1
|
Jin H, Lee YR, Kim S, Lee EO, Joo HK, Yoo HJ, Kim CS, Jeon BH. Aspirin-induced acetylation of APE1/Ref-1 enhances RAGE binding and promotes apoptosis in ovarian cancer cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:293-305. [PMID: 40051129 PMCID: PMC12012317 DOI: 10.4196/kjpp.24.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 04/22/2025]
Abstract
The role of acetylated apurinic/apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref-1) in ovarian cancer remains poorly understood. Therefore, this study aimed to investigate the combined effect of recombinant human APE1/Ref-1 (rhAPE1/Ref-1) and aspirin (ASA) on two ovarian cancer cells, PEO-14, and CAOV3. The viability and apoptosis of ovarian cancer cells treated with rhAPE1/Ref-1 or ASA were assessed. Our results demonstrated that ASA induced rhAPE1/Ref-1 acetylation and widespread hyperacetylation in PEO-14 cells. Additionally, co-treatment with rhAPE1/Ref-1 and ASA substantially reduced cell viability and induced PEO-14 cell apoptosis, not CAOV3, in a dose-dependent manner. ASA increased the expression and membrane localization of the receptor for advanced glycation endproducts (RAGEs). Acetylated APE1/Ref-1 showed enhanced binding to RAGEs. In contrast, RAGE knockdown reduced cell death and poly(ADP-ribose) polymerase cleavage caused by rhAPE1/Ref-1 and ASA combination treatment, highlighting the importance of the APE1/Ref-1-RAGE interaction in triggering apoptosis. Moreover, combination treatment with rhAPE1/Ref-1 and ASA effectively induced apoptosis in 3D spheroid cultures of PEO-14 cells, a model that better mimics the tumor microenvironment. These results demonstrate that acetylated APE1/Ref-1 and its interaction with RAGE is a potential therapeutic target for ovarian cancer. Thus, the combination of ASA and APE1/Ref-1 may offer a promising new strategy for inducing cancer cell death.
Collapse
Affiliation(s)
- Hao Jin
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yu Ran Lee
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sungmin Kim
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Eun-Ok Lee
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hee Kyoung Joo
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Heon Jong Yoo
- Department of Obstetrics & Gynecology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Cuk-Seong Kim
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Byeong Hwa Jeon
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
2
|
Ma YT, Li C, Shen Y, You WH, Han MX, Mu YF, Han FJ. Mechanisms of the JNK/p38 MAPK signaling pathway in drug resistance in ovarian cancer. Front Oncol 2025; 15:1533352. [PMID: 40352594 PMCID: PMC12063130 DOI: 10.3389/fonc.2025.1533352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal malignancy in the female reproductive system, and chemotherapy drug resistance is the main cause of treatment failure. The Mitogen-Activated Protein Kinases (MAPK) pathway plays a pivotal role in regulating cell proliferation, migration, and invasive capacity in response to extracellular stimuli. This review focuses on the mechanisms and therapeutic strategies related to the JNK/p38 MAPK signaling pathway in OC resistance. The JNK/p38 MAPK pathway plays a dual role in OC chemoresistance. This review examines its role in mediating OC treatment resistance by exploring the mechanisms of action of the JNK/p38 MAPK signaling pathway, particularly its involvement in several key biological processes, including apoptosis, autophagy, DNA damage response, the tumor microenvironment (TME), and drug efflux. Additionally, the review investigates the timing of activation of this pathway and its crosstalk with other signaling pathways such as PI3K/AKT and NF-κB. Targeting JNK/p38 MAPK signaling has shown promise in reversing chemoresistance, with several inhibitors and natural compounds demonstrating potential in preclinical studies. Regulating JNK/p38 MAPK may transform what was once a terminal obstacle into a manageable challenge for OC patients with chemotherapy resistance, ultimately improving survival and quality of life.
Collapse
Affiliation(s)
- Yu-Ting Ma
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chan Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ying Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wan-Hui You
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ming-Xuan Han
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yi-Fan Mu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Feng-Juan Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Rokhgireh S, Chaichian S, Mehdizadeh Kashi A, Haji Ali B, Tehermanesh K, Ajdary M, Nasir S, Pirhajati Mahabadi V, Eslahi N. Curcumin-gold nanoshell mediated near-infrared irradiation on human ovarian cancer cell: in vitro study. Med Oncol 2025; 42:145. [PMID: 40167850 DOI: 10.1007/s12032-025-02687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Ovarian cancer is considered a predominant female reproductive malignancy and poses a significant threat due to its 80-90% fatality rate. The typical approach involves surgery and chemotherapy, which due to problems such as drug resistance, encourage researchers to use new methods such as nanotechnology. The current study introduces a novel strategy: leveraging Curcumin-Gold Nanoshells (Cur-AuNShs) to combat chemotherapy's adverse effects and overcome drug resistance through hyperthermia mediation. Gold-based nanoparticles that absorb laser have shown the potential to target and treat cancer selectively through highly efficient light-to-heat conversion. This experimental study focused on the synthesis of AuNShs and their subsequent conjugation with Cur. The gold shell coverage on the surfaces of silica nanoparticles was examined using UV-VIS spectroscopy and transmission electron microscopy (TEM). Dynamic light scattering (DLS) and Zeta potential analysis were employed to evaluate the stability of particle size and surface charge. Human ovarian carcinoma cell lines (SKOV-3) were treated with a combination of Cur (15 μM) and AuNShs (75 μM), under the activation of near-infrared (NIR) laser irradiation at a power of 2.5 W/cm3 for 5 or 10 min. Cell viability was then assessed using the MTT assay. Lastly, the expression levels of Bax, Bcl2, and HSPB1 genes were analyzed using the real-time polymerase chain reaction (real-time PCR) technique. The average diameter of the AuNShs was measured at 70 ± 7.1 nm. Findings revealed that after a 48 h incubation with Cur-AuNShs followed by 10 min of laser irradiation, cell viability decreased significantly from 44.3 ± 1.7 to 14.4 ± 1. Analysis using real-time PCR showed an increase in Bax expression alongside a decrease in Bcl2 expression. Additionally, the expression of the HSPB1 gene was reduced from 1.35 ± 1 to 0.9 ± 0.65 in the laser-treated Cur-AuNShs-NIR group. The AuNShs, when combined with hyperthermia at 43 °C, demonstrated potential as an effective carrier for Cur administration. This combination was associated with a greater activation of apoptosis compared to the free drug.
Collapse
Affiliation(s)
- Samaneh Rokhgireh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Mehdizadeh Kashi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
- Iranian Scientific Society of Minimally Invasive Gynecology, Tehran, Iran
| | - Bahareh Haji Ali
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Tehermanesh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Setare Nasir
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Neurosciences Research Center, Iran University of Medical Sciences, PO Box: 354-14665, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, PO Box: 354-14665, Tehran, Iran.
| | - Neda Eslahi
- Finetech in Medicine Research Center, Iran University of Medical Sciences, PO Box: 354-14665, Tehran, Iran.
| |
Collapse
|
4
|
Utpal BK, Bouenni H, Zehravi M, Sweilam SH, Mortuza MR, Arjun UVNV, Shanmugarajan TS, Mahesh PG, Roja P, Dodda RK, Thilagam E, Almahjari MS, Rab SO, Koula D, Emran TB. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03876-8. [PMID: 40014131 DOI: 10.1007/s00210-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Cancer remains a leading cause of mortality globally, necessitating ongoing research and development of innovative therapeutic strategies. Natural products from plants, herbs, and marine species have shown great promise as anti-cancer therapies due to their bioactive components that alter cellular pathways, particularly apoptosis. This review explores the mechanism by which natural chemicals trigger the apoptosis of cancerous cells, which is crucial for eliminating them and halting tumor growth. These can affect the mitochondrial process by controlling the Bcl-2 protein family, increasing cytochrome c release, and activating caspases. They also activate death receptors like Fas and TRAIL to enhance the extrinsic apoptotic pathway. We focus on the main signaling channels involved, such as the endoplasmic reticulum (ER) stress-mediated apoptosis, extrinsic death receptor, and intrinsic mitochondrial pathways. The review explores the role of natural substances such as polyphenols, terpenoids, alkaloids, and flavonoids in promoting apoptotic cell death and increasing cancer cell susceptibility, potentially aiding in cancer treatments and the potential of combining natural products with traditional chemotherapeutic medicines to combat medication resistance and enhance therapeutic efficacy. Understanding cancer development involves inhibiting cell proliferation, regulating it, targeting apoptosis pathways, and using plant and marine extracts as apoptotic inducers.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | | | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Ponnammal Ganesan Mahesh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Pathakota Roja
- Department of Pharmacology, Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Telangana, 501510, India
| | - Ravi Kalyan Dodda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | - Mohammed Saeed Almahjari
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Doukani Koula
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
5
|
Hasan AA, Kalinina E, Zhdanov D, Volodina Y, Tatarskiy V. Re-Sensitization of Resistant Ovarian Cancer SKOV3/CDDP Cells to Cisplatin by Curcumin Pre-Treatment. Int J Mol Sci 2025; 26:799. [PMID: 39859517 PMCID: PMC11765683 DOI: 10.3390/ijms26020799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
A major challenging problem facing effective ovarian cancer therapy is cisplatin resistance. Re-sensitization of cisplatin-resistant ovarian cancer cells to cisplatin (CDDP) has become a critical issue. Curcumin (CUR), the most abundant dietary polyphenolic curcuminoids derived from turmeric (Curcuma longa), has achieved previously significant anti-cancer effects against human ovarian adenocarcinoma SKOV-3/CDDP cisplatin-resistant cells by inhibition the gene expression of the antioxidant enzymes (SOD1, SOD2, GPX1, CAT and HO1), transcription factor NFE2L2 and signaling pathway (PIK3CA/AKT1/MTOR). However, the detailed mechanisms of curcumin-mediated re-sensitization to cisplatin in SKOV-3/CDDP cells still need further exploration. Here, a suggested curcumin pre-treatment therapeutic strategy has been evaluated to effectively overcome cisplatin-resistant ovarian cancer SKOV-3/CDDP and to improve our understanding of the mechanisms behind cisplatin resistance. The findings of the present study suggest that the curcumin pre-treatment significantly exhibited cytotoxic effects and inhibited the proliferation of the SKOV-3/CDDP cell line compared to the simultaneous addition of drugs. Precisely, apoptosis induced by curcumin pre-treatment in SKOV-3/CDDP cells is mediated by mitochondrial apoptotic pathway (cleaved caspases 9, 3 and cleaved PARP) activation as well as by inhibition of thioredoxin reductase (TRXR1) and mTOR/STAT3 signaling pathway. This current study could deepen our understanding of the anticancer mechanism of CUR pre-treatment, which not only facilitates the re-sensitization of ovarian cancer cells to cisplatin but may lead to the development of targeted and effective therapeutics to eradicate SKOV-3/CDDP cancer cells.
Collapse
Affiliation(s)
- Aseel Ali Hasan
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (E.K.); (D.Z.)
| | - Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (E.K.); (D.Z.)
| | - Dmitry Zhdanov
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (E.K.); (D.Z.)
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Yulia Volodina
- Laboratory of Tumor Cell Death, Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia;
| | - Victor Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Science, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
6
|
Jin S, Wang H, Zhang Z, Yan M. Targeting Ferroptosis: Small-molecule Inducers as Novel Anticancer Agents. Anticancer Agents Med Chem 2025; 25:517-532. [PMID: 39411969 DOI: 10.2174/0118715206342278241008081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 05/14/2025]
Abstract
Ferroptosis, a distinct form of regulated cell death characterized by iron-dependent lipid peroxidation and reactive oxygen species (ROS) accumulation, is increasingly recognized for its role in cancer development and as a potential therapeutic target. This review consolidates insights into the molecular mechanisms underpinning ferroptosis and evaluates the therapeutic potential of small-molecule inducers, such as erastin, RSL3, sulfasalazine, and sorafenib, which selectively trigger ferroptosis in cancer cells. It highlights the distinct morphological and molecular signatures of ferroptosis, its complex interplay with iron, lipid, and amino acid metabolic pathways, and the resultant implications for cancer treatment strategies. Strategic manipulation of the ferroptosis pathway offers a groundbreaking approach to cancer treatment, potentially circumventing the resistance that cancers develop against traditional apoptosis-inducing agents. Furthermore, it also emphasizes the necessity of refining these small molecules for clinical application and exploring their synergistic potential when combined with current therapies to augment overall treatment efficacy and improve patient outcomes. Ferroptosis thus emerges as a promising avenue in the realm of cancer therapy. Moving forward, research endeavors should focus on a more nuanced understanding of the interconnections between ferroptosis and other cell death modalities. Additionally, comprehensive evaluations of the long-term safety and therapeutic indices of the involved compounds are imperative. Such investigations are poised to herald a transformative shift in the paradigm of oncology, paving the way for innovative and targeted interventions.
Collapse
Affiliation(s)
- Shihao Jin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao Road, Jinan, 250000, China
| | - Huannan Wang
- School of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, 276826, China
| |
Collapse
|
7
|
El-Said KS, Attia MS, Abdelmoaty BE, Salim EI. Synergistic antitumor effects of atorvastatin and chemotherapies: In vitro and in vivo studies. Biochem Biophys Res Commun 2025; 742:151078. [PMID: 39632292 DOI: 10.1016/j.bbrc.2024.151078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Atorvastatin (ATOR) acts on certain antitumor pathways; the consequences of chemotherapies continue to be a major concern, notwithstanding the increased efficacy provided by contemporary therapies. This study investigated the synergistic effects and underlying mechanisms of different treatment protocols using ATOR on the THP-1 cell line and on lung cancer in mice. For the in vitro study, an MTT assay was performed, and then different combinations against the THP-1 cell line were used as follows: non-treated cells, THP-1/ATOR IC50, THP-1/cytarabine (CYT) IC50, THP-1/doxorubicin (DOX) IC50, THP-1/DOX/CYT, THP-1/ATOR/CYT, THP-1/ATOR/DOX, and THP-1/ATOR/CYT/DOX. For the in vivo study, CD-1 male mice were used; G1 was the normal control. Gs2-5 were administered with urethane (Ure) and butylated hydroxytoluene (BHT). G2 was the positive control. G3 was treated with ATOR (20 mg/kg). G4 was treated with Bevacizumab (Bev) (5 mg/kg). G5 was co-treated with ATOR/Bev. Histopathological and immunohistochemical investigations, flow cytometry and molecular analysis of PI3K, Akt, and mTOR genes were performed after different treatment protocols. The results showed that different combinatorial treatment settings of ATOR in vitro increase the apoptotic-inducing capacity and cell cycle arrest. Co-treatment with ATOR and Bev led to a significant decrease in S-phase and G2/M percentages. Furthermore, in vivo co-treatment with ATOR/Bev decreased tumor incidence and size with a significant reduction of the immunohistochemical PCNA (LI%) in lung parenchyma, targeting PI3K/Akt/mTOR, and VEGF-A signaling pathways. Co-treatment with ATOR and chemotherapies led to cell cycle arrest, modulation of the PI3K/Akt/mTOR, and VEGF-A signaling pathways in tumor cells.
Collapse
Affiliation(s)
- Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Merna Saied Attia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Bassant Ezzat Abdelmoaty
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Elsayed Ibrahim Salim
- Research Lab. of Molecular Carcinogenesis, Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
8
|
Demirci Z, Islek Z, Siginc HI, Sahin F, Ucisik MH, Bolat ZB. Curcumin-loaded emulsome nanoparticles induces apoptosis through p53 signaling pathway in pancreatic cancer cell line PANC-1. Toxicol In Vitro 2025; 102:105958. [PMID: 39442639 DOI: 10.1016/j.tiv.2024.105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Pancreatic cancer is a global health problem with a poor prognosis, limited treatment options and low survival rates of patients. Thus, the exploration of novel treatment approaches is crucial. Curcumin shows promise in pancreatic cancer. Curcumin has anticancer properties promoting apoptosis through the p53 pathway. However, adverse effects and low bioavailability are curcumin's main drawbacks and its delivery by nanoparticles could improve its effectiveness as a treatment option. Curcumin-loaded emulsome nanoparticles (CurEm) have shown promise in colorectal, hepatocellular, and prostate cancers. This study aims to evaluate the anticancer potential of CurEm in pancreatic cancer cell line PANC-1. The cytotoxic effects of CurEm on PANC-1 cells show cytotoxicity in dose and time-dependent manner. The selected dose 30 μM CurEm resulted spheroidal morphology in PANC-1 cells and colony forming and scratch assay conducted demonstrated significant growth inhibition and decrease in migration ability, respectively. Cell cycle analysis shows that CurEm induces G2/M arrest in PANC-1 cells. CurEm-treated PANC-1 cells showed a significant increase in p53 and Caspase 3 genes, while a significant decrease in Bcl-2 genes compared to untreated group. Western blot results showed parallel results to qPCR analysis for Bcl-2 protein levels. Interestingly, we saw low p53 protein levels in CurEm-treated PANC-1 cells. These findings shed light on the potential of CurEm as an effective and stable therapeutic approach for pancreatic cancer.
Collapse
Affiliation(s)
- Zuleyha Demirci
- Experimental Medicine Research and Application Center, Validebag Research Park, University of Health Sciences, 34662 Istanbul, Uskudar, Türkiye; Department of Chemistry, Faculty of Art and Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Zeynep Islek
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., 34755 Atasehir, Istanbul, Türkiye
| | - Halime Ilhan Siginc
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., 34755 Atasehir, Istanbul, Türkiye
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., 34755 Atasehir, Istanbul, Türkiye
| | - Mehmet H Ucisik
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., 34755 Atasehir, Istanbul, Türkiye; Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Ekinciler Cad. 19, 34810 Istanbul, Beykoz, Türkiye; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Ekinciler Cad. 19, 34810 Istanbul, Beykoz, Türkiye.
| | - Zeynep Busra Bolat
- Experimental Medicine Research and Application Center, Validebag Research Park, University of Health Sciences, 34662 Istanbul, Uskudar, Türkiye; Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences, 34668 Istanbul, Uskudar, Türkiye.
| |
Collapse
|
9
|
Aliyari M, Hashemy SI, Hashemi SF, Reihani A, Kesharwani P, Hosseini H, Sahebkar A. Targeting the Akt signaling pathway: Exploiting curcumin's anticancer potential. Pathol Res Pract 2024; 261:155479. [PMID: 39068859 DOI: 10.1016/j.prp.2024.155479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Cancer is recognized as one of the leading causes of death worldwide. In recent years, advancements in early detection and expanding treatment options have contributed to a decrease in mortality rates. However, the emergence of drug-resistant cancers necessitates the exploration of innovative and more effective drugs. The Akt kinases play a central role in various signaling pathways that regulate crucial cellular processes, including cell growth, proliferation, survival, angiogenesis, and glucose metabolism. Due to frequent disruptions of the Akt signaling pathway in numerous human cancers and its broad biological implications, targeting this pathway has become a key focus in combating tumor aggressiveness and a promising avenue for therapeutic intervention. Curcumin, a compound found in turmeric, has been extensively studied for its potential as an anti-cancer agent. It demonstrates inhibitory effects on cancer initiation, progression, and metastasis by influencing various processes involved in tumor growth and development. These effects are achieved through negative regulation of transcription factors, growth factors, cytokines, protein kinases, and other oncogenic molecules. This review aims to explore curcumin's anticancer activity against different types of cancer mediated via the PI3K/Akt signaling pathway, as well as its practical applications in treatment.
Collapse
Affiliation(s)
- Mahdieh Aliyari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Hashemi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Reihani
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Thongpon P, Intuyod K, Chomwong S, Pongking T, Klungsaeng S, Muisuk K, Charoenram N, Sitthirach C, Thanan R, Pinlaor P, Pinlaor S. Curcumin synergistically enhances the efficacy of gemcitabine against gemcitabine-resistant cholangiocarcinoma via the targeting LAT2/glutamine pathway. Sci Rep 2024; 14:16059. [PMID: 38992159 PMCID: PMC11239878 DOI: 10.1038/s41598-024-66945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Cholangiocarcinoma (CCA) is often diagnosed late, leading to incomplete tumor removal, drug resistance and reduced chemotherapy efficacy. Curcumin has the potential for anti-cancer activity through various therapeutic properties and can improve the efficacy of chemotherapy. We aimed to investigate the synergistic effect of a combination of curcumin and gemcitabine against CCA, targeting the LAT2/glutamine pathway. This combination synergistically suppressed proliferation in gemcitabine-resistant CCA cells (KKU-213BGemR). It also resulted in a remarkable degree of CCA cell apoptosis and cell cycle arrest, characterized by a high proportion of cells in the S and G2/M phases. Knockdown of SLC7A8 decreased the expressions of glutaminase and glutamine synthetase, resulting in inhibited cell proliferation and sensitized CCA cells to gemcitabine treatment. Moreover, in vivo experiments showed that a combination curcumin and gemcitabine significantly reduced tumor size, tumor growth rate and LAT2 expression in a gemcitabine-resistant CCA xenograft mouse model. Suppression of tumor progression in an orthotopic CCA hamster model provided strong support for clinical application. In conclusion, curcumin synergistically enhances gemcitabine efficacy against gemcitabine-resistant CCA by induction of apoptosis, partly via inhibiting LAT2/glutamine pathway. This approach may be an alternative strategy for the treatment of gemcitabine-resistant in CCA patients.
Collapse
Affiliation(s)
- Phonpilas Thongpon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sasitorn Chomwong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thatsanapong Pongking
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirinapha Klungsaeng
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Naruechar Charoenram
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chutima Sitthirach
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
11
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Sae-Lim S, Ngiwsara L, Lirdprapamongkol K, Puttamuk T, Maneeanakekul S, Thangsan P, Sangsuwan W, Svasti J, Chuawong P. Anthraquinones from the roots of Morinda scabrida Craib exhibit antiproliferative activity against A549 lung cancer cells and antitubulin polymerization. Fitoterapia 2024; 173:105781. [PMID: 38128619 DOI: 10.1016/j.fitote.2023.105781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Six anthraquinones were isolated from Morinda scabrida Craib, an unexplored species of Morinda found in the tropical forest of Thailand. All six anthraquinones showed cytotoxicity against A549 lung cancer cells, with the most active compound, nordamnacanthal (MS01), exhibiting the IC50 value of 16.3 ± 2.5 μM. The cytotoxic effect was dose-dependent and led to cell morphological changes characteristic of apoptosis. In addition, flow cytometric analysis showed dose-dependent apoptosis induction and the G2/M phase cell cycle arrest, which was in agreement with the tubulin polymerization inhibitory activity of MS01. Molecular docking analysis illustrated the binding between MS01 and the α/β-tubulin heterodimer at the colchicine binding site, and UV-visible absorption spectroscopy revealed the DNA binding capacity of MS01.
Collapse
Affiliation(s)
- Sorachai Sae-Lim
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | | | - Thamrongjet Puttamuk
- School of Agriculture and Cooperatives, Sukhothai Thammathirat Open University, Nonthaburi 11120, Thailand
| | - Sutida Maneeanakekul
- School of Agriculture and Cooperatives, Sukhothai Thammathirat Open University, Nonthaburi 11120, Thailand
| | - Poomsith Thangsan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Withsakorn Sangsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
13
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
14
|
Athalye M, Teli D, Chorawala M, Sharma A, Patel R, Dua K, Singh SK, Gupta G, Patel M. Apolipoprotein E3 functionalized lipid-drug conjugated nanoparticles of Levetiracetam for enhanced delivery to the brain: In-vitro cell line studies and in-vivo study. Int J Biol Macromol 2024; 254:127799. [PMID: 37923037 DOI: 10.1016/j.ijbiomac.2023.127799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
A significant portion of brain-tumor patients suffer from 'brain-tumor-related epilepsy (BTE)' which results in depression, anxiety and hampered quality of life. Conventional anti-epileptic drugs indicate negative interaction with other drugs augmenting the poor outcome of overall therapy. Levetiracetam (LVM) has evidenced effectiveness for BTE but its hydrophilicity restricts the passage into blood-brain barrier. The majority of lipid nanoparticles fails to load hydrophilic drug sufficiently. Therefore, lipid-drug conjugates (LDC) were synthesized using stearic acid via amide bond formation confirmed by FTIR and NMR. The nanoparticles of synthesized LDC were prepared by solvent injection method followed by functionalization with Apolipoprotein E3 (ApoE3@LDC-NP). The nanoparticles were characterized by DSC, XRD, particle size (131.6 ± 1.24 nm), zeta potential (-15.6 ± 0.09 mV), and for storage stability. In-vitro release study indicated initial burst release of 20 ± 0.63 % followed by sustained release up to 30 h (66 ± 1.40 %) for ApoE3@LDC-NP. The cell-line study on HEK293 indicated no significant cytotoxic effect and greater cell uptake through U87MG cell line. The pharmacokinetic and bio-distribution study indicated 2.5-fold greater brain-targeting of ApoE3@LDC-NP as compared to LVM solution. It proved safe in the haemolysis study and exhibited the absence of tissue necrosis. Thus, ApoE3@LDC-NP might be a promising approach for effective brain-targeting of LVM for improved clinical response in BTE.
Collapse
Affiliation(s)
- Mansi Athalye
- L. M. College of Pharmacy, Opposite Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India; Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421 Anand, Gujarat, India
| | - Divya Teli
- L. M. College of Pharmacy, Opposite Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Mehul Chorawala
- L. M. College of Pharmacy, Opposite Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India; Intas Pharmaceuticals Ltd., Corporate House, Near Sola Bridge, S. G. Highway, Thaltej, Ahmedabad 380054, Gujarat, India
| | - Abhilasha Sharma
- Department of Life science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Rashmin Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421 Anand, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Mrunali Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421 Anand, Gujarat, India.
| |
Collapse
|
15
|
Shamsnia HS, Roustaei M, Ahmadvand D, Butler AE, Amirlou D, Soltani S, Momtaz S, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Impact of curcumin on p38 MAPK: therapeutic implications. Inflammopharmacology 2023; 31:2201-2212. [PMID: 37498375 DOI: 10.1007/s10787-023-01265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/28/2023]
Abstract
Curcumin (diferuloylmethane) is a herbal remedy which possesses numerous biological attributes including anti-inflammatory, anti-oxidant and anti-cancer properties. Curcumin has been shown to impact a number of signaling pathways including nuclear factor kappa B (NF-KB), reactive oxygen species (ROS), Wingless/Integrated (Wnt), Janus kinase-signal transducer and activator of mitogen-activated protein kinase (MAPK) and transcription (JAK/STAT). P38 belongs to the MAPKs, is known as a stress-activated MAPK and is involved in diverse biological responses. P38 is activated in various signaling cascades. P38 plays a role in inflammation, cell differentiation, proliferation, motility and survival. This cascade can serve as a therapeutic target in many disorders. Extensive evidence confirms that curcumin impacts the P38 MAPK signaling pathway, through which it exerts anti-inflammatory, neuroprotective, and apoptotic effects. Hence, curcumin can positively affect inflammatory disorders and cancers, as well as to increase glucose uptake in cells. This review discusses the pharmacological and therapeutic effects of curcumin as effected through p38 MAPK.
Collapse
Affiliation(s)
- Hedieh Sadat Shamsnia
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahtab Roustaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Danial Ahmadvand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Dorsa Amirlou
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sanam Soltani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Kumar V, Haldar S, Saini S, Ghosh S, Dhankhar P, Roy P. Pterostilbene-isothiocyanate reduces miR-21 level by impeding Dicer-mediated processing of pre-miR-21 in 5-fluorouracil and tamoxifen-resistant human breast cancer cell lines. 3 Biotech 2023; 13:193. [PMID: 37205177 PMCID: PMC10185726 DOI: 10.1007/s13205-023-03582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
Converging evidences identifies that microRNA-21 (miR-21) is responsible for drug resistance in breast cancer. This study aims to evaluate the miR-21-modulatory potential of a hybrid compound, pterostilbene-isothiocyanate (PTER-ITC), in tamoxifen-resistant MCF-7 (TR/MCF-7) and 5-fluorouracil-resistant MDA-MB 231 (5-FUR/MDA-MB 231) breast cancer cell lines, established by repeated exposure to gradually increasing the concentrations of tamoxifen and 5-fluorouracil, respectively. The outcome of this study shows that PTER-ITC effectively reduced the TR/MCF-7 (IC50: 37.21 µM) and 5-FUR/MDA-MB 231 (IC50: 47.00 µM) cell survival by inducing apoptosis, inhibiting cell migration, colony and spheroid formations in TR/MCF-7 cells, and invasiveness of 5-FUR/MDA-MB 231 cells. Most importantly, PTER-ITC significantly reduced the miR-21 expressions in these resistant cell lines. Moreover, the downstream tumor suppressor target gene of miR-21 such as PTEN, PDCD4, TIMP3, TPM1, and Fas L were upregulated after PTER-ITC treatment, as observed from transcriptional (RT-qPCR) and translational (immunoblotting) data. In silico and miR-immunoprecipitation (miR-IP) results showed reduced Dicer binding to pre-miR-21, after PTER-ITC treatment, indicating inhibition of miR-21 biogenesis. Collectively, the significance of this study is indicated by preliminary evidence for miR-21-modulatory effects of PTER-ITC that highlights the potential of this hybrid compound as an miR-21-targeting therapeutic agent.
Collapse
Affiliation(s)
- Viney Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
| | - Swati Haldar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand India
- Present Address: Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand India
| | - Poonam Dhankhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
- Present Address: Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA USA
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
| |
Collapse
|
17
|
Delivery of curcumin within emulsome nanoparticles enhances the anti-cancer activity in androgen-dependent prostate cancer cell. Mol Biol Rep 2023; 50:2531-2543. [PMID: 36607480 DOI: 10.1007/s11033-022-08208-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Curcumin, a dietary polyphenol isolated from turmeric, is a potent phytochemical possessing intrinsic anticancer activities against various cancer types including prostate cancer. However, low water solubility and bioavailability of the compound are major challenges against its medical use. The objective of this study is to evaluate the therapeutic potential of curcumin-loaded emulsome nanoparticular system, i.e. CurcuEmulsomes, for the treatment of androgen dependent LNCaP prostate cancer cell line. METHODS AND RESULTS The antiproliferative effect of both free curcumin and CurcuEmulsome were investigated comparatively on LNCaP and PNT1A cells. Cell viability data indicates that the inhibition in proliferation of LNCaP cells becomes more effective when curcumin is provided with its emulsome formulation rather than its free form. Corresponding to a therapeutic index of 2.25, Half maximal inhibitory (IC50) and cytotoxic (CC50) concentrations of CurcuEmulsomes for LNCaP and PNT1A cells were estimated as 17.1 µM and 38.6 µM, respectively. The fluorescence signal of autofluorescence curcumin was preserved within the CurcuEmulsomes at 72 h after the treatment. Thus, CurcuEmulsomes prolonged biological activity of curcumin. Induced apoptotic cell death and stimulated cell cycle arrest at G2/M phase were attributed to antiproliferative activity of CurcuEmulsomes. Treatment of LNCaP cells with CurcuEmulsomes increased expression of caspase-3 significantly by 11.76-fold, whereas decreased cyclin D1, Bcl-2 and AR expression levels significantly by of 0.18, 0.06 and 0.46-fold, respectively. CONCLUSIONS Presented safety and anticancer activity of CurcuEmulsomes on LNCaP cell line highlights the potential of CurcuEmulsomes to benefit intrinsic anticancer activities of curcumin in androgen dependent prostate cancer therapy.
Collapse
|
18
|
Liu X, Qi M, Li X, Wang J, Wang M. Curcumin: a natural organic component that plays a multi-faceted role in ovarian cancer. J Ovarian Res 2023; 16:47. [PMID: 36859398 PMCID: PMC9976389 DOI: 10.1186/s13048-023-01120-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Curcumin, a natural organic component obtained from Curcuma longa's rhizomes, shows abundant anti-tumor, antioxidant and anti-inflammatory pharmacological activities, among others. Notably the anti-tumor activity has aroused widespread attention from scholars worldwide. Numerous studies have reported that curcumin can delay ovarian cancer (OC), increase its sensitivity to chemotherapy, and reduce chemotherapy drugs' side effects. It has been shown considerable anticancer potential by promoting cell apoptosis, suppressing cell cycle progression, inducing autophagy, inhibiting tumor metastasis, and regulating enzyme activity. With an in-depth study of curcumin's anti-OC mechanism, its clinical application will have broader prospects. This review summarizes the latest studies on curcumin's anti-OC activities, and discusses the specific mechanism, hoping to provide references for further research and applications.
Collapse
Affiliation(s)
- Xiaoping Liu
- grid.216417.70000 0001 0379 7164Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000 Zhuzhou, Hunan China
| | - Mingming Qi
- grid.216417.70000 0001 0379 7164Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000 Zhuzhou, Hunan China
| | - Xidie Li
- grid.216417.70000 0001 0379 7164Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000 Zhuzhou, Hunan China
| | - Jingjin Wang
- Department of gynaecology and obstetrics, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan, China.
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China. .,Department of Geriatric Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
19
|
Scherbakov AM, Vorontsova SK, Khamidullina AI, Mrdjanovic J, Andreeva OE, Bogdanov FB, Salnikova DI, Jurisic V, Zavarzin IV, Shirinian VZ. Novel pentacyclic derivatives and benzylidenes of the progesterone series cause anti-estrogenic and antiproliferative effects and induce apoptosis in breast cancer cells. Invest New Drugs 2023; 41:142-152. [PMID: 36695998 PMCID: PMC9875769 DOI: 10.1007/s10637-023-01332-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The promising antitumor effects of progesterone derivatives have been identified in many studies. However, the specific mechanism of action of this class of compounds has not been fully described. Therefore, in this study, we investigated the antiproliferative and (anti)estrogenic activities of novel pentacyclic derivatives and benzylidenes of the progesterone series. The antiproliferative effects of the compounds were evaluated on hormone-dependent MCF7 breast cancer cells using the MTT test. Estrogen receptor α (ERα) activity was assessed by a luciferase-based reporter assay. Immunoblotting was used to evaluate the expression of signaling proteins. All benzylidenes demonstrated inhibitory effects with IC50 values below 10 µM, whereas pentacyclic derivatives were less active. These patterns may be associated with the lability of the geometry of benzylidene molecules, which contributes to an increase in the affinity of interaction with the receptor. The selected compounds showed significant anti-estrogenic potency. Benzylidene 1d ((8 S,9 S,10R,13 S,14 S,17 S)-17-[(2E)-3-(4-fluorophenyl)prop-2-enoyl]-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15-decahydrocyclopenta[a]phenanthren-3-one) was the most active in antiproliferative and anti-estrogenic assays. Apoptosis induced by compound 1d was accompanied by decreases in CDK4, ERα, and Cyclin D1 expression. Compounds 1d and 3d were characterized by high inhibitory potency against resistant breast cancer cells. Apoptosis induced by the leader compounds was confirmed by PARP cleavage and flow cytometry analysis. Compound 3d caused cell arrest in the G2/M phase. Further analysis of novel derivatives of the progesterone series is of great importance for medicinal chemistry, drug design, and oncology.
Collapse
Affiliation(s)
- Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye shosse 24, 115522 Moscow, Russia
| | - Svetlana K. Vorontsova
- grid.4886.20000 0001 2192 9124N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Alvina I Khamidullina
- grid.4886.20000 0001 2192 9124Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, 119334 Moscow, Russian Federation
| | - Jasminka Mrdjanovic
- grid.10822.390000 0001 2149 743XOncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Olga E. Andreeva
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye shosse 24, 115522 Moscow, Russia
| | - Fedor B. Bogdanov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye shosse 24, 115522 Moscow, Russia
- grid.14476.300000 0001 2342 9668Faculty of Medicine, Moscow State University, Lomonosovsky prospect 27 bldg. 1, 119991 Moscow, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye shosse 24, 115522 Moscow, Russia
| | - Vladimir Jurisic
- grid.413004.20000 0000 8615 0106Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Igor V. Zavarzin
- grid.4886.20000 0001 2192 9124N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Valerii Z. Shirinian
- grid.4886.20000 0001 2192 9124N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
20
|
Naghsh-Nilchi A, Ebrahimi Ghahnavieh L, Dehghanian F. Construction of miRNA-lncRNA-mRNA co-expression network affecting EMT-mediated cisplatin resistance in ovarian cancer. J Cell Mol Med 2022; 26:4530-4547. [PMID: 35810383 PMCID: PMC9357632 DOI: 10.1111/jcmm.17477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.
Collapse
Affiliation(s)
- Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
21
|
Mohamadian M, Bahrami A, Moradi Binabaj M, Asgharzadeh F, Ferns GA. Molecular Targets of Curcumin and Its Therapeutic Potential for Ovarian Cancer. Nutr Cancer 2022; 74:2713-2730. [PMID: 35266849 DOI: 10.1080/01635581.2022.2049321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is the fifth most common gynecological cancer in women globally. Conventional chemotherapy is the first therapeutic approach in the treatment of ovarian cancer, but its success is limited by severe side effects, transient response, and the high prevalence of relapse. Curcumin is a natural product found in the rhizome extract of Curcuma longa and has been extensively used over the last decades for its unique biological and medicinal properties, which include: having antioxidant, analgesic, anti-inflammation, and anti-tumor activities. Curcumin exerts its anticancer properties against ovarian cancer via multiple mechanisms: interfering with cellular interactions necessary for metastasis and recurrence of OC cells, increasing pro-apoptotic proteins as well as inducing or suppressing generation of different molecules such as cytokines, transcription factors, enzymes, protein kinases, and growth factors. Moreover, curcumin down-regulates various signaling pathways such as PI3K/Akt, Wnt/β-catenin, JAK/STAT3, and MEK/ERK1/2 axes, which at least in part have a role in inhibiting further tumor proliferation, growth, and angiogenesis. In this review, we overview the potential of incorporating curcumin into the treatment of ovarian cancer. In particular, we summarize the preclinical evidence supporting its use in combination with current chemotherapeutic regimens as well as new analogues and formulations under investigation.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Moradi Binabaj
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, UK
| |
Collapse
|
22
|
Elbassiouni FE, El-Kholy WM, Elhabibi ESM, Albogami S, Fayad E. Comparative Study between Curcumin and Nanocurcumin Loaded PLGA on Colon Carcinogenesis Induced Mice. NANOMATERIALS 2022; 12:nano12030324. [PMID: 35159669 PMCID: PMC8839170 DOI: 10.3390/nano12030324] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Colorectal cancer is the third most common cancer. Because curcumin (CUR) has anti-inflammatory and anticancer properties, research has been undertaken to indicate that nanocurcumin compounds can be used to treat a variety of cancers. CUR in nanoform has been found to have a stronger effect than conventional CUR. The purpose of this study was to show that CUR-loaded poly lactic-co-glycolic acid nanoparticles (PLGA) (CUR-loaded PLGA) have anti-inflammatory and anticancer effects on colon carcinogenesis in male dimethyl hydrazine (DMH) mice as a comparative study between the nanoform of curcumin and normal curcumin, focusing on the anticancer effect of nanocurcumin. Mice were separated into six groups: No treatment was given to Group I (negative Group-I). Group II was treated with CUR. Group III was treated with CUR-loaded PLGA. Group IV was treated with DMH. Group V received DMH and curcumin. Group VI received DMH and CUR-loaded PLGA. At the conclusion of the trial, the animals were slain (6 weeks). Inflammatory indicators and vascular endothelial growth factor (VEGF) levels all changed significantly in this study, as the following inflammatory markers as TNF showed percent of change compared to the DMH group. Recovery percentage for Groups V and VI, respectively, were 9.18 and 55.31%. In addition, IL1 was 7.45 and 50.37% for Groups V and VI, respectively. The results of IL6 were 4.86 and 25.79% for Groups V and VI, respectively. The vascular endothelial growth factor (VEGF) recovery percent was 16.98 and 45.12% for Groups V and VI, respectively. Following the effect of DMH on colon mucosa shape, the researchers looked at the effect of CUR-loaded PLGA on colon histology. It was shown that CUR-loaded PLGA affects the cell cycle and PCNA expression. We conclude that nanocurcumin is an important anti-inflammatory and cancer-fighting agent.
Collapse
Affiliation(s)
- Farida E. Elbassiouni
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (W.M.E.-K.); (E.-S.M.E.)
- Correspondence: (F.E.E.); (E.F.)
| | - Wafaa M. El-Kholy
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (W.M.E.-K.); (E.-S.M.E.)
| | - El-Sayed M. Elhabibi
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (W.M.E.-K.); (E.-S.M.E.)
| | - Sarah Albogami
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: (F.E.E.); (E.F.)
| |
Collapse
|
23
|
Abadi AJ, Mirzaei S, Mahabady MK, Hashemi F, Zabolian A, Hashemi F, Raee P, Aghamiri S, Ashrafizadeh M, Aref AR, Hamblin MR, Hushmandi K, Zarrabi A, Sethi G. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res 2021; 36:189-213. [PMID: 34697839 DOI: 10.1002/ptr.7305] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.
Collapse
Affiliation(s)
- Asal Jalal Abadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fardin Hashemi
- School of Rehabilitation, Department of Physical Therapy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Vice President at Translational Sciences, Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Lin Z, Liu H, Yang C, Zheng H, Zhang Y, Su W, Shang J. Curcumin mediates autophagy and apoptosis in granulosa cells: a study of integrated network pharmacology and molecular docking to elucidate toxicological mechanisms. Drug Chem Toxicol 2021; 45:2411-2423. [PMID: 34315305 DOI: 10.1080/01480545.2021.1956941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Curcumin (Cur) is a flavonoid derived from Curcuma longa L. that has been shown to have a variety of biological activities, but some previous studies have described its non-negligible negative effects on female reproduction and embryo development. To further explore the toxic stress effect, this study investigated apoptosis and autophagy of healthy buffalo (Bubalus bubalis) derived granulosa cells (GCs) exposed to Cur and/or autophagy inhibitors. Results showed that Cur declined viability of GCs in a concentration-dependent manner. Apoptosis was observed in Cur-treated GCs from 3 h. Meanwhile, under Cur stress, autophagosomes accumulated in cells, and the expression levels of autophagy key proteins LC3 and Beclin 1 were up-regulated, suggesting that Cur could induce autophagy in GCs. Early autophagy inhibitor 3-methyladenine (3-MA) increased the apoptosis rate of Cur exposed GCs, but the autophagosome degradation inhibitor chloroquine (CQ) had no effect on the apoptosis rate. The network pharmacological and molecular docking analysis indicated that the perturbation of IKK/NF-κB might be the cause of Cur toxicity toward GCs. This study unveiled another side of Cur pharmacological effects that programmed cell death can be induced by Cur in GCs, suggesting that it should be prudent to use Cur as a clinical drug for its side effects on the female reproductive system.
Collapse
Affiliation(s)
- Zhen Lin
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Chunyan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Haiying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yu Zhang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jianghua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
25
|
Almatroodi SA, Syed MA, Rahmani AH. Potential Therapeutic Targets of Curcumin, Most Abundant Active Compound of Turmeric Spice: Role in the Management of Various Types of Cancer. Recent Pat Anticancer Drug Discov 2021; 16:3-29. [PMID: 33143616 DOI: 10.2174/1574892815999201102214602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin, an active compound of turmeric spice, is one of the most-studied natural compounds and has been widely recognized as a chemopreventive agent. Several molecular mechanisms have proven that curcumin and its analogs play a role in cancer prevention through modulating various cell signaling pathways as well as in the inhibition of the carcinogenesis process. OBJECTIVE To study the potential role of curcumin in the management of various types of cancer through modulating cell signalling molecules based on available literature and recent patents. METHODS A wide-ranging literature survey was performed based on Scopus, PubMed, PubMed Central, and Google scholar for the implication of curcumin in cancer management, along with a special emphasis on human clinical trials. Moreover, patents were searched through www.google.com/patents, www.freepatentsonline.com, and www.freshpatents.com. RESULT Recent studies based on cancer cells have proven that curcumin has potential effects against cancer cells as it prevents the growth of cancer and acts as a cancer therapeutic agent. Besides, curcumin exerted anti-cancer effects by inducing apoptosis, activating tumor suppressor genes, cell cycle arrest, inhibiting tumor angiogenesis, initiation, promotion, and progression stages of tumor. It was established that co-treatment of curcumin and anti-cancer drugs could induce apoptosis and also play a significant role in the suppression of the invasion and metastasis of cancer cells. CONCLUSION Accumulating evidences suggest that curcumin has the potential to inhibit cancer growth, induce apoptosis, and modulate various cell signaling pathway molecules. Well-designed clinical trials of curcumin based on human subjects are still needed to establish the bioavailability, mechanism of action, efficacy, and safe dose in the management of various cancers.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Natural Sciences, Translational Research Lab, Jamia Millia Islamia, New Delhi 110025, India
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
26
|
Gong F, Ma JC, Jia J, Li FZ, Wu JL, Wang S, Teng X, Cui ZK. Synergistic effect of the anti-PD-1 antibody with blood stable and reduction sensitive curcumin micelles on colon cancer. Drug Deliv 2021; 28:930-942. [PMID: 33975498 PMCID: PMC8118404 DOI: 10.1080/10717544.2021.1921077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a potent anticancer drug with versatile biological activities, while the clinical translation of curcumin is severely limited due to its hydrophobicity, rapid elimination, and metabolism in the blood circulation. Herein, we aim to unravel the potential of curcumin as a synergistic agent with immunotherapy in the treatment of cancers. In an effort to minimize premature release and improve the systemic bioavailability, a superior blood stable and reduction sensitive curcumin micellar formulation, of which the release can be triggered by cancer cells, is rationally designed. We have synthesized a telodendrimer (mPEG-PLA-(LA)4) capable of forming reversible disulfide crosslinked micelles (DCMs). The curcumin loaded DCMs (Cur/DCMs) are spherical with a uniform size of 24.6 nm. The in vitro release profile demonstrates that curcumin releases significantly slower from DCMs than that from non-crosslinked micelles (NCMs), while the release can be accelerated with the increasing concentration of reducing agent glutathione (GSH). Intravenous administration of Cur/DCMs stably retains curcumin in the bloodstream and efficiently improves the systemic bioavailability. Furthermore, Cur/DCMs exhibit synergistic anticancer efficacy when combined with the anti-PD-1 antibody in an MC-38 colon cancer xenograft model. Our results potentiate the integration of blood stable curcumin nanoformulation and immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Feirong Gong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian-Chao Ma
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jianguo Jia
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fa-Zhan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiao-Lan Wu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shanfeng Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xin Teng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Bhattacharyya A, Jameei A, Karande AA, Chakravarty AR. BODIPY-attached zinc(II) complexes of curcumin drug for visible light assisted photo-sensitization, cellular imaging and targeted PDT. Eur J Med Chem 2021; 220:113438. [PMID: 33915370 DOI: 10.1016/j.ejmech.2021.113438] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Boron-dipyrromethene (BODIPY) based photosensitizers as porphyrinoids and curcumin as natural product possess exciting photophysical features suitable for theranostic applications, namely, imaging and photodynamic therapy (PDT). Limited aqueous solubility and insufficient physiological stability, however, reduce their efficacy significantly. We have designed a novel strategy to deliver these two unusable cytotoxins simultaneously in cancer cells and herein, report the synthesis, characterization and imaging-assisted photocytotoxicity of three zinc(II) complexes containing N3-donor dipicolylamine (dpa) ligands (L1-3) and O,O-donor curcumin (Hcur) viz. [Zn(L1)(cur)]Cl (1), [Zn(L2)(cur)]Cl (2) and [Zn(L3)(cur)]Cl (3), where L2 and L3 have pendant fluorescent BODIPY and non-emissive di-iodo-BODIPY moieties. Metal chelation imparted remarkable biological stability (pH ∼7.4) to the respective ligands and induces significant aqueous solubility. These ternary complexes could act as replacements of the existing metalloporphyrin-based PDT photosensitizers as their visible-light photosensitizing ability is reinforced by the dual presence of blue light absorbing curcumin and green light harvesting BODIPY units. Complex 2 having emissive BODIPY unit L2 and curcumin, showed mitochondria selective localization in HeLa, MCF-7 cancer cells and complex 3, the di-iodinated analogue of complex 2, exhibited type-I/II PDT activity via inducing apoptosis through mitochondrial membrane disruption in cancer cells while being significantly nontoxic in dark and to the healthy cells.
Collapse
Affiliation(s)
- Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India
| | - Aida Jameei
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India.
| |
Collapse
|
28
|
Zangouei AS, Alimardani M, Moghbeli M. MicroRNAs as the critical regulators of Doxorubicin resistance in breast tumor cells. Cancer Cell Int 2021; 21:213. [PMID: 33858435 PMCID: PMC8170947 DOI: 10.1186/s12935-021-01873-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chemotherapy is one of the most common treatment options for breast cancer (BC) patients. However, about half of the BC patients are chemotherapeutic resistant. Doxorubicin (DOX) is considered as one of the first line drugs in the treatment of BC patients whose function is negatively affected by multi drug resistance. Due to the severe side effects of DOX, it is very important to diagnose the DOX resistant BC patients. Therefore, assessment of molecular mechanisms involved in DOX resistance can improve the clinical outcomes in BC patients by introducing the novel therapeutic and diagnostic molecular markers. MicroRNAs (miRNAs) as members of the non-coding RNAs family have pivotal roles in various cellular processes including cell proliferation and apoptosis. Therefore, aberrant miRNAs functions and expressions can be associated with tumor progression, metastasis, and drug resistance. Moreover, due to miRNAs stability in body fluids, they can be considered as non-invasive diagnostic markers for the DOX response in BC patients. MAIN BODY In the present review, we have summarized all of the miRNAs that have been reported to be associated with DOX resistance in BC for the first time in the world. CONCLUSIONS Since, DOX has severe side effects; it is required to distinguish the non DOX-responders from responders to improve the clinical outcomes of BC patients. This review highlights the miRNAs as pivotal regulators of DOX resistance in breast tumor cells. Moreover, the present review paves the way of introducing a non-invasive panel of prediction markers for DOX response among BC patients.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Alimardani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Harikrishnan A, Khanna S, Veena V. Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation. Curr Drug Targets 2021; 22:573-589. [PMID: 32753008 DOI: 10.2174/1389450121666200804113745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. METHODOLOGY In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. RESULTS Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. CONCLUSION The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
Collapse
Affiliation(s)
- A Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) campus, Paiyanoor, Chennai-603104, Tamil Nadu, India
| | - Sunali Khanna
- Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai, 400 008, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini knowledge park, Kattigenahalli, Yelahanka, Bengaluru - 5600 064. Karnataka State, India
| |
Collapse
|
30
|
Ghaderi S, Babaei E, Hussen BM, Mahdavi M, Azeez HJ. Gemini Curcumin Suppresses Proliferation of Ovarian Cancer OVCAR-3 Cells via Induction of Apoptosis. Anticancer Agents Med Chem 2021; 21:775-781. [PMID: 32767955 DOI: 10.2174/1871520620666200807223340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ovarian cancer has the highest mortality rate among gynecological malignancies. Despite recent advances in treatment, most patients still suffer from poor prognosis. Curcumin has shown highly cytotoxic effects against different types of cancer. However, its poor bioavailability restricts its clinical application. Gemini Curcumin (Gemini-Cur) has been developed to overcome this limitation. OBJECTIVE Here, we aimed to unravel the inhibitory effect of Gemini-Cur in ovarian cancer. METHODS OVCAR-3 cells were treated with free curcumin and Gemni-Cur in a time- and dose-dependent manner. Then, the anticancer activity was investigated by uptake kinetics, cellular viability and apoptotic assays. Furthermore, we evaluated the BAX/Bcl-2 expression ratio by real-time PCR and western blotting. RESULTS Our data showed that gemini surfactant nanoparticles enhance the cellular uptake of curcumin compared to free curcumin (p<0.01). Regarding the growth inhibitory effect of nano-curcumin, the results demonstrated that Gemini-Cur suppresses the proliferation of OVCAR-3 cells through induction of apoptosis (p<0.001). CONCLUSION The results illustrate that Gemini-Cur nanoparticles have a great potential for developing novel therapeutics against ovarian cancer.
Collapse
Affiliation(s)
- Sonbol Ghaderi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Bashdar M Hussen
- Medical Research Center, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Majid Mahdavi
- Institute of Environment, University of Tabriz, Tabriz, Iran
| | - Hewa J Azeez
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
31
|
Shaik TB, Malik MS, Routhu SR, Seddigi ZS, Althagafi II, Kamal A. Evaluation of Anticancer and Anti-Mitotic Properties of Quinazoline and Quinazolino-Benzothiadiazine Derivatives. Anticancer Agents Med Chem 2021; 20:599-611. [PMID: 31884931 DOI: 10.2174/1871520620666191224122204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cancer is one of the major health and social-economic problems despite considerable progress in its early diagnosis and treatment. Owing to the emergence and increase of multidrug resistance to various conventional drugs, and the continuing importance of health-care expenditure, many researchers have focused on developing novel and effective anticancer compounds. OBJECTIVE Chemical repositories provide a good platform to evaluate and exploit known chemical entities for the identification of other biological activities. In the present study, we have selected an in-house library of synthesized compounds based on two different pharmacophoric scaffolds to evaluate their cytotoxic potency on various cancer cell lines and mechanisms of action. METHODS A series of in-house synthesized quinazoline and quinazolino-benzothiadiazine derivatives were investigated for their anticancer efficacy against a panel of five cancer (DU145, MCF7, HepG2, SKOV3 and MDA-MB-231) and one normal (MRC5) cell lines. Furthermore, the active compound of the study was investigated to elucidate the mechanism of cytotoxicity by performing series of experiments such as cell cycle analysis, inhibition of tubulin polymerization, alteration of mitochondrial membrane potential, determination of endocytic pathway for drug uptake pathway and combination drug treatment. RESULTS Among all the tested compounds, fifteen of them exhibited promising growth-inhibitory effect (0.15- 5.0μM) and induced cell cycle arrest in the G2/M phase. In addition, the selected compounds inhibited the microtubule assembly; altered mitochondrial membrane potential and enhanced the levels of caspase-9 in MCF-7 cells. Furthermore, the active compound with a combination of drugs showed a synergistic effect at lower concentrations, and the drug uptake was mediated through clathrin-mediated endocytic pathway. CONCLUSION Our results indicated that quinazoline and quinazolino-benzothiadiazine conjugates could serve as potential leads in the development of new anticancer agents.
Collapse
Affiliation(s)
- Thoukhir B Shaik
- Department of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.,Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, A.P, India
| | - M Shaheer Malik
- Department of Chemistry and Central Research Laboratories, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Sunitha R Routhu
- Department of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Zaki S Seddigi
- Department of Environmental Health, College of Public Health and Health Informatics, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ismail I Althagafi
- Department of Chemistry and Central Research Laboratories, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ahmed Kamal
- Department of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| |
Collapse
|
32
|
Yan Q, Chen BJ, Hu S, Qi SL, Li LY, Yang JF, Zhou H, Yang CC, Chen LJ, Du J. Emerging role of RNF2 in cancer: From bench to bedside. J Cell Physiol 2021; 236:5453-5465. [PMID: 33400276 DOI: 10.1002/jcp.30260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/03/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023]
Abstract
RNF2 (also known as ding, Ring1B or Ring2) is a member of the Ring finger protein family, which functions as E3 ubiquitin ligase for monoubiquitination of histone H2A at lysine 119 (H2AK119ub). RNF2 gene is located at the 1q25.3 site of human chromosome and the coding region is composed of 9 exons, encoding 336 amino acids in total. Many studies have demonstrated that overexpressed RNF2 was involved in the pathological progression of multiple cancers and has an impact on their clinical features. For instance, the upregulated expression level of RNF2 is positively correlated with the occurrence and progression of hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, pancreatic cancer, gastric cancer, and bladder urothelial carcinoma, as well as with the radioresistance of lung cancer and chemoresistance of ovarian cancer. This review provides an up-to-date perspective on the relationship between RNF2 and several cancers and highlights recent studies on RNF2 regulation. In particular, the relevant cellular signaling pathways and potential clinical value of RNF2 in cancers are also discussed, suggesting its potential as an epigenetic biomarker and therapeutic target for these cancers.
Collapse
Affiliation(s)
- Qi Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bang-Jie Chen
- First Clinical Medical College of Anhui Medical university, Hefei, China
| | - Shuang Hu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shun-Li Qi
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang-Yun Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun-Fa Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hong Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chen-Chen Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li-Jian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
33
|
Hidayat YM, Wagey F, Suardi D, Susanto H, Laihad BJ, Tobing MDL. Analysis of Curcumin as a Radiosensitizer in Cancer Therapy with Serum Survivin Examination: Randomised Control Trial. Asian Pac J Cancer Prev 2021; 22:139-143. [PMID: 33507691 PMCID: PMC8184198 DOI: 10.31557/apjcp.2021.22.1.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE One of the important treatments for cervical cancer is radiation therapy. This study sought to determine the role of curcumin as a radio-sensitizing agent for use with radiation therapy for cervical cancer. To accomplish this, we assessed the levels of survivin, which is an anti-apoptotic protein that plays a role in cell division and apoptosis inhibition. METHOD This study used a quasi-experimental design, including a pretest-posttest control group design approach. The study subjects included cervical carcinoma stage IIB-IIIB patients who were scheduled to undergo surgery at the Hasan Sadikin Hospital Bandung during the research period. The advanced cervical cancer patients were assigned to two groups: i) those who received curcumin + radiation therapy and ii) those who received placebo + radiation therapy. RESULTS In the group treated with curcumin + radiation, 15 (75%) patients showed decreased survivin levels and 5 (25%) showed increased survivin levels. Whereas, in the placebo + radiation group, there were 8 (40%) patients who showed decreased survivin levels and 12 (60%) who showed increased survivin levels. CONCLUSION In conclusion, curcumin is an effective, alternative radiosensitizer agent for application in cervical cancer treatment. .
Collapse
Affiliation(s)
- Yudi Mulyana Hidayat
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia.
| | - Frank Wagey
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia.
| | - Dodi Suardi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia.
| | - Herman Susanto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia.
| | - Bismarck J Laihad
- Department of Obstetrics and Gynecology, School of Medicine, Universitas Sam Ratulangi, Manado, Indonesia.
| | | |
Collapse
|
34
|
Wang D, Yu D, Liu X, Wang Q, Chen X, Hu X, Wang Q, Jin C, Wen L, Zhang L. Targeting laryngeal cancer cells with 5-fluorouracil and curcumin using mesoporous silica nanoparticles. Technol Cancer Res Treat 2020; 19:1533033820962114. [PMID: 33267716 PMCID: PMC7720313 DOI: 10.1177/1533033820962114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective: To explore the inhibitory and synergistic effects of 5-fluorouracil and curcumin on Hep-2 laryngeal cancer cells and clarify the effect of mesoporous silica nanoparticles as drug carriers. Methods: The inhibitory effects of 5-fluorouracil and curcumin on Hep-2 cells were detected using the CCK-8 assay. CompuSyn was used to calculate the synergistic effect of the 2 drugs. Flow cytometry was used to detect apoptosis and cell cycle arrest induced by 5-fluorouracil and curcumin. The drugs were loaded into mesoporous nanoparticles. Western blotting was used to detect the expression of related proteins after treatment. The growth of subcutaneous tumors in BALB/c nude after the intraperitoneal injection with drug-loaded mesoporous silica nanoparticles was recorded. Results: 5-Fluorouracil and curcumin synergistically induced apoptosis and cell cycle arrest in Hep-2 cells. Mesoporous silica nanoparticles as drug carriers enhanced the therapeutic effects of 5-fluorouracil and curcumin. Conclusions: Mesoporous silica nanoparticles are expected to be effective drug carriers that enhance the synergistic effects of 5-fluorouracil and curcumin on laryngeal cancer.
Collapse
Affiliation(s)
- Ding Wang
- Department of Otolaryngology, Head and Neck Surgery, the Second Hospital, 12510Jilin University, Changchun, Jilin, People's Republic of China.,Department of Pathophysiology, College of Basic Medical Science, 12510Jilin University, Changchun, Jilin, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology, Head and Neck Surgery, the Second Hospital, 12510Jilin University, Changchun, Jilin, People's Republic of China
| | - Xueshibojie Liu
- Department of Otolaryngology, Head and Neck Surgery, the Second Hospital, 12510Jilin University, Changchun, Jilin, People's Republic of China
| | - Qian Wang
- Department of Pathophysiology, College of Basic Medical Science, 12510Jilin University, Changchun, Jilin, People's Republic of China
| | - Xuyang Chen
- Department of Pathophysiology, College of Basic Medical Science, 12510Jilin University, Changchun, Jilin, People's Republic of China
| | - Xindan Hu
- Department of Pathophysiology, College of Basic Medical Science, 12510Jilin University, Changchun, Jilin, People's Republic of China
| | - Qiong Wang
- Department of Pathophysiology, College of Basic Medical Science, 12510Jilin University, Changchun, Jilin, People's Republic of China
| | - Chunshun Jin
- Department of Otolaryngology, Head and Neck Surgery, the Second Hospital, 12510Jilin University, Changchun, Jilin, People's Republic of China
| | - Lianji Wen
- Department of Otolaryngology, Head and Neck Surgery, the Second Hospital, 12510Jilin University, Changchun, Jilin, People's Republic of China
| | - Ling Zhang
- Department of Pathophysiology, College of Basic Medical Science, 12510Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
35
|
Therapeutic role of curcumin and its novel formulations in gynecological cancers. J Ovarian Res 2020; 13:130. [PMID: 33148295 PMCID: PMC7643381 DOI: 10.1186/s13048-020-00731-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Gynecological cancers are among the leading causes of cancer-associated mortality worldwide. While the number of cases are rising, current therapeutic approaches are not efficient enough. There are considerable side-effects as well as treatment resistant types. In addition, which all make the treatment complicated for afflicted cases. Therefore, in order to improve efficacy of the treatment process and patients’ quality of life, searching for novel adjuvant treatments is highly warranted. Curcumin, a promising natural compound, is endowed with numerous therapeutic potentials including significant anticancer effects. Recently, various investigations have demonstrated the anticancer effects of curcumin and its novel analogues on gynecological cancers. Moreover, novel formulations of curcumin have resulted in further propitious effects. This review discusses these studies and highlights the possible underlying mechanisms of the observed effects.
Collapse
|
36
|
Al-Ani LA, Kadir FA, Hashim NM, Julkapli NM, Seyfoddin A, Lu J, AlSaadi MA, Yehye WA. The impact of curcumin-graphene based nanoformulation on cellular interaction and redox-activated apoptosis: An in vitro colon cancer study. Heliyon 2020; 6:e05360. [PMID: 33163675 PMCID: PMC7609448 DOI: 10.1016/j.heliyon.2020.e05360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Natural plants derivatives have gained enormous merits in cancer therapy applications upon formulation with nanomaterials. Curcumin, as a popular research focus has acquired such improvements surpassing its disadvantageous low bioavailability. To this point, the available research data had confirmed the importance of nanomaterial type in orienting cellular response and provoking different toxicological and death mechanisms that may range from physical membrane damage to intracellular changes. This in turn underlines the poorly studied field of nanoformulation interaction with cells as the key determinant in toxicology outcomes. In this work, curcumin-AuNPs-reduced graphene oxide nanocomposite (CAG) was implemented as a model, to study the impact on cellular membrane integrity and the possible redox changes using colon cancer in vitro cell lines (HT-29 and SW-948), representing drug-responsive and resistant subtypes. Morphological and biochemical methods of transmission electron microscopy (TEM), apoptosis assay, reactive oxygen species (ROS) and antioxidants glutathione and superoxide dismutase (GSH and SOD) levels were examined with consideration to suitable protocols and vital optimizations. TEM micrographs proved endocytic uptake with succeeding cytoplasm deposition, which unlike other nanomaterials studied previously, conserved membrane integrity allowing intracellular cytotoxic mechanism. Apoptosis was confirmed with gold-standard morphological features observed in micrographs, while redox parameters revealed a time-dependent increase in ROS accompanied with regressive GSH and SOD levels. Collectively, this work demonstrates the success of graphene as a platform for curcumin intracellular delivery and cytotoxicity, and further highlights the importance of suitable in vitro methods to be used for nanomaterial validation.
Collapse
Affiliation(s)
- Lina A. Al-Ani
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Farkaad A. Kadir
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Najihah M. Hashim
- Department of Pharmaceutical Chemicals, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Nurhidayatullaili M. Julkapli
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology, School of Science, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health & Environmental Sciences, Auckland University of Technology. Auckland, New Zealand
- College of Perfume and Aroma, Shanghai Institute of Technology, Shanghai, China
| | - Mohammed A. AlSaadi
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, Malaysia
- National Chair of Materials Sciences and Metallurgy, University of Nizwa, Nizwa, Sultanate of Oman
| | - Wageeh A. Yehye
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Shareef MA, Devi GP, Rani Routhu S, Kumar CG, Kamal A, Babu BN. New imidazo[2,1- b]thiazole-based aryl hydrazones: unravelling their synthesis and antiproliferative and apoptosis-inducing potential. RSC Med Chem 2020; 11:1178-1184. [PMID: 33479622 PMCID: PMC7651857 DOI: 10.1039/d0md00188k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
Herein, we have designed and synthesized new imidazo[2,1-b]thiazole-based aryl hydrazones (9a-w) and evaluated their anti-proliferative potential against a panel of human cancer cell lines. Among the synthesized compounds, 9i and 9m elicited promising cytotoxicity against the breast cancer cell line MDA-MB-231 with IC50 values of 1.65 and 1.12 μM, respectively. Cell cycle analysis revealed that 9i and 9m significantly arrest MDA-MB-231 cells in the G0/G1 phase. In addition, detailed biological studies such as annexin V-FITC/propidium iodide, DCFH-DA, JC-1 and DAPI staining assays revealed that 9i and 9m triggered apoptosis in MDA-MB-213 cells. Overall, the current work demonstrated the cytotoxicity and apoptosis-inducing potential of 9i and 9m in breast cancer cells and suggested that they could be explored as promising antiproliferative leads in the future.
Collapse
Affiliation(s)
- Mohd Adil Shareef
- Department of Fluoro-Agrochemicals , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad , India .
- Academy of Scientific and Innovative Research , Ghaziabad 201 002 , India
| | - Ganthala Parimala Devi
- Department of Fluoro-Agrochemicals , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad , India .
- Academy of Scientific and Innovative Research , Ghaziabad 201 002 , India
| | - Sunitha Rani Routhu
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad 500007 , India
| | - C Ganesh Kumar
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad 500007 , India
| | - Ahmed Kamal
- Academy of Scientific and Innovative Research , Ghaziabad 201 002 , India
- School of Pharmaceutical Education and Research (SPER) , Jamia Hamdard , New Delhi 110062 , India
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad , India .
- Academy of Scientific and Innovative Research , Ghaziabad 201 002 , India
| |
Collapse
|
38
|
Yu Z, Li L, Wang C, He H, Liu G, Ma H, Pang L, Jiang M, Lu Q, Li P, Qi H. Cantharidin Induces Apoptosis and Promotes Differentiation of AML Cells Through Nuclear Receptor Nur77-Mediated Signaling Pathway. Front Pharmacol 2020; 11:1321. [PMID: 32982739 PMCID: PMC7485522 DOI: 10.3389/fphar.2020.01321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/07/2020] [Indexed: 01/24/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by uncontrolled proliferation and accumulation of myeloblasts in the bone marrow (BM), blood, and other organs. The nuclear receptors Nur77 is a common feature in leukemic blasts and has emerged as a key therapeutic target for AML. Cantharidin (CTD), a main medicinal component of Mylabris (blister beetle), exerts an anticancer effect in multiple types of cancer cells. Purpose This study aims to characterize the anti-AML activity of CTD in vitro and in vivo and explore the potential role of Nur77 signaling pathway. Study Design/Methods The inhibition of CTD on cell viability was performed in different AML cells, and then the inhibition of CTD on proliferation and colony formation was detected in HL-60 cells. Induction of apoptosis and promotion of differentiation by CTD were further determined. Then, the potential role of Nur77 signaling pathway was assessed. Finally, anti-AML activity was evaluated in NOD/SCID mice. Results In our study, CTD exhibited potent inhibition on cell viability and colony formation ability of AML cells. Moreover, CTD significantly induced the apoptosis, which was partially reversed by Z-VAD-FMK. Meanwhile, CTD promoted the cleavage of caspases 8, 3 and PARP in HL-60 cells. Furthermore, CTD obviously suppressed the proliferation and induced the cell cycle arrest of HL-60 cells at G2/M phase. Meanwhile, CTD effectively promoted the differentiation of HL-60 cells. Notably, CTD transiently induced the expression of Nur77 protein. Interestingly, CTD promoted Nur77 translocation from the nucleus to the mitochondria and enhanced the interaction between Nur77 and Bcl-2, resulting in the exposure of the BH3 domain of Bcl-2, which is critical for the conversion of Bcl-2 from an antiapoptotic to a proapoptotic protein. Importantly, silencing of Nur77 attenuated CTD-induced apoptosis, reversed CTD-mediated cell cycle arrest and differentiation of HL-60 cells. Additionally, CTD also exhibited an antileukemic effect in NOD/SCID mice with the injection of HL-60 cells into the tail vein. Conclusions Our studies suggest that Nur77-mediated signaling pathway may play a critical role in the induction of apoptosis and promotion of differentiation by CTD on AML cells.
Collapse
Affiliation(s)
- Zanyang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Chengqiang Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hui He
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Gen Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Haoyue Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lei Pang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Mingdong Jiang
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Qianwei Lu
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Pan Li
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
39
|
Xu X, Zhou X, Zhang J, Li H, Cao Y, Tan X, Zhu X, Yang J. MicroRNA‐191 modulates cisplatin‐induced DNA damage response by targeting RCC2. FASEB J 2020; 34:13573-13585. [PMID: 32803782 DOI: 10.1096/fj.202000945r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Xianrong Xu
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Xiaofeng Zhou
- Department of Radiation Oncology The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Jianyun Zhang
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Hongjuan Li
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Yifei Cao
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Xiaohua Tan
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Xinqiang Zhu
- Laboratory Research Center The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu China
| | - Jun Yang
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
- Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research The Affiliated Women's Hospital Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
40
|
Santhoshkumar R, Yusuf A. In silico structural modeling and analysis of physicochemical properties of curcumin synthase (CURS1, CURS2, and CURS3) proteins of Curcuma longa. J Genet Eng Biotechnol 2020; 18:24. [PMID: 32617758 PMCID: PMC7332660 DOI: 10.1186/s43141-020-00041-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
Background Pharmaceutically important curcuminoid synthesis in C. longa is controlled by CURS1, CURS2, and CURS3 genes. The present study detected the physicochemical properties and structural characteristics including the secondary and 3D structure of CURS proteins. The primary, secondary, and tertiary structure of the CURS proteins were modeled and characterized using multiple bioinformatics tools such as ExPasy ProtParam tools, self-optimized prediction method with alignment (SOPMA), PSIPRED, and SWISS-MODEL. The predicted secondary structure of curcumin synthase provided an α-helix and random coil as the major components. The reliability of the modeled structure was confirmed using PROCHECK and QMEAN programs. Results The molecular weight of CURS1 is 21093.19 Da, theoretical pI as 4.93, and an aliphatic index of 99.19. Molecular weight of CURS2 and CURS3 proteins are 20266.13 Da and 20629.52 Da, theoretical pI as 5.28 and 4.96, and an aliphatic index of 89.30 and 86.37, respectively. In the predicted secondary structure of CURS proteins, alpha helices and random coils of CURS1, CUR2, and CURS3 were 42.72, 41.38, and 44.74% and 24.87, 31.03, and 17.89, respectively. The extended strands were 16.24, 19.40, and 17.89. QMEAN Z-score is − 0.83, − 0.89, and − 1.09 for CURS1, CURS2, and CURS3, respectively. Conclusion Prediction of the 3D model of a protein by in silico analysis is a highly challenging aspect to confirm the NMR or X-ray crystallographic data. This report can contribute to the understanding of the structure, physicochemical properties, structural motifs, and protein-protein interaction of CURS1, CUR2, and CURS3.
Collapse
Affiliation(s)
- R Santhoshkumar
- Interuniversity Centre for Plant Biotechnology, Department of Botany, University of Calicut, Malappuram, Kerala, 673635, India
| | - A Yusuf
- Interuniversity Centre for Plant Biotechnology, Department of Botany, University of Calicut, Malappuram, Kerala, 673635, India.
| |
Collapse
|
41
|
Rizeq B, Gupta I, Ilesanmi J, AlSafran M, Rahman MDM, Ouhtit A. The Power of Phytochemicals Combination in Cancer Chemoprevention. J Cancer 2020; 11:4521-4533. [PMID: 32489469 PMCID: PMC7255361 DOI: 10.7150/jca.34374] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
Conventional therapies for cancer treatment have posed many challenges, including toxicity, multidrug resistance and economic expenses. In contrast, complementary alternative medicine (CAM), employing phytochemicals have recently received increased attention owing to their capability to modulate a myriad of molecular mechanisms with a less toxic effect. Increasing evidence from preclinical and clinical studies suggest that phytochemicals can favorably modulate several signaling pathways involved in cancer development and progression. Combinations of phytochemicals promote cell death, inhibit cell proliferation and invasion, sensitize cancerous cells, and boost the immune system, thus making them striking alternatives in cancer therapy. We previously investigated the effect of six phytochemicals (Indol-3-Carbinol, Resveratrol, C-phycocyanin, Isoflavone, Curcumin and Quercetin), at their bioavailable levels on breast cancer cell lines and were compared to primary cell lines over a period of 6 days. This study showed the compounds had a synergestic effect in inhibiting cell proliferation, reducing cellular migration and invasion, inducing both cell cycle arrest and apoptosis. Despite the vast number of basic science and preclinical cancer studies involving phytochemicals, the number of CAM clinical trials in cancer treatment still remains nascent. In this review, we summarize findings from preclinical and clinical studies, including our work involving use of phytochemicals, individually as well as in combination and further discuss the potential of these phytochemicals to pave way to integrate CAM in primary health care.
Collapse
Affiliation(s)
- Balsam Rizeq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, Qatar University, Doha, Qatar
| | - Josephine Ilesanmi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammed AlSafran
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - MD Mizanur Rahman
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
42
|
Patel H, Mothia B, Patel J, Fasanya O, Sooda K, Javid F, Wyatt PB. Cytotoxicity of some synthetic bis(arylidene) derivatives of cyclic ketones towards cisplatin-resistant human ovarian carcinoma cells. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02532-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractSymmetrical α,αʹ-bis(arylidene)ketones were prepared by acid-catalyzed aldol condensations between aliphatic ketones (e.g., cyclopentanone, 4-alkylcyclohexanones, tetrahydropyran-4-one, and tetrahydrothiopyran-4-one) and two equivalents of an aromatic hydroxyaldehyde (e.g., 4-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, vanillin, isovanillin, and 3-fluoro-4-hydroxybenzaldehyde). Most of the compounds were cytotoxic towards the cisplatin-resistant human ovarian cancer cell line A2780-CP70 as well as the non-resistant line A2780.
Collapse
|
43
|
Peterková L, Kmoníčková E, Ruml T, Rimpelová S. Sarco/Endoplasmic Reticulum Calcium ATPase Inhibitors: Beyond Anticancer Perspective. J Med Chem 2020; 63:1937-1963. [PMID: 32030976 DOI: 10.1021/acs.jmedchem.9b01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sarco/endoplasmic reticulum calcium ATPase (SERCA), which plays a key role in the maintenance of Ca2+ ion homeostasis, is an extensively studied enzyme, the inhibition of which has a considerable impact on cell life and death decision. To date, several SERCA inhibitors have been thoroughly studied and the most notable one, a derivative of the sesquiterpene lactone thapsigargin, is gradually approaching a clinical application. Meanwhile, new compounds with SERCA-inhibiting properties of natural, synthetic, or semisynthetic origin are being discovered and/or developed; some of these might also be suitable for the development of new drugs with improved performance. This review brings an up-to-date comprehensive overview of recently discovered compounds with the potential of SERCA inhibition, discusses their mechanism of action, and highlights their potential clinical applications, such as cancer treatment.
Collapse
Affiliation(s)
- Lucie Peterková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Eva Kmoníčková
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
44
|
Sarma H, Jahan T, Sharma HK. Progress in Drug and Formulation Development for the Chemoprevention of Oral Squamous Cell Carcinoma: A Review. ACTA ACUST UNITED AC 2020; 13:16-36. [PMID: 30806332 DOI: 10.2174/1872211313666190222182824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cancer is a life-threatening global problem with high incidence rates. Prioritizing the prevention of cancer, chemopreventive agents have drawn much attention from the researchers. OBJECTIVE This review focuses on the discussion of the progress in the development of chemopreventive agents and formulations related to the prevention of oral cancer. METHODS In this perspective, an extensive literature survey was carried out to understand the mechanism, control and chemoprevention of oral cancer. Different patented agents and formulations have also exhibited cancer preventive efficacy in experimental studies. This review summarizes the etiology of oral cancer and developments in prevention strategies. RESULTS The growth of oral cancer is a multistep activity necessitating the accumulation of genetic as well as epigenetic alterations in key regulatory genes. Many risk factors are associated with oral cancer. Genomic technique for sequencing all tumor specimens has been made available to help detect mutations. The recent development of molecular pathway and genetic tools has made the process of diagnosis easier, better forecast and efficient therapeutic management. Different chemical agents have been studied for their efficacy to prevent oral cancer and some of them have shown promising results. CONCLUSION Use of chemopreventive agents, either synthetic or natural origin, to prevent carcinogenesis is a worthy concept in the management of cancers. Preventive measures are helpful in controlling the occurrence or severity of the disease. The demonstrated results of preventive agents have opened an arena for the development of promising chemopreventive agents in the management of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Himangshu Sarma
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Taslima Jahan
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Hemanta K Sharma
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| |
Collapse
|
45
|
Sabra R, Billa N, Roberts CJ. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int J Pharm 2019; 572:118775. [PMID: 31678385 DOI: 10.1016/j.ijpharm.2019.118775] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/22/2019] [Accepted: 10/07/2019] [Indexed: 01/04/2023]
Abstract
In the present study, we successfully developed a cetuximab-conjugated modified citrus pectin-chitosan nanoparticles for targeted delivery of curcumin (Cet-MCPCNPs) for the treatment of colorectal cancer. In vitro analyses revealed that nanoparticles were spherical with size of 249.33 ± 5.15 nm, a decent encapsulation efficiency (68.43 ± 2.4%) and a 'smart' drug release profile. 61.37 ± 0.70% of cetuximab was adsorbed to the surface of the nanoparticles. Cellular uptake studies displayed enhanced internalization of Cet-MCPCNPs in Caco-2 (EGFR +ve) cells, which ultimately resulted in a significant reduction in cancer cell propagation. The cell cycle analysis indicated that Cet- MCPCNPs induced cell death in enhanced percentage of Caco-2 cells by undergoing cell cycle arrest in the G2/M phase. These data suggest that Cet-MCPCNPs represent a new and promising targeting approach for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Rayan Sabra
- The School of Pharmacy, University of Nottingham, Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Nashiru Billa
- The School of Pharmacy, University of Nottingham, Malaysia Campus, Semenyih, Selangor, Malaysia; College of Pharmacy, Qatar University, Doha, Qatar.
| | - Clive J Roberts
- The School of Pharmacy, University of Nottingham, Park Campus, Nottingham, United Kingdom
| |
Collapse
|
46
|
Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Sci Rep 2019; 9:14867. [PMID: 31619723 PMCID: PMC6795878 DOI: 10.1038/s41598-019-51244-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
We previously showed that curcumin, a phytopolyphenol found in turmeric (Curcuma longa), targets a series of enzymes in the ROS metabolic pathway, induces irreversible growth arrest, and causes apoptosis. In this study, we tested Pentagamavunon-1 (PGV-1), a molecule related to curcumin, for its inhibitory activity on tumor cells in vitro and in vivo. PGV-1 exhibited 60 times lower GI50 compared to that of curcumin in K562 cells, and inhibited the proliferation of cell lines derived from leukemia, breast adenocarcinoma, cervical cancer, uterine cancer, and pancreatic cancer. The inhibition of growth by PGV-1 remained after its removal from the medium, which suggests that PGV-1 irreversibly prevents proliferation. PGV-1 specifically induced prometaphase arrest in the M phase of the cell cycle, and efficiently induced cell senescence and cell death by increasing intracellular ROS levels through inhibition of ROS-metabolic enzymes. In a xenograft mouse model, PGV-1 had marked anti-tumor activity with little side effects by oral administration, whereas curcumin rarely inhibited tumor formation by this administration. Therefore, PGV-1 is a potential therapeutic to induce tumor cell apoptosis with few side effects and low risk of relapse.
Collapse
|
47
|
Ali I, Suhail M, Naqshbandi MF, Fazil M, Ahmad B, Sayeed A. Role of Unani Medicines in Cancer Control and Management. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885513666180907103659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:Cancer is a havoc and killer disease. Several ways including allopathic chemotherapy have been used in the cancer treatment. Allopathic chemotherapy has several limitations and side effects. Unani medicine is also one of the therapies to cure cancer.Objective:In this type of treatment, herbal drugs are used for the treatment and prevention of cancer. The main attractive thing about herbal drug is no side effect as compared to allopathic chemotherapy.Methods:Actually, herbal drugs are the extracts of medicinal plants. The plant extracts are obtained by crushing and heating the main part of the plants; showing anticancer activity. The main plants used in the treatment of cancer are oroxylum indicum, dillenia indica, terminalia arjuna etc.Results:Mainly the cancers treated are of digestive system, breast, cervical, brain, blood, bone, lungs, thyroid, uterine, bladder, throat etc.Conclusion:The present review article discusses the importance of Unani system of medicine for the treatment of cancer. Besides, the future perspectives of Unani medicine in cancer treatment are also highlighted.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Mohd. Farooq Naqshbandi
- Department of Biotechnology, Jamia Millia Islamia (Central University), New Delhi- 110025, India
| | - Mohd. Fazil
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| | - Bilal Ahmad
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| | - Ahmad Sayeed
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| |
Collapse
|
48
|
Liu Q, Wang K. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol Int 2019; 43:1245-1256. [PMID: 30811078 DOI: 10.1002/cbin.11121] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Qiang Liu
- Orthopedic DepartmentsThe Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710054 Shanxi China
| | - Kunzheng Wang
- Orthopedic DepartmentsThe Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710054 Shanxi China
| |
Collapse
|
49
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
50
|
Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. Int J Mol Sci 2019; 20:E2454. [PMID: 31108984 PMCID: PMC6566943 DOI: 10.3390/ijms20102454] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
Collapse
Affiliation(s)
- Nor Isnida Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
- UniKL MESTECH, A1-1 Jalan TKS1, Taman Kajang Sentral, 43000 Kajang, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, UPM, 434000 Serdang, Malaysia.
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| |
Collapse
|