1
|
Yazdimamaghani M, Kolupaev OV, Lim C, Hwang D, Laurie SJ, Perou CM, Kabanov AV, Serody JS. Tumor microenvironment immunomodulation by nanoformulated TLR 7/8 agonist and PI3k delta inhibitor enhances therapeutic benefits of radiotherapy. Biomaterials 2025; 312:122750. [PMID: 39126779 PMCID: PMC11401478 DOI: 10.1016/j.biomaterials.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oleg V Kolupaev
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Duke Eye Center, Duke University, Durham, NC, USA
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sonia J Laurie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander V Kabanov
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Smok-Kalwat J, Mertowska P, Mertowski S, Góźdź S, Grywalska E. Toll-like Receptors: Key Players in Squamous Cell Carcinoma Progression. J Clin Med 2024; 13:4531. [PMID: 39124797 PMCID: PMC11313009 DOI: 10.3390/jcm13154531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives Lung squamous cell carcinoma (SCC) is one of the major subtypes of lung cancer, characterized by diverse molecular pathways and variable clinical outcomes. This study focused on assessing the levels of TLR-2, TLR-3, TLR-4, TLR-7, TLR-8, and TLR-9 on peripheral blood lymphocytes in patients with newly diagnosed SCC compared to a group of healthy controls, in the context of disease development and patient survival, conducted over three years. The study aimed to investigate the differences in TLR expression between SCC patients and healthy people and to understand their role in the development of the disease and patient survival over three years. Methods: The study included the assessment of TLR-2, TLR-3, TLR-4, TLR-7, TLR-8, and TLR-9 levels on peripheral blood lymphocytes in patients with newly diagnosed SCC and in the control group. The expression of TLRs was measured using flow cytometry, and the soluble forms of the tested TLRs were measured using enzyme-linked immunosorbent assays. All the analyses were conducted over a three-year period from the time patients were recruited to the study. The obtained test results were statistically analyzed. Results: Results showed statistically significant differences in TLR expression between the groups, with higher TLR levels correlating with an advanced stage of disease and poorer survival rates. This suggests that the deregulation of TLR levels may be involved in promoting tumor development and influencing its microenvironment. Conclusions: The research, conducted over three years, indicates the need for further research on the role of TLRs in SCC, including their potential use as therapeutic targets and biomarkers. This may help to increase the effectiveness of standard treatments and improve clinical outcomes in patients with SCC.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwińskiego Street, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwińskiego Street, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| |
Collapse
|
3
|
Yazdimamaghani M, Kolupaev OV, Lim C, Hwang D, Laurie SJ, Perou CM, Kabanov AV, Serody JS. Tumor microenvironment immunomodulation by nanoformulated TLR 7/8 agonist and PI3k delta inhibitor enhances therapeutic benefits of radiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584084. [PMID: 38559220 PMCID: PMC10979841 DOI: 10.1101/2024.03.09.584084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic triple-negative breast cancer (TNBC) tumor model limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells specifically in the TME are currently lacking. To overcome this barrier, polymeric micelles nanoparticles (PMNPs) were used for co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta. The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor altered macrophage polarization, reduced MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune response. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic TNBC tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant restructured the TME and has promising potential for future translation combined with RT for patients with TNBC.
Collapse
|
4
|
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol 2023; 14:1294434. [PMID: 38077402 PMCID: PMC10701401 DOI: 10.3389/fimmu.2023.1294434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic viruses, cellular therapies, and other biological and synthetic immunomodulators. These are traditionally studied for their effect on the immune system's role in eliminating cancer cells. However, some of these therapies have the unique ability to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death (ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell death pathways, based on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells. These activate innate pattern recognition receptors (PRRs) and subsequent adaptive immune responses, offering the promise of sustained anticancer drug efficacy and durable antitumour immune memory. Exploring how onco-immunotherapies can trigger ICD, enhances our understanding of their mechanisms and potential for combination strategies. This review explores the complexities of these immunotherapeutic approaches that induce ICD, highlighting their implications for the innate immune system, addressing challenges in cancer treatment, and emphasising the pivotal role of ICD in contemporary cancer research.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Daniel Scott-Algara
- Département d'Immunologie, Unité de Biologie Cellulaire des Lymphocytes, Pasteur Institute, Paris, France
| |
Collapse
|
5
|
Sun Z, Chen X, Huang X, Wu Y, Shao L, Zhou S, Zheng Z, Lin Y, Chen S. Cuproptosis and Immune-Related Gene Signature Predicts Immunotherapy Response and Prognosis in Lung Adenocarcinoma. Life (Basel) 2023; 13:1583. [PMID: 37511958 PMCID: PMC10381686 DOI: 10.3390/life13071583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cuproptosis and associated immune-related genes (IRG) have been implicated in tumorigenesis and tumor progression. However, their effects on lung adenocarcinoma (LUAD) have not been elucidated. Therefore, we investigated the impact of cuproptosis-associated IRGs on the immunotherapy response and prognosis of LUAD using a bioinformatical approach and in vitro experiments analyzing clinical samples. Using the cuproptosis-associated IRG signature, we classified LUAD into two subtypes, cluster 1 and cluster 2, and identified three key cuproptosis-associated IRGs, NRAS, TRAV38-2DV8, and SORT1. These three genes were employed to establish a risk model and nomogram, and to classify the LUAD cohort into low- and high-risk subgroups. Biofunctional annotation revealed that cluster 2, remarkably downregulating epigenetic, stemness, and proliferation pathways activity, had a higher overall survival (OS) and immunoinfiltration abundance compared to cluster 1. Real-time quantitative PCR (RT-qPCR) validated the differential expression of these three genes in both subgroups. scRNA-seq demonstrated elevated expression of NRAS and SORT1 in macrophages. Immunity and oncogenic and stromal activation pathways were dramatically enriched in the low-risk subgroup, and patients in this subgroup responded better to immunotherapy. Our data suggest that the cuproptosis-associated IRG signature can be used to effectively predict the immunotherapy response and prognosis in LUAD. Our work provides enlightenment for immunotherapy response assessment, prognosis prediction, and the development of potential prognostic biomarkers for LUAD patients.
Collapse
Affiliation(s)
- Zihao Sun
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Xiujing Chen
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Xiaoning Huang
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Yanfen Wu
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Lijuan Shao
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Key Laboratory of Cancer Immunotherapy of Guangdong Higher Education Institutes, Guangzhou 510080, China
| | - Suna Zhou
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Zhu Zheng
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Yiguang Lin
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Key Laboratory of Cancer Immunotherapy of Guangdong Higher Education Institutes, Guangzhou 510080, China
- Research & Development Division, Guangzhou Anjie Biomedical Technology Co., Ltd., Guangzhou 510535, China
| | - Size Chen
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- Key Laboratory of Cancer Immunotherapy of Guangdong Higher Education Institutes, Guangzhou 510080, China
| |
Collapse
|
6
|
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol 2023; 40:200. [PMID: 37294501 PMCID: PMC10251337 DOI: 10.1007/s12032-023-02060-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.
Collapse
Affiliation(s)
- Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
7
|
Han S, Jiang D, Zhang F, Li K, Jiao K, Hu J, Song H, Ma QY, Wang J. A new immune signature for survival prediction and immune checkpoint molecules in non-small cell lung cancer. Front Oncol 2023; 13:1095313. [PMID: 36793597 PMCID: PMC9924230 DOI: 10.3389/fonc.2023.1095313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
Background Immune checkpoint blockade (ICB) therapy has brought remarkable clinical benefits to patients with advanced non-small cell lung carcinoma (NSCLC). However, the prognosis remains largely variable. Methods The profiles of immune-related genes for patients with NSCLC were extracted from TCGA database, ImmPort dataset, and IMGT/GENE-DB database. Coexpression modules were constructed using WGCNA and 4 modules were identified. The hub genes of the module with the highest correlations with tumor samples were identified. Then integrative bioinformatics analyses were performed to unveil the hub genes participating in tumor progression and cancer-associated immunology of NSCLC. Cox regression and Lasso regression analyses were conducted to screen prognostic signature and to develop a risk model. Results Functional analysis showed that immune-related hub genes were involved in the migration, activation, response, and cytokine-cytokine receptor interaction of immune cells. Most of the hub genes had a high frequency of gene amplifications. MASP1 and SEMA5A presented the highest mutation rate. The ratio of M2 macrophages and naïve B cells revealed a strong negative association while the ratio of CD8 T cells and activated CD4 memory T cells showed a strong positive association. Resting mast cells predicted superior overall survival. Interactions including protein-protein, lncRNA and transcription factor interactions were analyzed and 9 genes were selected by LASSO regression analysis to construct and verify a prognostic signature. Unsupervised hub genes clustering resulted in 2 distinct NSCLC subgroups. The TIDE score and the drug sensitivity of gemcitabine, cisplatin, docetaxel, erlotinib and paclitaxel were significantly different between the 2 immune-related hub gene subgroups. Conclusions These findings suggested that our immune-related genes can provide clinical guidance for the diagnosis and prognosis of different immunophenotypes and facilitate the management of immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Shuai Han
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Dongjie Jiang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Feng Zhang
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Kun Li
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Kun Jiao
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Qin-Yun Ma
- Department of Thoracic Surgery, North Branch of Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Khadela A, Chavda VP, Postwala H, Ephraim R, Apostolopoulos V, Shah Y. Configuring Therapeutic Aspects of Immune Checkpoints in Lung Cancer. Cancers (Basel) 2023; 15:543. [PMID: 36672492 PMCID: PMC9856297 DOI: 10.3390/cancers15020543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Immune checkpoints are unique components of the body's defense mechanism that safeguard the body from immune responses that are potent enough to harm healthy body cells. When proteins present on the surface of T cells recognize and bind to the proteins present on other tumor cells, immune checkpoints are triggered. These proteins are called immunological checkpoints. The T cells receive an on/off signal when the checkpoints interact with companion proteins. This might avert the host's immune system from eliminating cancer cells. The standard care plan for the treatment of non-small cell lung cancer (NSCLC) has been revolutionized with the use of drugs targeting immune checkpoints, in particular programmed cell death protein 1. These drugs are now extended for their potential to manage SCLC. However, it is acknowledged that these drugs have specific immune related adverse effects. Herein, we discuss the use of immune checkpoint inhibitors in patients with NSCLC and SCLC, their outcomes, and future perspectives.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Humzah Postwala
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Yesha Shah
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
9
|
Sun H, Li Y, Zhang P, Xing H, Zhao S, Song Y, Wan D, Yu J. Targeting toll-like receptor 7/8 for immunotherapy: recent advances and prospectives. Biomark Res 2022; 10:89. [PMID: 36476317 PMCID: PMC9727882 DOI: 10.1186/s40364-022-00436-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are a large family of proteins that are expressed in immune cells and various tumor cells. TLR7/8 are located in the intracellular endosomes, participate in tumor immune surveillance and play different roles in tumor growth. Activation of TLRs 7 and 8 triggers induction of a Th1 type innate immune response in the highly sophisticated process of innate immunity signaling with the recent research advances involving the small molecule activation of TLR 7 and 8. The wide range of expression and clinical significance of TLR7/TLR8 in different kinds of cancers have been extensively explored. TLR7/TLR8 can be used as novel diagnostic biomarkers, progression and prognostic indicators, and immunotherapeutic targets for various tumors. Although the mechanism of action of TLR7/8 in cancer immunotherapy is still incomplete, TLRs on T cells are involved in the regulation of T cell function and serve as co-stimulatory molecules and activate T cell immunity. TLR agonists can activate T cell-mediated antitumor responses with both innate and adaptive immune responses to improve tumor therapy. Recently, novel drugs of TLR7 or TLR8 agonists with different scaffolds have been developed. These agonists lead to the induction of certain cytokines and chemokines that can be applied to the treatment of some diseases and can be used as good adjutants for vaccines. Furthermore, TLR7/8 agonists as potential therapeutics for tumor-targeted immunotherapy have been developed. In this review, we summarize the recent advances in the development of immunotherapy strategies targeting TLR7/8 in patients with various cancers and chronic hepatitis B.
Collapse
Affiliation(s)
- Hao Sun
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Haizhou Xing
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004 Henan China
| |
Collapse
|
10
|
Feng H, Guo Z, Chen X, Liu K, Li H, Jia W, Wang C, Luo F, Ji X, Zhang T, Zhao R, Cheng X. Excessive HSP70/TLR2 activation leads to remodeling of the tumor immune microenvironment to resist chemotherapy sensitivity of mFOLFOX in colorectal cancer. Clin Immunol 2022; 245:109157. [DOI: 10.1016/j.clim.2022.109157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/12/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022]
|
11
|
Hoden B, DeRubeis D, Martinez-Moczygemba M, Ramos KS, Zhang D. Understanding the role of Toll-like receptors in lung cancer immunity and immunotherapy. Front Immunol 2022; 13:1033483. [PMID: 36389785 PMCID: PMC9659925 DOI: 10.3389/fimmu.2022.1033483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer-related deaths worldwide. Significant improvements in lung cancer therapeutics have relied on a better understanding of lung cancer immunity and the development of novel immunotherapies, as best exemplified by the introduction of PD-1/PD-L1-based therapies. However, this improvement is limited to lung cancer patients who respond to anti-PD-1 immunotherapy. Further improvements in immunotherapy may benefit from a better understanding of innate immune response mechanisms in the lung. Toll-like receptors (TLRs) are a key component of the innate immune response and mediate the early recognition of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLR signaling modulates the tumor microenvironment from "cold" to "hot" leading to immune sensitization of tumor cells to treatments and improved patient prognosis. In addition, TLR signaling activates the adaptive immune response to improve the response to cancer immunotherapy through the regulation of anti-tumor T cell activity. This review will highlight recent progress in our understanding of the role of TLRs in lung cancer immunity and immunotherapy.
Collapse
Affiliation(s)
- Bettina Hoden
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - David DeRubeis
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Margarita Martinez-Moczygemba
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Kenneth S. Ramos
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| |
Collapse
|
12
|
Śmiłowicz D, Schlyer D, Boros E, Meimetis L. Evaluation of a Radio-IMmunoStimulant (RIMS) in a Syngeneic Model of Murine Prostate Cancer and ImmunoPET Analysis of T-cell Distribution. Mol Pharm 2022; 19:3217-3227. [PMID: 35895995 DOI: 10.1021/acs.molpharmaceut.2c00361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An immunosuppressive tumor microenvironment and tumor heterogeneity have led to the resilience of metastatic castrate resistant prostate cancer (mCRPC) to current treatments. To address these challenges, we developed and evaluated a new drug paradigm, Radio-IMmunostimulant (RIMS), in a syngeneic model of murine prostate cancer. RIMS-1 was generated using a convergent synthesis employing solid phase peptide and solution chemistries. The prostate-specific membrane antigen (PSMA) inhibitory constant for natLu-RIMS-1 was determined, and radiolabeling with 177Lu generated 177Lu-RIMS-1. The TLR 7/8 agonist payload release from natLu-RIMS-1 was determined using a cathepsin B assay. The biodistribution of 177Lu-RIMS-1 was evaluated in a bilateral xenograft model in NCru nude mice bearing PSMA(+) (PC3-PiP) and PSMA(-) (PC3-Flu) tumors at 2, 24, and 72 h. The therapeutic effect of 177Lu-RIMS-1 was evaluated in C57BL/6J mice bearing RM1-PGLS (PSMA-positive, green fluorescent protein-positive, and luciferase-positive) tumors and compared to that of 177Lu-PSMA-617 at the same total administered radioactivity of 57 MBq and molar activity of 5.18 MBq/nmol. natLu-RIMS-1 and vehicle were evaluated as the controls. Immuno-positron emission tomography (PET) using 89Zr-DFO-anti-CD3 was used to visualize T-cell distribution during treatment. 177Lu-RIMS-1 was quantitatively radiolabeled at >99% radiochemical purity and maintained a high affinity toward PSMA (Ki = 3.77 ± 0.5 nM). Cathepsin B efficiently released the entire immunostimulant payload in 17.6 h. 177Lu-RIMS-1 displayed a sustained uptake in PSMA(+) tumor tissue up to 72 h (2.65 ± 1.03% ID/g) and was not statistically different (P = 0.1936) compared to 177Lu-PSMA-617 (3.65 ± 0.59% ID/g). All animals treated with 177Lu-RIMS-1 displayed tumor growth suppression and provided a median survival of 30 days (P = 0.0007) while 177Lu-PSMA-617 provided a median survival of 15 days, which was not statistically significant (P = 0.3548) compared to the vehicle group (14 days). ImmunoPET analysis revealed 2-fold more tumor infiltrating T-cells in 177Lu-RIMS-1-treated animals compared to 177Lu-PSMA-617-treated animals; 177Lu-RIMS-1 improves therapeutic outcomes in a syngeneic model of mouse prostate cancer and elicits greater T-cell infiltration to the tumor compared to 177Lu-PSMA-617. These results support further investigation of the RIMS paradigm as the first example of a single molecular entity combining radiotherapy and immunostimulation.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - David Schlyer
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States.,Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Labros Meimetis
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
13
|
Zhou J, Xu Y, Wang G, Mei T, Yang H, Liu Y. The TLR7/8 agonist R848 optimizes host and tumor immunity to improve therapeutic efficacy in murine lung cancer. Int J Oncol 2022; 61:81. [PMID: 35552764 PMCID: PMC9162053 DOI: 10.3892/ijo.2022.5371] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Treatment with the Toll‑like receptor 7 (TLR7) agonist, resiquimod (R848), is effective in various types of cancer, such as breast, pancreatic and colorectal cancer. The reported antitumor effect of R848 in lung cancer is considered to be achieved by targeting macrophages. In the present study, it was demonstrated that TLR7 expression on various immune cell types initially rises, then declines in the late stage of lung cancer. Intraperitoneal injection of R848 resulted in a reduction in tumor burden and prolonged survival in both subcutaneous and metastatic lung cancer models in C57BL/6 mice. Initial treatment with R848 at an early stage was found to be the optimal choice. Systemic injection of R848 promoted the activation of innate and adaptive immune responses. Systemic administration of R848 upregulated TLR7 expression in dendritic cells (DCs) and enhanced the activation of DCs and natural killer (NK) cells. Moreover, this treatment also resulted in increased production of T helper cell‑associated cytokines in serum, including IFN‑γ, TNF‑α and IL‑2. In addition, continuous treatment with R848 increased the proportion of DCs, NK and CD8+ T cells, and reduced that of Foxp3+ regulatory T cells in the tumor microenvironment. These findings supported the use of R848 treatment for lung cancer via TLR7 targeting and provided insight into the underlying therapeutic mechanism.
Collapse
Affiliation(s)
- Jianchun Zhou
- Respiratory Medicine Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu Xu
- Institute of Respiratory Diseases, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Tonghua Mei
- Respiratory Medicine Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hao Yang
- Respiratory Medicine Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuliang Liu
- Respiratory Medicine Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
14
|
Yang R, Yu S, Xu T, Zhang J, Wu S. Emerging role of RNA sensors in tumor microenvironment and immunotherapy. J Hematol Oncol 2022; 15:43. [PMID: 35413927 PMCID: PMC9006576 DOI: 10.1186/s13045-022-01261-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
RNA sensors detect foreign and endogenous RNAs to protect the host by initiating innate and adaptive immune response. In tumor microenvironment (TME), activation of RNA sensors induces tumor-inhibitory cytotoxic T lymphocyte responses and inhibits the activity of immunosuppressive cells though stimulating type I IFN signaling pathway. These characteristics allow RNA sensors to be prospective targets in tumor immunotherapy. Therefore, a comprehensive understanding of the roles of RNA sensors in TME could provide new insight into the antitumor immunotherapy. Moreover, RNA sensors could be prominent triggering targets to synergize with immunotherapies. In this review, we highlight the diverse mechanisms of RNA sensors in cancer immunity and their emerging contributions in cancer immunotherapy, including monotherapy with RNA sensor agonists, as well as combination with chemotherapy, radiotherapy, immune checkpoint blockade or cancer vaccine.
Collapse
Affiliation(s)
- Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Liu Z, Li L, Xue B, Zhao D, Zhang Y, Yan X. A New Lectin from Auricularia auricula Inhibited the Proliferation of Lung Cancer Cells and Improved Pulmonary Flora. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5597135. [PMID: 34337031 PMCID: PMC8289579 DOI: 10.1155/2021/5597135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Lectins are widely distributed in the natural world and are usually involved in antitumor activities. Auricularia auricula (A. auricula) is a medicinal and edible homologous fungus. A. auricula contains many active ingredients, such as polysaccharides, melanin, flavonoids, adenosine, sterols, alkaloids, and terpenes. In this study, we expected to isolate and purify lectin from A. auricula, determine the glycoside bond type and sugar-specific protein of A. auricula lectin (AAL), and finally, determine its antitumor activities. We used ammonium sulfate fractionation, ion exchange chromatography, and affinity chromatography to separate and purify lectin from A. auricula. The result was a 25 kDa AAL with a relative molecular mass of 18913.22. Protein identification results suggested that this lectin contained four peptide chains by comparing with the UniProt database. The FT-IR and β-elimination reaction demonstrated that the connection between the oligosaccharide and polypeptide of AAL was an N-glucoside bond. Analyses of its physical and chemical properties showed that AAL was a temperature-sensitive and acidic/alkaline-dependent glycoprotein. Additionally, the anticancer experiment manifested that AAL inhibited the proliferation of A549, and the IC50 value was 28.19 ± 1.92 μg/mL. RNA sequencing dataset analyses detected that AAL may regulate the expression of JUN, TLR4, and MYD88 to suppress tumor proliferation. Through the pulmonary flora analysis, the bacterial structure of each phylum in the lectin treatment group was more reasonable, and the colonization ability of the normal microflora was improved, indicating that lectin treatment could significantly improve the bacterial diversity characteristics.
Collapse
Affiliation(s)
- ZhenDong Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Liang Li
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Bei Xue
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - DanDan Zhao
- Sino-Russian Joint Laboratory of Bioactive Substance, College of Life Science, Heilongjiang University, 150080, China
| | - YanLong Zhang
- Sino-Russian Joint Laboratory of Bioactive Substance, College of Life Science, Heilongjiang University, 150080, China
| | - XiuFeng Yan
- College of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| |
Collapse
|
17
|
Yuan Q, Zhou Q, Ren J, Wang G, Yin C, Shang D, Xia S. WGCNA identification of TLR7 as a novel diagnostic biomarker, progression and prognostic indicator, and immunotherapeutic target for stomach adenocarcinoma. Cancer Med 2021; 10:4004-4016. [PMID: 33982398 PMCID: PMC8209604 DOI: 10.1002/cam4.3946] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Stomach adenocarcinoma (STAD) is a malignant tumor with high histological heterogeneity. However, the potential mechanism of STAD tumorigenesis remains to be elucidated. The purpose of our research was to identify candidate genes associated with the diagnosis, progression, prognosis, and immunotherapeutic targets of STAD. Based on tumor samples from the GSE28541 dataset, weighted gene co-expression network analysis revealed 16 modules related to STAD stage and grade. The salmon module emerged as the most relevant module (cor = 0.34), and functional enrichment analysis showed that the genes in the salmon were primarily related to major histocompatibility complex, immune response, and cell differentiation. Toll-like receptor 7 (TLR7) was recognized as the real hub gene in the salmon module. Compared to normal stomach tissues, the transcriptional and translational levels of TLR7 were significantly elevated in STAD. Receiver operating characteristic curves verified that TLR7 displayed remarkable sensitivity and specificity for the diagnosis of STAD. The functions of TLR7 were primarily enriched in the regulation of Toll-like receptor signaling pathway, pattern recognition receptor signaling pathway, and innate immune response. Overexpression of TLR7 tended to indicate more advanced STAD, higher degree of STAD, and poorer prognosis of STAD. In addition, TLR7 expression was positively correlated with immune cell infiltration and immune checkpoint expression. Somatic copy number alteration of TLR7 was also significantly related to immune cell infiltration. In conclusion, this study revealed the crucial role of TLR7 in STAD and provided new perspectives for the selection of biomarkers, progression and prognosis indicators, and immunotherapeutic targets for STAD.
Collapse
Affiliation(s)
- Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Qi Zhou
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jie Ren
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guan Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Chunlai Yin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
18
|
Zhou H, Jiang M, Yuan H, Ni W, Tai G. Dual roles of myeloid-derived suppressor cells induced by Toll-like receptor signaling in cancer. Oncol Lett 2020; 21:149. [PMID: 33552267 PMCID: PMC7798029 DOI: 10.3892/ol.2020.12410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the major components of the tumor microenvironment (TME), and are the main mediators of tumor-induced immunosuppression. Recent studies have reported that the survival, differentiation and immunosuppressive activity of MDSCs are affected by the Toll-like receptor (TLR) signaling pathway. However, the regulatory effect of TLR signaling on MDSCs remains controversial. TLR-induced MDSC can acquire different immunosuppressive activities to influence the immune response that can be either beneficial or detrimental to cancer immunotherapy. The present review summarizes the effects of TLR signals on the number, phenotype and inhibitory activity of MDSCs, and their role in cancer immunotherapy, which cannot be ignored if effective cancer immunotherapies are to be developed for the immunosuppression of the TME.
Collapse
Affiliation(s)
- Hongyue Zhou
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyu Jiang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
19
|
Guo H, He Y, Chen P, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, Zhou C. Combinational immunotherapy based on immune checkpoints inhibitors in small cell lung cancer: is this the beginning to reverse the refractory situation? J Thorac Dis 2020; 12:6070-6089. [PMID: 33209440 PMCID: PMC7656422 DOI: 10.21037/jtd-20-1689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small cell lung cancer (SCLC), a particular neuroendocrine tumor, occupies 13% of lung cancers, with the highest mortality among cancers. Immune checkpoints inhibitors (ICIs) based on programmed cell death protein-1 (PD-1)/programmed cell death one ligand (PD-L1) inhibitors and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors have been one of the most favorable therapies in SCLC. Simultaneously, not all the patients respond to ICIs due to the lack of biomarkers to predict the immunotherapeutic effect. Multiple combinational approaches are under exploration, including the integrated or successive assessment of additional immunotherapeutic agents, chemotherapy, radiotherapy, and targeted therapy with ICIs. The current review offers a general view of the rationale for clinical studies exploring the experimental result of combinational immunotherapy based on ICIs, with both available results and ongoing trials. Moreover, the development of more predictive biomarkers, specific clinical trial designs, enhancement of the efficacy, and decreasing the financial toxicity will become the trend of future research and clinical applications of ICIs. Understanding the evolving immuno-oncology is increasingly relevant and crucial to solve those problems and define therapeutic strategies and potential target populations of combinational immunotherapy. Ultimately, emerging combinational immunotherapy will transform SCLC into a chronic disease to help patients survive from tumors.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Bou Karroum N, Moarbess G, Guichou JF, Bonnet PA, Patinote C, Bouharoun-Tayoun H, Chamat S, Cuq P, Diab-Assaf M, Kassab I, Deleuze-Masquefa C. Novel and Selective TLR7 Antagonists among the Imidazo[1,2- a]pyrazines, Imidazo[1,5- a]quinoxalines, and Pyrazolo[1,5- a]quinoxalines Series. J Med Chem 2019; 62:7015-7031. [PMID: 31283223 DOI: 10.1021/acs.jmedchem.9b00411] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Toll-like receptors (TLRs) 7 and 8 play an important role in the immune system activation, and their agonists may therefore serve as promising candidate vaccine adjuvants. However, the chronic immune activation by excessive TLR stimulation is a hallmark of several clinically important infectious and autoimmune diseases, which warrants the search for TLR antagonists. In this study, we have synthesized and characterized a variety of compounds belonging to three heterocyclic chemical series: imidazo[1,2-a]pyrazine, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline. These compounds have been tested for their TLR7 or TLR8 agonistic and antagonistic activities. Several of them are shown to be selective TLR7 antagonists without any TLR7 or TLR8 agonistic activity. The selectivity was confirmed by a comparative ligand-docking study in TLR7 antagonist pocket. Two compounds of the pyrazolo[1,5-a]quinoxaline series (10a and 10b) are potent selective TLR7 antagonists and may be considered as promising starting points for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Nour Bou Karroum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France.,Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Jean-François Guichou
- CNRS, UMR 5048, INSERM, U105, Université de Montpellier, Centre de Biochimie Structurale , Montpellier F-34090 , France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Hasnaa Bouharoun-Tayoun
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health , Lebanese University , Fanar Jdeideh 1202 , Lebanon
| | - Soulaima Chamat
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health , Lebanese University , Fanar Jdeideh 1202 , Lebanon.,Faculty of Medical Sciences , Lebanese University , Hadath 1500 , Lebanon
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Mona Diab-Assaf
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Carine Deleuze-Masquefa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| |
Collapse
|
21
|
Xu Y, Liu H, Liu S, Wang Y, Xie J, Stinchcombe TE, Su L, Zhang R, Christiani DC, Li W, Wei Q. Genetic variant of IRAK2 in the toll-like receptor signaling pathway and survival of non-small cell lung cancer. Int J Cancer 2018; 143:2400-2408. [PMID: 29978465 PMCID: PMC6205899 DOI: 10.1002/ijc.31660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
The toll-like receptor (TLR) signaling pathway plays an important role in the innate immune responses and antigen-specific acquired immunity. Aberrant activation of the TLR pathway has a significant impact on carcinogenesis or tumor progression. Therefore, we hypothesize that genetic variants in the TLR signaling pathway genes are associated with overall survival (OS) of patients with non-small cell lung cancer (NSCLC). To test this hypothesis, we first performed Cox proportional hazards regression analysis to evaluate associations between genetic variants of 165 TLR signaling pathway genes and NSCLC OS using the genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). The results were further validated by the Harvard Lung Cancer Susceptibility GWAS dataset. Specifically, we identified IRAK2 rs779901 C > T as a predictor of NSCLC OS, with a variant-allele (T) attributed hazards ratio (HR) of 0.78 [95% confidence interval (CI) = 0.67-0.91, P = 0.001] in the PLCO dataset, 0.84 (0.72-0.98, 0.031) in the Harvard dataset, and 0.81 (0.73-0.90, 1.08x10-4 ) in the meta-analysis of these two GWAS datasets. In addition, the T allele was significantly associated with an increased mRNA expression level of IRAK2. Our findings suggest that IRAK2 rs779901 C > T may be a promising prognostic biomarker for NSCLC OS.
Collapse
Affiliation(s)
- Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shun Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jichun Xie
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas E. Stinchcombe
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, MA02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA02115, USA
| | - Ruyang Zhang
- Department of Environmental Health, Harvard School of Public Health, Boston, MA02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA02115, USA
| | - David C. Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, MA02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA02115, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA02115, USA
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
22
|
Dajon M, Iribarren K, Petitprez F, Marmier S, Lupo A, Gillard M, Ouakrim H, Victor N, Vincenzo DB, Joubert PE, Kepp O, Kroemer G, Alifano M, Damotte D, Cremer I. Toll like receptor 7 expressed by malignant cells promotes tumor progression and metastasis through the recruitment of myeloid derived suppressor cells. Oncoimmunology 2018; 8:e1505174. [PMID: 30546943 PMCID: PMC6287801 DOI: 10.1080/2162402x.2018.1505174] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
In non-small cell lung carcinoma (NSCLC), stimulation of toll-like receptor 7 (TLR7), a receptor for single stranded RNA, is linked to tumor progression and resistance to anticancer chemotherapy. However, the mechanism of this effect has been elusive. Here, using a murine model of lung adenocarcinoma, we demonstrate a key role for TLR7 expressed by malignant (rather than by stromal and immune) cells, in the recruitment of myeloid derived suppressor cells (MDSCs), induced after TLR7 stimulation, resulting in accelerated tumor growth and metastasis. In adenocarcinoma patients, high TLR7 expression on malignant cells was associated with poor clinical outcome, as well as with a gene expression signature linked to aggressiveness and metastastic dissemination with high abundance of mRNA encoding intercellular adhesion molecule 1 (ICAM-1), cytokeratins 7 and 19 (KRT-7 and 19), syndecan 4 (SDC4), and p53. In addition, lung tumors expressing high levels of TLR7 have a phenotype of epithelial mesenchymal transition with high expression of vimentin and low abundance of E-cadherin. These data reveal a crucial role for cancer cell-intrinsic TLR7 expression in lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Marion Dajon
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kristina Iribarren
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florent Petitprez
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Solenne Marmier
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Lupo
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Departments of Pathology and Thoracic Surgery, Hospital Cochin AP-HP, Paris, France
| | - Mélanie Gillard
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hanane Ouakrim
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Navas Victor
- Unité de de Biologie Cellulaire des Lymphocytes INSERM U1221, Institut Pasteur, Paris, France
| | - Di Bartolo Vincenzo
- Unité de de Biologie Cellulaire des Lymphocytes INSERM U1221, Institut Pasteur, Paris, France
| | - Pierre Emmanuel Joubert
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Oliver Kepp
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Cell Biology and Metabolomics Platforms, Villejuif, France.,Equipe 11 labellisee Ligue Nationale Contre le Cancer, Paris, France
| | - Guido Kroemer
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Cell Biology and Metabolomics Platforms, Villejuif, France.,Equipe 11 labellisee Ligue Nationale Contre le Cancer, Paris, France.,Pôle de Biologie, Hopital Europeen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Alifano
- Departments of Pathology and Thoracic Surgery, Hospital Cochin AP-HP, Paris, France
| | - Diane Damotte
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Departments of Pathology and Thoracic Surgery, Hospital Cochin AP-HP, Paris, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
23
|
Induction of oligoclonal CD8 T cell responses against pulmonary metastatic cancer by a phospholipid-conjugated TLR7 agonist. Proc Natl Acad Sci U S A 2018; 115:E6836-E6844. [PMID: 29967183 DOI: 10.1073/pnas.1803281115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent advances in cancer immunotherapy have improved patient survival. However, only a minority of patients with pulmonary metastatic disease respond to treatment with checkpoint inhibitors. As an alternate approach, we have tested the ability of systemically administered 1V270, a toll-like receptor 7 (TLR7) agonist conjugated to a phospholipid, to inhibit lung metastases in two variant murine 4T1 breast cancer models, as well as in B16 melanoma, and Lewis lung carcinoma models. In the 4T1 breast cancer models, 1V270 therapy inhibited lung metastases if given up to a week after primary tumor initiation. The treatment protocol was facilitated by the minimal toxic effects exerted by the phospholipid TLR7 agonist compared with the unconjugated agonist. 1V270 exhibited a wide therapeutic window and minimal off-target receptor binding. The 1V270 therapy inhibited colonization by tumor cells in the lungs in an NK cell dependent manner. Additional experiments revealed that single administration of 1V270 led to tumor-specific CD8+ cell-dependent adaptive immune responses that suppressed late-stage metastatic tumor growth in the lungs. T cell receptor (TCR) repertoire analyses showed that 1V270 therapy induced oligoclonal T cells in the lungs and mediastinal lymph nodes. Different animals displayed commonly shared TCR clones following 1V270 therapy. Intranasal administration of 1V270 also suppressed lung metastasis and induced tumor-specific adaptive immune responses. These results indicate that systemic 1V270 therapy can induce tumor-specific cytotoxic T cell responses to pulmonary metastatic cancers and that TCR repertoire analyses can be used to monitor, and to predict, the response to therapy.
Collapse
|
24
|
Jeon YK, Kim CK, Koh J, Chung DH, Ha GH. Pellino-1 confers chemoresistance in lung cancer cells by upregulating cIAP2 through Lys63-mediated polyubiquitination. Oncotarget 2018; 7:41811-41824. [PMID: 27248820 PMCID: PMC5173098 DOI: 10.18632/oncotarget.9619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/11/2016] [Indexed: 12/20/2022] Open
Abstract
Pellino-1 is an E3 ubiquitin ligase that mediates immune receptor signaling pathways. The role of Pellino-1 in oncogenesis of lung cancer was investigated in this study. Pellino-1 expression was increased in human lung cancer cell lines compared with non-neoplastic lung cell lines. Pellino-1 overexpression in human lung cancer cells, A549 and H1299 cells, increased the survival and colony forming ability. Pellino-1 overexpression in these cells also conferred resistance to cisplatin- or paclitaxel-induced apoptosis. In contrast, depletion of Pellino-1 decreased the survival of A549 and H1299 cells and sensitized these cells to cisplatin- and paclitaxel-induced apoptosis. Pellino-1 overexpression in A549 and H1299 cells upregulated the expression of inhibitor of apoptosis (IAP) proteins, including cIAP1 and cIAP2, while Pellino-1 depletion downregulated these molecules. Notably, Pellino-1 directly interacted with cIAP2 and stabilized cIAP2 through lysine63-mediated polyubiquitination via its E3 ligase activity. Pellino-1-mediated chemoresistance in lung cancer cells was dependent on the induction of cIAP2. Moreover, a strong positive correlation between Pellino-1 and the cIAP2 expression was observed in human lung adenocarcinoma tissues. Taken together, these results demonstrate that Pellino-1 contributes to lung oncogenesis through the overexpression of cIAP2 and promotion of cell survival and chemoresistance. Pellino-1 might be a novel oncogene and potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chung Kwon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Geun-Hyoung Ha
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
25
|
Bauer AK, Upham BL, Rondini EA, Tennis MA, Velmuragan K, Wiese D. Toll-like receptor expression in human non-small cell lung carcinoma: potential prognostic indicators of disease. Oncotarget 2017; 8:91860-91875. [PMID: 29190881 PMCID: PMC5696147 DOI: 10.18632/oncotarget.19463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Introduction Lung cancer remains the highest cause of cancer mortality worldwide. Toll-like receptors (TLR) are innate immune receptors that have both pro- and anti-tumorigenic properties. Based on findings from epidemiological studies and in rodents, we hypothesized that elevated TLR expression would be a positive prognostic indicator of disease in non-small cell lung carcinoma patients. Results Higher mRNA expression of TLR1-3 and 5-8 were significantly associated with increased overall survival (OS) when analyzed individually or as a group in both non-small cell lung carcinoma (NSCLC) patients and in the adenocarcinoma (ADC) subtype. Significant co-expression of many TLR combinations in ADC patients were also observed via RNA sequencing. Immunostaining demonstrated TLR4 and 8 significantly correlated in tumor tissue, similar to RNA. Methods We used kmplot.com to perform a meta-analysis on mRNA expression of TLR1-10 to determine any significant associations with OS in NSCLC and the ADC subtype. cBioportal was also used simultaneously to assess co-expression in TLR1-10 in ADC patients via RNA sequencing and to identify any molecular alterations. Lastly, immunostaining for a subset of TLRs was conducted on ADC patients. Conclusions Expression of innate immune receptors TLR1-10 is associated with improved survival outcomes in NSCLC. Thus, further evaluation of their predictive capacity and therapeutic utility is warranted.
Collapse
Affiliation(s)
- Alison K Bauer
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Elizabeth A Rondini
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Meredith A Tennis
- Department of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kalpana Velmuragan
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Wiese
- McLaren Regional Medical Center, Flint, MI, 48532, USA
| |
Collapse
|
26
|
Tamadaho RSE, Hoerauf A, Layland LE. Immunomodulatory effects of myeloid-derived suppressor cells in diseases: Role in cancer and infections. Immunobiology 2017; 223:432-442. [PMID: 29246400 DOI: 10.1016/j.imbio.2017.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/05/2017] [Accepted: 07/02/2017] [Indexed: 01/05/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous cells capable of abrogating T and B cells responses and have been identified in numerous cancers. As with other regulatory cell populations, they aim to maintain balance between host-defence-associated inflammation and ensuing tissue pathology. MDSC accumulation and/or activation involve several growth factors and cytokines including Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) and Interleukin (IL)-6 and suppression has been linked to receptors such as IL-4Rα. Other immune pathways, such as Toll-like receptors (TLRs) have also been shown to interfere in MDSC activity adding to the complexity in clarifying their pathways. Monocytic- (Mo-MDSCs) and polymorphonuclear- (PMN-MDSCs) cells are two subsets of MDSCs that have been well characterized and have been shown to function through different mechanisms although both appear to require nitric oxide. In human and murine model settings, MDSCs have been shown to have inhibitory effects on T cell responses during bacterial, parasitic and viral pathologies and an increase of MDSC numbers has been associated with pathological conditions. Interestingly, the environment impacts on MDSC activity and regulatory T cells (Tregs), mast cells and a few cells that may help MDSC in order to regulate immune responses. Since the majority of pioneering data on MDSCs has stemmed from research on malignancies, this review will summarize MDSC biology and function in cancer and highlight current knowledge about these cells during infectious pathologies as well.
Collapse
Affiliation(s)
- Ruth S E Tamadaho
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
27
|
Bouillez A, Rajabi H, Jin C, Samur M, Tagde A, Alam M, Hiraki M, Maeda T, Hu X, Adeegbe D, Kharbanda S, Wong KK, Kufe D. MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 2017; 36:4037-4046. [PMID: 28288138 PMCID: PMC5509481 DOI: 10.1038/onc.2017.47] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
Abstract
Immunotherapeutic approaches, particularly PD-1/PD-L1 blockade, have improved the treatment of non-small cell lung cancer (NSCLC), supporting the premise that evasion of immune destruction is of importance for NSCLC progression. However, the signals responsible for upregulation of PD-L1 in NSCLC cells and whether they are integrated with the regulation of other immune-related genes are not known. Mucin 1 (MUC1) is aberrantly overexpressed in NSCLC, activates the NF-κB p65→ZEB1 pathway and confers a poor prognosis. The present studies demonstrate that MUC1-C activates PD-L1 expression in NSCLC cells. We show that MUC1-C increases NF-κB p65 occupancy on the CD274/PD-L1 promoter and thereby drives CD274 transcription. Moreover, we demonstrate that MUC1-C-induced activation of NF-κB→ZEB1 signaling represses the TLR9, IFNG, MCP-1 and GM-CSF genes, and that this signature is associated with decreases in overall survival. In concert with these results, targeting MUC1-C in NSCLC tumors suppresses PD-L1 and induces these effectors of innate and adaptive immunity. These findings support a previously unrecognized central role for MUC1-C in integrating PD-L1 activation with suppression of immune effectors and poor clinical outcome.
Collapse
Affiliation(s)
- A Bouillez
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - H Rajabi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C Jin
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Samur
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A Tagde
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Alam
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Hiraki
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - T Maeda
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - X Hu
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Adeegbe
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Kharbanda
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K-K Wong
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Kufe
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: A pro- and anti-tumor double-edged sword. Immunobiology 2016; 222:89-100. [PMID: 27349597 DOI: 10.1016/j.imbio.2016.06.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 02/09/2023]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane receptors that recognize various pathogen- and damage-associated molecular pattern molecules playing an important role in inflammation by activating NF-кB. TLRs, mainly expressed by innate immune cells, are involved in inducing and regulating adaptive immune responses. However, the expression of TLRs has also been observed in many tumors, and their stimulation results in tumor progression or regression, depending on the TLR and tumor type. Here we review the role of TLRs in conferring anti- or pro-tumoral effects. The anti-tumoral effects can result from direct induction of tumor cell death and/or activation of efficient anti-tumoral immune responses, and the pro-tumoral effects may be due to inducing tumor cell survival and proliferation or by acting on suppressive or inflammatory immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Marion Dajon
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France
| | - Kristina Iribarren
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France.
| |
Collapse
|