1
|
McGee Talkington G, Ouvrier B, White AL, Hall G, Umar M, Bix GJ. Imaging Interstitial Fluids and Extracellular Matrix in Cerebrovascular Disorders: Current Perspectives and Clinical Applications. Neuroimaging Clin N Am 2025; 35:181-189. [PMID: 40210376 PMCID: PMC11995915 DOI: 10.1016/j.nic.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
This article provides a comprehensive review of current neuroimaging techniques for visualizing and quantifying extracellular matrix (ECM) components and interstitial fluid (ISF) dynamics in cerebrovascular disorders. It examines how alterations in ECM composition and ISF movement patterns correlate with various cerebrovascular pathologies, including ischemic stroke, frontotemporal dementia, cerebral small vessel disease, Alzhheimer's disease, and vascular dementia. The review emphasizes novel imaging markers specific to ECM/ISF alterations and their utility in differentiating various cerebrovascular pathologies. Special attention is given to the clinical applications of these imaging techniques for early disease detection, monitoring progression, and guiding therapeutic interventions.
Collapse
Affiliation(s)
- Grant McGee Talkington
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA.
| | - Blake Ouvrier
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Amanda Louise White
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Hall
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Meenakshi Umar
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Jaye Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Yasuda R, Hashimoto H, Oka M, Mok JW, Waqar M, Dauwalder B, Kanca O, Mizuno T, Yamamoto S. Functional analysis of pathogenic variants in LAMB1-related leukoencephalopathy reveals genotype-phenotype correlations and suggests its role in glial cells. Hum Mol Genet 2025:ddaf050. [PMID: 40237576 DOI: 10.1093/hmg/ddaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/13/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Laminin B1 (LAMB1) is one of the extracellular matrix (ECM) proteins that make up the basement membrane. Early frameshift, late frameshift, and missense variants in LAMB1 have been reported to cause rare monogenic neurological disorders that are collectively known as LAMB1-related leukoencephalopathy. Although there is some genotype-phenotype correlation, functional consequences of pathogenic LAMB1 variants are largely unknown. In this study, we aimed to elucidate function of the fly ortholog of this gene (LanB1) in the nervous system and to further study the functional consequences of the LAMB1 variants using Drosophila melanogaster. We found that the LanB1 gene is expressed on the surface of adult fly brains in a subset of glia cells. We further found that LanB1 protein localizes to the blood-brain barrier (BBB) in adult fly brains and knockdown of LanB1 in the BBB resulted in short life span and locomotor defects. Although human LAMB1 was not able to function in flies, in vivo overexpression and rescue experiments using analogous variants in fly LanB1 suggested that the frameshift variants behave as strong loss-of-function (LoF) alleles whereas a missense variant functions as a milder LoF allele. In vitro assay in HEK293T cells revealed that late-truncated LAMB1 is uniquely detected as a monomer in the culture medium, which might be the basis of dominant inheritance of these variants through a gain-of-function mechanism. Our data contributes to the understanding of the ECM component of the fly BBB and lays the foundation to unravel the molecular consequences of different pathogenic variants in LAMB1.
Collapse
Affiliation(s)
- Rei Yasuda
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX 77030, United States
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hirokazu Hashimoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX 77030, United States
| | - Mikiko Oka
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX 77030, United States
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX 77030, United States
| | - Marium Waqar
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston, TX 77204, United States
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston, TX 77204, United States
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX 77030, United States
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX 77030, United States
| |
Collapse
|
3
|
Wang J, Lin S, Wei Y, Ye Z. Recombinant human collagen XVII protects skin basement membrane integrity by inhibiting the MAPK and Wnt signaling pathways. Mol Med Rep 2025; 31:100. [PMID: 39981899 PMCID: PMC11868773 DOI: 10.3892/mmr.2025.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/07/2024] [Indexed: 02/22/2025] Open
Abstract
Collagen XVII is a key component linking the cytoskeleton to the basement membrane, serving an essential role in maintaining skin integrity. With the advancement of synthetic biology, recombinant human collagen XVII (RHCXVII) has emerged as a promising novel collagen material. The present study aimed to elucidate the efficacy and mechanisms of action of RHCXVII in protecting skin basement membrane integrity. A skin injury model was established using ultraviolet B (UVB) irradiation on human HaCaT keratinocytes treated with RHCXVII. The effects of RHCXVII on cell migration and adhesion were assessed using wound healing assay and hematoxylin and eosin staining, respectively. The expression of key extracellular matrix (ECM) components such as collagen IV, collagen VII, laminin 332 and integrin α6 (ITGA6) were quantified using reverse transcription‑quantitative PCR and western blotting. The mechanism of action of RHCXVII in protecting skin basement membrane integrity was investigated using a phosphorylated‑antibody array and verified by western blotting. RHCXVII significantly increased the migration and adhesion of UVB‑irradiated HaCaT cells (P<0.01). Additionally, RHCXVII significantly upregulated expression levels of collagen type IV α1 chain, collagen type VII α1 chain, laminin subunit β3 and ITGA6 in UVB‑irradiated HaCaT cells (P<0.05). RHCXVII significantly inhibited the phosphorylation of p38 and c‑Jun in the MAPK and Wnt signaling pathways (P<0.01). In conclusion, RHCXVII protected skin basement membrane integrity by enhancing migration and adhesion of keratinocytes, upregulating key ECM components and inhibiting protein phosphorylation in MAPK and Wnt pathways. The present study enhanced the current understanding of RHCXVII as a protector of skin basement membrane integrity. Furthermore, the present study highlighted clinical implications and the broad therapeutic potential of RHCXVII in both medical and cosmetic application.
Collapse
Affiliation(s)
- Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- International Institute for Science, Proya Cosmetics Co., Ltd., Hangzhou, Zhejiang 310023, P.R. China
| | - Simin Lin
- International Institute for Science, Proya Cosmetics Co., Ltd., Hangzhou, Zhejiang 310023, P.R. China
| | - Yun Wei
- International Institute for Science, Proya Cosmetics Co., Ltd., Hangzhou, Zhejiang 310023, P.R. China
| | - Zhangying Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
4
|
Pigors M, Goletz S, Wang Y, Emtenani S, Hammers CM, Holtsche MM, Patzelt S, Opelka B, Stang FH, König IR, Radzimski C, Komorowski L, Aumailley M, Has C, Schmidt E. Anti-Laminin β4 IgG Drives Tissue Damage in Anti-p200 Pemphigoid and Shows Interactions with Laminin α3 and γ1/2 Chains. J Invest Dermatol 2025; 145:821-830.e3. [PMID: 39320300 DOI: 10.1016/j.jid.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/26/2024]
Abstract
Laminin β4 was recently identified as a structural component of the dermal-epidermal junction and autoantigen of anti-p200 pemphigoid. In this study, we provided further evidence of the pathogenic effect of anti-laminin β4 IgG and identified potential binding partners of laminin β4. We showed that laminin β4 immune complexes led to activation of normal leukocytes and dose-dependent ROS release. Using cryosections of normal skin, we demonstrated that anti-laminin β4 patient serum IgG but not anti-laminin γ1 IgG, which are also detectable in patients with anti-p200 pemphigoid, cause dermal-epidermal separation in the presence of leukocytes. Proximity ligation assay and indirect immunofluorescence staining suggested that laminin β4 localizes closely to laminin α3 and γ2 in primary keratinocytes. Subsequent coimmunoprecipitation experiments using epidermal extracts confirmed the interaction of laminin β4 with the α3 and γ2 chains and indicated additional affinity to laminin γ1. The laminin β4-α3/β4-γ1 protein complexes were also detected using mass spectrometry. In conclusion, this study showed that anti-laminin β4 IgG can exert tissue damage in the skin, supporting their pathogenic role in anti-p200 pemphigoid. Our data further provide strong evidence for an interaction of laminin β4 with laminin α3, whereas its association to the laminin γ1 and γ2 chains is ambiguous.
Collapse
Affiliation(s)
- Manuela Pigors
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Yao Wang
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Christoph M Hammers
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Maike M Holtsche
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Sabrina Patzelt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Bianca Opelka
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Felix H Stang
- Hand Surgery and Burn Care Unit, Department of Plastic Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | | | - Lars Komorowski
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Monique Aumailley
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
5
|
Vasse J, Fiscus J, Fraison E, Salle B, David L, Labrune E. Biomechanical properties of ovarian tissue and their impact on the activation of follicular growth: a narrative review. Reprod Biomed Online 2025; 50:104450. [PMID: 39919556 DOI: 10.1016/j.rbmo.2024.104450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 02/09/2025]
Abstract
Follicular recruitment is tightly regulated to ensure long-term balance between the pools of dormant and growing follicles. While the growth of secondary to antral follicles is well understood, the initiation of folliculogenesis remains elusive. Several processes have been described, and a new approach is mechanotransduction. The aim of this review is to present the latest findings on the biomechanical properties of the ovary, and their role during the initiation of folliculogenesis. A search of PubMed using keywords related to the biomechanical properties of ovarian tissue and ovarian mechanobiology identified 114 manuscripts, and 74 were included in this review. The investigation of mechanical properties of the ovary has revealed the existence of an elastic modulus gradient from the cortex to the medulla, which is essential for balancing the preservation of a pool of quiescent follicles and supporting folliculogenesis. Growing follicles subjected to different mechanical environments respond through mechanotransduction, leading to the activation or inhibition of folliculogenesis. The application of findings on ovarian mechanoreactivity revealed that stretching cortical tissue fragments may activate in-vitro folliculogenesis. Although these results require confirmation by larger studies, a comprehensive understanding of normal and pathological ovarian biomechanical functions offers new possibilities for managing patient infertility.
Collapse
Affiliation(s)
- Joséphine Vasse
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France; Universite Claude Bernard Lyon 1, Faculté de Médecine Laennec, Lyon, France
| | - Julie Fiscus
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France; Universite Claude Bernard Lyon 1, Faculté de Médecine Laennec, Lyon, France
| | - Eloïse Fraison
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France
| | - Bruno Salle
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France
| | - Laurent David
- Universite Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223 Ingénierie des Matériaux Polymères, France
| | - Elsa Labrune
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France; Universite Claude Bernard Lyon 1, Faculté de Médecine Laennec, Lyon, France.
| |
Collapse
|
6
|
Feng E, Yang X, Yang J, Qu Q, Li X. LAMB1 promotes proliferation and metastasis in nasopharyngeal carcinoma and shapes the immune-suppressive tumor microenvironment. Braz J Otorhinolaryngol 2025; 91:101551. [PMID: 39874810 PMCID: PMC11808599 DOI: 10.1016/j.bjorl.2024.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE Laminin subunit Beta-1 (LAMB1), a component of the extracellular matrix, has been reported to be implicated in the development and progression of cancer. However, the role of LAMB1 in Nasopharyngeal Carcinoma (NPC) remains unknown. METHODS Three NPC datasets were utilized to identify LAMB1 as a targeted gene. The correlation between LAMB1 expression and clinical characteristics, prognosis was explored. KEGG and GO enrichment analyses were conducted to investigate LAMB1's functions in NPC. The CIBERSORT, xCell, MCPCOUNTER, and EPIC methods were used to assess the Cancer-Associated Fibroblasts (CAFs) and immune cells infiltration. We predicted LAMB1's effect on treatment using TIDE, CTRP, and CellMine databases. Finally, Western blot, CCK-8, Transwell, and Wound scratch were employed to validate LAMB1's effect on NPC cells. RESULTS LAMB1 was highly expressed in NPC. High-expression LAMB1 was correlated with poorer progression-free survival and impeded the infiltration of CD4+ T-cells, CD8+ T-cells and dendritic cells. It also diminished the expression of HLA and suppressed T-cells stimulation. Differential expressed cytokines and involved pathways were divergent across different level of fibroblasts infiltration. At high level of fibroblasts, LAMB1 indirectly inhibited immune cells by remolding extracellular matrix. But at low level of fibroblasts, LAMB1 directly suppressed immune response. Tumors with high LAMB1 level had weak responses to immunotherapy. In vitro experiment, LAMB1 significantly suppressed HLA-1 and enhanced the proliferation, migration, and invasion capabilities of NPC cells. CONCLUSION High expression of LAMB1 is significantly associated with an immune-suppressive tumor microenvironment in NPC. LAMB1 enhances the proliferation, migration and invasion of NPC cells. These findings suggest that LAMB1 may serve as a prognostic biomarker for predicting NPC progression and a potential therapeutic target to enhance the efficacy of existing immunotherapies. LEVEL OF EVIDENCE: 3
Collapse
Affiliation(s)
- Enzi Feng
- The Third Affiliated Hospital of Kunming Medical University, Department of Head and Neck Surgery, Kunming, China
| | - Xinyu Yang
- The Third Affiliated Hospital of Kunming Medical University, Department of Head and Neck Surgery, Kunming, China
| | - Jie Yang
- The Third Affiliated Hospital of Kunming Medical University, Department of Head and Neck Surgery, Kunming, China
| | - Qianqian Qu
- The Third Affiliated Hospital of Kunming Medical University, Department of Head and Neck Surgery, Kunming, China
| | - Xiaojiang Li
- The Third Affiliated Hospital of Kunming Medical University, Department of Head and Neck Surgery, Kunming, China.
| |
Collapse
|
7
|
Lesko L, Jungova P, Culenova M, Thurzo A, Danisovic L. Polymer-Based Scaffolds as an Implantable Material in Regenerative Dentistry: A Review. J Funct Biomater 2025; 16:80. [PMID: 40137359 PMCID: PMC11943271 DOI: 10.3390/jfb16030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Polymer-based scaffolds have emerged as transformative materials in regenerative dentistry, enabling the restoration and replacement of dental tissues through tissue engineering approaches. These scaffolds, derived from natural and synthetic polymers, mimic the extracellular matrix to promote cellular attachment, proliferation, and differentiation. Natural polymers such as collagen, chitosan, and alginate offer biocompatibility and bioactivity, while synthetic alternatives like polylactic acid (PLA) and polycaprolactone (PCL) provide tunable mechanical properties and degradation rates. Recent advancements highlight the integration of bioactive molecules and nanotechnology to enhance the regenerative potential of these materials. Furthermore, developing hybrid scaffolds combining natural and synthetic polymers addresses biocompatibility and mechanical strength challenges, paving the way for patient-specific treatments. Innovations in 3D bioprinting and stimuli-responsive biomaterials are expected to refine scaffold design further, improving therapeutic precision and clinical outcomes. This review underscores the critical role of polymer-based scaffolds in advancing regenerative dentistry, focusing on their applications, advantages, and limitations.
Collapse
Affiliation(s)
- Lubos Lesko
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
| | - Petra Jungova
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, Dvořákovo nábrežie 4, 811 02 Bratislava, Slovakia; (P.J.); (A.T.)
| | - Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
| | - Andrej Thurzo
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, Dvořákovo nábrežie 4, 811 02 Bratislava, Slovakia; (P.J.); (A.T.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
| |
Collapse
|
8
|
Ma P, Xue F, Chen J, Zhang X, Xu X, Ma Z, Zhang H, Wu Y, Li L, Qu Y, Li Y. Transcriptomic insight into the underlying mechanism of induced molting on reproductive remodeling, performance and egg quality in laying hen. Poult Sci 2025; 104:104692. [PMID: 39733733 PMCID: PMC11743122 DOI: 10.1016/j.psj.2024.104692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024] Open
Abstract
This study aimed to clarify the reproductive remodeling mechanism in enhancing production performance and egg quality during the fasting-induced molting process of laying hens. A total of two-hundred and forty 380-days-old Jingfen No. 6 laying hens, with an average laying rate of 78% were divided into four replicates, with 60 hens in each replicate to receive a four-stage molt induction experiment. The stages encompassed the pre-molt stage (T1), the molt stage (T2), the recovery stage (T3), and the second peak-laying stage (T4). The egg-laying rate and egg quality were recorded during all stages, and sample collection (serum, magnum of oviduct, ovary) was conducted at the end of each stage. The length and index of oviduct, the number of hierarchical follicles, and serum reproductive hormone levels were further measured, followed by the transcriptomic sequencing process on the magnum of the oviduct and ovarian tissues at each stage. Results showed that the fasting treatment induced atrophy of the oviducts, the disappearance of large yellow follicles in the ovaries, and the decrease in serum reproductive hormone levels compared to the pre-molt stage. Transcriptomic analysis revealed that differentially expressed genes were notably enriched in cytokine-cytokine receptor interactions, cell adhesion molecules, and the arachidonic acid metabolism signaling pathway during the remodeling phases of oviduct and ovary tissues. Key candidate genes such as BMPR1B, NEGR1, VTN, and CHAD emerged as pivotal in influencing reproductive function remodeling in molt-treated chickens. Additionally, genes associated with steroid biosynthesis showed significant up-regulation in the ovaries of molted hens, correlating positively with egg-laying rates. Furthermore, genes related to collagen and laminin displayed significant positive associations with Albumen height and Haugh unit values. The results indicate that fasting interventions might modulate the remodeling of reproductive functions in laying hens by altering cytokine-cytokine receptor interactions, cell adhesion molecules, and arachidonic acid metabolic pathways. Enhanced ovarian steroid biosynthesis and up-regulation of gene expression, including oviductal collagens post-molting, are crucial for enhancing laying rates and egg quality. These findings could offer novel thinking for refining molting protocols.
Collapse
Affiliation(s)
- Pengyun Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Nanchang key laboratory of animal health and safety production, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Fuguang Xue
- Nanchang key laboratory of animal health and safety production, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoke Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinying Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhong Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Zhang
- Department of Poultry Science, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430000, China
| | - Yan Wu
- Department of Poultry Science, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430000, China
| | - Ling Li
- Hubei Shendan Healthy Food Co., Ltd., Xiaogan 432600, China
| | - Yuanqi Qu
- Hubei Shendan Healthy Food Co., Ltd., Xiaogan 432600, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Zeinert I, Schmidt L, Baar T, Gatto G, De Giuseppe A, Korb-Pap A, Pap T, Mahabir E, Zaucke F, Brachvogel B, Krüger M, Krieg T, Eckes B. Matrix-mediated activation of murine fibroblast-like synoviocytes. Exp Cell Res 2025; 445:114408. [PMID: 39765309 DOI: 10.1016/j.yexcr.2025.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation. Integrin α11β1 might be involved in the activation, as it is increased in RA patients and hTNFtg mice, an RA mouse model. We treated murine chondrocytes with TNFα to produce a damaged, RA-like matrix. Comparison to healthy chondrocyte matrix revealed decreased ECM proteins, e.g. collagens and proteoglycans, increased matrix-degrading proteins and elevated levels of inflammatory cytokines. FLS responded to the damaged chondrocyte matrix with a matrix-remodeling and pro-inflammatory phenotype characterized by a gene signature involved in matrix degradation and increased production of CLL11 and CCL19. Damaged chondrocyte matrix stimulated increased Itga11 expression in FLS, correlating with the increased α11β1 amounts in RA patients. FLS deficient in integrin α11β1 released lower amounts of inflammation-associated cytokines. Our results demonstrate differences in healthy and RA-like chondrocyte ECM and distinctly different responses of wt FLS to damaged versus healthy ECM.
Collapse
Affiliation(s)
- Isabel Zeinert
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Till Baar
- Institute for Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Giulio Gatto
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Anna De Giuseppe
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Frank Zaucke
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Bent Brachvogel
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| |
Collapse
|
10
|
Du H, Song L, Zhao M, Zhao X, Mu R, Gao S, Zhang B, Wang J. Prenatal Perfluorooctanoic Acid (PFOA) exposure causes reproductive toxicity by disrupting the formation of transzonal projections (TZPs) and down-regulating Wnt4/β-catenin signaling pathway in progeny. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117816. [PMID: 39889476 DOI: 10.1016/j.ecoenv.2025.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Perfluorooctanoic acid (PFOA) has been recognized as a novel persistent organic pollutant, playing a significant role in global environmental contamination. Recent evidence indicates that exposure to PFOA detrimentally affects reproductive function, notably through a progressive decline in ovarian function. However, there is a notable lack of research specifically examining its impact on the reproductive potential of female offspring. In this study, we report that prenatal exposure to PFOA impairs the competence of maturing oocytes and reduces the yield of oocytes in the progeny. Mechanistically, prenatal exposure to PFOA leads to a reduced expression of Wnt4, which subsequently impairs the integrity of the ovarian follicle basement membrane and decreases the expression of proteins related to adherent junctions in granulosa cells. This cascade of events results in a compromised reduction of transzonal projections (TZPs) within ovarian follicles, ultimately leading to mitochondrial dysfunction and diminished ATP synthesis in oocytes. This study offers comprehensive insights into the underlying mechanisms of PFOA-induced reproductive toxicity and furnishes scientific evidence to support initiatives focused on preventing and mitigating reproductive harm associated with perfluorinated compounds.
Collapse
Affiliation(s)
- Hua Du
- Department of Pathology, Basic Medical College/Affifiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lishuang Song
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Min Zhao
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Xiaorong Zhao
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ren Mu
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Shengtao Gao
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China.
| | - Jiapeng Wang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
11
|
Shalaby C, Garifallou J, Thom CS. Integrated Local and Systemic Communication Factors Regulate Nascent Hematopoietic Progenitor Escape During Developmental Hematopoiesis. Int J Mol Sci 2024; 26:301. [PMID: 39796157 PMCID: PMC11720630 DOI: 10.3390/ijms26010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs. We used single cell RNA sequencing analysis from human embryonic cells to identify relevant signaling pathways that support nascent HSC release. In addition to intercellular and secreted signaling modalities that have been previously functionally validated to support EHT and/or developmental hematopoiesis in model systems, we identify several novel modalities with plausible mechanisms to support EHT and HSC release. Our findings paint a portrait of the complex inter-regulated signals from the local niche, circulating hematopoietic/inflammatory cells, and distal fetal liver that support hematopoiesis.
Collapse
Affiliation(s)
- Carson Shalaby
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James Garifallou
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher S. Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Bao X, Wu J. Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori, Salmonella enterica, Clostridium difficile, and diarrheagenic Escherichia coli. Crit Rev Food Sci Nutr 2024:1-46. [PMID: 39666022 DOI: 10.1080/10408398.2024.2436139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including Helicobacter pylori, Salmonella enterica, Clostridium difficile, and three key diarrheagenic Escherichia coli (i.e., enterotoxigenic E. coli, enteropathogenic E. coli, and enterohemorrhagic E. coli). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Shen YQ, Sun L, Wang SM, Zheng XY, Xu R. Exosomal integrins in tumor progression, treatment and clinical prediction (Review). Int J Oncol 2024; 65:118. [PMID: 39540373 PMCID: PMC11575930 DOI: 10.3892/ijo.2024.5706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Integrins are a large family of cell adhesion molecules involved in tumor cell differentiation, migration, proliferation and neovascularization. Tumor cell‑derived exosomes carry a large number of integrins, which are closely associated with tumor progression. As crucial mediators of intercellular communication, exosomal integrins have gained attention in the field of cancer biology. The present review examined the regulatory mechanisms of exosomal integrins in tumor cell proliferation, migration and invasion, and emphasized their notable roles in tumor initiation and progression. The potential of exosomal integrins as drug delivery systems in cancer treatment was explored. Additionally, the potential of exosomal integrins in clinical tumor prediction was considered, while summarizing their applications in diagnosis, prognosis assessment and treatment response prediction. Thus, the present review aimed to provide guidance and insights for future basic research and the clinical translation of exosomal integrins. The study of exosomal integrins is poised to offer new perspectives and methods for precise cancer treatment and clinical prediction.
Collapse
Affiliation(s)
- Yu-Qing Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Lei Sun
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Shi-Ming Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Xian-Yu Zheng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Rui Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
14
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
15
|
Ali R, Sultan A, Ishrat R, Saini D, Hayat S, Khan NJ. Structural and functional consequences of non-synonymous SNPs within the LAMA2 protein: a molecular dynamics perspective. J Biomol Struct Dyn 2024:1-13. [PMID: 39522170 DOI: 10.1080/07391102.2024.2426756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/05/2024] [Indexed: 11/16/2024]
Abstract
Clinical phenotypic presentations associated with LAMA2 deficiency have shown a variety of manifestations. LAMA2 mutations are mainly linked to congenital muscular dystrophy, but there is also mounting evidence suggesting their presence in inflammatory breast cancer, laryngopharyngeal squamous cell carcinoma, and ventricular tachycardia related to coronary artery disease and cardiomyopathy. This study examined the structural and functional impacts of 144 non-synonymous single nucleotide polymorphisms (nsSNPs) within the LAMA2 gene. Through multi-tiered sequence and structure-based methods, 11 deleterious and destabilizing mutations were identified (A1362T, E1308Q, E1360G, I1276S, L1195P, M1359T, P1232H, P1238A, P1272L, Y1234H, Y1338C). Further, four mutations (L1195P, Y1234H, P1238A, A1362T), which aligned with conserved positions, were subjected to 500 ns molecular dynamics (MD) simulations. RMSD calculated from MD trajectories highlighted structural disparities between wild-type and mutant forms, with the latter showing greater flexibility. Radius of gyration analysis indicated reduced compactness, solvent accessibility changes suggested unfolding, and hydrogen bond (HB) analysis demonstrated disrupted integrity. The HB analysis revealed disruptions in structural integrity due to diminished hydrogen bonds in mutants. Secondary structure analysis revealed significant alterations in secondary structural content. Principal Component Analysis unveiled increased dynamic behavior in mutants. Gibbs free energy landscape analysis reflected distinct energy minima regions in mutants, indicating structural destabilization. Overall, this study revealed the functional and structural ramifications of nsSNPs in the LAMA2 gene, providing valuable insights into potential disease-causing mutations and warranting future research on understanding LAMA2 associated diseases and disorders.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Armiya Sultan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Deeksha Saini
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shaheen Hayat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nida Jamil Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
16
|
Nappi F, Nassif A, Schoell T. External Scaffold for Strengthening the Pulmonary Autograft in the Ross Procedure. Biomimetics (Basel) 2024; 9:674. [PMID: 39590246 PMCID: PMC11591583 DOI: 10.3390/biomimetics9110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Despite offering several potential benefits over standard prosthetic aortic valve replacement, the use of the pulmonary autograft has been limited to date due to concerns over the risk of pulmonary autograft expansion and the need for reintervention. Several techniques using materials with biomimetic potential have been developed to reduce this complication. The incidence, risk factors, and pathophysiology of pulmonary autograft dilatation are discussed in this article. This seminar will provide an overview of the techniques of external pulmonary autograft support and their advantages and limitations. It also considers future directions for further investigation and future clinical applications of external pulmonary autograft support. Dilatation of the autograft is more likely to occur in patients with aortic regurgitation and a dilated aortic annulus. External scaffolding may prevent autograft stretching and expansion in these specific cases. However, from a biomimetic point of view, any permanent scaffold potentially restricts the movement of the autograft root. This reduces some of the benefits associated with the use of autologous tissue, which is the priority of the Ross procedure. To address this issue, several bioresorbable matrices could be used to support the root during its initial adaptive phase. Control of blood pressure with aggressive therapy is the first line to avoid this problem in the first year after pulmonary autograft implantation, together with support of the annular and sinotubular junction in some selected cases. This is the best way to maintain stable autograft root dimensions while preserving root dynamics. However, to determine the efficacy of this combined external support and best medical management, it is important to perform regular imaging and clinical follow-up.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.N.); (T.S.)
| | | | | |
Collapse
|
17
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 PMCID: PMC11931590 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
18
|
Jacinto JGP, Ogundipe TG, Benazzi C, Häfliger IM, Muscatello LV, Bolcato M, Rinnovati R, Gentile A, Drögemüller C. Familial osteochondrodysplastic and cardiomyopathic syndrome in Chianina cattle. J Vet Intern Med 2024; 38:3346-3357. [PMID: 39460958 PMCID: PMC11586572 DOI: 10.1111/jvim.17221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Skeletal dysplasia encompasses a heterogeneous group of genetic disorders characterized by an abnormal development of bones, joints, and cartilage. Two Chianina half-sibling calves from consanguineous mating with congenital skeletal malformations and cardiac abnormalities were identified. HYPOTHESIS/OBJECTIVES To characterize the disease phenotype, to evaluate its genetic cause, and to determine the prevalence of the deleterious alleles in the Chianina population. ANIMALS Two affected calves, their parents and 332 Chianina bulls. METHODS The affected animals underwent clinicopathological investigation. Whole-genome sequencing trio-approach and PCR-based assessment of the frequency of TDP-glucose 4,6-dehydratase (TGDS) and laminin subunit alpha 4 (LAMA4) alleles were performed. RESULTS The cases presented with retarded growth, poor nutritional status associated with muscular atrophy and angular deformities of the hindlimbs. Radiologic examination identified generalized osteopenia and shortening of the limb long bones. Necropsy showed osteochondrodysplastic limbs and dilatation of the heart right ventricle. On histological examination, the physeal cartilages were characterized by multifocal mild to moderate loss of the normal columnar arrangement of chondrocytes. Osteopenia also was observed. Genetic analysis identified a missense variant in TGDS and a splice-site variant in LAMA4, both of which were homozygous in the 2 cases. Parents were heterozygous and allele frequency in the Chianina population for the TGDS variant was 5% and for the LAMA4 variant was 2%. CONCLUSIONS AND CLINICAL IMPORTANCE Genetic findings identified 2 potentially pathogenic alleles in TGDS and LAMA4, but no clear mode of inheritance could be determined.
Collapse
Affiliation(s)
- Joana G. P. Jacinto
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | | | - Cinzia Benazzi
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
| | - Irene M. Häfliger
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | | | - Marilena Bolcato
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
| | - Riccardo Rinnovati
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
| | - Arcangelo Gentile
- Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
| | - Cord Drögemüller
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse FacultyUniversity of BernBernSwitzerland
| |
Collapse
|
19
|
Mohanty S, Roy S. Bioactive Hydrogels Inspired by Laminin: An Emerging Biomaterial for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2400207. [PMID: 39172212 DOI: 10.1002/mabi.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Tissue or organ damage due to severe injuries or chronic diseases can adversely affect the quality of life. Current treatments rely on organ or tissue transplantation which has limitations including unavailability of donors, ethical issues, or immune rejection after transplantations. These limitations can be addressed by tissue regeneration which involves the development of bioactive scaffolds closely mimicking the extracellular matrix (ECM). One of the major components of ECM is the laminin protein which supports several tissues associated with important organs. In this direction, peptide-based hydrogels can effectively mimic the essential characteristics of laminin. While several reports have discussed the structure of laminin, the potential of laminin-derived peptide hydrogels as effective biomaterial for tissue engineering applications is yet to be discussed. In this context, the current review focuses on the structure of laminin and its role as an essential ECM protein. Further, the potential of short peptide hydrogels in mimicking the crucial properties of laminin is proposed. The review further highlights the significance of bioactive hydrogels inspired by laminin - in addressing numerous tissue engineering applications including angiogenesis, neural, skeletal muscle, liver, and adipose tissue regeneration along with a brief outlook on the future applications of these laminin-based hydrogels.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
20
|
Del Toro K, Sayaman R, Thi K, Licon-Munoz Y, Hines WC. Transcriptomic analysis of the 12 major human breast cell types reveals mechanisms of cell and tissue function. PLoS Biol 2024; 22:e3002820. [PMID: 39499736 PMCID: PMC11537416 DOI: 10.1371/journal.pbio.3002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 11/07/2024] Open
Abstract
A fundamental question in biology, central to our understanding of cancer and other pathologies, is determining how different cell types coordinate to form and maintain tissues. Recognizing the distinct features and capabilities of the cells that compose these tissues is critical. Unfortunately, the complexity of tissues often hinders our ability to distinguish between neighboring cell types and, in turn, scrutinize their transcriptomes and generate reliable and tractable cell models for studying their inherently different biologies. We have recently introduced a novel method that permits the identification and purification of the 12 cell types that compose the human breast-nearly all of which could be reliably propagated in the laboratory. Here, we explore the nature of these cell types. We sequence mRNAs from each purified population and investigate transcriptional patterns that reveal their distinguishing features. We describe the differentially expressed genes and enriched biological pathways that capture the essence of each cell type, and we highlight transcripts that display intriguing expression patterns. These data, analytic tools, and transcriptional analyses form a rich resource whose exploration provides remarkable insights into the inner workings of the cell types composing the breast, thus furthering our understanding of the rules governing normal cell and tissue function.
Collapse
Affiliation(s)
- Katelyn Del Toro
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rosalyn Sayaman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kate Thi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William Curtis Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
21
|
Tolman N, Li T, Balasubramanian R, Li G, Bupp-Chickering V, Kelly RA, Simón M, Peregrin J, Montgomery C, Stamer WD, Qian J, John SWM. Single-cell profiling of trabecular meshwork identifies mitochondrial dysfunction in a glaucoma model that is protected by vitamin B3 treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621152. [PMID: 39829808 PMCID: PMC11741249 DOI: 10.1101/2024.11.01.621152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Since the trabecular meshwork (TM) is central to intraocular pressure (IOP) regulation and glaucoma, a deeper understanding of its genomic landscape is needed. We present a multimodal, single-cell resolution analysis of mouse limbal cells (includes TM). In total, we sequenced 9,394 wild-type TM cell transcriptomes. We discovered three TM cell subtypes with characteristic signature genes validated by immunofluorescence on tissue sections and whole-mounts. The subtypes are robust, being detected in datasets for two diverse mouse strains and in independent data from two institutions. Results show compartmentalized enrichment of critical pathways in specific TM cell subtypes. Distinctive signatures include increased expression of genes responsible for 1) extracellular matrix structure and metabolism (TM1 subtype), 2) secreted ligand signaling to support Schlemm's canal cells (TM2), and 3) contractile and mitochondrial/metabolic activity (TM3). ATAC-sequencing data identified active transcription factors in TM cells, including LMX1B. Mutations in LMX1B cause high IOP and glaucoma. LMX1B is emerging as a key transcription factor for normal mitochondrial function and its expression is much higher in TM3 cells than other limbal cells. To understand the role of LMX1B in TM function and glaucoma, we single-cell sequenced limbal cells from Lmx1b V265D/+ mutant mice. In V265D/+ mice, TM3 cells were uniquely affected by pronounced mitochondrial pathway changes. This supports a primary role of mitochondrial dysfunction within TM3 cells in initiating the IOP elevation that causes glaucoma in these mice. Importantly, treatment with vitamin B 3 (nicotinamide), to enhance mitochondrial function and metabolic resilience, significantly protected Lmx1b mutant mice from IOP elevation.
Collapse
|
22
|
Pelaz SG, Flores-Hernández R, Vujic T, Schvartz D, Álvarez-Vázquez A, Ding Y, García-Vicente L, Belloso A, Talaverón R, Sánchez JC, Tabernero A. A proteomic approach supports the clinical relevance of TAT-Cx43 266-283 in glioblastoma. Transl Res 2024; 272:95-110. [PMID: 38876188 DOI: 10.1016/j.trsl.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer. The Src inhibitor, TAT-Cx43266-283, exerts antitumor effects in in vitro and in vivo models of GBM. Because addressing the mechanism of action is essential to translate these results to a clinical setting, in this study we carried out an unbiased proteomic approach. Data-independent acquisition mass spectrometry proteomics allowed the identification of 190 proteins whose abundance was modified by TAT-Cx43266-283. Our results were consistent with the inhibition of Src as the mechanism of action of TAT-Cx43266-283 and unveiled antitumor effectors, such as p120 catenin. Changes in the abundance of several proteins suggested that TAT-Cx43266-283 may also impact the brain microenvironment. Importantly, the proteins whose abundance was reduced by TAT-Cx43266-283 correlated with an improved GBM patient survival in clinical datasets and none of the proteins whose abundance was increased by TAT-Cx43266-283 correlated with shorter survival, supporting its use in clinical trials.
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| | - Raquel Flores-Hernández
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Tatjana Vujic
- Department of Medicine, University of Geneva, 1211, Geneva, Switzerland; University Center of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne Geneva, Switzerland
| | - Domitille Schvartz
- Department of Medicine, University of Geneva, 1211, Geneva, Switzerland; University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Andrea Álvarez-Vázquez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Yuxin Ding
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Laura García-Vicente
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Aitana Belloso
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Rocío Talaverón
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | | | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| |
Collapse
|
23
|
Li C, An N, Song Q, Hu Y, Yin W, Wang Q, Le Y, Pan W, Yan X, Wang Y, Liu J. Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci 2024; 31:96. [PMID: 39334251 PMCID: PMC11429032 DOI: 10.1186/s12929-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past decade, organoids have emerged as a prevalent and promising research tool, mirroring the physiological architecture of the human body. However, as the field advances, the traditional use of animal or tumor-derived extracellular matrix (ECM) as scaffolds has become increasingly inadequate. This shift has led to a focus on developing synthetic scaffolds, particularly hydrogels, that more accurately mimic three-dimensional (3D) tissue structures and dynamics in vitro. The ECM-cell interaction is crucial for organoid growth, necessitating hydrogels that meet organoid-specific requirements through modifiable physical and compositional properties. Advanced composite hydrogels have been engineered to more effectively replicate in vivo conditions, offering a more accurate representation of human organs compared to traditional matrices. This review explores the evolution and current uses of decellularized ECM scaffolds, emphasizing the application of decellularized ECM hydrogels in organoid culture. It also explores the fabrication of composite hydrogels and the prospects for their future use in organoid systems.
Collapse
Affiliation(s)
- Chen Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ni An
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Yuelei Hu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenzhen Yin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinpeng Le
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Materials Science and Engineering, Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | - Juan Liu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
Yu F, Zeng G, Yang L, Zhou H, Wang Y. LAMB3: Central role and clinical significance in neoplastic and non-neoplastic diseases. Biomed Pharmacother 2024; 178:117233. [PMID: 39111076 DOI: 10.1016/j.biopha.2024.117233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
Recently, topics related to targeted gene therapy and diagnosis have become increasingly important in disease research. The progression of many diseases is associated with specific gene signaling pathways. Therefore, the identification of precise gene targets in various diseases is crucial for the development of effective treatments. Laminin subunit beta 3 (LAMB3), a component of laminin 5, functions as an adhesive protein in the extracellular matrix and plays a vital role in regulating cell proliferation, migration, and cell cycle in certain diseases. Previous studies have indicated that LAMB3 is highly expressed in numerous tumorous and non-tumorous conditions, including renal fibrosis; squamous cell carcinoma of the skin, thyroid, lung, pancreatic, ovarian, colorectalr, gastric, breast, cervical, nasopharyngeal, bladder, prostate cancers; and cholangiocarcinoma. Conversely, it is underexpressed in other conditions, such as hepatocellular carcinoma, epidermolysis bullosa, and amelogenesis imperfecta. Consequently, LAMB3 may serve as a molecular diagnostic and therapeutic target for various diseases through its involvement in critical gene signaling pathways. This paper reviews the research status of LAMB3 and its role in related diseases.
Collapse
Affiliation(s)
- Fangqiu Yu
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Guoqiang Zeng
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Lei Yang
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Honglan Zhou
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Yuantao Wang
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China.
| |
Collapse
|
25
|
Li D, Jin Y, He X, Deng J, Lu W, Yang Z, Zheng X, Hou K, Tang S, Bao B, Ren J, Zhang X, Wang J, Yan H, Qu X, Liu Y, Che X. Hypoxia-induced LAMB2-enriched extracellular vesicles promote peritoneal metastasis in gastric cancer via the ROCK1-CAV1-Rab11 axis. Oncogene 2024; 43:2768-2780. [PMID: 39138263 DOI: 10.1038/s41388-024-03124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Peritoneal metastasis is one of the most common risk factors contributing to the poor prognosis of gastric cancer. We previously reported that extracellular vesicles from gastric cancer cells could facilitate peritoneal metastasis. However, their impact on gastric cancer-induced peritoneal metastasis under hypoxic conditions remains unclear. This study aims to elucidate how hypoxia-resistant gastric cancer cell-derived extracellular vesicles affect the peritoneal metastasis of normoxic gastric cancer cells. Proteomic analysis revealed elevated levels of Caveolin1 and Laminin β2 in hypoxia-resistant gastric cancer cells and their corresponding extracellular vesicles. Importantly, Caveolin1 was found to play a central role in mediating Laminin β2 sorting into extracellular vesicles derived from hypoxia-resistant gastric cancer cells, and subsequently, extracellular vesicle-associated Laminin β2 promoted peritoneal metastasis in normoxic gastric cancer cells by activating the AKT pathway. Further investigation confirmed that Caveolin1 activation by Rho-related Coiled-coil kinase 1-mediated phosphorylation of Y14 residue is a key factor facilitating Laminin β2 sorting into extracellular vesicles. Moreover, Y14 phosphorylated- Caveolin1 enhanced Laminin β2 sorting by activating Rab11. Finally, our study demonstrated that a combined assessment of plasma extracellular vesicle-associated Caveolin1 and extracellular vesicle-associated Laminin β2 could provide an accurate predictive tool for peritoneal metastasis occurrence in gastric cancer.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yue Jin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xin He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jian Deng
- Third Department of Medical Oncology, The Fifth People Hospital of Shenyang, Shenyang, China
| | - Wenqing Lu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Zichang Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xueying Zheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Shiying Tang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Bowen Bao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jie Ren
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiaojie Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Hongfei Yan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Clinical Cancer Research Center of Shenyang, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Clinical Cancer Research Center of Shenyang, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
| |
Collapse
|
26
|
Abd-Elkareem M, Alnasser SM, Meshal A, Abdullah RI, Ali AU. The effect of Norethisterone acetate on the uterus of albino rats: histological, histochemical and ultrastructure study. BMC Vet Res 2024; 20:384. [PMID: 39210341 PMCID: PMC11360500 DOI: 10.1186/s12917-024-04219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Norethisterone acetate (NETA), also known as norethindrone acetate is a progestogens medication that is widely used in birth control pills, menopausal hormone therapy, and for the treatment of gynecological disorders as abnormal uterine bleeding and endometriosis. There is a lack of detailed histological information regarding the effects of NETA on the uterine structure. So, the present study focuses on the uterine histological, histochemical and ultrastructure changes following the exposure to NETA in the albino rats. To do this aim, fourteen adult female albino rats were used. They were randomly divided into two equally groups: Control group and NETA treated group. Albino rats of control group were administered daily food, water and orally distilled water only, while rats of NETA treated group were administered daily orally 20 µg of NETA dissolved in 2 ml distilled water, food, and water. The experiment was continued for three weeks. RESULTS The findings of the present work indicated that the use of NETA has negative effects on the endometrial epithelium (proliferation, autophagy and apoptosis), glands (necrotic, apoptotic or pseudosecretory glands) and stromal and myometrial reactions (granulocytes, connective tissue remodeling, apoptosis, myocytes hypertrophy). CONCLUSION This work revealed that NETA has desynchronized progestogenic effect on the uterine tissues of the albino rat and thereby prevent implantation and pregnancy.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Alotaibi Meshal
- Pharmacy practice, College of pharmacy, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
| | - Raghda Ismail Abdullah
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
| | - Ahmed U Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Merit University, Sohag, Egypt
| |
Collapse
|
27
|
Kerdkumthong K, Roytrakul S, Songsurin K, Pratummanee K, Runsaeng P, Obchoei S. Proteomics and Bioinformatics Identify Drug-Resistant-Related Genes with Prognostic Potential in Cholangiocarcinoma. Biomolecules 2024; 14:969. [PMID: 39199357 PMCID: PMC11352417 DOI: 10.3390/biom14080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Drug resistance is a major challenge in the treatment of advanced cholangiocarcinoma (CCA). Understanding the mechanisms of drug resistance can aid in identifying novel prognostic biomarkers and therapeutic targets to improve treatment efficacy. This study established 5-fluorouracil- (5-FU) and gemcitabine-resistant CCA cell lines, KKU-213FR and KKU-213GR, and utilized comparative proteomics to identify differentially expressed proteins in drug-resistant cells compared to parental cells. Additionally, bioinformatics analyses were conducted to explore the biological and clinical significance of key proteins. The drug-resistant phenotypes of KKU-213FR and KKU-213GR cell lines were confirmed. In addition, these cells demonstrated increased migration and invasion abilities. Proteomics analysis identified 81 differentially expressed proteins in drug-resistant cells, primarily related to binding functions, biological regulation, and metabolic processes. Protein-protein interaction analysis revealed a highly interconnected network involving MET, LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1. siRNA-mediated knockdown of these genes in drug-resistant cell lines attenuated cell migration and cell invasion abilities and increased sensitivity to 5-FU and gemcitabine. The mRNA expression of these genes is upregulated in CCA patient samples and is associated with poor prognosis in gastrointestinal cancers. Furthermore, the functions of these proteins are closely related to the epithelial-mesenchymal transition (EMT) pathway. These findings elucidate the potential molecular mechanisms underlying drug resistance and tumor progression in CCA, providing insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Kankamol Kerdkumthong
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Tani 12120, Thailand;
| | - Kawinnath Songsurin
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Kandawasri Pratummanee
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Phanthipha Runsaeng
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| | - Sumalee Obchoei
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| |
Collapse
|
28
|
Dai S, Kong H, Ja Y, Bao L, Wang C, Qin L. Expression of the laminin genes family and its relationship to prognosis in pancreatic carcinoma. Arab J Gastroenterol 2024; 25:306-314. [PMID: 39039002 DOI: 10.1016/j.ajg.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/16/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND AND STUDY AIMS Laminin is an extracellular matrix molecule that is the major component of the basement membrane and plays a key role in regulating various processes. However, the association between the laminin gene family and the prognosis of pancreatic carcinoma has not been systematically investigated. PATIENTS AND METHODS The role of the laminin gene family in pancreatic cancer was evaluated using data from the TCGA database. The effects of different expressions of members of the laminin gene family on pancreatic cancer survival were compared, and their primary cellular roles were examined. The effects of different expressions of positive family genes on proliferation, metastasis, and invasion, as well as EMT and ferroptosis in pancreatic cancer, were also examined. RESULTS Based on univariate and multifactorial analysis of pancreatic cancer patients, LAMA3 was identified as an independent prognostic factor for overall survival in pancreatic cancer. LAMA3 was found to be enriched in the actin cytoskeleton, P53 signaling pathway, adhesion molecule junctions, pentose phosphate pathway, and regulatory differences in the cell cycle and focal adhesion. Additionally, high expression of LAMA3 was found to promote cancer proliferation, invasion, and metastasis, facilitate the EMT process, and inhibit ferroptosis. CONCLUSIONS Our results identified LAMA3 was associated with the prognosis of patients with pancreatic cancer and may serve as a prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- ShengJie Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Ja
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqi Bao
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengchao Wang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
29
|
Liang NE, Parker JB, Lu JM, Januszyk M, Wan DC, Griffin M, Longaker MT. Understanding the Foreign Body Response via Single-Cell Meta-Analysis. BIOLOGY 2024; 13:540. [PMID: 39056733 PMCID: PMC11273435 DOI: 10.3390/biology13070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Foreign body response (FBR) is a universal reaction to implanted biomaterial that can affect the function and longevity of the implant. A few studies have attempted to identify targets for treating FBR through the use of single-cell RNA sequencing (scRNA-seq), though the generalizability of these findings from an individual study may be limited. In our study, we perform a meta-analysis of scRNA-seq data from all available FBR mouse studies and integrate these data to identify gene signatures specific to FBR across different models and anatomic locations. We identify subclusters of fibroblasts and macrophages that emerge in response to foreign bodies and characterize their signaling pathways, gene ontology terms, and downstream mediators. The fibroblast subpopulations enriched in the setting of FBR demonstrated significant signaling interactions in the transforming growth factor-beta (TGF-β) signaling pathway, with known pro-fibrotic mediators identified as top expressed genes in these FBR-derived fibroblasts. In contrast, FBR-enriched macrophage subclusters highly expressed pro-fibrotic and pro-inflammatory mediators downstream of tumor necrosis factor (TNF) signaling. Cell-cell interactions were additionally interrogated using CellChat, with identification of key signaling interactions enriched between fibroblasts and macrophages in FBR. By combining multiple FBR datasets, our meta-analysis study identifies common cell-specific gene signatures enriched in foreign body reactions, providing potential therapeutic targets for patients requiring medical implants across a myriad of devices and indications.
Collapse
Affiliation(s)
- Norah E. Liang
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer B. Parker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M. Lu
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derrick C. Wan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T. Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Van Es LJC, Possee RD, King LA. Characterisation of extracellular vesicles in baculovirus infection of Spodoptera frugiperda cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e163. [PMID: 38947876 PMCID: PMC11212295 DOI: 10.1002/jex2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an enveloped DNA virus of the Baculoviridae family. This baculovirus is widely exploited for the biological control of insect pest species and as an expression platform to produce recombinant proteins in insect cells. Extracellular vesicles (EVs) are secreted by all cells and are involved in key roles in many biological processes through their cargo consisting of proteins, RNA or DNA. In viral infections, EVs have been found to transfer both viral and cellular cargo that can elicit either a pro- or antiviral response in recipient cells. Here, small EVs (sEVs) released by Spodoptera frugiperda (Sf) insect cells were characterised for the first time. Using S. frugiperda (SfC1B5) cells stably expressing the baculovirus gp64, the viral envelope protein GP64 was shown to be incorporated into sEVs. Sf9 cells were also transfected with a bacmid AcMNPV genome lacking p6.9 (AcΔP6.9) to prevent budded virus production. The protein content of sEVs from both mock- and AcΔP6.9-transfected cells were analysed by mass spectrometry. In addition to GP64, viral proteins Ac-F, ME-53 and viral ubiquitin were identified, as well as many host proteins including TSG101-which may be useful as a protein marker for sEVs.
Collapse
Affiliation(s)
- Lex J. C. Van Es
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Oxford Expression Technologies LtdOxfordUK
| | | | - Linda A. King
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
31
|
Kumar B, Mishra M, Talreja D, Cashman S, Kumar-Singh R. Cell-Penetrating Chaperone Nuc1 for Small- and Large-Molecule Delivery Into Retinal Cells and Tissues. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 39028980 PMCID: PMC11262537 DOI: 10.1167/iovs.65.8.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
Purpose There are currently no means available for the efficient delivery of recombinant proteins into retinal cells in vivo. Although cell-penetrating peptides have been somewhat effective in protein delivery to the retina, they generally require conjugation chemistry with the payload, negatively impacting function of the therapeutic protein. In this study, we developed a novel peptide (Nuc1) that acts as a chaperone for delivery of small and large molecules, including steroids, peptides, antibodies, recombinant proteins, and viruses (adeno-associated viruses [AAVs]) across biological membranes in vivo without the need for conjugation. Methods Nuc1 peptide was designed based on sequences known to bind heparan sulfate proteoglycans and nucleolin found on the surface of retinal cells. Nuc1 was injected into the vitreous of mice with a variety of molecules and retinas examined for uptake and function of these molecules. Results Nuc1 engages the process of macropynocytosis for cell entry. The delivery of functional recombinant X-linked inhibitor of apoptosis protein to photoreceptors via the intravitreal route of injection inhibited retinal apoptosis. Nuc1 was found to enhance the delivery of anti-VEGF antibodies delivered intravitreally or topically in models of age-related macular degeneration (AMD). Nuc1 enhanced delivery of decorin, facilitating significant inhibition of neovascularization and fibrosis in a model of AMD. Finally, Nuc1 was found to enhance penetration of retinal cells and tissues by AAV via both the subretinal and intravitreal routes of injection. Conclusions Nuc1 shows promise as a novel approach for the delivery of recombinant proteins into retinal cells in vivo.
Collapse
Affiliation(s)
- Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Manish Mishra
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Deepa Talreja
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Siobhan Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
32
|
Wu Q, Yuan K, Yao Y, Yao J, Shao J, Meng Y, Wu P, Shi H. LAMC1 attenuates neuronal apoptosis via FAK/PI3K/AKT signaling pathway after subarachnoid hemorrhage. Exp Neurol 2024; 376:114776. [PMID: 38609046 DOI: 10.1016/j.expneurol.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND AND PURPOSE The poor prognosis in patients with subarachnoid hemorrhage (SAH) is often attributed to neuronal apoptosis. Recent evidence suggests that Laminin subunit gamma 1 (LAMC1) is essential for cell survival and proliferation. However, the effects of LAMC1 on early brain injury after SAH and the underlying mechanisms are unknown. The current study aimed to reveal the anti-neuronal apoptotic effect and the potential mechanism of LAMC1 in the rat and in the in vitro SAH models. METHODS The SAH model of Sprague-Dawley rats was established by endovascular perforation. Recombinant LAMC1 (rLAMC1) was administered intranasally 30 min after modeling. LAMC1 small interfering RNA (LAMC1 siRNA), focal adhesion kinase (FAK)-specific inhibitor Y15 and PI3K-specific inhibitor LY294002 were administered before SAH modeling to explore the neuroprotection mechanism of rLAMC1. HT22 cells were cultured and stimulated by oxyhemoglobin to establish an in vitro model of SAH. Subsequently, SAH grades, neurobehavioral tests, brain water content, blood-brain barrier permeability, western blotting, immunofluorescence, TUNEL, and Fluoro-Jade C staining were performed. RESULTS The expression of endogenous LAMC1 was markedly decreased after SAH, both in vitro and in vivo. rLAMC1 significantly reduced the brain water content and blood-brain barrier permeability, improved short- and long-term neurobehavior, and decreased neuronal apoptosis. Furthermore, rLAMC1 treatment significantly increased the expression of p-FAK, p-PI3K, p-AKT, Bcl-XL, and Bcl-2 and decreased the expression of Bax and cleaved caspase -3. Conversely, knockdown of endogenous LAMC1 aggravated the neurological impairment, suppressed the expression of Bcl-XL and Bcl-2, and upregulated the expression of Bax and cleaved caspase-3. Additionally, the administration of Y15 and LY294002 abolished the protective roles of rLAMC1. In vitro, rLAMC1 significantly reduced neuronal apoptosis, and the protective effects were also abolished by Y15 and LY294002. CONCLUSION Exogenous LAMC1 treatment improved neurological deficits after SAH in rats, and attenuated neuronal apoptosis in both in vitro and in vivo SAH models, at least partially through the FAK/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qiaowei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kaikun Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanting Yao
- Department of Neurosurgery, Beidahuang Group General Hospital, Harbin, Heilongjiang, China
| | - Jinbiao Yao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiang Shao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuxiao Meng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
33
|
Zhang Z, Yi Y, Wang Z, Zhang H, Zhao Y, He R, Luo Y, Cui Z. LncRNA MAGI2-AS3-Encoded Polypeptide Restrains the Proliferation and Migration of Breast Cancer Cells. Mol Biotechnol 2024; 66:1409-1423. [PMID: 37358745 DOI: 10.1007/s12033-023-00801-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Accumulating articles have reported the coding potential of long non-coding RNAs (lncRNAs). However, only a few lncRNAs-encoded peptides have been studied. Breast cancer (BRCA) progression-related gene modules were determined by weighted gene co-expression network analysis (WGCNA). Cell viability, proliferation, and migration capacities were assessed by Cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays. Immunofluorescence (IF) assay was implemented to observe protein expression. Co-immunoprecipitation (Co-IP) and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) were employed to analyze MAGI2 antisense RNA 3 (MAGI2-AS3)-ORF5-interacted proteins. WGCNA identified that MEpurple and MEblack modules were significantly negatively correlated with T stage in BRCA patients. MAGI2-AS3 was screened as one of the differentially expressed (DE) lncRNAs with translational potential in MEblack and MEpurple modules in BRCA. The data in The Cancer Genome Atlas (TCGA) uncovered that MAGI2-AS3 abundance was significantly decreased in invasive BRCA patients, and it had high diagnostic and prognostic values. MAGI2-AS3-ORF5 notably restrained BRCA cell viability, proliferation, and migration. Mechanically, MAGI2-AS3-ORF5 might affect the progression of BRCA cells by binding to extracellular matrix (ECM)-related proteins. MAGI2-AS3-ORF5 played an anti-tumor role by inhibiting BRCA cell viability, proliferation, and migration. MAGI2-AS3-ORF5 might modulate BRCA cell migration through ECM-associated proteins.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanli Yi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Zai Wang
- Science and Education Division, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Haoyun Zhang
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanchun Zhao
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Ruijing He
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yan Luo
- Department of Reproductive Genetic, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Zhiqiang Cui
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China.
| |
Collapse
|
34
|
Buruiană A, Gheban BA, Gheban-Roșca IA, Georgiu C, Crișan D, Crișan M. The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression. Cancers (Basel) 2024; 16:1727. [PMID: 38730679 PMCID: PMC11083853 DOI: 10.3390/cancers16091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its key constituents and their dynamic contributions. We examine how significant changes within the cSCC ECM-specifically, alterations in fibronectin, hyaluronic acid, laminins, proteoglycans, and collagens-promote cancer progression, metastasis, and drug resistance. The cellular composition of the cSCC TME is also explored, detailing the intricate interplay of cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, pericytes, adipocytes, and various immune cell populations. These diverse players modulate tumor development, angiogenesis, and immune responses. Finally, we emphasize the TME's potential as a therapeutic target. Emerging strategies discussed in this review include harnessing the immune system (adoptive cell transfer, checkpoint blockade), hindering tumor angiogenesis, disrupting CAF activity, and manipulating ECM components. These approaches underscore the vital role that deciphering TME interactions plays in advancing cSCC therapy. Further research illuminating these complex relationships will uncover new avenues for developing more effective treatments for cSCC.
Collapse
Affiliation(s)
- Alexandra Buruiană
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Bogdan-Alexandru Gheban
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Emergency Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania;
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Doința Crișan
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
35
|
Bai J, Zhao Y, Shi K, Fan Y, Ha Y, Chen Y, Luo B, Lu Y, Jie W, Shen Z. HIF-1α-mediated LAMC1 overexpression is an unfavorable predictor of prognosis for glioma patients: evidence from pan-cancer analysis and validation experiments. J Transl Med 2024; 22:391. [PMID: 38678297 PMCID: PMC11056071 DOI: 10.1186/s12967-024-05218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Laminin subunit gamma-1 (LAMC1) is a major extracellular matrix molecule involved in the tumor microenvironment. Knowledge of the biological features and clinical relevance of LAMC1 in cancers remains limited. METHODS We conducted comprehensive bioinformatics analysis of LAMC1 gene expression and clinical relevance in pan-cancer datasets of public databases and validated LAMC1 expression in glioma tissues and cell lines. The association and regulatory mechanism between hypoxia inducible factor-1α (HIF-1α) and LAMC1 expression were explored. RESULTS LAMC1 expression in most cancers in The Cancer Genome Atlas (TCGA) including glioma was significantly higher than that in normal tissues, which had a poor prognosis and were related to various clinicopathological features. Data from the Chinese Glioma Genome Atlas also showed high expression of LAMC1 in glioma associated with poor prognoses. In clinical glioma tissues, LAMC1 protein was highly expressed and correlated to poor overall survival. LAMC1 knockdown in Hs683 glioma cells attenuated cell proliferation, migration, and invasion, while overexpression of LAMC1 in U251 cells leads to the opposite trend. Most TCGA solid cancers including glioma showed enhancement of HIF-1α expression. High HIF-1α expression leads to adverse prognosis in gliomas, besides, HIF-1α expression was positively related to LAMC1. Mechanistically, HIF-1α directly upregulated LAMC1 promotor activity. Hypoxia (2% O2)-treated Hs683 and U251 cells exhibited upregulated HIF-1α and LAMC1 expression, which was significantly attenuated by HIF-1α inhibitor YC-1 and accompanied by attenuated cell proliferation and invasion. CONCLUSIONS High expression of LAMC1 in some solid tumors including gliomas suggests a poor prognosis. The hypoxic microenvironment in gliomas activates the HIF-1α/LAMC1 signaling, thereby promoting tumor progression. Targeted intervention on the HIF-1α/LAMC1 signaling attenuates cell growth and invasion, suggesting a new strategy for glioma treatment.
Collapse
Affiliation(s)
- Jianrong Bai
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yangyang Zhao
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, China
| | - Kaijia Shi
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China
| | - Yonghao Fan
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China
| | - Yanping Ha
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yan Chen
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China
| | - Botao Luo
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yanda Lu
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China.
| | - Wei Jie
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China.
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China.
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, China.
| | - Zhihua Shen
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
36
|
Gorman BR, Francis M, Nealon CL, Halladay CW, Duro N, Markianos K, Genovese G, Hysi PG, Choquet H, Afshari NA, Li YJ, Gaziano JM, Hung AM, Wu WC, Greenberg PB, Pyarajan S, Lass JH, Peachey NS, Iyengar SK. A multi-ancestry GWAS of Fuchs corneal dystrophy highlights the contributions of laminins, collagen, and endothelial cell regulation. Commun Biol 2024; 7:418. [PMID: 38582945 PMCID: PMC10998918 DOI: 10.1038/s42003-024-06046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular etiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program followed by multi-ancestry meta-analysis with the previous largest FECD GWAS, for a total of 3970 cases and 333,794 controls. We confirm the previous four loci, and identify eight novel loci: SSBP3, THSD7A, LAMB1, PIDD1, RORA, HS3ST3B1, LAMA5, and COL18A1. We further confirm the TCF4 locus in GWAS for admixed African and Hispanic/Latino ancestries and show an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling, validated through homology, suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and colocalization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.
Collapse
Affiliation(s)
- Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Michael Francis
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Cari L Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Christopher W Halladay
- Center of Innovation in Long Term Services and Supports, Providence VA Medical Center, Providence, RI, USA
| | - Nalvi Duro
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pirro G Hysi
- Department of Ophthalmology, King's College London, London, UK
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- UCL Great Ormond Street Hospital Institute of Child Health, King's College London, London, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Natalie A Afshari
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana M Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Wen-Chih Wu
- Cardiology Section, Medical Service, Providence VA Medical Center, Providence, RI, USA
| | - Paul B Greenberg
- Ophthalmology Section, Providence VA Medical Center, Providence, RI, USA
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Jonathan H Lass
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Sudha K Iyengar
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
37
|
Goletz S, Pigors M, Lari TR, Hammers CM, Wang Y, Emtenani S, Aumailley M, Holtsche MM, Stang FH, Weyers I, König IR, Has C, Radzimski C, Komorowski L, Zillikens D, Schmidt E. Laminin β4 is a constituent of the cutaneous basement membrane zone and additional autoantigen of anti-p200 pemphigoid. J Am Acad Dermatol 2024; 90:790-797. [PMID: 37992812 DOI: 10.1016/j.jaad.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Anti-p200 pemphigoid is a subepidermal autoimmune blistering disease (AIBD) characterized by autoantibodies against a 200 kDa protein. Laminin γ1 has been described as target antigen in 70% to 90% of patients. No diagnostic assay is widely available for anti-p200 pemphigoid, which might be due to the unclear pathogenic relevance of anti-laminin γ1 autoantibodies. OBJECTIVE To identify a target antigen with higher clinical and diagnostic relevance. METHODS Immunoprecipitation, mass spectrometry, and immunoblotting were employed for analysis of skin extracts and sera of patients with anti-p200 pemphigoid (n = 60), other AIBD (n = 33), and healthy blood donors (n = 29). To localize the new antigen in skin, cultured keratinocytes and fibroblasts, quantitative real-time polymerase chain reaction and immunofluorescence microscopy were performed. RESULTS Laminin β4 was identified as target antigen of anti-p200 pemphigoid in all analyzed patients. It was located at the level of the basement membrane zone of the skin with predominant expression in keratinocytes. LIMITATIONS A higher number of sera needs to be tested to verify that laminin β4 is the diagnostically relevant antigen of anti-p200 pemphigoid. CONCLUSION The identification of laminin β4 as an additional target antigen in anti-p200 pemphigoid will allow its differentiation from other AIBD and as such, improve the management of these rare disorders.
Collapse
Affiliation(s)
- Stephanie Goletz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Manuela Pigors
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Tina Rastegar Lari
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Christoph M Hammers
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Yao Wang
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Monique Aumailley
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Maike M Holtsche
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Felix H Stang
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Imke Weyers
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Lars Komorowski
- Institute of Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
38
|
Trampert DC, Kersten R, Tolenaars D, Jongejan A, van de Graaf SF, Beuers U. Laminin 511-E8, an autoantigen in IgG4-related cholangitis, contributes to cholangiocyte protection. JHEP Rep 2024; 6:101015. [PMID: 38524667 PMCID: PMC10959701 DOI: 10.1016/j.jhepr.2024.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 03/26/2024] Open
Abstract
Background & Aims IgG4-related cholangitis (IRC) is the hepatobiliary manifestation of IgG4-related disease. Anti-laminin 511-E8 autoantibodies have been identified in its pancreatic manifestation. Laminin 511-E8 promotes endothelial barrier function, lymphocyte recruitment, and cholangiocyte differentiation. Here, we investigate anti-laminin 511-E8 autoantibody presence in IRC, and mechanisms via which laminin 511 may contribute to cholangiocyte protection. Methods Anti-laminin 511-E8 serum autoantibody positivity was assessed by ELISA. RNA sequencing and RT-qPCR were performed on human H69 cholangiocytes treated with recombinant laminin 511-E8. H69 cholangiocytes were subjected to shRNA knockdown targeting genes encoding laminin 511 (LAMA5, LAMB1, LAMC1) or treated with recombinant laminin 511-E8. Cholangiocellular bile acid influx was quantified radiochemically using 22,23-3H-glycochenodeoxycholic acid (GCDC). GCDC-induced apoptosis was determined by Caspase-3/7 assays. Cholangiocellular barrier function was assessed by FITC-Dextran permeability assays. Immunofluorescent staining of laminin 511 and claudin 1 was performed on extrahepatic bile duct tissue of control and anti-laminin 511-E8 positive individuals with IRC. Results Seven out of 52 individuals with IRC had autoantibodies against laminin 511-E8. Recombinant laminin 511-E8 led to differential expression of genes involved in secretion, barrier function, and inflammation. Knockdown of laminin 511 constituents increased toxic bile acid permeation and GCDC-induced apoptosis. Laminin 511-E8 treatment decreased toxic bile acid permeation and dose-dependently alleviated GCDC-induced apoptosis. LAMA5 and LAMC1 knockdown increased transepithelial permeability. Laminin 511-E8 treatment reduced transepithelial permeability and prevented T lymphocyte-induced barrier dysfunction. Laminin 511 and claudin 1 staining patterns appeared altered in anti-laminin 511-E8 positive individuals with IRC. Conclusions Laminin 511-E8 is an autoantigen in subsets of individuals with IRC. Laminin 511 enhances cholangiocellular barrier function and protects cholangiocytes against T lymphocyte-induced barrier dysfunction, toxic bile acid permeation and bile acid-induced apoptosis. Impact and implications A subset of patients with IgG4-related cholangitis (IRC) has autoantibodies against laminin 511-E8. In human cholangiocytes, laminin 511 protects against (T lymphocyte-induced) epithelial barrier dysfunction and hydrophobic bile acids. Laminin 511 and claudin 1 staining may be altered in extrahepatic bile ducts of patients with IRC who are anti-laminin 511-E8 positive. This makes it tempting to speculate that a decreased epithelial barrier function with attraction of immune cells and impaired bicarbonate secretion as a result of dysfunction of laminin 511 by autoantibody binding could potentially be a common systemic pathogenic mechanism in a subset of patients with IgG4-RD.
Collapse
Affiliation(s)
- David C. Trampert
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Remco Kersten
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dagmar Tolenaars
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Epidemiology & Data Science, Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stan F.J. van de Graaf
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Bau DT, Tsai CW, Chang WS, Yang JS, Liu TY, Lu HF, Wang YW, Tsai FJ. Genetic susceptibility to prostate cancer in Taiwan: A genome-wide association study. Mol Carcinog 2024; 63:617-628. [PMID: 38390760 DOI: 10.1002/mc.23676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024]
Abstract
We conducted the first genome-wide association study (GWAS) of prostate cancer (PCa) in Taiwan with 1844 cases and 80,709 controls. Thirteen independent single-nucleotide polymorphisms (SNPs) reached genome-wide significance (p < 5 × 10-8 ). Among these, three were distinct from previously identified loci: rs76072851 in CORO2B gene (15q23), odds ratio (OR) = 1.54, 95% confidence interval (CI), 1.36-1.76, p = 5.30 × 10-11 ; rs7837051, near two long noncoding RNA (lncRNA) genes, PRNCR1 and PCAT2 (8q24.21), OR = 1.41 (95% CI, 1.31-1.51), p = 8.77 × 10-21 ; and rs56339048, near an lncRNA gene, CASC8 (8q24.21), OR = 1.25 (95% CI, 1.16-1.35), p = 2.14 × 10-8 . We refined the lead SNPs for two previously identified SNPs in Taiwanese: rs13255059 (near CASC8), p = 9.02 × 10-43 , and rs1456315 (inside PRNCR1), p = 4.33 × 10-42 . We confirmed 35 out of 49 GWAS-identified East Asian PCa susceptibility SNPs. In addition, we identified two SNPs more specific to Taiwanese than East Asians: rs34295433 in LAMC1 (1q25.3) and rs6853490 in PDLIM5 (4q22.3). A weighted genetic risk score (GRS) was developed using the 40 validated SNPs and the area under the receiver-operating characteristic curve for the GRS to predict PCa was 0.67 (95% CI, 0.63-0.71). These identified SNPs provide valuable insights into the molecular mechanisms of prostate carcinogenesis in Taiwan and underscore the significant role of genetic susceptibility in regional differences in PCa incidence.
Collapse
Affiliation(s)
- Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsing-Fang Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
40
|
Jiang M, Chen M, Liu N. Interactions between Schwann cell and extracellular matrix in peripheral nerve regeneration. Front Neurol 2024; 15:1372168. [PMID: 38651098 PMCID: PMC11034552 DOI: 10.3389/fneur.2024.1372168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
Peripheral nerve injuries, caused by various reasons, often lead to severe sensory, motor, and autonomic dysfunction or permanent disability, posing a challenging problem in regenerative medicine. Autologous nerve transplantation has been the gold standard in traditional treatments but faces numerous limitations and risk factors, such as donor area denervation, increased surgical complications, and diameter or nerve bundle mismatches. The extracellular matrix (ECM) is a complex molecular network synthesized and released into the extracellular space by cells residing in tissues or organs. Its main components include collagen, proteoglycans/glycosaminoglycans, elastin, laminin, fibronectin, etc., providing structural and biochemical support to surrounding cells, crucial for cell survival and growth. Schwann cells, as the primary glial cells in the peripheral nervous system, play various important roles. Schwann cell transplantation is considered the gold standard in cell therapy for peripheral nerve injuries, making ECM derived from Schwann cells one of the most suitable biomaterials for peripheral nerve repair. To better understand the mechanisms of Schwann cells and the ECM in peripheral nerve regeneration and their optimal application, this review provides an overview of their roles in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Muyang Chen
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Nana Liu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
42
|
Wattanathavorn W, Seki M, Suzuki Y, Buranapraditkun S, Kitkumthorn N, Sasivimolrattana T, Bhattarakosol P, Chaiwongkot A. Downregulation of LAMB3 Altered the Carcinogenic Properties of Human Papillomavirus 16-Positive Cervical Cancer Cells. Int J Mol Sci 2024; 25:2535. [PMID: 38473784 DOI: 10.3390/ijms25052535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Nearly all cervical cancer cases are caused by infection with high-risk human papillomavirus (HR-HPV) types. The mechanism of cervical cell transformation is related to the powerful action of viral oncoproteins and cellular gene alterations. Transcriptomic data from cervical cancer and normal cervical cells were utilized to identify upregulated genes and their associated pathways. The laminin subunit beta-3 (LAMB3) mRNAwas overexpressed in cervical cancer and was chosen for functional analysis. The LAMB3 was predominantly expressed in the extracellular region and the plasma membrane, which play a role in protein binding and cell adhesion molecule binding, leading to cell migration and tissue development. LAMB3 was found to be implicated in the pathway in cancer and the PI3K-AKT signaling pathway. LAMB3 knockdown decreased cell migration, invasion, anchorage-dependent and anchorage-independent cell growth and increased the number of apoptotic cells. These effects were linked to a decrease in protein levels involved in the PI3K-AKT signaling pathway and an increase in p53 protein. This study demonstrated that LAMB3 could promote cervical cancer cell migration, invasion and survival.
Collapse
Affiliation(s)
- Warattaya Wattanathavorn
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Applied Medical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Chiba, Japan
| | - Supranee Buranapraditkun
- King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, 1873 Rama IV Road, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | | | - Parvapan Bhattarakosol
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Applied Medical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Arkom Chaiwongkot
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Applied Medical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
43
|
Nirwane A, Kang M, Adithan A, Maharaj V, Nguyen F, Santaella Aguilar E, Nasrollahi A, Yao Y. Endothelial and mural laminin-α5 contributes to neurovascular integrity maintenance. Fluids Barriers CNS 2024; 21:18. [PMID: 38383451 PMCID: PMC10882802 DOI: 10.1186/s12987-024-00521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Laminin-α5, a major component of the basal lamina, is predominantly synthesized by endothelial and mural cells (pericytes and vascular smooth muscle cells) in the CNS. Loss of laminin-α5 in either population fails to induce any abnormalities due to functional redundancy. Thus, the functional significance of laminin-α5 in neurovascular integrity remains unknown. Here, we hypothesize that ablation of laminin-α5 in both endothelial and mural cells increases neurovascular permeability. METHODS The compound knockout mice were generated by crossing laminin-α5 floxed mice with Tie2-Cre and PDGFRβ-Cre, which target endothelial cells and mural cells, respectively. Neurovascular permeability in these mutants was determined with both exogenous and endogenous tracers. Endothelial paracellular and transcellular permeability was assessed by examining the expression of tight junction proteins and transcytosis-associated proteins. In addition, transmission electron microscopy (TEM) was used to visualize tight junction ultrastructure and endothelial caveolae vesicles. Defects in pericytes and astrocytes were investigated by examining pericyte coverage/contact and astrocyte polarity. RESULTS Elevated neurovascular permeability was observed in the mutants. Subsequent studies found increased Caveolin-1 and decreased major facilitator superfamily domain-containing protein 2a (MFSD2A) expression, but unaltered Claudin-5 or zonula occludens-1 (ZO-1) expression. Consistent with these results, mutant mice exhibited increased endothelial caveolae vesicle number with intact tight junction structure under TEM. Additionally, pericyte coverage and contact were also decreased in the mutant mice, while astrocyte polarity was unaffected. CONCLUSIONS These results strongly indicate that endothelial and mural cell-derived laminin-α5 actively maintains neurovascular integrity via the transcellular rather than paracellular mechanism.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Aravinthan Adithan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Vrishni Maharaj
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Felicia Nguyen
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Elliot Santaella Aguilar
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Ava Nasrollahi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA.
| |
Collapse
|
44
|
Arruda AL, Khandaker GM, Morris AP, Smith GD, Huckins LM, Zeggini E. Genomic insights into the comorbidity between type 2 diabetes and schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:22. [PMID: 38383672 PMCID: PMC10881980 DOI: 10.1038/s41537-024-00445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Multimorbidity represents an increasingly important public health challenge with far-reaching implications for health management and policy. Mental health and metabolic diseases have a well-established epidemiological association. In this study, we investigate the genetic intersection between type 2 diabetes and schizophrenia. We use Mendelian randomization to examine potential causal relationships between the two conditions and related endophenotypes. We report no compelling evidence that type 2 diabetes genetic liability potentially causally influences schizophrenia risk and vice versa. Our findings show that increased body mass index (BMI) has a protective effect against schizophrenia, in contrast to the well-known risk-increasing effect of BMI on type 2 diabetes risk. We identify evidence of colocalization of association signals for these two conditions at 11 genomic loci, six of which have opposing directions of effect for type 2 diabetes and schizophrenia. To elucidate these colocalizing signals, we integrate multi-omics data from bulk and single-cell gene expression studies, along with functional information. We identify putative effector genes and find that they are enriched for homeostasis and lipid-related pathways. We also highlight drug repurposing opportunities including N-methyl-D-aspartate (NMDA) receptor antagonists. Our findings provide insights into shared biological mechanisms for type 2 diabetes and schizophrenia, highlighting common factors that influence the risk of the two conditions in opposite directions and shedding light on the complex nature of this comorbidity.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Munich School for Data Science, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Technical University of Munich (TUM), TUM School of Medicine and Health, Graduate School of Experimental Medicine, Munich, 81675, Germany
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Laura M Huckins
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany.
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, 81675, Germany.
| |
Collapse
|
45
|
Liu H, Sun J, Wang Z, Han R, Zhao Y, Lou Y, Wang H. S100a10 deficiency in neutrophils aggravates ulcerative colitis in mice. Int Immunopharmacol 2024; 128:111499. [PMID: 38232535 DOI: 10.1016/j.intimp.2024.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND AND AIMS S100a10 is a member of the S100 family of proteins, which plays a key role in the depression and tumor metastasis. However, the role of S100a10 is unclear in ulcerative colitis. METHODS The effect of S100a10 was assessed using a murine ulcerative colitis model which was accompanied by parameters including body weight loss, disease activity index, histological score, colon weight and length. The quantity and role of immune cells was determined by flow cytometry and bone marrow chimeric mice. Neutrophils depletion, adoptive cell transfer and conditional knockout mice were used to ascertain which cells played the key role in ulcerative colitis. The function of neutrophils was evaluated by migration assay, phagocytosis assay, multiplex immunoassay and real-time PCR. RESULTS In this study, our data showed that S100a10-/- mice were prone to ulcerative colitis induced by dextran sodium sulfate. Neutrophils number increased in colon of S100a10-/- mice after dextran sodium sulfate treatment significantly. Meanwhile, adoptive transfer of neutrophils from wild type mice partially decreased the susceptibility of S100a10-/- mice to dextran sodium sulfate. There was no difference in ulcerative colitis between the groups of S100a10-/- mice without neutrophils and wild type mice. Finally, we found that S100a10-/- neutrophils had stronger function in secretion and synthesis of inflammatory factor. CONCLUSIONS In one word, these results suggest that S100a10 has a role in inhibiting the pathogenesis of ulcerative colitis through regulation of neutrophils function.
Collapse
Affiliation(s)
- Huandi Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jiaxiang Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhihui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui Han
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuxin Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Morphologic Center of College of Basic Medicine, Xinjiang Medical University, Urumqi, China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
46
|
Hutchings C, Nuriel Y, Lazar D, Kohl A, Muir E, Genin O, Cinnamon Y, Benyamini H, Nevo Y, Sela-Donenfeld D. Hindbrain boundaries as niches of neural progenitor and stem cells regulated by the extracellular matrix proteoglycan chondroitin sulphate. Development 2024; 151:dev201934. [PMID: 38251863 PMCID: PMC10911165 DOI: 10.1242/dev.201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.
Collapse
Affiliation(s)
- Carmel Hutchings
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yarden Nuriel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Daniel Lazar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Elizabeth Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Olga Genin
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon 7505101, Israel
| | - Yuval Cinnamon
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon 7505101, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
47
|
Valdes PA, Yu CC(J, Aronson J, Ghosh D, Zhao Y, An B, Bernstock JD, Bhere D, Felicella MM, Viapiano MS, Shah K, Chiocca EA, Boyden ES. Improved immunostaining of nanostructures and cells in human brain specimens through expansion-mediated protein decrowding. Sci Transl Med 2024; 16:eabo0049. [PMID: 38295184 PMCID: PMC10911838 DOI: 10.1126/scitranslmed.abo0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Proteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here, we present an ExM variant, decrowding expansion pathology (dExPath), that can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens. Immunostaining of dExPath-expanded specimens reveals, with nanoscale precision, previously unobserved cellular structures, as well as more continuous patterns of staining. This enhanced molecular staining results in observation of previously invisible disease marker-positive cell populations in human glioma specimens, with potential implications for tumor aggressiveness. dExPath results in improved fluorescence signals even as it eliminates lipofuscin-associated autofluorescence. Thus, this form of expansion-mediated protein decrowding may, through improved epitope access for antibodies, render immunohistochemistry more powerful in clinical science and, perhaps, diagnosis.
Collapse
Affiliation(s)
- Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77555
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
| | - Chih-Chieh (Jay) Yu
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Jenna Aronson
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Debarati Ghosh
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
| | - Yongxin Zhao
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA, 15213
| | - Bobae An
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Koch Institute, MIT, Cambridge, MA, USA, 02139
| | - Deepak Bhere
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA, 29209
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - Michelle M. Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA, 77555
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA, 13210
| | - Khalid Shah
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Edward S. Boyden
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
- Koch Institute, MIT, Cambridge, MA, USA, 02139
- MIT Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA, 02139
- Howard Hughes Medical Institute, Cambridge, MA, USA, 02139
| |
Collapse
|
48
|
Hamsho K, Broadwin M, Stone CR, Sellke FW, Abid MR. The Current State of Extracellular Matrix Therapy for Ischemic Heart Disease. Med Sci (Basel) 2024; 12:8. [PMID: 38390858 PMCID: PMC10885030 DOI: 10.3390/medsci12010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The extracellular matrix (ECM) is a three-dimensional, acellular network of diverse structural and nonstructural proteins embedded within a gel-like ground substance composed of glycosaminoglycans and proteoglycans. The ECM serves numerous roles that vary according to the tissue in which it is situated. In the myocardium, the ECM acts as a collagen-based scaffold that mediates the transmission of contractile signals, provides means for paracrine signaling, and maintains nutritional and immunologic homeostasis. Given this spectrum, it is unsurprising that both the composition and role of the ECM has been found to be modulated in the context of cardiac pathology. Myocardial infarction (MI) provides a familiar example of this; the ECM changes in a way that is characteristic of the progressive phases of post-infarction healing. In recent years, this involvement in infarct pathophysiology has prompted a search for therapeutic targets: if ECM components facilitate healing, then their manipulation may accelerate recovery, or even reverse pre-existing damage. This possibility has been the subject of numerous efforts involving the integration of ECM-based therapies, either derived directly from biologic sources or bioengineered sources, into models of myocardial disease. In this paper, we provide a thorough review of the published literature on the use of the ECM as a novel therapy for ischemic heart disease, with a focus on biologically derived models, of both the whole ECM and the components thereof.
Collapse
Affiliation(s)
- Khaled Hamsho
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Christopher R. Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.H.); (M.B.); (C.R.S.); (F.W.S.)
| |
Collapse
|
49
|
Nie J, Dang S, Zhu R, Lu T, Zhang W. ADAMTS18 deficiency associates extracellular matrix dysfunction with a higher risk of HER2-positive mammary tumorigenesis and metastasis. Breast Cancer Res 2024; 26:19. [PMID: 38287441 PMCID: PMC10826190 DOI: 10.1186/s13058-024-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for about 20% of all breast cancer cases and is correlated with a high relapse rate and poor prognosis. ADAMTS18 is proposed as an important functional tumor suppressor gene involved in multiple malignancies, including breast cancer. It functions as an extracellular matrix (ECM) modifier. However, it remains unclear whether ADAMTS18 affects mammary tumorigenesis and malignant progression through its essential ECM regulatory function. METHODS To elucidate the role of ADAMTS18 in HER2-positive mammary tumorigenesis and metastasis in vivo, we compared the incidence of mammary tumor and metastasis between Adamts18-knockout (MMTV)-Her2/ErbB2/Neu+ transgenic mice (i.e., Her2t/w/Adamts18-/-) and Adamts18-wildtype (MMTV)-Her2/ErbB2/Neu+ transgenic mice (i.e., Her2t/w/Adamts18+/+). The underlying mechanisms by which ADAMTS18 regulates HER2-positive tumorigenesis and metastasis were investigated by pathology, cell culture, Western blot and immunochemistry. RESULTS Adamts18 mRNA is mainly expressed in myoepithelial cells of the mammary duct. ADAMTS18 deficiency leads to a significantly increased incidence of mammary tumors and metastasis, as well as mammary hyperplasia in mice, over 30 months of observation. The proliferation, migration and invasion capacities of primary Her2t/w/Adamts18-/- mammary tumor cells are significantly higher than those of primary Her2t/w/Adamts18+/+ mammary tumor cells in vitro. At 30 months of age, the expression levels of laminin (LNα5), fibronectin (FN) and type I collagen (ColI) in the mammary glands of Her2t/w/Adamts18-/- mice are significantly increased, and the activities of integrin-mediated PI3K/AKT, ERK and JNK signaling pathways are enhanced. CONCLUSIONS ADAMTS18 deficiency leads to alterations in mammary ECM components (e.g., LNα5, FN, ColI), which are associated with a higher risk of HER2-positive mammary tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Jiahui Nie
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| | - Rui Zhu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Tiantian Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
50
|
Chai C, Liang L, Mikkelsen NS, Wang W, Zhao W, Sun C, Bak RO, Li H, Lin L, Wang F, Luo Y. Single-cell transcriptome analysis of epithelial, immune, and stromal signatures and interactions in human ovarian cancer. Commun Biol 2024; 7:131. [PMID: 38278958 PMCID: PMC10817929 DOI: 10.1038/s42003-024-05826-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
A comprehensive investigation of ovarian cancer (OC) progression at the single-cell level is crucial for enhancing our understanding of the disease, as well as for the development of better diagnoses and treatments. Here, over half a million single-cell transcriptome data were collected from 84 OC patients across all clinical stages. Through integrative analysis, we identified heterogeneous epithelial-immune-stromal cellular compartments and their interactions in the OC microenvironment. The epithelial cells displayed clinical subtype features with functional variance. A significant increase in distinct T cell subtypes was identified including Tregs and CD8+ exhausted T cells from stage IC2. Additionally, we discovered antigen-presenting cancer-associated fibroblasts (CAFs), with myofibroblastic CAFs (myCAFs) exhibiting enriched extracellular matrix (ECM) functionality linked to tumor progression at stage IC2. Furthermore, the NECTIN2-TIGIT ligand-receptor pair was identified to mediate T cells communicating with epithelial, fibroblast, endothelial, and other cell types. Knock-out of NECTIN2 using CRISPR/Cas9 inhibited ovarian cancer cell (SKOV3) proliferation, and increased T cell proliferation when co-cultured. These findings shed light on the cellular compartments and functional aspects of OC, providing insights into the molecular mechanisms underlying stage IC2 and potential therapeutic strategies for OC.
Collapse
Affiliation(s)
- Chaochao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Langchao Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | | | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wandong Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
| | - Chengcheng Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hanbo Li
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Fei Wang
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|