals worldwide each year. TCM herbs contain several bioactive phytoconstituents with a broad range of biological, physiological, and immunological effects on the system. Several TCM herbs and their monomers have shown inhibitory effects in HCC by controlling the TME. This study reviews the fundamentals and applications of targeting strategies for immunosuppressing TME to treat cancers. This study focuses on TME targeting strategies using TCM herbs and the molecular mechanisms of several TCM herbs and their monomers on controlling TME.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Mao-Hua Cai
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Cheng-Wu Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Zhi-Ming Hu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| |
Collapse
|
9
|
Wang Y, Zhang Q, Chen Y, Liang CL, Liu H, Qiu F, Dai Z. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother 2020; 121:109570. [PMID: 31710893 DOI: 10.1016/j.biopha.2019.109570] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/07/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been traditionally used to treat patients with cancers in China. It not only alleviates the symptoms of tumor patients and improves their quality of life, but also controls the size of tumors and prolongs the survival of tumor patients. While some herbs of TCM may exert therapeutic effects by directly targeting cancer cells or reducing side effects caused by antitumor drugs, others can control tumor growth and metastasis via enhancing antitumor immunity. In particular, TCM can exert antitumor effects by upregulating immune responses even in immunosuppressive tumor microenvironment. For instance, it reduces the number of M2-type macrophages and Treg cells in the tumor tissue. Although extensive reviews on directly killing cancer cells by TCM have been conducted, a review of anticancer activity of TCM solely based on its immunity-enhancing capacity is unusual. This review will summarize research progress of antitumor TCM that regulates the immune system, including both innate immunity, such as macrophages, dendritic cells, natural killer cells and MDSCs, and adaptive immunity, including CD4+/CD8+ T lymphocytes, regulatory T cells (Tregs) and B cells. As cancer immunotherapy has recently achieved certain success, it is expected that the clinical applications of immunity-enhancing TCM or traditional medicine for treating various cancer patients will be expanded. Further studies on the mechanisms by which TCM regulates immunity will provide new insights into how TCM controls tumor growth and metastasis, and may help improve its therapeutic effects on various cancers in clinic.
Collapse
Affiliation(s)
- Yeshu Wang
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
10
|
Shi ZY, Zeng JZ, Wong AST. Chemical Structures and Pharmacological Profiles of Ginseng Saponins. Molecules 2019; 24:molecules24132443. [PMID: 31277214 PMCID: PMC6651355 DOI: 10.3390/molecules24132443] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/03/2023] Open
Abstract
Ginseng is a group of cosmopolitan plants with more than a dozen species belonging to the genus Panax in the family Araliaceae that has a long history of use in traditional Chinese medicine (TCM). Among the bioactive constituents extracted from ginseng, ginseng saponins are a group of natural steroid glycosides and triterpene saponins found exclusively throughout the plant. Studies have shown that these ginseng saponins play a significant role in exerting multiple therapeutic effects. This review covers their chemical structure and classification, as well as their pharmacological activities, including their regulatory effects on immunomodulation, their anticancer effects, and their functions in the central nervous and cardiovascular systems. The general benefits of ginseng saponins for boosting physical vitality and improving quality of life are also discussed. The review concludes with fruitful directions for future research in the use of ginseng saponins as effective therapeutic agents.
Collapse
Affiliation(s)
- Ze-Yu Shi
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Alice Sze Tsai Wong
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China.
| |
Collapse
|
11
|
Kim JK, Kim JY, Jang SE, Choi MS, Jang HM, Yoo HH, Kim DH. Fermented Red Ginseng Alleviates Cyclophosphamide-Induced Immunosuppression and 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice by Regulating Macrophage Activation and T Cell Differentiation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1879-1897. [PMID: 30518233 DOI: 10.1142/s0192415x18500945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A variety of products have been developed with red ginseng (RG, the steamed roots of Panax ginseng Meyer). To clarify the immunomodulating effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), enzyme-treated eRG (ERG) and probiotic-fermented eRG (FRG), we examined their immunopotentiating and immunosuppressive effects in mice with cyclophosphamide (CP)-induced immunosuppression (CI) or 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis (TC). Oral administration of RG in CI mice significantly increased blood IFN- γ levels. Treatment with RG also increased the tumoricidal effects of CI mouse splenic cytotoxic T (Tc) and NK cells against YAC-1 cells. Treatment with RGs, in particular FRG and wRG, significantly increased Th1 cell differentiation. Treatment with RG except wRG increased Treg cell differentiation. However, wRG alone increased IL-6 and IL-17 expression in the colon of CI mice. Furthermore, RG alleviated colitis in TC mice. FRG most potently suppressed TNBS-induced colon shortening, NF- κ B activation and TNF- α and IL-17 expression and increased IL-10 expression. RGs inhibited TNF- α expression and increased IL-10 expression in lipopolysaccharide-stimulated primary macrophages in vitro while the differentiation of splenic T cells into type 1 T (Th1) and regulatory T (Treg) cells was increased by FRG in vitro. In conclusion, FRG can alleviate immunosuppression and inflammation by inhibiting macrophage activation and regulating Th1 and Treg cell differentiation.
Collapse
Affiliation(s)
- Jeon-Kyung Kim
- * Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Jae-Young Kim
- * Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Se-Eun Jang
- * Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.,† Institute of Pharmaceutical Science and Technology and College of Pharmacy Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Min-Sun Choi
- † Institute of Pharmaceutical Science and Technology and College of Pharmacy Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Hyo-Min Jang
- * Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Hae-Hyun Yoo
- † Institute of Pharmaceutical Science and Technology and College of Pharmacy Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Dong-Hyun Kim
- * Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
12
|
Cho M, Choi G, Shim I, Chung Y. Enhanced Rg3 negatively regulates Th1 cell responses. J Ginseng Res 2017; 43:49-57. [PMID: 30662293 PMCID: PMC6323242 DOI: 10.1016/j.jgr.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022] Open
Abstract
Background Korean Red Ginseng (KRG; Panax ginseng Meyer) is a widely used medicinal herb known to exert various immune modulatory functions. KRG and one of its purified components, ginsenoside Rg3, are known to possess anti-inflammatory activities. How they impact helper T cell-mediated responses is not fully explored. In this study, we attempted to evaluate the effect of KRG extract (KRGE) and ginsenoside Rg3 on Th1 cell responses. Methods Using well-characterized T cell in vitro differentiation systems, we examined the effects of KRGE or enhanced Rg3 on the Th1-inducing cytokine production from dendritic cells (DC) and the naïve CD4+ T cells differentiation to Th1 cells. Furthermore, we examined the change of Th1 cell population in the intestine after treatment of enhanced Rg3. The influence of KRGE or enhanced Rg3 on Th1 cell differentiation was evaluated by fluorescence-activated cell sorting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. Results KRGE significantly inhibited the production level of IL-12 from DCs and subsequent Th1 cell differentiation. Similarly, enhanced Rg3 significantly suppressed the expression of interferon gamma (IFNγ) and T-bet in T cells under Th1-skewing condition. Consistent with these effects in vitro, oral administration of enhanced Rg3 suppressed the frequency of Th1 cells in the Peyer's patch and lamina propria cells in vivo. Conclusion Enhanced Rg3 negatively regulates the differentiation of Th1 cell in vitro and Th1 cell responses in the gut in vivo, providing fundamental basis for the use of this agent to treat Th1-related diseases.
Collapse
Affiliation(s)
- Minkyoung Cho
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Garam Choi
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Brain Korea 21 Program, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Inbo Shim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Brain Korea 21 Program, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5738694. [PMID: 27446225 PMCID: PMC4944051 DOI: 10.1155/2016/5738694] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 01/30/2023]
Abstract
Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer.
Collapse
|
14
|
Kim H, Jang M, Kim Y, Choi J, Jeon J, Kim J, Hwang YI, Kang JS, Lee WJ. Red ginseng and vitamin C increase immune cell activity and decrease lung inflammation induced by influenza A virus/H1N1 infection. J Pharm Pharmacol 2016; 68:406-20. [DOI: 10.1111/jphp.12529] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/17/2016] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
Because red ginseng and vitamin C have immunomodulatory function and anti-viral effect, we investigated whether red ginseng and vitamin C synergistically regulate immune cell function and suppress viral infection.
Methods
Red ginseng and vitamin C were treated to human peripheral blood mononuclear cells (PBMCs) or sarcoma-associated herpesvirus (KSHV)-infected BCBL-1, and administrated to Gulo(−/−) mice, which are incapable of synthesizing vitamin C, with or without influenza A virus/H1N1 infection.
Key findings
Red ginseng and vitamin C increased the expression of CD25 and CD69 of PBMCs and natural killer (NK) cells. Co-treatment of them decreased cell viability and lytic gene expression in BCBL-1. In Gulo(−/−) mice, red ginseng and vitamin C increased the expression of NKp46, a natural cytotoxic receptor of NK cells and interferon (IFN)-γ production. Influenza infection decreased the survival rate, and increased inflammation and viral plaque accumulation in the lungs of vitamin C-depleted Gulo(−/−) mice, which were remarkably reduced by red ginseng and vitamin C supplementation.
Conclusions
Administration of red ginseng and vitamin C enhanced the activation of immune cells like T and NK cells, and repressed the progress of viral lytic cycle. It also reduced lung inflammation caused by viral infection, which consequently increased the survival rate.
Collapse
Affiliation(s)
- Hyemin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Mirim Jang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Jiyea Choi
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Jane Jeon
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Jihoon Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young-il Hwang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Wang Jae Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Wong AST, Che CM, Leung KW. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 2015; 32:256-72. [PMID: 25347695 DOI: 10.1039/c4np00080c] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Ginseng, a key ingredient in traditional Chinese medicine, shows great promise as a new treatment option. As listed by the U.S. National Institutes of Health as a complementary and alternative medicine, its anti-cancer functions are being increasingly recognized. This review covers the mechanisms of action of ginsenosides and their metabolites, which can modulate signaling pathways associated with inflammation, oxidative stress, angiogenesis, metastasis, and stem/progenitor-like properties of cancer cells. The emerging use of structurally modified ginsenosides and recent clinical studies on the use of ginseng either alone or in combination with other herbs or Western medicines which are exploited as novel therapeutic strategies will also be explored.
Collapse
Affiliation(s)
- Alice S T Wong
- State Key Laboratory of Oncogenes and Related Genes, and School of Biological Sciences, The University of Hong Kong, Hong Kong.
| | | | | |
Collapse
|
16
|
Lee JS, Cho MK, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kim KH, Lee YT, Jung YJ, Kang SM. Ginseng diminishes lung disease in mice immunized with formalin-inactivated respiratory syncytial virus after challenge by modulating host immune responses. J Interferon Cytokine Res 2014; 34:902-14. [PMID: 25051168 PMCID: PMC4217040 DOI: 10.1089/jir.2013.0093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/29/2014] [Indexed: 12/30/2022] Open
Abstract
Formalin-inactivated respiratory syncytial virus (FI-RSV) immunization is known to cause severe pulmonary inflammatory disease after subsequent RSV infection. Ginseng has been used in humans for thousands of years due to its potential health benefits. We investigated whether ginseng would have immune modulating effects on RSV infection in mice previously immunized with FI-RSV. Oral administration of mice with ginseng increased IgG2a isotype antibody responses to FI-RSV immunization, indicating T-helper type 1 (Th1) immune responses. Ginseng-treated mice that were nonimmunized or previously immunized with FI-RSV showed improved protection against RSV challenge compared with control mice without ginseng treatment. Ginseng-mediated improved clinical outcomes after live RSV infection were evidenced by diminished weight losses, decreased interleukin-4 cytokine production but increased interferon-γ production, modulation of CD3 T-cell populations toward a Th1 response, and reduced inflammatory response. Ginseng-mediated protective host immune modulation against RSV pulmonary inflammation was observed in different strains of wild-type and mutant mice. These results indicate that ginseng can modulate host immune responses to FI-RSV immunization and RSV infection, resulting in protective effects against pulmonary inflammatory disease.
Collapse
Affiliation(s)
- Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Department of Medicinal and Industrial Crops, Korea National College of Agriculture and Fisheries, Hwaseong, Korea
| | - Min Kyoung Cho
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, Korea
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| |
Collapse
|
17
|
Wu H, Høiby N, Yang L, Givskov M, Song Z. Effects of radix ginseng on microbial infections: a narrative review. J TRADIT CHIN MED 2014; 34:227-33. [PMID: 24783938 DOI: 10.1016/s0254-6272(14)60083-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To summarized the antimicrobial-like effects of Radix Ginseng, which provide important information to the relevant researchers and clinicians, and will benefit the clinical treatment of infectious diseases. METHODS PubMed and Google were used to search for and collect scientific publications related to Radix Ginseng and microbial infections. The authors read, classified, and discussed the associated scientific results or evidences, and summarized the corresponding results. RESULTS In this review, recent studies on the beneficial effects of Radix Ginseng extracts on microbial and biofilm infections were reviewed. The importance and significance of Radix Ginseng's beneficial effects are discussed. Evidence for the favorable effects of Radix Ginseng extracts on viral, bacterial, fungal, and parasitic infections and the possible underlying mechanisms are summarized. CONCLUSION Radix Ginseng might be a promising supplemental remedy for the prevention and treatment of infectious diseases.
Collapse
|
18
|
Immunomodulatory activity of red ginseng against influenza A virus infection. Nutrients 2014; 6:517-29. [PMID: 24473234 PMCID: PMC3942714 DOI: 10.3390/nu6020517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 01/23/2023] Open
Abstract
Ginseng herbal medicine has been known to have beneficial effects on improving human health. We investigated whether red ginseng extract (RGE) has preventive effects on influenza A virus infection in vivo and in vitro. RGE was found to improve survival of human lung epithelial cells upon influenza virus infection. Also, RGE treatment reduced the expression of pro-inflammatory genes (IL-6, IL-8) probably in part through interference with the formation of reactive oxygen species by influenza A virus infection. Long-term oral administration of mice with RGE showed multiple immunomodulatory effects such as stimulating antiviral cytokine IFN-γ production after influenza A virus infection. In addition, RGE administration in mice inhibited the infiltration of inflammatory cells into the bronchial lumens. Therefore, RGE might have the potential beneficial effects on preventing influenza A virus infections via its multiple immunomodulatory functions.
Collapse
|
19
|
Effects of S. officinalis L. radix triterpene glycosides on innate immunity factors. Bull Exp Biol Med 2014; 156:366-9. [PMID: 24771377 DOI: 10.1007/s10517-014-2350-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 12/17/2022]
Abstract
The effects of triterpene glycosides (saponins) extracted from Saponaria officinalis L. radices, on the cellular and humoral innate immunity factors were studied. Saponins stimulated the phagocytic, bactericidal, and adhesion activities of polymorphonuclear leukocytes. Optimal conditions of saponin treatment (dose and duration) were determined for mice. Saponins promoted the maturation of human peripheral blood dendritic cells, which was proven by high expression of CD83 (terminal differentiation marker) and CD86 (bone-stimulating molecule) and of HLA-DR and HLA-ABC molecules on the cell membrane. Saponins modulated the production of TNF-α, IL-1β, IL-4, IL-6, and IFN-γ in cultured peripheral blood intact cells. The results help to understand some mechanisms of the effects of saponins extracted from Saponaria officinalis L. radix on the cellular and humoral factors of innate immunity and demonstrate good prospects of their practical use.
Collapse
|
20
|
Licciardi PV, Underwood JR. Plant-derived medicines: A novel class of immunological adjuvants. Int Immunopharmacol 2011; 11:390-8. [DOI: 10.1016/j.intimp.2010.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/17/2010] [Accepted: 10/19/2010] [Indexed: 11/26/2022]
|