1
|
Rajput VS, Runthala A, Khan IA. Shikimate Kinase Inhibitors: An Update on Promising Strategy against Mycobacterium tuberculosis. Curr Drug Targets 2023; 24:388-405. [PMID: 36752299 DOI: 10.2174/1389450124666230208102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Humanity has been battling with tuberculosis (TB) for a long period, and despite the availability of drugs well-known to act against the deadly microbe, the menace is still very far from reaching its end. Moreover, problems related to TB chemotherapy, such as lengthy treatment periods leading to poor patient compliance, increasing drug resistance, and association with another deadlier disease HIV-AIDS, make the situation alarming, thereby pressing the need for the discovery of new potent drugs urgently. Therefore, a drug target that is essential for survival and exclusive to M. tuberculosis presents a promising platform to explore novel molecules against the microorganism for better pathogen clearance with minimal toxicity. The shikimate pathway that leads to the synthesis of essential aromatic amino acids is one such attractive target. Shikimate kinase, the fifth enzyme of this pathway, converts shikimate to shikimate-3-phosphate by using ATP as a cosubstrate. Targeting shikimate kinase could be an effective strategy in light of its essentiality and absence of any homologue in mammals. This review discusses different strategies adopted for discovering novel compounds or scaffolds targeting M. tuberculosis shikimate kinase (MtSK) in vitro. The application of substrate analogues, their structure, and ligand-based approach for screening a library of anti-mycobacterial compounds, marine-derived molecules, and commercially available libraries have yielded promising MtSK inhibitors exhibiting micro-molar activities. To develop these leads into future drugs with minimum off-target effects on the host microenvironment, the molecules need to be structurally optimized for improved activities against enzymes and whole-cell organisms.
Collapse
Affiliation(s)
- Vikrant Singh Rajput
- Department of Biomedical Engineering, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Ashish Runthala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Inshad Ali Khan
- Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| |
Collapse
|
2
|
Alghamdi S, Asif M. Pyrazinamide Analogs Designed for Rational Drug Designing Strategies against Resistant Tuberculosis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
4
|
Perveen S, Kumari D, Singh K, Sharma R. Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance. Eur J Med Chem 2022; 229:114066. [PMID: 34973508 DOI: 10.1016/j.ejmech.2021.114066] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023]
Abstract
The emergence of drug resistance continues to afflict TB control where drug resistant strains have become a global health concern. Contrary to drug-sensitive TB, the treatment of MDR/XDR-TB is more complicated requiring the administration of second-line drugs that are inefficient than the first line drugs and are associated with greater side effects. The emergence of drug resistant Mtb strains had coincided with an innovation void in the field of drug discovery of anti-mycobacterials. However, the approval of bedaquiline and delamanid recently for use in MDR/XDR-TB has given an impetus to the TB drug discovery. The review discusses the drug discovery efforts in the field of tuberculosis with a focus on the strategies adopted and challenges confronted by TB research community. Here, we discuss the diverse clinical candidates in the current TB drug discovery pipeline. There is an urgent need to combat the current TB menace through multidisciplinary approaches and strategies making use of the recent advances in understanding the molecular biology and pathogenesis of Mtb. The review highlights the recent advances in drug discovery, with the host directed therapeutics and nanoparticles-drug delivery coming up as important tools to fight tuberculosis in the future.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Perveen S, Sharma R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem Pharmacol 2022; 197:114906. [PMID: 34990594 DOI: 10.1016/j.bcp.2021.114906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease, infecting a quarter of world's population. Drug resistant TB further exacerbates the grim scenario of the drying TB drug discovery pipeline. The limited arsenal to fight TB presses the need for thorough efforts for identifying promising hits to combat the disease. The review highlights the efforts in the field of tuberculosis drug discovery, with an emphasis on massive drug screening campaigns for identifying novel hits against Mtb in both industry and academia. As an intracellular pathogen, mycobacteria reside in a complicated intracellular environment with multiple factors at play. Here, we outline various strategies employed in an effort to mimic the intracellular milieu for bringing the screening models closer to the actual settings. The review also focuses on the novel targets and pathways that could aid in target-based drug discovery in TB. The recent high throughput screening efforts resulting in the identification of potent hits against Mtb has been summarized in this article. There is a pressing need for effective screening strategies and approaches employing innovative tools and recent technologies; including nanotechnology, gene-editing tools such as CRISPR-cas system, host-directed bacterial killing and high content screening to augment the TB drug discovery pipeline with safer and shorter drug regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Dzobo K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8016209 DOI: 10.1016/b978-0-12-820472-6.00041-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Emerging threats to human health require a concerted effort in search of both preventive and treatment strategies, placing natural products at the center of efforts to obtain new therapies and reduce disease spread and associated mortality. The therapeutic value of compounds found in plants has been known for ages, resulting in their utilization in homes and in clinics for the treatment of many ailments ranging from common headache to serious conditions such as wounds. Despite the advancement observed in the world, plant based medicines are still being used to treat many pathological conditions or are used as alternatives to modern medicines. In most cases, these natural products or plant-based medicines are used in an un-purified state as extracts. A lot of research is underway to identify and purify the active compounds responsible for the healing process. Some of the current drugs used in clinics have their origins as natural products or came from plant extracts. In addition, several synthetic analogues are natural product-based or plant-based. With the emergence of novel infectious agents such as the SARS-CoV-2 in addition to already burdensome diseases such as diabetes, cancer, tuberculosis and HIV/AIDS, there is need to come up with new drugs that can cure these conditions. Natural products offer an opportunity to discover new compounds that can be converted into drugs given their chemical structure diversity. Advances in analytical processes make drug discovery a multi-dimensional process involving computational designing and testing and eventual laboratory screening of potential drug candidates. Lead compounds will then be evaluated for safety, pharmacokinetics and efficacy. New technologies including Artificial Intelligence, better organ and tissue models such as organoids allow virtual screening, automation and high-throughput screening to be part of drug discovery. The use of bioinformatics and computation means that drug discovery can be a fast and efficient process and enable the use of natural products structures to obtain novel drugs. The removal of potential bottlenecks resulting in minimal false positive leads in drug development has enabled an efficient system of drug discovery. This review describes the biosynthesis and screening of natural products during drug discovery as well as methods used in studying natural products.
Collapse
|
7
|
Simões MF, Ottoni CA, Antunes A. Mycogenic Metal Nanoparticles for the Treatment of Mycobacterioses. Antibiotics (Basel) 2020; 9:E569. [PMID: 32887358 PMCID: PMC7559022 DOI: 10.3390/antibiotics9090569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
Mycobacterial infections are a resurgent and increasingly relevant problem. Within these, tuberculosis (TB) is particularly worrying as it is one of the top ten causes of death in the world and is the infectious disease that causes the highest number of deaths. A further concern is the on-going emergence of antimicrobial resistance, which seriously limits treatment. The COVID-19 pandemic has worsened current circumstances and future infections will be more incident. It is urgent to plan, draw solutions, and act to mitigate these issues, namely by exploring new approaches. The aims of this review are to showcase the extensive research and application of silver nanoparticles (AgNPs) and other metal nanoparticles (MNPs) as antimicrobial agents. We highlight the advantages of mycogenic synthesis, and report on their underexplored potential as agents in the fight against all mycobacterioses (non-tuberculous mycobacterial infections as well as TB). We propose further exploration of this field.
Collapse
Affiliation(s)
- Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China;
| | | | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China;
| |
Collapse
|
8
|
Alajlani MM, Backlund A. Evaluating Antimycobacterial Screening Schemes Using Chemical Global Positioning System-Natural Product Analysis. Molecules 2020; 25:945. [PMID: 32093238 PMCID: PMC7071165 DOI: 10.3390/molecules25040945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
Most of the targeted discoveries in tuberculosis research have covered previously explored chemical structures but neglected physiochemical properties. Until now, no efficient prediction tools have been developed to discriminate the novelty of screened compounds at early stages. To overcome this deficit, a drastic novel approach must include physicochemical properties filters provided by Chemical Global Positioning System-Natural Product analysis (ChemGPS-NP). Three different screening schemes GSK, GVKBio, and NIAID provided 776, 2880, and 3779 compounds respectively and were evaluated based on their physicochemical properties and thereby proposed as deduction examples. Charting the physiochemical property spaces of these sets identified the merits and demerits of each screening scheme by simply observing the distribution over the chemical property space. We found that GSK screening set was confined to a certain space, losing potentially active compounds when compared with an in-house constructed 459 highly active compounds (active set), while the GVKBio and NIAID screening schemes were evenly distributed through space. The latter two sets had the advantage, as they have covered a larger space and presented compounds with additional variety of properties and activities. The in-house active set was cross-validated with MycPermCheck and SmartsFilter to be able to identify priority compounds. The model demonstrated undiscovered spaces when matched with Maybridge drug-like space, providing further potential targets. These undiscovered spaces should be considered in any future investigations. We have included the most active compounds along with permeability and toxicity filters as supplemented material.
Collapse
Affiliation(s)
- Muaaz Mutaz Alajlani
- Pharmacognosy Research Group, Department of Medicinal Chemistry—Faculty of Pharmacy, Uppsala University, BMC—Biomedical Center, Box 574, S-751 23 Uppsala, Sweden;
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, Hoher Weg 8, DE 06120 Halle (Saale), Germany
| | - Anders Backlund
- Pharmacognosy Research Group, Department of Medicinal Chemistry—Faculty of Pharmacy, Uppsala University, BMC—Biomedical Center, Box 574, S-751 23 Uppsala, Sweden;
| |
Collapse
|
9
|
Alajlani MM, Backlund A. Evaluating Antimycobacterial Screening Schemes Using Chemical Global Positioning System-Natural Product Analysis. Molecules 2020; 25:945. [DOI: https:/doi.org/10.3390/molecules25040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Most of the targeted discoveries in tuberculosis research have covered previously explored chemical structures but neglected physiochemical properties. Until now, no efficient prediction tools have been developed to discriminate the novelty of screened compounds at early stages. To overcome this deficit, a drastic novel approach must include physicochemical properties filters provided by Chemical Global Positioning System-Natural Product analysis (ChemGPS-NP). Three different screening schemes GSK, GVKBio, and NIAID provided 776, 2880, and 3779 compounds respectively and were evaluated based on their physicochemical properties and thereby proposed as deduction examples. Charting the physiochemical property spaces of these sets identified the merits and demerits of each screening scheme by simply observing the distribution over the chemical property space. We found that GSK screening set was confined to a certain space, losing potentially active compounds when compared with an in-house constructed 459 highly active compounds (active set), while the GVKBio and NIAID screening schemes were evenly distributed through space. The latter two sets had the advantage, as they have covered a larger space and presented compounds with additional variety of properties and activities. The in-house active set was cross-validated with MycPermCheck and SmartsFilter to be able to identify priority compounds. The model demonstrated undiscovered spaces when matched with Maybridge drug-like space, providing further potential targets. These undiscovered spaces should be considered in any future investigations. We have included the most active compounds along with permeability and toxicity filters as supplemented material.
Collapse
Affiliation(s)
- Muaaz Mutaz Alajlani
- Pharmacognosy Research Group, Department of Medicinal Chemistry—Faculty of Pharmacy, Uppsala University, BMC—Biomedical Center, Box 574, S-751 23 Uppsala, Sweden
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, Hoher Weg 8, DE 06120 Halle (Saale), Germany
| | - Anders Backlund
- Pharmacognosy Research Group, Department of Medicinal Chemistry—Faculty of Pharmacy, Uppsala University, BMC—Biomedical Center, Box 574, S-751 23 Uppsala, Sweden
| |
Collapse
|
10
|
Baravkar SB, Wagh MA, Nawale LU, Choudhari AS, Bhansali S, Sarkar D, Sanjayan GJ. Design and Synthesis of 2‐Amino‐thiophene‐proline‐conjugates and Their Anti‐tubercular Activity against
Mycobacterium Tuberculosis
H37Ra. ChemistrySelect 2019. [DOI: 10.1002/slct.201803370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sachin B. Baravkar
- Division of Organic ChemistryCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pune 411 008 Maharashtra India
| | - Mahendra A. Wagh
- Division of Organic ChemistryCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pune 411 008 Maharashtra India
| | - Laxman U. Nawale
- Combi-Chem Resource CentreCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pune 411 008 Maharashtra India
| | - Amit S. Choudhari
- Combi-Chem Resource CentreCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pune 411 008 Maharashtra India
| | - Sujit Bhansali
- Combi-Chem Resource CentreCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pune 411 008 Maharashtra India
| | - Dhiman Sarkar
- Combi-Chem Resource CentreCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pune 411 008 Maharashtra India
| | - Gangadhar J. Sanjayan
- Division of Organic ChemistryCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pune 411 008 Maharashtra India
| |
Collapse
|
11
|
Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomed Pharmacother 2018; 103:1733-1747. [PMID: 29864964 DOI: 10.1016/j.biopha.2018.04.176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis is an ever evolving infectious disease that still claims about 1.8 million human lives each year around the globe. Although modern chemotherapy has played a pivotal role in combating TB, the increasing emergence of drug-resistant TB aligned with HIV pandemic threaten its control. This highlights both the need to understand how our current drugs work and the need to develop new and more effective drugs. TB drug discovery is revisiting the clinically validated drug targets in Mycobacterium tuberculosis using whole-cell phenotypic assays in search of better therapeutic scaffolds. Herein, we review the promises of current TB drug regimens, major pitfalls faced, key drug targets exploited so far in M. tuberculosis along with the status of newly discovered drugs against drug resistant forms of TB. New antituberculosis regimens that use lesser number of drugs, require shorter duration of treatment, are equally effective against susceptible and resistant forms of disease, have acceptable toxicity profiles and behave friendly with anti-HIV regimens remains top most priority in TB drug discovery.
Collapse
|
12
|
Lemieux MR, Siricilla S, Mitachi K, Eslamimehr S, Wang Y, Yang D, Pressly JD, Kong Y, Park F, Franzblau SG, Kurosu M. An antimycobacterial pleuromutilin analogue effective against dormant bacilli. Bioorg Med Chem 2018; 26:4787-4796. [PMID: 30145051 PMCID: PMC6154393 DOI: 10.1016/j.bmc.2018.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/06/2018] [Accepted: 07/19/2018] [Indexed: 11/17/2022]
Abstract
Pleuromutilin is a promising pharmacophore to design new antibacterial agents for Gram-positive bacteria. However, there are limited studies on the development of pleuromutilin analogues that inhibit growth of Mycobacterium tuberculosis (Mtb). In screening of our library of pleuromutilin derivatives, UT-800 (1) was identified to kill replicating- and non-replicating Mtb with the MIC values of 0.83 and 1.20 μg/mL, respectively. UT-800 also kills intracellular Mtb faster than rifampicin at 2× MIC concentrations. Pharmacokinetic studies indicate that 1 has an oral bioavailability with an average F-value of 27.6%. Pleuromutilin may have the potential to be developed into an orally administered anti-TB drug.
Collapse
Affiliation(s)
- Maddie R Lemieux
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Shakiba Eslamimehr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Yuehong Wang
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Dong Yang
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Jeffrey D Pressly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Ying Kong
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States.
| |
Collapse
|
13
|
Pattanashetty SH, Hosamani K, Barretto DA. Microwave assisted synthesis, computational study and biological evaluation of novel quinolin-2(1H)-one based pyrazoline hybrids. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cdc.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci 2018; 19:E1578. [PMID: 29799486 PMCID: PMC6032166 DOI: 10.3390/ijms19061578] [Citation(s) in RCA: 641] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Palesa Seele
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag, Alice X1314, South Africa.
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
15
|
Lounis N, Vranckx L, Gevers T, Kaniga K, Andries K. In vitro culture conditions affecting minimal inhibitory concentration of bedaquiline against M. tuberculosis. Med Mal Infect 2017; 46:220-5. [PMID: 27210281 DOI: 10.1016/j.medmal.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES In developing a standardized drug susceptibility test for bedaquiline, it is very important to know which parameters might impact its activity in vitro and result in false resistance of the bacterium to bedaquiline. We aimed to assess the impact of different in vitro conditions on the minimal inhibitory concentration (MIC) of bedaquiline against Mycobacterium tuberculosis H37Rv reference strain. METHODS The MIC of M. tuberculosis H37Rv strain was determined under different conditions such as inoculum size, pH, temperatures, log and stationary phase cultures, protein concentration, Tween 80 concentration, and labware plastics. RESULTS Increases in bedaquiline MIC were observed with variations in inoculum size for M. tuberculosis H37Rv on agar or in broth, in protein concentration and labware plastics on agar, and with variations in pH and Tween 80 concentrations in broth. CONCLUSIONS In order to obtain reproducible MIC results, bedaquiline MIC should be assessed using polystyrene plates or tubes, at pH 7, with a Tween 80 concentration of 0.02%, without protein enrichment and with an inoculum size up to 10(7) colony-forming unit (CFU)/mL on 7H11 agar or with 10(5)CFU/mL in 7H9 broth.
Collapse
Affiliation(s)
- N Lounis
- Janssen Infectious Diseases BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - L Vranckx
- Janssen Infectious Diseases BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - T Gevers
- Janssen Infectious Diseases BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - K Kaniga
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | - K Andries
- Janssen Infectious Diseases BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
16
|
Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 2017; 174:2194-2208. [PMID: 28002883 DOI: 10.1111/bph.13694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/06/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), although a curable disease, is still one of the most difficult infections to treat. Mycobacterium tuberculosis infects 10 million people worldwide and kills 1.5 million people each year. Reactivation of a latent infection is the major cause of TB. Cholesterol is a critical carbon source during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into lipid virulence factors. The M. tuberculosis genome contains a large regulon of cholesterol catabolic genes suggesting that the microorganism can utilize host sterol for infection and persistence. The protein products of these genes present ideal targets for rational drug discovery programmes. This review summarizes the development of enzyme inhibitors targeting the cholesterol pathway in M. tuberculosis. This knowledge is essential for the discovery of novel agents to treat M. tuberculosis infection. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
|
17
|
Synthesis of threo- and erythro-configured trihydroxy open chain lipophilic ketones as possible anti-mycobacterial agents. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2016.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Luciani R, Saxena P, Surade S, Santucci M, Venturelli A, Borsari C, Marverti G, Ponterini G, Ferrari S, Blundell TL, Costi MP. Virtual Screening and X-ray Crystallography Identify Non-Substrate Analog Inhibitors of Flavin-Dependent Thymidylate Synthase. J Med Chem 2016; 59:9269-9275. [PMID: 27589670 DOI: 10.1021/acs.jmedchem.6b00977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thymidylate synthase X (ThyX) represents an attractive target for tuberculosis drug discovery. Herein, we selected 16 compounds through a virtual screening approach. We solved the first X-ray crystal structure of Thermatoga maritima (Tm) ThyX in complex with a nonsubstrate analog inhibitor. Given the active site similarities between Mycobacterium tuberculosis ThyX (Mtb-ThyX) and Tm-ThyX, our crystal structure paves the way for a structure-based design of novel antimycobacterial compounds. The 1H-imidazo[4,5-d]pyridazine was identified as scaffold for the development of Mtb-ThyX inhibitors.
Collapse
Affiliation(s)
- Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Puneet Saxena
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Sachin Surade
- Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Alberto Venturelli
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy.,Tydock Pharma srl , Strada Gherbella 294/B, 41126 Modena, Italy
| | - Chiara Borsari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical Sciences, Metabolic and Neural Sciences, University of Modena and Reggio Emilia , Via Campi, 287, 41125 Modena, Italy
| | - Glauco Ponterini
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| |
Collapse
|
19
|
Dhumal ST, Deshmukh AR, Bhosle MR, Khedkar VM, Nawale LU, Sarkar D, Mane RA. Synthesis and antitubercular activity of new 1,3,4-oxadiazoles bearing pyridyl and thiazolyl scaffolds. Bioorg Med Chem Lett 2016; 26:3646-51. [PMID: 27301367 DOI: 10.1016/j.bmcl.2016.05.093] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022]
Abstract
In search of more potent and safe new antitubercular agents, here new 2-pyridinyl substituted thiazolyl-5-aryl-1,3,4-oxadiazoles (6a-o), have been designed and synthesized using thionicotinamide as a starting, following novel multistep synthetic route. An intermediate, pyridinyl substituted thiazolyl acid hydrazide (4) when condensed with benzoic acids/nicotinic acids (5a-o) in the presence of silica supported POCl3 yielded better to excellent yields of the title compounds. All the synthesized compounds (6a-o) and intermediate acid hydrazide (4) have been screened for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Ra (MTB) and Mycobacterium bovis BCG. Amongst them, 6f, 6j, 6l and 6o have revealed promising activity against M. bovis BCG at concentrations less than 3μg/mL. These compounds have shown low cytotoxicity (CC50: >100μg/mL) towards four human cancer cell lines. Molecular docking study has also been performed against mycobacterial enoyl reductase (InhA) enzyme to gain an insight into the binding modes of these molecules and recorded good binding affinity. The ADME properties the title products have also been analyzed.
Collapse
Affiliation(s)
- Sambhaji T Dhumal
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | - Amarsinh R Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | - Manisha R Bhosle
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | - Vijay M Khedkar
- Combi Chem-Bio Resource Centre, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Laxman U Nawale
- Combi Chem-Bio Resource Centre, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Dhiman Sarkar
- Combi Chem-Bio Resource Centre, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Ramrao A Mane
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India.
| |
Collapse
|
20
|
Abstract
After 50 years drought, several drugs are looming from the pipeline to combat tuberculosis. They will serve as a boon to the field that has been burdened with primitive, inadequate treatments and drug-resistant bacterial strains. From the decades, due to lack of interest and resources, the field has suffered a lot. Learning from the flaws, scientists have renovated their approaches to the finding of new antitubercular drugs. The first line drugs take about six months or more for the entire treatment. The second line remedy for resistant-tuberculosis requires daily injections which carry severe side effects. Drug resistance remains a constant menace because patients stop the medication once they start feeling better. So new drugs are required to be explored which are effective against tuberculosis especially drug resistant tuberculosis. These drugs need to work well with other drugs as well as with antivirals used for the treatment of human immunodeficiency virus. It is also very important to be considered that the treatments need to be cheap, as tuberculosis primarily affects people more in the developing countries. Further, new drugs must cure the disease in short span of time than the current six to nine month regimen. Recently a few new and potent drugs such as bedaquiline, delamanid, teixobactin have been evolved which may serve as a nice step forward, with a better outcome. Teixobactin, a new antibiotic has been found to have promising action against resistant strains, is also under consideration.
Collapse
Affiliation(s)
- Tejal Rawal
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad-382 481, India
| | - Shital Butani
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad-382 481, India
| |
Collapse
|
21
|
Dragset MS, Barczak AK, Kannan N, Mærk M, Flo TH, Valla S, Rubin EJ, Steigedal M. Benzoic Acid-Inducible Gene Expression in Mycobacteria. PLoS One 2015; 10:e0134544. [PMID: 26348349 PMCID: PMC4562662 DOI: 10.1371/journal.pone.0134544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/11/2015] [Indexed: 12/20/2022] Open
Abstract
Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance.
Collapse
Affiliation(s)
- Marte S. Dragset
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Amy K. Barczak
- Massachusetts General Hospital, Department of Medicine, Boston, Massachusetts, United States of America
| | - Nisha Kannan
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mali Mærk
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trude H. Flo
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Magnus Steigedal
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Central Norway Regional Health Authority, Stjørdal, Norway
- * E-mail:
| |
Collapse
|
22
|
Meng M, Smith B, Johnston B, Carter S, Brisson J, Roth SE. Simultaneous quantitation of delamanid (OPC-67683) and its eight metabolites in human plasma using UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002:78-91. [PMID: 26319300 DOI: 10.1016/j.jchromb.2015.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/19/2015] [Accepted: 07/30/2015] [Indexed: 11/17/2022]
Abstract
Delamanid (OPC-67683) is a novel nitro-dihydroimidazo-oxazole derivative that is being developed by Otsuka Pharmaceutical Co., Ltd., Japan (referred to as Otsuka hereafter) for the treatment of tuberculosis (TB). An ultra-high performance liquid chromatographic-tandem mass spectrometry (UHPLC-MS/MS) method has been developed and validated for the determination of OPC-67683 and its eight metabolites, DM-6704, DM-6705, DM-6706, DM-6717, DM-6718, DM-6720, DM-6721 and DM-6722 in human plasma to support regulated clinical development. During method development several technical challenges such as poor chromatography, separation of structural isomers, conversion of the analytes, instability in matrix and long cycle time were encountered and overcome. A protein precipitation extraction (PPE) was used to extract plasma samples (50μL) and the resulting extracts were analyzed using reversed phase UHPLC-MS/MS with a electrospray (ESI) and selected reaction monitoring (SRM). The method was fully validated over the calibration curve range of 1.00-500ng/mL for all nine analytes with linear regression and 1/x(2) weighting according to regulatory guidance for bioanalysis. Based on three inter-day precision and accuracy runs, the between-run % relative standard deviation (RSD) for all nine analytes varied from 0.0 to 11.9% and the accuracy ranged from 92.7% to 102.5% of nominal at all quality controls (QC) concentrations, including the lower limit of quantitation (LLOQ) QC at 1.00ng/mL. The extraction recovery of OPC-67683 and its eight metabolites were above 95%. Various short term and long term solution and matrix stability were established including the stability of OPC-67683 and its eight metabolites in human plasma for 708 days at -70°C. Although this method has been used to support regulated clinic studies during the last decade and over ten thousand samples have been analyzed, this is the first time that the method development process and validation data have been published.
Collapse
Affiliation(s)
- Min Meng
- Covance, 1121 East 3900 South, Salt Lake City, UT 84124, USA.
| | - Benjamin Smith
- Covance, 1121 East 3900 South, Salt Lake City, UT 84124, USA
| | - Brad Johnston
- Covance, 1121 East 3900 South, Salt Lake City, UT 84124, USA
| | - Spencer Carter
- Covance, 1121 East 3900 South, Salt Lake City, UT 84124, USA
| | - Jerry Brisson
- Otsuka Pharmaceutical Development & Commercialization (OPDC), 2440 Research Boulevard, Rockville, MD 20850, USA
| | - Sharin E Roth
- Otsuka Pharmaceutical Development & Commercialization (OPDC), 2440 Research Boulevard, Rockville, MD 20850, USA
| |
Collapse
|
23
|
Kanichar D, Roppiyakuda L, Kosmowska E, Faust MA, Tran KP, Chow F, Buglo E, Groziak MP, Sarina EA, Olmstead MM, Silva I, Xu HH. Synthesis, characterization, and antibacterial activity of structurally complex 2-acylated 2,3,1-benzodiazaborines and related compounds. Chem Biodivers 2015; 11:1381-97. [PMID: 25238079 DOI: 10.1002/cbdv.201400007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Indexed: 11/10/2022]
Abstract
A set of 2-acylated 2,3,1-benzodiazaborines and some related boron heterocycles were synthesized, characterized, and tested for antibacterial activity against Escherichia coli and Mycobacterium smegmatis. By high-field solution NMR, the heretofore unknown class of 2-acyl-1-hydroxy-2,3,1-diazaborines has been found to be able to exist in several interconvertable structural forms along a continuum comprised of an open hydrazone a, a monomeric B-hydroxy diazaborine b, and an anhydro dimer c. X-Ray crystallography of one of the anhydro dimers, 17c, revealed it to have an unprecedented structure featuring a double intramolecular O→B chelation. The crystal structure of another compound, 37, showed it to be based on a new pentacyclic B heterocycle framework. Nine compounds were found to possess activities against E. coli, and two others were active against M. smegmatis. The finding that these two contain isoniazid covalently embedded in their structures suggests that they might possibly be acting as prodrugs of this well-known antituberculosis agent in vivo.
Collapse
Affiliation(s)
- Divya Kanichar
- Department of Chemistry and Biochemistry, California State University, East Bay, 25800 Carlos Bee Blvd., Hayward, CA 94542-3089, USA, (phone: +1-510-8853407; fax: +1-510-8854675)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Targeted Drug Delivery Systems: Strategies and Challenges. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
25
|
Abuhammad A, Fullam E, Bhakta S, Russell AJ, Morris GM, Finn PW, Sim E. Exploration of piperidinols as potential antitubercular agents. Molecules 2014; 19:16274-90. [PMID: 25310152 PMCID: PMC6271891 DOI: 10.3390/molecules191016274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/09/2014] [Accepted: 09/24/2014] [Indexed: 12/23/2022] Open
Abstract
Novel drugs to treat tuberculosis are required and the identification of potential targets is important. Piperidinols have been identified as potential antimycobacterial agents (MIC < 5 μg/mL), which also inhibit mycobacterial arylamine N-acetyltransferase (NAT), an enzyme essential for mycobacterial survival inside macrophages. The NAT inhibition involves a prodrug-like mechanism in which activation leads to the formation of bioactive phenyl vinyl ketone (PVK). The PVK fragment selectively forms an adduct with the cysteine residue in the active site. Time dependent inhibition of the NAT enzyme from Mycobacterium marinum (M. marinum) demonstrates a covalent binding mechanism for all inhibitory piperidinol analogues. The structure activity relationship highlights the importance of halide substitution on the piperidinol benzene ring. The structures of the NAT enzymes from M. marinum and M. tuberculosis, although 74% identical, have different residues in their active site clefts and allow the effects of amino acid substitutions to be assessed in understanding inhibitory potency. In addition, we have used the piperidinol 3-dimensional shape and electrostatic properties to identify two additional distinct chemical scaffolds as inhibitors of NAT. While one of the scaffolds has anti-tubercular activity, both inhibit NAT but through a non-covalent mechanism.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Angela J Russell
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Garrett M Morris
- InhibOx, Oxford Centre for Innovation, New Road, Oxford OX1 1BY, UK
| | - Paul W Finn
- InhibOx, Oxford Centre for Innovation, New Road, Oxford OX1 1BY, UK
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
26
|
Lakshminarayana SB, Boshoff HIM, Cherian J, Ravindran S, Goh A, Jiricek J, Nanjundappa M, Nayyar A, Gurumurthy M, Singh R, Dick T, Blasco F, Barry CE, Ho PC, Manjunatha UH. Pharmacokinetics-pharmacodynamics analysis of bicyclic 4-nitroimidazole analogs in a murine model of tuberculosis. PLoS One 2014; 9:e105222. [PMID: 25141257 PMCID: PMC4139342 DOI: 10.1371/journal.pone.0105222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/18/2014] [Indexed: 12/02/2022] Open
Abstract
PA-824 is a bicyclic 4-nitroimidazole, currently in phase II clinical trials for the treatment of tuberculosis. Dose fractionation pharmacokinetic-pharmacodynamic studies in mice indicated that the driver of PA-824 invivo efficacy is the time during which the free drug concentrations in plasma are above the MIC (fT>MIC). In this study, a panel of closely related potent bicyclic 4-nitroimidazoles was profiled in both invivo PK and efficacy studies. In an established murine TB model, the efficacy of diverse nitroimidazole analogs ranged between 0.5 and 2.3 log CFU reduction compared to untreated controls. Further, a retrospective analysis was performed for a set of seven nitroimidazole analogs to identify the PK parameters that correlate with invivo efficacy. Our findings show that the invivo efficacy of bicyclic 4-nitroimidazoles correlated better with lung PK than with plasma PK. Further, nitroimidazole analogs with moderate-to-high volume of distribution and Lung to plasma ratios of >2 showed good efficacy. Among all the PK-PD indices, total lung T>MIC correlated the best with invivo efficacy (rs = 0.88) followed by lung Cmax/MIC and AUC/MIC. Thus, lung drug distribution studies could potentially be exploited to guide the selection of compounds for efficacy studies, thereby accelerating the drug discovery efforts in finding new nitroimidazole analogs.
Collapse
Affiliation(s)
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph Cherian
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | - Anne Goh
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Jan Jiricek
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | - Amit Nayyar
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Ramandeep Singh
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Dick
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul C. Ho
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- * E-mail: (SBL); (UHM)
| |
Collapse
|
27
|
Clark AM, Sarker M, Ekins S. New target prediction and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0. J Cheminform 2014; 6:38. [PMID: 25302078 PMCID: PMC4190048 DOI: 10.1186/s13321-014-0038-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We recently developed a freely available mobile app (TB Mobile) for both iOS and Android platforms that displays Mycobacterium tuberculosis (Mtb) active molecule structures and their targets with links to associated data. The app was developed to make target information available to as large an audience as possible. RESULTS We now report a major update of the iOS version of the app. This includes enhancements that use an implementation of ECFP_6 fingerprints that we have made open source. Using these fingerprints, the user can propose compounds with possible anti-TB activity, and view the compounds within a cluster landscape. Proposed compounds can also be compared to existing target data, using a näive Bayesian scoring system to rank probable targets. We have curated an additional 60 new compounds and their targets for Mtb and added these to the original set of 745 compounds. We have also curated 20 further compounds (many without targets in TB Mobile) to evaluate this version of the app with 805 compounds and associated targets. CONCLUSIONS TB Mobile can now manage a small collection of compounds that can be imported from external sources, or exported by various means such as email or app-to-app inter-process communication. This means that TB Mobile can be used as a node within a growing ecosystem of mobile apps for cheminformatics. It can also cluster compounds and use internal algorithms to help identify potential targets based on molecular similarity. TB Mobile represents a valuable dataset, data-visualization aid and target prediction tool.
Collapse
Affiliation(s)
- Alex M Clark
- Molecular Materials Informatics, 1900 St. Jacques #302, Montreal H3J 2S1, Quebec, Canada
| | - Malabika Sarker
- SRI International, 333 Ravenswood Avenue, Menlo Park 94025, CA, USA
| | - Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame 94010, CA, USA
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina 27526, NC, USA
| |
Collapse
|
28
|
Chauhan K, Sharma M, Trivedi P, Chaturvedi V, Chauhan PMS. New class of methyl tetrazole based hybrid of (Z)-5-benzylidene-2-(piperazin-1-yl)thiazol-4(%H)-one as potent antitubercular agents. Bioorg Med Chem Lett 2014; 24:4166-70. [PMID: 25127167 DOI: 10.1016/j.bmcl.2014.07.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022]
Abstract
In search of potential therapeutics for tuberculosis, we describe here the synthesis and in vitro antitubercular activity of a novel series of thiazolone piperazine tetrazole derivatives. Among all the synthesized derivatives, four compounds (10, 14, 20 and 33) exhibited more potent activity (MIC=3.08, 3.01, 2.62 and 2.51 μM) than ethambutol (MIC=9.78 μM) and pyrazinamide (MIC=101.53 μM) against Mycobacterium tuberculosis. Furthermore, they displayed no toxicity against Vero cells (C1008) and mouse bone marrow derived macrophages (MBMDMϕ). These investigated analogues have emerged as possible lead molecule to enlarge the scope of the study.
Collapse
Affiliation(s)
- Kuldeep Chauhan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Moni Sharma
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Priyanka Trivedi
- Drug Target Discovery and Development Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vinita Chaturvedi
- Drug Target Discovery and Development Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prem M S Chauhan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
29
|
Williams DR, Shah AA. Total Synthesis of (+)-Ileabethoxazole via an Iron-Mediated Pauson–Khand [2 + 2 + 1] Carbocyclization. J Am Chem Soc 2014; 136:8829-36. [DOI: 10.1021/ja5043462] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David R. Williams
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Akshay A. Shah
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
30
|
Ekins S, Casey AC, Roberts D, Parish T, Bunin BA. Bayesian models for screening and TB Mobile for target inference with Mycobacterium tuberculosis. Tuberculosis (Edinb) 2014; 94:162-9. [PMID: 24440548 PMCID: PMC4394018 DOI: 10.1016/j.tube.2013.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 12/19/2022]
Abstract
The search for compounds active against Mycobacterium tuberculosis is reliant upon high-throughput screening (HTS) in whole cells. We have used Bayesian machine learning models which can predict anti-tubercular activity to filter an internal library of over 150,000 compounds prior to in vitro testing. We used this to select and test 48 compounds in vitro; 11 were active with MIC values ranging from 0.4 μM to 10.2 μM, giving a high hit rate of 22.9%. Among the hits, we identified several compounds belonging to the same series including five quinolones (including ciprofloxacin), three molecules with long aliphatic linkers and three singletons. This approach represents a rapid method to prioritize compounds for testing that can be used alongside medicinal chemistry insight and other filters to identify active molecules. Such models can significantly increase the hit rate of HTS, above the usual 1% or lower rates seen. In addition, the potential targets for the 11 molecules were predicted using TB Mobile and clustering alongside a set of over 740 molecules with known M. tuberculosis target annotations. These predictions may serve as a mechanism for prioritizing compounds for further optimization.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA; Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.
| | - Allen C Casey
- Infectious Disease Research Institute, Seattle, WA, USA
| | - David Roberts
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Tanya Parish
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Barry A Bunin
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA
| |
Collapse
|
31
|
Shaikh MS, Palkar MB, Patel HM, Rane RA, Alwan WS, Shaikh MM, Shaikh IM, Hampannavar GA, Karpoormath R. Design and synthesis of novel carbazolo–thiazoles as potential anti-mycobacterial agents using a molecular hybridization approach. RSC Adv 2014. [DOI: 10.1039/c4ra11752b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel carbazolo–thiazoles was synthesized and evaluated for in vitro anti-mycobacterial activity.
Collapse
Affiliation(s)
- Mahamadhanif S. Shaikh
- Department of Pharmaceutical Chemistry
- Discipline of Pharmaceutical Sciences
- College of Health Sciences
- University of KwaZulu-Natal
- Durban-4000, South Africa
| | - Mahesh B. Palkar
- Department of Pharmaceutical Chemistry
- Discipline of Pharmaceutical Sciences
- College of Health Sciences
- University of KwaZulu-Natal
- Durban-4000, South Africa
| | - Harun M. Patel
- Department of Pharmaceutical Chemistry
- Discipline of Pharmaceutical Sciences
- College of Health Sciences
- University of KwaZulu-Natal
- Durban-4000, South Africa
| | - Rajesh A. Rane
- Department of Pharmaceutical Chemistry
- Discipline of Pharmaceutical Sciences
- College of Health Sciences
- University of KwaZulu-Natal
- Durban-4000, South Africa
| | - Wesam S. Alwan
- Department of Pharmaceutical Chemistry
- Discipline of Pharmaceutical Sciences
- College of Health Sciences
- University of KwaZulu-Natal
- Durban-4000, South Africa
| | - Mahidansha M. Shaikh
- Department of Pharmaceutical Chemistry
- Discipline of Pharmaceutical Sciences
- College of Health Sciences
- University of KwaZulu-Natal
- Durban-4000, South Africa
| | - Iqbal M. Shaikh
- Department of Pharmaceutical Chemistry
- Discipline of Pharmaceutical Sciences
- College of Health Sciences
- University of KwaZulu-Natal
- Durban-4000, South Africa
| | - Girish A. Hampannavar
- Department of Pharmaceutical Chemistry
- Discipline of Pharmaceutical Sciences
- College of Health Sciences
- University of KwaZulu-Natal
- Durban-4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry
- Discipline of Pharmaceutical Sciences
- College of Health Sciences
- University of KwaZulu-Natal
- Durban-4000, South Africa
| |
Collapse
|
32
|
Rao SPS, Lakshminarayana SB, Kondreddi RR, Herve M, Camacho LR, Bifani P, Kalapala SK, Jiricek J, Ma NL, Tan BH, Ng SH, Nanjundappa M, Ravindran S, Seah PG, Thayalan P, Lim SH, Lee BH, Goh A, Barnes WS, Chen Z, Gagaring K, Chatterjee AK, Pethe K, Kuhen K, Walker J, Feng G, Babu S, Zhang L, Blasco F, Beer D, Weaver M, Dartois V, Glynne R, Dick T, Smith PW, Diagana TT, Manjunatha UH. Indolcarboxamide Is a Preclinical Candidate for Treating Multidrug-Resistant Tuberculosis. Sci Transl Med 2013; 5:214ra168. [DOI: 10.1126/scitranslmed.3007355] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Ekins S, Freundlich JS, Hobrath JV, Lucile White E, Reynolds RC. Combining computational methods for hit to lead optimization in Mycobacterium tuberculosis drug discovery. Pharm Res 2013; 31:414-35. [PMID: 24132686 DOI: 10.1007/s11095-013-1172-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/28/2013] [Indexed: 12/19/2022]
Abstract
PURPOSE Tuberculosis treatments need to be shorter and overcome drug resistance. Our previous large scale phenotypic high-throughput screening against Mycobacterium tuberculosis (Mtb) has identified 737 active compounds and thousands that are inactive. We have used this data for building computational models as an approach to minimize the number of compounds tested. METHODS A cheminformatics clustering approach followed by Bayesian machine learning models (based on publicly available Mtb screening data) was used to illustrate that application of these models for screening set selections can enrich the hit rate. RESULTS In order to explore chemical diversity around active cluster scaffolds of the dose-response hits obtained from our previous Mtb screens a set of 1924 commercially available molecules have been selected and evaluated for antitubercular activity and cytotoxicity using Vero, THP-1 and HepG2 cell lines with 4.3%, 4.2% and 2.7% hit rates, respectively. We demonstrate that models incorporating antitubercular and cytotoxicity data in Vero cells can significantly enrich the selection of non-toxic actives compared to random selection. Across all cell lines, the Molecular Libraries Small Molecule Repository (MLSMR) and cytotoxicity model identified ~10% of the hits in the top 1% screened (>10 fold enrichment). We also showed that seven out of nine Mtb active compounds from different academic published studies and eight out of eleven Mtb active compounds from a pharmaceutical screen (GSK) would have been identified by these Bayesian models. CONCLUSION Combining clustering and Bayesian models represents a useful strategy for compound prioritization and hit-to lead optimization of antitubercular agents.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California, 94010, USA,
| | | | | | | | | |
Collapse
|
34
|
Synthesis and evaluation of α-ketotriazoles and α,β-diketotriazoles as inhibitors of Mycobacterium tuberculosis. Eur J Med Chem 2013; 69:167-73. [PMID: 24016834 DOI: 10.1016/j.ejmech.2013.06.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 12/23/2022]
Abstract
Two series of α-ketotriazole and α,β-diketotriazole derivatives were synthesized and evaluated for antitubercular and cytotoxic activities. Among them, two α,β-diketotriazole compounds, 6b and 9b, exhibited good activities (minimum inhibitory concentration = 7.6 μM and 6.9 μM, respectively) on Mycobacterium tuberculosis and multi-drug resistant M. tuberculosis strains and presented no cytotoxicity (IC₅₀ > 50 μM) on colorectal cancer HCT116 and normal fibroblast GM637H cell lines. These two compounds represent promising leads for further optimization.
Collapse
|
35
|
Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models. PLoS One 2013; 8:e63240. [PMID: 23667592 PMCID: PMC3647004 DOI: 10.1371/journal.pone.0063240] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/31/2013] [Indexed: 02/01/2023] Open
Abstract
High-throughput screening (HTS) in whole cells is widely pursued to find compounds active against Mycobacterium tuberculosis (Mtb) for further development towards new tuberculosis (TB) drugs. Hit rates from these screens, usually conducted at 10 to 25 µM concentrations, typically range from less than 1% to the low single digits. New approaches to increase the efficiency of hit identification are urgently needed to learn from past screening data. The pharmaceutical industry has for many years taken advantage of computational approaches to optimize compound libraries for in vitro testing, a practice not fully embraced by academic laboratories in the search for new TB drugs. Adapting these proven approaches, we have recently built and validated Bayesian machine learning models for predicting compounds with activity against Mtb based on publicly available large-scale HTS data from the Tuberculosis Antimicrobial Acquisition Coordinating Facility. We now demonstrate the largest prospective validation to date in which we computationally screened 82,403 molecules with these Bayesian models, assayed a total of 550 molecules in vitro, and identified 124 actives against Mtb. Individual hit rates for the different datasets varied from 15–28%. We have identified several FDA approved and late stage clinical candidate kinase inhibitors with activity against Mtb which may represent starting points for further optimization. The computational models developed herein and the commercially available molecules derived from them are now available to any group pursuing Mtb drug discovery.
Collapse
|
36
|
Hwang JM, Oh T, Kaneko T, Upton AM, Franzblau SG, Ma Z, Cho SN, Kim P. Design, synthesis, and structure-activity relationship studies of tryptanthrins as antitubercular agents. JOURNAL OF NATURAL PRODUCTS 2013; 76:354-67. [PMID: 23360475 DOI: 10.1021/np3007167] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The natural product tryptanthrin (1a) represents a potential lead for new tuberculosis (TB) drugs since tryptanthrin and its synthetic analogues possess potent in vitro activity against Mycobacterium tuberculosis (Mtb). However, in spite of their in vitro activity, none of these agents have been shown to be efficacious in vivo against animal models of TB. Described herein are syntheses of new tryptanthrin analogues together with a systematic investigation of their in vitro antitubercular activity and ADME properties followed by pharmacokinetic characterization in rodents for the most promising compounds. Those with the best potency and oral bioavailability were progressed to evaluations of efficacy against acute murine TB. The work aimed to prove the concept that this compound class can limit growth of Mtb during infection as well as to establish the SAR for in vitro activity against Mtb and the range of in vitro ADME parameters for this class of natural products. Novel C-11-deoxy (5b) and A-ring-saturated (6) tryptanthrin analogues were discovered that maintained activity against Mtb and showed improved solubility compared to tryptanthrin as well as evidence of oral bioavailability in rodents. However, neither 5b nor 6 demonstrated efficacy against acute murine TB following administration at doses up to 400 mg/kg daily for 4 weeks. Although 5b and 6 failed to inhibit replication or kill Mtb in vivo, they illuminate a path to new structural variations of the tryptanthrin scaffold that may maximize the potential of this class of compounds against TB.
Collapse
Affiliation(s)
- Jae-Min Hwang
- Cancer and Infectious Diseases Therapeutics Research Group, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Singla D, Tewari R, Kumar A, Raghava GP. Designing of inhibitors against drug tolerant Mycobacterium tuberculosis (H37Rv). Chem Cent J 2013; 7:49. [PMID: 23497593 PMCID: PMC3639817 DOI: 10.1186/1752-153x-7-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/25/2013] [Indexed: 01/26/2023] Open
Abstract
Background Mycobacterium tuberculosis (M.tb) is the causative agent of tuberculosis, killing ~1.7 million people annually. The remarkable capacity of this pathogen to escape the host immune system for decades and then to cause active tuberculosis disease, makes M.tb a successful pathogen. Currently available anti-mycobacterial therapy has poor compliance due to requirement of prolonged treatment resulting in accelerated emergence of drug resistant strains. Hence, there is an urgent need to identify new chemical entities with novel mechanism of action and potent activity against the drug resistant strains. Results This study describes novel computational models developed for predicting inhibitors against both replicative and non-replicative phase of drug-tolerant M.tb under carbon starvation stage. These models were trained on highly diverse dataset of 2135 compounds using four classes of binary fingerprint namely PubChem, MACCS, EState, SubStructure. We achieved the best performance Matthews correlation coefficient (MCC) of 0.45 using the model based on MACCS fingerprints for replicative phase inhibitor dataset. In case of non-replicative phase, Hybrid model based on PubChem, MACCS, EState, SubStructure fingerprints performed better with maximum MCC value of 0.28. In this study, we have shown that molecular weight, polar surface area and rotatable bond count of inhibitors (replicating and non-replicating phase) are significantly different from non-inhibitors. The fragment analysis suggests that substructures like hetero_N_nonbasic, heterocyclic, carboxylic_ester, and hetero_N_basic_no_H are predominant in replicating phase inhibitors while hetero_O, ketone, secondary_mixed_amine are preferred in the non-replicative phase inhibitors. It was observed that nitro, alkyne, and enamine are important for the molecules inhibiting bacilli residing in both the phases. In this study, we introduced a new algorithm based on Matthews correlation coefficient called MCCA for feature selection and found that this algorithm is better or comparable to frequency based approach. Conclusion In this study, we have developed computational models to predict phase specific inhibitors against drug resistant strains of M.tb grown under carbon starvation. Based on simple molecular properties, we have derived some rules, which would be useful in robust identification of tuberculosis inhibitors. Based on these observations, we have developed a webserver for predicting inhibitors against drug tolerant M.tb H37Rv available at http://crdd.osdd.net/oscadd/mdri/.
Collapse
Affiliation(s)
- Deepak Singla
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
| | | | | | | | | |
Collapse
|
38
|
Ekins S, Clark AM, Sarker M. TB Mobile: a mobile app for anti-tuberculosis molecules with known targets. J Cheminform 2013; 5:13. [PMID: 23497706 PMCID: PMC3616884 DOI: 10.1186/1758-2946-5-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/26/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND An increasing number of researchers are focused on strategies for developing inhibitors of Mycobacterium tuberculosis (Mtb) as tuberculosis (TB) drugs. RESULTS In order to learn from prior work we have collated information on molecules screened versus Mtb and their targets which has been made available in the Collaborative Drug Discovery (CDD) database. This dataset contains published data on target, essentiality, links to PubMed, TBDB, TBCyc (which provides a pathway-based visualization of the entire cellular biochemical network) and human homolog information. The development of mobile cheminformatics apps could lower the barrier to drug discovery and promote collaboration. Therefore we have used this set of over 700 molecules screened versus Mtb and their targets to create a free mobile app (TB Mobile) that displays molecule structures and links to the bioinformatics data. By input of a molecular structures and performing a similarity search within the app we can infer potential targets or search by targets to retrieve compounds known to be active. CONCLUSIONS TB Mobile may assist researchers as part of their workflow in identifying potential targets for hits generated from phenotypic screening and in prioritizing them for further follow-up. The app is designed to lower the barriers to accessing this information, so that all researchers with an interest in combatting this deadly disease can use it freely to the benefit of their own efforts.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA.
| | | | | |
Collapse
|
39
|
Hosagrahara V, Reddy J, Ganguly S, Panduga V, Ahuja V, Parab M, Giridhar J. Effect of repeated dosing on rifampin exposure in BALB/c mice. Eur J Pharm Sci 2013; 49:33-8. [PMID: 23395915 DOI: 10.1016/j.ejps.2013.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/05/2012] [Accepted: 01/30/2013] [Indexed: 12/25/2022]
Abstract
The discovery of novel therapeutics for the treatment of tuberculosis involves routine testing in a mouse model over four weeks of daily dosing with test compounds. In this model, daily oral administration of rifampin (10 mg/kg) showed significantly lower plasma exposure on day 5 compared to day 1. The absence of PXR-mediated induction of mouse Cyp3a isoforms was confirmed in the present study by incubating liver microsomes prepared from control and rifampin treated mice with probe substrates of CYP3A. To test whether the reduction in exposure was due to Pgp-mediated efflux, verapamil, a known Pgp inhibitor, was dosed to the rifampin pre-treated mice which led to an increase in exposure to that obtained after a single dose of rifampin, suggesting the role of Pgp induction in reducing exposure to rifampin. To further confirm Pgp induction in rifampin treated mice, digoxin, a known substrate of Pgp, was administered to the rifampin pre-treated mice, and a significant drop in the digoxin exposure was observed compared to the control group. Collectively, our results show that repeated administration of rifampin in mice leads to a reduction in oral exposure due to induction of Pgp-mediated efflux of rifampin, and not via induction of CYP3A isoforms.
Collapse
Affiliation(s)
- Vinayak Hosagrahara
- Drug Metabolism and Pharmacokinetics, Infection iMED, AstraZeneca India Pvt. Ltd., Bangalore, India.
| | - Jitendar Reddy
- Drug Metabolism and Pharmacokinetics, Infection iMED, AstraZeneca India Pvt. Ltd., Bangalore, India
| | - Samit Ganguly
- Drug Metabolism and Pharmacokinetics, Infection iMED, AstraZeneca India Pvt. Ltd., Bangalore, India
| | - Vijender Panduga
- Drug Metabolism and Pharmacokinetics, Infection iMED, AstraZeneca India Pvt. Ltd., Bangalore, India
| | - Vijaykamal Ahuja
- Drug Metabolism and Pharmacokinetics, Infection iMED, AstraZeneca India Pvt. Ltd., Bangalore, India
| | - Manish Parab
- Drug Metabolism and Pharmacokinetics, Infection iMED, AstraZeneca India Pvt. Ltd., Bangalore, India
| | - Jayashree Giridhar
- Drug Metabolism and Pharmacokinetics, Infection iMED, AstraZeneca India Pvt. Ltd., Bangalore, India
| |
Collapse
|
40
|
Ballell L, Bates RH, Young RJ, Alvarez-Gomez D, Alvarez-Ruiz E, Barroso V, Blanco D, Crespo B, Escribano J, González R, Lozano S, Huss S, Santos-Villarejo A, Martín-Plaza JJ, Mendoza A, Rebollo-Lopez MJ, Remuiñan-Blanco M, Lavandera JL, Pérez-Herran E, Gamo-Benito FJ, García-Bustos JF, Barros D, Castro JP, Cammack N. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem 2013; 8:313-21. [PMID: 23307663 PMCID: PMC3743164 DOI: 10.1002/cmdc.201200428] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/14/2012] [Indexed: 11/23/2022]
Abstract
With the aim of fuelling open-source, translational, early-stage drug discovery activities, the results of the recently completed antimycobacterial phenotypic screening campaign against Mycobacterium bovis BCG with hit confirmation in M. tuberculosis H37Rv were made publicly accessible. A set of 177 potent non-cytotoxic H37Rv hits was identified and will be made available to maximize the potential impact of the compounds toward a chemical genetics/proteomics exercise, while at the same time providing a plethora of potential starting points for new synthetic lead-generation activities. Two additional drug-discovery-relevant datasets are included: a) a drug-like property analysis reflecting the latest lead-like guidelines and b) an early lead-generation package of the most promising hits within the clusters identified.
Collapse
Affiliation(s)
- Lluís Ballell
- Tres Cantos Medicines Development Campus (TCMDC), GlaxoSmithKline (GSK), Severo Ochoa 2, Tres Cantos, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Biuković G, Basak S, Manimekalai MSS, Rishikesan S, Roessle M, Dick T, Rao SPS, Hunke C, Grüber G. Variations of subunit {varepsilon} of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207. Antimicrob Agents Chemother 2013; 57:168-76. [PMID: 23089752 PMCID: PMC3535943 DOI: 10.1128/aac.01039-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 10/11/2012] [Indexed: 11/20/2022] Open
Abstract
The subunit ε of bacterial F(1)F(O) ATP synthases plays an important regulatory role in coupling and catalysis via conformational transitions of its C-terminal domain. Here we present the first low-resolution solution structure of ε of Mycobacterium tuberculosis (Mtε) F(1)F(O) ATP synthase and the nuclear magnetic resonance (NMR) structure of its C-terminal segment (Mtε(103-120)). Mtε is significantly shorter (61.6 Å) than forms of the subunit in other bacteria, reflecting a shorter C-terminal sequence, proposed to be important in coupling processes via the catalytic β subunit. The C-terminal segment displays an α-helical structure and a highly positive surface charge due to the presence of arginine residues. Using NMR spectroscopy, fluorescence spectroscopy, and mutagenesis, we demonstrate that the new tuberculosis (TB) drug candidate TMC207, proposed to bind to the proton translocating c-ring, also binds to Mtε. A model for the interaction of TMC207 with both ε and the c-ring is presented, suggesting that TMC207 forms a wedge between the two rotating subunits by interacting with the residues W15 and F50 of ε and the c-ring, respectively. T19 and R37 of ε provide the necessary polar interactions with the drug molecule. This new model of the mechanism of TMC207 provides the basis for the design of new drugs targeting the F(1)F(O) ATP synthase in M. tuberculosis.
Collapse
Affiliation(s)
- Goran Biuković
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | | | | | - Manfred Roessle
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, Hamburg, Germany
| | - Thomas Dick
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Microbiology, Singapore, Republic of Singapore
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases Pte. Ltd., Singapore, Republic of Singapore
| | - Cornelia Hunke
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
42
|
|
43
|
Padiadpu J, Mukherjee S, Chandra N. Rationalization and prediction of drug resistant mutations in targets for clinical anti-tubercular drugs. J Biomol Struct Dyn 2013; 31:44-58. [DOI: 10.1080/07391102.2012.691361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Abuhammad A, Fullam E, Lowe ED, Staunton D, Kawamura A, Westwood IM, Bhakta S, Garner AC, Wilson DL, Seden PT, Davies SG, Russell AJ, Garman EF, Sim E. Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages. PLoS One 2012; 7:e52790. [PMID: 23285185 PMCID: PMC3532304 DOI: 10.1371/journal.pone.0052790] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Faculty of Pharmacy, University of Jordan, Amman, Jordan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Edward D. Lowe
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David Staunton
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Akane Kawamura
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Isaac M. Westwood
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - David L. Wilson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Peter T. Seden
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Stephen G. Davies
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Angela J. Russell
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Faculty of Science, Engineering and Computing Kingston University, Kingston, United Kingdom
| |
Collapse
|
45
|
Munack S, Leroux V, Roderer K, Ökvist M, van Eerde A, Gundersen LL, Krengel U, Kast P. When Inhibitors Do Not Inhibit: Critical Evaluation of Rational Drug Design Targeting Chorismate Mutase fromMycobacterium tuberculosis. Chem Biodivers 2012; 9:2507-27. [DOI: 10.1002/cbdv.201200322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Indexed: 12/16/2022]
|
46
|
Interview: Interview with Future Medicinal Chemistry’s US Senior Editor, Iwao Ojima. Future Med Chem 2012; 4:2019-22. [DOI: 10.4155/fmc.12.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Professor Iwao Ojima studied at the University of Tokyo (Japan) before being appointed as a Senior Research Fellow and Group Leader at the Sagami Institute of Chemical Research. He is now Director of the Institute of Chemical Biology and Drug Discovery at State University of New York (USA) and has been a visiting professor in European, North American and Asian academic institutions. Professor Ojima agreed to serve as the US Senior Editor of Future Medicinal Chemistry when it launched in 2009 and continues to provide his expertise to the journal. Professor Ojima spoke to Future Medicinal Chemistry about why medicinal chemistry is such an exciting field to work in, the state of the pharmaceutical industry, and what features and issues make this journal unique. Interview conducted by Isaac Bruce, Commissioning Editor.
Collapse
|
47
|
Evaluation of pseudopteroxazole and pseudopterosin derivatives against Mycobacterium tuberculosis and other pathogens. Mar Drugs 2012; 10:1711-1728. [PMID: 23015770 PMCID: PMC3447335 DOI: 10.3390/md10081711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 01/10/2023] Open
Abstract
Pseudopterosins and pseudopteroxazole are intriguing marine natural products that possess notable antimicrobial activity with a commensurate lack of cytotoxicity. New semi-synthetic pseudopteroxazoles, pseudopteroquinoxalines and pseudopterosin congeners along with simple synthetic mimics of the terpene skeleton were synthesized. In order to build structure-activity relationships, a set of 29 new and previously reported compounds was assessed for invitro antimicrobial and cytotoxic activities. A number of congeners exhibited antimicrobial activity against a range of Gram-positive bacteria including Mycobacteriumtuberculosis H37Rv, with four displaying notable antitubercular activity against both replicating and non-replicating persistent forms of M.tuberculosis. One new semi-synthetic compound, 21-((1H-imidazol-5-yl)methyl)-pseudopteroxazole (7a), was more potent than the natural products pseudopterosin and pseudopteroxazole and exhibited equipotent activity against both replicating and non-replicating persistent forms of M.tuberculosis with a near absence of invitro cytotoxicity. Pseudopteroxazole also exhibited activity against strains of M.tuberculosis H37Rv resistant to six clinically used antibiotics.
Collapse
|
48
|
Krátký M, Vinšová J, Novotná E, Mandíková J, Wsól V, Trejtnar F, Ulmann V, Stolaříková J, Fernandes S, Bhat S, Liu JO. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis (Edinb) 2012; 92:434-9. [PMID: 22765970 DOI: 10.1016/j.tube.2012.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/25/2012] [Accepted: 06/07/2012] [Indexed: 12/26/2022]
Abstract
The global burden of tuberculosis, its health and socio-economic impacts, the presence of drug-resistant forms and a potential threat of latent tuberculosis should serve as a strong impetus for the development of novel antituberculosis agents. We reported the in vitro activity of salicylanilide benzoates and pyrazine-2-carboxylates against Mycobacterium tuberculosis (minimum inhibitory concentrations as low as 0.5 μmol/L). Nineteen salicylanilide derivatives with mostly good antimycobacterial activity were evaluated for the inhibition of two essential mycobacterial enzymes, methionine aminopeptidase and isocitrate lyase, which are necessary for the maintenance of the latent tuberculosis infection. Salicylanilide derivatives act as moderate inhibitors of both mycobacterial and human methionine aminopeptidase and they also affect the function of mycobacterial isocitrate lyase. 4-Bromo-2-[4-(trifluoromethyl)phenylcarbamoyl]phenyl pyrazine-2-carboxylate was the most potent inhibitor of mycobacterial methionine aminopeptidase (41% inhibition at 10 μmol/L) and exhibited the highest selectivity. 5-Chloro-2-hydroxy-N-[4-(trifluoromethyl)phenyl]benzamide and 4-chloro-2-[4-(trifluoromethyl)phenylcarbamoyl]phenyl pyrazine-2-carboxylate caused 59% inhibition of isocitrate lyase at 100 μmol/L concentration and (S)-4-bromo-2-[4-(trifluoromethyl)phenylcarbamoyl]phenyl 2-acetamido-3-phenylpropanoate produced 22% inhibition at 10 μmol/L; this rate is approximately comparable to 3-nitropropionic acid. Inhibition of those enzymes contributes at least in part to the antimicrobial activity of the compounds.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Patpi SR, Pulipati L, Yogeeswari P, Sriram D, Jain N, Sridhar B, Murthy R, Anjana Devi T, Kalivendi SV, Kantevari S. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J Med Chem 2012; 55:3911-22. [PMID: 22449006 DOI: 10.1021/jm300125e] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A molecular hybridization approach is an emerging structural modification tool to design new molecules with improved pharmacophoric properties. In this study, 1,2,3-triazole-based Mycobacterium tuberculosis inhibitors and synthetic and natural product-based tricyclic (carbazole, dibenzo[b,d]furan, and dibenzo[b,d]thiophene) antimycobacterial agents were integrated in one molecular platform to prepare various novel clubbed 1,2,3-triazole hybrids using click chemistry. Structure-activity correlations and in vitro activity against M. tuberculosis strain H37Rv of new analogues revealed the order: dibenzo[b,d]thiophene > dibenzo[b,d]furan > 9-methyl-9H-carbazole series. Two of the most potent M. tuberculosis inhibitors 13h and 13q with MIC = 0.78 μg/mL (∼1.9 μM) displayed a low cytotoxicity and high selectivity index (50-255) against four different human cancer cell lines. These results together provided the potential importance of molecular hybridization and the development of triazole clubbed dibenzo[b,d]thiophene-based lead candidates to treat mycobacterial infections.
Collapse
Affiliation(s)
- Santhosh Reddy Patpi
- Organic Chemistry (CPC) Division-II, Indian Institute of Chemical Technology, Hyderabad-500607, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Goldberg DE, Siliciano RF, Jacobs WR. Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell 2012; 148:1271-83. [PMID: 22424234 PMCID: PMC3322542 DOI: 10.1016/j.cell.2012.02.021] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Indexed: 11/20/2022]
Abstract
Although caused by vastly different pathogens, the world's three most serious infectious diseases, tuberculosis, malaria, and HIV-1 infection, share the common problem of drug resistance. The pace of drug development has been very slow for tuberculosis and malaria and rapid for HIV-1. But for each disease, resistance to most drugs has appeared quickly after the introduction of the drug. Learning how to manage and prevent resistance is a major medical challenge that requires an understanding of the evolutionary dynamics of each pathogen. This Review summarizes the similarities and differences in the evolution of drug resistance for these three pathogens.
Collapse
Affiliation(s)
- Daniel E Goldberg
- Department of Medicine and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|