1
|
Shin EH, Le Q, Barboza R, Morin A, Singh SM, Castellani CA. Mitochondrial transplantation: Triumphs, challenges, and impacts on nuclear genome remodelling. Mitochondrion 2025; 84:102042. [PMID: 40254118 DOI: 10.1016/j.mito.2025.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/24/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Mitochondria are membrane-bound organelles of eukaryotic cells that play crucial roles in cell functioning and homeostasis, including ATP generation for cellular energy. Mitochondrial function is associated with several complex diseases and disorders, including cardiovascular, cardiometabolic, neurodegenerative diseases and some cancers. The risk for these diseases and disorders is often associated with mitochondrial dysfunction, particularly the quantitative and qualitative features of the mitochondrial genome. Emerging results implicate mito-nuclear crosstalk as the mechanism by which mtDNA variation affects complex disease outcomes. Experimental approaches are emerging for the targeting of mitochondria as a potential therapeutic for several of these diseases, particularly in the form of mitochondrial transplantation. Current approaches to mitochondrial transplantation generally involve isolating healthy mitochondria from donor cells and introducing them to diseased recipients towards amelioration of mitochondrial dysfunction. Using such a protocol, several reports have shown recovery of mitochondrial function and improved disease outcomes post-mitochondrial transplantation, highlighting its potential as a therapeutic method for several complex, severe and debilitating diseases. Additionally, the mitochondrial genome can be modified prior to transplantation to target disease-associated site-specific mutations and to reduce the ratio of mutant-to-WT alleles. These promising results may underlie the potential impact of mitochondrial transplantation on mito-nuclear genome interactions in the setting of the disease. Further, we recommend that mitochondrial transplantation experimentation include an assessment of potential impacts on remodelling of the nuclear genome, particularly the nuclear epigenome and transcriptome. Herein, we review these and other triumphs and challenges of mitochondrial transplantation as a potential novel therapeutic for mitochondria-associated diseases.
Collapse
Affiliation(s)
- Elly H Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Quinn Le
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Rachel Barboza
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Amanda Morin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London N6A 3K7, Canada; Children's Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
| | - Christina A Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada; Children's Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada; McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Yang X, Zhan Y, Li Y, Shen X, Ma Y, Liu Z, Liu Y, Liang C, Zhang X, Yan Y, Shen W. Synthesis of a novel mitochondrial fluorescent probe - killing cancer cells in vitro and in vivo. Front Pharmacol 2025; 16:1543559. [PMID: 40308767 PMCID: PMC12040830 DOI: 10.3389/fphar.2025.1543559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Purpose The global incidence and mortality rates associated with cancer are increasing annually, presenting significant challenges in oncology, particularly regarding the efficacy and toxicity of antineoplastic agents. Additionally, mitochondria are recognized for their multifaceted roles in the progression of malignant tumors. Mitochondrial-targeting drugs offer promising avenues for cancer therapy. This study focuses on the synthesis of a mitochondrial fluorescent probe, designated Mitochondrial Probe Molecule-1 (MPM-1), and evaluates its anti-tumor effects on colon cancer (CRC) and lung cancer (LUNG) both in vitro and in vivo. Methods Mito Tracker Green FM staining was performed to investigate the subcellular location of MPM-1. Cell cycle assay, colony formation, EdU, assay of cell apoptosis, wound healing assay, and trans-well migration assay were utilized to confirm anticancer properties of MPM-1 in vitro. Using a xenograft mouse model, the effects of MPM-1 in tumor treatment were also identified. RNA-seq and Western blot were performed to examine the underlying mechanism of MPM-1. Results The findings indicate that MPM-1 selectively targets mitochondria and exerts inhibitory effects on CRC and LUNG cells. Specifically, MPM-1 significantly reduced the proliferation and migration of lung cancer cell lines A549 and H1299, as well as colon cancer cell lines SW480 and LOVO, with IC50 values of 4.900, 7.376, 8.677, and 7.720 µM, respectively, while also promoting apoptosis. RNA-seq analysis revealed that MPM-1 exerts its broad-spectrum anticancer effects through interactions with multiple signaling pathways, including mTOR, Wnt, Hippo, PI3K/Akt, and MAPK pathways. Additionally, in vivo studies demonstrated that MPM-1 effectively inhibited tumor progression. Conclusion In summary, MPM-1 demonstrates the ability to inhibit the growth of CRC and LUNG by targeting mitochondria and modulating several signaling pathways that attenuate tumor cell migration and proliferation while promoting apoptosis. This research underscores the potential of MPM-1 as a tumor suppressor and lays a robust foundation for the future development of innovative anticancer therapies that target mitochondrial functions.
Collapse
Affiliation(s)
- Xiaowen Yang
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yiting Zhan
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yifei Li
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Xinzhuang Shen
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yuqiu Ma
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zongjun Liu
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yipeng Liu
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Chengjin Liang
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaoyuan Zhang
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining, China
| | - Wenzhi Shen
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Kruth PS, MacNeil C, Barta JR. Expression of fragmented ribosomal RNA from the mitochondrial genome of Eimeria tenella. Mitochondrion 2025; 81:101990. [PMID: 39586386 DOI: 10.1016/j.mito.2024.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Highly fragmented ribosomal RNA-coding sequences are characteristic of mitogenomes of protozoan parasites of the phylum Apicomplexa. Identification of ribosomal RNA encoding sequences in apicomplexan mitogenomes has largely relied on sequence similarity with several apicomplexan species for which expression of these genes has been demonstrated. The present study applied Next-Gen sequencing to investigate the expression of fragmented putative mitochondrial rRNAs inEimeria tenella, a coccidian parasite of poultry. Expression of 18 of 19 putative rDNA fragments included in the original publishedE. tenellamitogenome was confirmed. Sequence comparison withPlasmodium falciparumand NGS identified 14 additional putative fragments. Two small RNAs were identified that did not share sequence similarities with other known rDNA sequences. Eight sRNAs were identified that represented smaller chunks of putative rDNA fragments and three were observed that represented two putative rDNA fragments (i.e., polycistronic transcripts). Relative abundances of each sRNA species ranged across three orders of magnitude. Twenty-five of the 45 distinct sRNAs expressed from the mitogenome were polyadenylated in more than 50% of instances. The identification of unique sRNAs without significant homology to known sequences and the observation of polycistronic transcripts highlight the complexity of regulation of expression of theE.tenellamitogenome. The varied relative abundances, presence of shorter RNAs expressed from longer putative rDNA fragments, and variable polyadenylation of these sRNAs highlight additional areas for future work towards better understanding the expression of the mitogenome in this important poultry pathogen. More generally, these findings expand our wider understanding of evolution of apicomplexan mitogenomes.
Collapse
|
4
|
Ashokan A, Birnhak M, Surnar B, Nguyen F, Basu U, Guin S, Dhar S. Cell specific mitochondria targeted metabolic alteration for precision medicine. NANOSCALE 2025; 17:1260-1269. [PMID: 39441617 DOI: 10.1039/d4nr01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mitochondria play important roles in the maintenance of cellular health. In cancer, these dynamic organelles undergo significant changes in terms of membrane hyperpolarization, altered metabolic functions, fusion-fission balance, and several other parameters. These alterations promote cancer growth, proliferation and spread, and the eventual development of metastatic disease and therapeutic resistance. Thus, routing therapeutics to the mitochondrial compartments can be one of the most promising methodologies for tackling such changes to achieve cancer control. Over the last decade, targeted cancer medicine has experienced tremendous growth, enabling the targeting of mitochondria for greater therapeutic specificity. Here, we demonstrate a feasibility method to specifically target the mitochondria of prostate cancer cells. We achieve such dual targeting by utilizing two functionalized polymers and constructing a single blended nanoparticle (NP). Such a targeting strategy was developed utilizing a polymeric platform that differed in terms of the length of the amphiphilic portions, the linker between the hydrophobic portions, and the attached targeting moieties. In doing this, we demonstrate prostate cancer specific mitochondrial delivery of a chemotherapeutic prodrug to create repair-resistant adducts within mitochondrial DNA promoting cellular death. This article documents the synthetic strategy, optimization of blended NPs for cell specific mitochondria targeting, and the utility of the proof-of-concept design was demonstrated using a combination of analytical and in vitro studies.
Collapse
Affiliation(s)
- Akash Ashokan
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Centre, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Birnhak
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Bapurao Surnar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Centre, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Felix Nguyen
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Uttara Basu
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Centre, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Subham Guin
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Centre, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
5
|
Kumar SH, Acharyya S, Chouksey A, Soni N, Nazeer N, Mishra PK. Air pollution-linked epigenetic modifications in placental DNA: Prognostic potential for identifying future foetal anomalies. Reprod Toxicol 2024; 129:108675. [PMID: 39074641 DOI: 10.1016/j.reprotox.2024.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Prenatal exposure to air pollution is a significant risk factor for the mother and the developing foetus. The accumulation of pollutants in the placenta can cause a self-cascade loop of pro-inflammatory cytokine responses and DNA double-strand breaks. Previous research has shown that airborne particulate matter can damage the epigenome and disturb mitochondrial machinery, ultimately impairing placental function. Mitochondria are essential for preserving cellular homeostasis, energy metabolism, redox equilibrium, and epigenetic reprogramming. As these organelles are subtle targets of environmental exposures, any disruption in the signaling pathways can result in epigenomic instability, which can impact gene expression and mitochondrial function. This, in turn, can lead to changes in DNA methylation, post-translational histone modifications, and aberrant expression of microRNAs in proliferating trophoblast cells. The placenta has two distinct layers, cytotrophoblasts, and syncytiotrophoblasts, each with its mitochondria, which play important roles in preeclampsia, gestational diabetes, and overall health. Foetal nucleic acids enter maternal circulation during placental development because of necrotic, apoptotic, and inflammatory mechanisms. These nucleic acids reflect normal or abnormal ongoing cellular changes during prenatal foetal development. Detecting cell-free DNA in the bloodstream can be a biomarker for predicting negative pregnancy-related outcomes and recognizing abnormalities in foetal growth. Hence, a thorough understanding of how air pollution induces epigenetic variations within the placenta could offer crucial insights into underlying mechanisms and prolonged repercussions on foetal development and susceptibility in later stages of life.
Collapse
Affiliation(s)
- Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India.
| |
Collapse
|
6
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Han B, Zhen F, Sun Y, Sun B, Wang HY, Liu W, Huang J, Liang X, Wang YR, Chen XS, Li SJ, Hu J. Tumor suppressor KEAP1 promotes HSPA9 degradation, controlling mitochondrial biogenesis in breast cancer. Cell Rep 2024; 43:114507. [PMID: 39003742 DOI: 10.1016/j.celrep.2024.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The oxidative-stress-related protein Kelch-like ECH-associated protein 1 (KEAP1) is a substrate articulator of E3 ubiquitin ligase, which plays an important role in the ubiquitination modification of proteins. However, the function of KEAP1 in breast cancer and its impact on the survival of patients with breast cancer remain unclear. Our study demonstrates that KEAP1, a positive prognostic factor, plays a crucial role in regulating cell proliferation, apoptosis, and cell cycle transition in breast cancer. We investigate the underlying mechanism using human tumor tissues, high-throughput detection technology, and a mouse xenograft tumor model. KEAP1 serves as a key regulator of cellular metabolism, the reprogramming of which is one of the hallmarks of tumorigenesis. KEAP1 has a significant effect on mitochondrial biogenesis and oxidative phosphorylation by regulating HSPA9 ubiquitination and degradation. These results suggest that KEAP1 could serve as a potential biomarker and therapeutic target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Bing Han
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Fang Zhen
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Yue Sun
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China
| | - Hong-Yi Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Wei Liu
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Jian Huang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Xiao Liang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang Province 150081, China
| | - Ya-Ru Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Xue-Song Chen
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province 150001, China.
| | - Shui-Jie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
| | - Jing Hu
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang Province 150081, China.
| |
Collapse
|
8
|
Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther 2024; 28:403-423. [PMID: 38890247 PMCID: PMC11211167 DOI: 10.1007/s40291-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey.
| | - Senanur Aslan
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Dilbeste Demir
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sümeyye Kayaoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mevsim Saydam
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yeda Keleş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Damla Kolcuoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Taşkurt Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Güneş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
9
|
Ashokan A, Sarkar S, Kamran MZ, Surnar B, Kalathil AA, Spencer A, Dhar S. Simultaneous targeting of peripheral and brain tumors with a therapeutic nanoparticle to disrupt metabolic adaptability at both sites. Proc Natl Acad Sci U S A 2024; 121:e2318119121. [PMID: 38709930 PMCID: PMC11098113 DOI: 10.1073/pnas.2318119121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/14/2024] [Indexed: 05/08/2024] Open
Abstract
Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.
Collapse
Affiliation(s)
- Akash Ashokan
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL33136
| | - Shrita Sarkar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL33136
| | - Mohammad Z. Kamran
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL33136
| | - Bapurao Surnar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL33136
| | - Akil A. Kalathil
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Alexis Spencer
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL33136
- Department of Chemistry, University of Miami, Coral Gables, FL33146
| |
Collapse
|
10
|
Bisht S, Mao Y, Easwaran H. Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes. Curr Opin Oncol 2024; 36:82-92. [PMID: 38441107 PMCID: PMC10939788 DOI: 10.1097/cco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW This review emphasizes the role of epigenetic processes as incidental changes occurring during aging, which, in turn, promote the development of cancer. RECENT FINDINGS Aging is a complex biological process associated with the progressive deterioration of normal physiological functions, making age a significant risk factor for various disorders, including cancer. The increasing longevity of the population has made cancer a global burden, as the risk of developing most cancers increases with age due to the cumulative effect of exposure to environmental carcinogens and DNA replication errors. The classical 'somatic mutation theory' of cancer cause is being challenged by the observation that multiple normal cells harbor cancer driver mutations without resulting in cancer. In this review, we discuss the role of age-associated epigenetic alterations, including DNA methylation, which occur across all cell types and tissues with advancing age. There is an increasing body of evidence linking these changes with cancer risk and prognosis. SUMMARY A better understanding about the epigenetic changes acquired during aging is critical for comprehending the mechanisms leading to the age-associated increase in cancer and for developing novel therapeutic strategies for cancer treatment and prevention.
Collapse
Affiliation(s)
- Shilpa Bisht
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiqing Mao
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Nguyen J, Win PW, Nagano TS, Shin EH, Newcomb C, Arking DE, Castellani CA. Mitochondrial DNA copy number reduction via in vitro TFAM knockout remodels the nuclear epigenome and transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577835. [PMID: 38352513 PMCID: PMC10862824 DOI: 10.1101/2024.01.29.577835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA (nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were overrepresented, providing insight into the underlying biological mechanisms facilitating these associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, aging, and complex disease.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler Shin Nagano
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elly H. Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles Newcomb
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Children’s Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
12
|
Ceylan D, Arat-Çelik HE, Aksahin IC. Integrating mitoepigenetics into research in mood disorders: a state-of-the-art review. Front Physiol 2024; 15:1338544. [PMID: 38410811 PMCID: PMC10895490 DOI: 10.3389/fphys.2024.1338544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, are highly prevalent and stand among the leading causes of disability. Despite the largely elusive nature of the molecular mechanisms underpinning these disorders, two pivotal contributors-mitochondrial dysfunctions and epigenetic alterations-have emerged as significant players in their pathogenesis. This state-of-the-art review aims to present existing data on epigenetic alterations in the mitochondrial genome in mood disorders, laying the groundwork for future research into their pathogenesis. Associations between abnormalities in mitochondrial function and mood disorders have been observed, with evidence pointing to notable changes in mitochondrial DNA (mtDNA). These changes encompass variations in copy number and oxidative damage. However, information on additional epigenetic alterations in the mitochondrial genome remains limited. Recent studies have delved into alterations in mtDNA and regulations in the mitochondrial genome, giving rise to the burgeoning field of mitochondrial epigenetics. Mitochondrial epigenetics encompasses three main categories of modifications: mtDNA methylation/hydroxymethylation, modifications of mitochondrial nucleoids, and mitochondrial RNA alterations. The epigenetic modulation of mitochondrial nucleoids, lacking histones, may impact mtDNA function. Additionally, mitochondrial RNAs, including non-coding RNAs, present a complex landscape influencing interactions between the mitochondria and the nucleus. The exploration of mitochondrial epigenetics offers valuable perspectives on how these alterations impact neurodegenerative diseases, presenting an intriguing avenue for research on mood disorders. Investigations into post-translational modifications and the role of mitochondrial non-coding RNAs hold promise to unravel the dynamics of mitoepigenetics in mood disorders, providing crucial insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Deniz Ceylan
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
| | | | - Izel Cemre Aksahin
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| |
Collapse
|
13
|
Miller RL, Rivera J, Lichtiger L, Govindarajulu US, Jung KH, Lovinsky-Desir S, Perera F, Balcer Whaley S, Newman M, Grant TL, McCormack M, Perzanowski M, Matsui EC. Associations between mitochondrial biomarkers, urban residential exposures and childhood asthma outcomes over 6 months. ENVIRONMENTAL RESEARCH 2023; 239:117342. [PMID: 37813137 PMCID: PMC10843300 DOI: 10.1016/j.envres.2023.117342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
Determining biomarkers of responses to environmental exposures and evaluating whether they predict respiratory outcomes may help optimize environmental and medical approaches to childhood asthma. Relative mitochondrial (mt) DNA abundance and other potential mitochondrial indicators of oxidative stress may provide a sensitive metric of the child's shifting molecular responses to its changing environment. We leveraged two urban childhood cohorts (Environmental Control as Add-on Therapy in Childhood Asthma (ECATCh); Columbia Center for Children's Environmental Health (CCCEH)) to ascertain whether biomarkers in buccal mtDNA associate with airway inflammation and altered lung function over 6 months of time and capture biologic responses to multiple external stressors such as indoor allergens and fine particulate matter (PM2.5). Relative mtDNA content was amplified by qPCR and methylation of transfer RNA phenylalanine/rRNA 12S (TF/RNR1), cytochrome c oxidase (CO1), and carboxypeptidase O (CPO) was measured by pyrosequencing. Data on residential exposures and respiratory outcomes were harmonized between the two cohorts. Repeated measures and multiple regression models were utilized to assess relationships between mitochondrial biomarkers, respiratory outcomes, and residential exposures (PM2.5, allergens), adjusted for potential confounders and time-varying asthma. We found across the 6 month visits, a 0.64 fold higher level of TF/RNR1 methylation was detected among those with asthma in comparison to those without asthma ((parameter estimate (PE) 0.64, standard error 0.28, p = 0.03). In prospective analyses, CPO methylation was associated with subsequent reduced forced vital capacity (FVC; PE -0.03, standard error 0.01, p = 0.02). Bedroom dust mouse allergen, but not indoor PM2.5, was associated with higher methylation of TF/RNR1 (PE 0.015, standard error 0.006, p = 0.01). Select mtDNA measures in buccal cells may indicate children's responses to toxic environmental exposures and associate selectively with asthma and lung function.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA; Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA.
| | - Janelle Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lydia Lichtiger
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Usha S Govindarajulu
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kyung Hwa Jung
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Frederica Perera
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Susan Balcer Whaley
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| | - Michelle Newman
- Department of Epidemiology and Public Health, University of Maryland, 10 S. Pine St, MSTF 3-34, Baltimore, MD, 21201, USA
| | - Torie L Grant
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith McCormack
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Perzanowski
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Elizabeth C Matsui
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| |
Collapse
|
14
|
Meulders B, Marei WFA, Xhonneux I, Bols PEJ, Leroy JLMR. Effect of lipotoxicity on mitochondrial function and epigenetic programming during bovine in vitro embryo production. Sci Rep 2023; 13:21664. [PMID: 38066095 PMCID: PMC10709407 DOI: 10.1038/s41598-023-49184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Maternal metabolic disorders may cause lipotoxic effects on the developing oocyte. Understanding the timing at which this might disrupt embryo epigenetic programming and how this is linked with mitochondrial dysfunction is crucial for improving assisted reproductive treatments, but has not been investigated before. Therefore, we used a bovine in vitro model to investigate if pathophysiological palmitic acid (PA) concentrations during in vitro oocyte maturation and in vitro embryo culture alter embryo epigenetic patterns (DNA methylation (5mC) and histone acetylation/methylation (H3K9ac/H3K9me2)) compared to control (CONT) and solvent control (SCONT), at the zygote and morula stage. Secondly, we investigated if these epigenetic alterations are associated with mitochondrial dysfunction and changes in ATP production rate, or altered expression of epigenetic regulatory genes. Compared to SCONT, H3K9ac and H3K9me2 levels were increased in PA-derived zygotes. Also, 5mC and H3K9me2 levels were increased in PA-exposed morulae compared to SCONT. This was associated with complete inhibition of glycolytic ATP production in oocytes, increased mitochondrial membrane potential and complete inhibition of glycolytic ATP production in 4-cell embryos and reduced SOD2 expression in PA-exposed zygotes and morulae. For the first time, epigenetic alterations in metabolically compromised zygotes and morulae have been observed in parallel with mitochondrial dysfunction in the same study.
Collapse
Affiliation(s)
- Ben Meulders
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium.
| | - Waleed F A Marei
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Inne Xhonneux
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Peter E J Bols
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Jo L M R Leroy
- Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
15
|
Mas-Bargues C. Mitochondria pleiotropism in stem cell senescence: Mechanisms and therapeutic approaches. Free Radic Biol Med 2023; 208:657-671. [PMID: 37739140 DOI: 10.1016/j.freeradbiomed.2023.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Aging is a complex biological process characterized by a progressive decline in cellular and tissue function, ultimately leading to organismal aging. Stem cells, with their regenerative potential, play a crucial role in maintaining tissue homeostasis and repair throughout an organism's lifespan. Mitochondria, the powerhouses of the cell, have emerged as key players in the aging process, impacting stem cell function and contributing to age-related tissue dysfunction. Here are discuss the mechanisms through which mitochondria influence stem cell fate decisions, including energy production, metabolic regulation, ROS signalling, and epigenetic modifications. Therefore, this review highlights the role of mitochondria in driving stem cell senescence and the subsequent impact on tissue function, leading to overall organismal aging and age-related diseases. Finally, we explore potential anti-aging therapies targeting mitochondrial health and discuss their implications for promoting healthy aging. This comprehensive review sheds light on the critical interplay between mitochondrial function, stem cell senescence, and organismal aging, offering insights into potential strategies for attenuating age-related decline and promoting healthy longevity.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
16
|
Zhong M, Liang P, Feng Z, Yang X, Li G, Sun R, He L, Tan J, Xiao Y, Yu Z, Yi M, Wang X. A nanocomposite competent to overcome cascade drug resistance in ovarian cancer via mitochondria dysfunction and NO gas synergistic therapy. Asian J Pharm Sci 2023; 18:100872. [PMID: 38161785 PMCID: PMC10755721 DOI: 10.1016/j.ajps.2023.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/20/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) is one of the most common and recurring malignancies in gynecology. Patients with relapsed OC always develop "cascade drug resistance" (CDR) under repeated chemotherapy, leading to subsequent failure of chemotherapy. To overcome this challenge, amphiphiles (P1) carrying a nitric oxide (NO) donor (Isosorbide 5-mononitrate, ISMN) and high-density disulfide are synthesized for encapsulating mitochondria-targeted tetravalent platinum prodrug (TPt) to construct a nanocomposite (INP@TPt). Mechanism studies indicated that INP@TPt significantly inhibited drug-resistant cells by increasing cellular uptake and mitochondrial accumulation of platinum, depleting glutathione, and preventing apoptosis escape through generating highly toxic peroxynitrite anion (ONOO-). To better replicate the microenvironmental and histological characteristics of the drug resistant primary tumor, an OC patient-derived tumor xenograft (PDXOC) model in BALB/c nude mice was established. INP@TPt showed the best therapeutic effects in the PDXOC model. The corresponding tumor tissues contained high ONOO- levels, which were attributed to the simultaneous release of O2•- and NO in tumor tissues. Taken together, INP@TPt-based systematic strategy showed considerable potential and satisfactory biocompatibility in overcoming platinum CDR, providing practical applications for ovarian therapy.
Collapse
Affiliation(s)
- Min Zhong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Peiqin Liang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Zhenzhen Feng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xin Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Guang Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Rui Sun
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan 523018, China
| | - Lijuan He
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Jinxiu Tan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Yangpengcheng Xiao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan 523018, China
| | - Muhua Yi
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| |
Collapse
|
17
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|
18
|
Shukla P, Melkani GC. Mitochondrial epigenetic modifications and nuclear-mitochondrial communication: A new dimension towards understanding and attenuating the pathogenesis in women with PCOS. Rev Endocr Metab Disord 2023; 24:317-326. [PMID: 36705802 PMCID: PMC10150397 DOI: 10.1007/s11154-023-09789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
Mitochondrial DNA (mtDNA) epigenetic modifications have recently gained attention in a plethora of complex diseases, including polycystic ovary syndrome (PCOS), a common cause of infertility in women of reproductive age. Herein we discussed mtDNA epigenetic modifications and their impact on nuclear-mitochondrial interactions in general and the latest advances indicating the role of mtDNA methylation in the pathophysiology of PCOS. We highlighted epigenetic changes in nuclear-related mitochondrial genes, including nuclear transcription factors that regulate mitochondrial function and may be involved in the development of PCOS or its related traits. Additionally, therapies targeting mitochondrial epigenetics, including time-restricted eating (TRE), which has been shown to have beneficial effects by improving mitochondrial function and may be mediated by epigenetic modifications, have also been discussed. As PCOS has become a major metabolic disorder and a risk factor for obesity, cardiometabolic disorders, and diabetes, lifestyle/behavior intervention using TRE that reinforces feeding-fasting rhythms without reducing caloric intake may be a promising therapeutic strategy for attenuating the pathogenesis. Furthermore, future perspectives in the area of mitochondrial epigenetics are described.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India.
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| |
Collapse
|
19
|
Mitophagy-promoting miR-138-5p promoter demethylation inhibits pyroptosis in sepsis-associated acute lung injury. Inflamm Res 2023; 72:329-346. [PMID: 36538076 DOI: 10.1007/s00011-022-01675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The present study was designed to explore the potential regulatory mechanism between mitophagy and pyroptosis during sepsis-associated acute lung injury (ALI). METHODS In vitro or in vivo models of sepsis-associated ALI were established by administering lipopolysaccharide (LPS) or performing caecal ligation and puncture (CLP) surgery. Pyroptosis levels were detected by electron microscopy, immunofluorescence, flow cytometry, western blotting and immunohistochemistry. Dual-luciferase reporter gene assay was applied to verify the targeting relationship between miR-138-5p and NLRP3. Methylation-specific PCR and chromatin immunoprecipitation assays were used to determine methylation of the miR-138-5p promoter. Mitophagy levels were examined by transmission electron microscopy and western blotting. RESULTS NLRP3 inflammasome silencing alleviated alveolar macrophage (AM) pyroptosis and septic lung injury. In addition, we confirmed the direct targeting relationship between miR-138-5p and NLRP3. Overexpressed miR-138-5p alleviated AM pyroptosis and the pulmonary inflammatory response. Moreover, the decreased expression of miR-138-5p was confirmed to depend on promoter methylation, while inhibition of miR-138-5p promoter methylation attenuated AM pyroptosis and pulmonary inflammation. Here, we discovered that an increased cytoplasmic mtDNA content in sepsis-induced ALI models induced the methylation of the miR-138-5p promoter, thereby decreasing miR-138-5p expression, which may activate the NLRP3 inflammasome and trigger AM pyroptosis. Mitophagy, a form of selective autophagy that clears damaged mitochondria, reduced cytoplasmic mtDNA levels. Furthermore, enhanced mitophagy might suppress miR-138-5p promoter methylation and relieve the pulmonary inflammatory response, changes that were reversed by treatment with isolated mtDNA. CONCLUSIONS In summary, our study indicated that mitophagy induced the demethylation of the miR-138-5p promoter, which may subsequently inhibit NLRP3 inflammasome, AM pyroptosis and inflammation in sepsis-induced lung injury. These findings may provide a promising therapeutic target for sepsis-associated ALI.
Collapse
|
20
|
Helaly AMN, Ghorab DSED. Schizophrenia as metabolic disease. What are the causes? Metab Brain Dis 2023; 38:795-804. [PMID: 36656396 PMCID: PMC9849842 DOI: 10.1007/s11011-022-01147-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
Schizophrenia (SZ) is a devastating neurodevelopmental disease with an accelerated ageing feature. The criteria of metabolic disease firmly fit with those of schizophrenia. Disturbances in energy and mitochondria are at the core of complex pathology. Genetic and environmental interaction creates changes in redox, inflammation, and apoptosis. All the factors behind schizophrenia interact in a cycle where it is difficult to discriminate between the cause and the effect. New technology and advances in the multi-dispensary fields could break this cycle in the future.
Collapse
Affiliation(s)
- Ahmed Mohamed Nabil Helaly
- Clinical Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan.
- Forensic Medicine and Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Doaa Shame El Din Ghorab
- Basic Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Yang Y, Mai Z, Zhang Y, Yu Z, Li W, Zhang Y, Li F, Timashev P, Luan P, Luo D, Liang XJ, Yu Z. A Cascade Targeted and Mitochondrion-Dysfunctional Nanomedicine Capable of Overcoming Drug Resistance in Hepatocellular Carcinoma. ACS NANO 2023; 17:1275-1286. [PMID: 36602608 DOI: 10.1021/acsnano.2c09342] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemoresistance is a formidable issue in clinical anticancer therapy and is pertinent to the lowered efficacies of chemotherapeutics and the activated tumor self-repairing proceedings. Herein, bifunctional amphiphiles containing galactose ligands and high-density disulfide are synthesized for encapsulating mitochondrion-targeting tetravalent platinum prodrugs to construct a cascade targeted and mitochondrion-dysfunctional nanomedicine (Gal-NP@TPt). Subsequent investigations verify that Gal-NP@TPt with sequential targeting functions toward tumors and mitochondria improved the spatiotemporal level of platinum. In addition, glutathione depletion by Gal-NP@TPt appear to substantially inhibit the proceedings of platinum detoxification, inducing the susceptibility to the mitochondrial platinum. Moreover, the strategic transportation of platinum to mitochondria lacking DNA repair machinery by Gal-NP@TPt lowers the possibility of platinum deactivation. Eventually, Gal-NP@TPt demonstrates appreciable antitumor effects for the systemic treatment of patient-derived tumor xenografts of hepatocellular carcinoma. Note that these strategies in overcoming drug resistance have also been confirmed to be valid based on genome-wide analysis via RNA-sequencing. Therefore, an intriguing multifunctional nanomedicine capable of resolving formidable chemoresistance is achieved, which should be greatly emphasized in practical applications for the treatment of intractable tumors.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziyi Mai
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanxin Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiyu Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenjing Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Yuxuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Ping Luan
- Guangdong Second Provincial General Hospital & Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Imamura M. Hypothesis: can transfer of primary neoplasm-derived extracellular vesicles and mitochondria contribute to the development of donor cell-derived hematologic neoplasms after allogeneic hematopoietic cell transplantation? Cytotherapy 2022; 24:1169-1180. [PMID: 36058790 DOI: 10.1016/j.jcyt.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an essential treatment option for various neoplastic and non-neoplastic hematologic diseases. Although its efficacy is modest, a significant proportion of patients experience relapse, graft-versus-host disease, infection or impaired hematopoiesis. Among these, the most frequent cause of post-transplant mortality is relapse, whereas the development of de novo hematologic neoplasms from donor cells after allo-HCT occurs on some occasion as a rare complication. The mechanisms involved in the pathogenesis of the de novo hematologic neoplasms from donor cells are complex, and a multifactorial process contributes to the development of this complication. Recently, extracellular vesicles, particularly exosomes, and mitochondria have been shown to play crucial roles in intercellular communication through the transfer of specific constituents, such as deoxyribonucleic acids, ribonucleic acids, lipids, metabolites and cytosolic and cell-surface proteins. Here, I discuss the potential causative roles of these subcellular components in the development of de novo hematologic neoplasms from donor cells after allo-HCT, in addition to other etiologies.
Collapse
Affiliation(s)
- Masahiro Imamura
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan.
| |
Collapse
|
23
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Bikomeye JC, Terwoord JD, Santos JH, Beyer AM. Emerging mitochondrial signaling mechanisms in cardio-oncology: beyond oxidative stress. Am J Physiol Heart Circ Physiol 2022; 323:H702-H720. [PMID: 35930448 PMCID: PMC9529263 DOI: 10.1152/ajpheart.00231.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022]
Abstract
Many anticancer therapies (CTx) have cardiotoxic side effects that limit their therapeutic potential and cause long-term cardiovascular complications in cancer survivors. This has given rise to the field of cardio-oncology, which recognizes the need for basic, translational, and clinical research focused on understanding the complex signaling events that drive CTx-induced cardiovascular toxicity. Several CTx agents cause mitochondrial damage in the form of mitochondrial DNA deletions, mutations, and suppression of respiratory function and ATP production. In this review, we provide a brief overview of the cardiovascular complications of clinically used CTx agents and discuss current knowledge of local and systemic secondary signaling events that arise in response to mitochondrial stress/damage. Mitochondrial oxidative stress has long been recognized as a contributor to CTx-induced cardiotoxicity; thus, we focus on emerging roles for mitochondria in epigenetic regulation, innate immunity, and signaling via noncoding RNAs and mitochondrial hormones. Because data exploring mitochondrial secondary signaling in the context of cardio-oncology are limited, we also draw upon clinical and preclinical studies, which have examined these pathways in other relevant pathologies.
Collapse
Affiliation(s)
- Jean C Bikomeye
- Doctorate Program in Public and Community Health, Division of Epidemiology and Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Janée D Terwoord
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Sciences Department, Rocky Vista University, Ivins, Utah
| | - Janine H Santos
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
25
|
Atilano SR, Abedi S, Ianopol NV, Singh MK, Norman JL, Malik D, Falatoonzadeh P, Chwa M, Nesburn AB, Kuppermann BD, Kenney MC. Differential Epigenetic Status and Responses to Stressors between Retinal Cybrids Cells with African versus European Mitochondrial DNA: Insights into Disease Susceptibilities. Cells 2022; 11:2655. [PMID: 36078063 PMCID: PMC9454894 DOI: 10.3390/cells11172655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial (mt) DNA can be classified into haplogroups, which represent populations with different geographic origins. Individuals of maternal African backgrounds (L haplogroup) are more prone to develop specific diseases compared those with maternal European-H haplogroups. Using a cybrid model, effects of amyloid-β (Amyβ), sub-lethal ultraviolet (UV) radiation, and 5-Aza-2'-deoxycytidine (5-aza-dC), a methylation inhibitor, were investigated. Amyβ treatment decreased cell metabolism and increased levels of reactive oxygen species in European-H and African-L cybrids, but lower mitochondrial membrane potential (ΔΨM) was found only in African-L cybrids. Sub-lethal UV radiation induced higher expression levels of CFH, EFEMP1, BBC3, and BCL2L13 in European-H cybrids compared to African-L cybrids. With respect to epigenetic status, the African-L cybrids had (a) 4.7-fold higher total global methylation levels (p = 0.005); (b) lower expression patterns for DNMT3B; and (c) elevated levels for HIST1H3F. The European-H and African-L cybrids showed different transcription levels for CFH, EFEMP1, CXCL1, CXCL8, USP25, and VEGF after treatment with 5-aza-dC. In conclusion, compared to European-H haplogroup cybrids, the African-L cybrids have different (i) responses to exogenous stressors (Amyβ and UV radiation), (ii) epigenetic status, and (iii) modulation profiles of methylation-mediated downstream complement, inflammation, and angiogenesis genes, commonly associated with various human diseases.
Collapse
Affiliation(s)
- Shari R. Atilano
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Sina Abedi
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Narcisa V. Ianopol
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Mithalesh K. Singh
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - J Lucas Norman
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Deepika Malik
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Payam Falatoonzadeh
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - Anthony B. Nesburn
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, Ophthalmology Research Laboratory, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Rd., Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
27
|
Zhu D, Li X, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci 2022; 47:645-659. [DOI: 10.1016/j.tibs.2022.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/08/2023]
|
28
|
Walker BR, Moraes CT. Nuclear-Mitochondrial Interactions. Biomolecules 2022; 12:biom12030427. [PMID: 35327619 PMCID: PMC8946195 DOI: 10.3390/biom12030427] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria, the cell’s major energy producers, also act as signaling hubs, interacting with other organelles both directly and indirectly. Despite having its own circular genome, the majority of mitochondrial proteins are encoded by nuclear DNA. To respond to changes in cell physiology, the mitochondria must send signals to the nucleus, which can, in turn, upregulate gene expression to alter metabolism or initiate a stress response. This is known as retrograde signaling. A variety of stimuli and pathways fall under the retrograde signaling umbrella. Mitochondrial dysfunction has already been shown to have severe implications for human health. Disruption of retrograde signaling, whether directly associated with mitochondrial dysfunction or cellular environmental changes, may also contribute to pathological deficits. In this review, we discuss known signaling pathways between the mitochondria and the nucleus, examine the possibility of direct contacts, and identify pathological consequences of an altered relationship.
Collapse
Affiliation(s)
- Brittni R. Walker
- Neuroscience Program, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm. 229, Miami, FL 33136, USA;
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm. 229, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-243-5858
| |
Collapse
|
29
|
Morin AL, Win PW, Lin AZ, Castellani CA. Mitochondrial genomic integrity and the nuclear epigenome in health and disease. Front Endocrinol (Lausanne) 2022; 13:1059085. [PMID: 36419771 PMCID: PMC9678080 DOI: 10.3389/fendo.2022.1059085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Bidirectional crosstalk between the nuclear and mitochondrial genomes is essential for proper cell functioning. Mitochondrial DNA copy number (mtDNA-CN) and heteroplasmy influence mitochondrial function, which can influence the nuclear genome and contribute to health and disease. Evidence shows that mtDNA-CN and heteroplasmic variation are associated with aging, complex disease, and all-cause mortality. Further, the nuclear epigenome may mediate the effects of mtDNA variation on disease. In this way, mitochondria act as an environmental biosensor translating vital information about the state of the cell to the nuclear genome. Cellular communication between mtDNA variation and the nuclear epigenome can be achieved by modification of metabolites and intermediates of the citric acid cycle and oxidative phosphorylation. These essential molecules (e.g. ATP, acetyl-CoA, ɑ-ketoglutarate and S-adenosylmethionine) act as substrates and cofactors for enzymes involved in epigenetic modifications. The role of mitochondria as an environmental biosensor is emerging as a critical modifier of disease states. Uncovering the mechanisms of these dynamics in disease processes is expected to lead to earlier and improved treatment for a variety of diseases. However, the influence of mtDNA-CN and heteroplasmy variation on mitochondrially-derived epigenome-modifying metabolites and intermediates is poorly understood. This perspective will focus on the relationship between mtDNA-CN, heteroplasmy, and epigenome modifying cofactors and substrates, and the influence of their dynamics on the nuclear epigenome in health and disease.
Collapse
Affiliation(s)
- Amanda L. Morin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Angela Z. Lin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- *Correspondence: Christina A. Castellani,
| |
Collapse
|
30
|
Kim SA, Chai JH, Jang EH. Prenatal Trimethyltin Exposure Induces Long-Term DNA Methylation Changes in the Male Mouse Hippocampus. Int J Mol Sci 2021; 22:ijms22158009. [PMID: 34360774 PMCID: PMC8348768 DOI: 10.3390/ijms22158009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Trimethyltin (TMT) is an irreversible neurotoxicant. Because prenatal TMT exposure has been reported to induce behavioral changes, this study was conducted to observe gender differences and epigenetic changes using a mouse model. In behavioral testing of offspring at 5 weeks of age, the total times spent in the center, corner, or border zones in the male prenatal TMT-exposed mice were less than those of control unexposed mice in the open-field test. Female TMT-exposed mice scored lower on total numbers of arm entries and percentages of alternations than controls in the Y-maze test with lower body weight. We found that only TMT-exposed males had fewer copies of mtDNA in the hippocampus and prefrontal cortex region than controls. Additional epigenetic changes, including increased 5-methyl cytosine/5-hydroxymethyl cytosine levels in the male TMT hippocampus, were observed. After methylation binding domain (MBD) sequencing, multiple signaling pathways related to metabolism and neurodevelopment, including FoxO signaling, were identified by pathway analysis for differentially methylated regions (DMRs). Increased FOXO3 and decreased ASCL1 expression were also observed in male TMT hippocampi. This study suggests that sex differences and epigenetics should be more carefully considered in prenatal toxicology studies.
Collapse
Affiliation(s)
- Soon-Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Korea;
- Correspondence: ; Tel.: +82-42-259-1672
| | - Jung-Hoon Chai
- Center for Sport Science in Seoul, Seoul Sports Council, Seoul 02119, Korea;
| | - Eun-Hye Jang
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Korea;
| |
Collapse
|
31
|
Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA. The Uprising of Mitochondrial DNA Biomarker in Cancer. DISEASE MARKERS 2021; 2021:7675269. [PMID: 34326906 PMCID: PMC8302403 DOI: 10.1155/2021/7675269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
Collapse
Affiliation(s)
- Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
32
|
Santos JH. Mitochondria signaling to the epigenome: A novel role for an old organelle. Free Radic Biol Med 2021; 170:59-69. [PMID: 33271282 PMCID: PMC8166959 DOI: 10.1016/j.freeradbiomed.2020.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022]
Abstract
Epigenetic modifications influence gene expression programs ultimately dictating physiological outcomes. In the past decades, an increasing body of work has demonstrated that the enzymes that deposit and/or remove epigenetic marks on DNA or histones use metabolites as substrates or co-factors, rendering the epigenome sensitive to metabolic changes. In this context, acetyl-CoA and α-ketoglutarate have been recognized as critical for epigenetics, impinging on histone marks and nuclear DNA methylation patterns. Given that these metabolites are primarily generated in the mitochondria through the tricarboxylic acid cycle (TCA), the requirement of proper mitochondrial function for maintenance of the epigenetic landscape seems obvious. Nevertheless, it was not until recently when the epigenomic outcomes of mitochondrial dysfunction were tested, revealing mitochondria's far-reaching impact on epigenetics. This review will focus on data that directly tested the role of mitochondria on the epigenetic landscape, the mechanisms by which mitochondrial dysfunction may dysregulate the epigenome and gene expression, and their potential implications to health and disease.
Collapse
Affiliation(s)
- Janine Hertzog Santos
- National Toxicology Program Laboratory (NTPL), National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park (RTP), NC, USA.
| |
Collapse
|
33
|
Abstract
Variation in the mitochondrial DNA (mtDNA) sequence is common in certain tumours. Two classes of cancer mtDNA variants can be identified: de novo mutations that act as 'inducers' of carcinogenesis and functional variants that act as 'adaptors', permitting cancer cells to thrive in different environments. These mtDNA variants have three origins: inherited variants, which run in families, somatic mutations arising within each cell or individual, and variants that are also associated with ancient mtDNA lineages (haplogroups) and are thought to permit adaptation to changing tissue or geographic environments. In addition to mtDNA sequence variation, mtDNA copy number and perhaps transfer of mtDNA sequences into the nucleus can contribute to certain cancers. Strong functional relevance of mtDNA variation has been demonstrated in oncocytoma and prostate cancer, while mtDNA variation has been reported in multiple other cancer types. Alterations in nuclear DNA-encoded mitochondrial genes have confirmed the importance of mitochondrial metabolism in cancer, affecting mitochondrial reactive oxygen species production, redox state and mitochondrial intermediates that act as substrates for chromatin-modifying enzymes. Hence, subtle changes in the mitochondrial genotype can have profound effects on the nucleus, as well as carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Piotr K Kopinski
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Mitochondrial Metabolism in Carcinogenesis and Cancer Therapy. Cancers (Basel) 2021; 13:cancers13133311. [PMID: 34282749 PMCID: PMC8269082 DOI: 10.3390/cancers13133311] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Reprogramming metabolism is a hallmark of cancer. Warburg’s effect, defined as increased aerobic glycolysis at the expense of mitochondrial respiration in cancer cells, opened new avenues of research in the field of cancer. Later findings, however, have revealed that mitochondria remain functional and that they actively contribute to metabolic plasticity of cancer cells. Understanding the mechanisms by which mitochondrial metabolism controls tumor initiation and progression is necessary to better characterize the onset of carcinogenesis. These studies may ultimately lead to the design of novel anti-cancer strategies targeting mitochondrial functions. Abstract Carcinogenesis is a multi-step process that refers to transformation of a normal cell into a tumoral neoplastic cell. The mechanisms that promote tumor initiation, promotion and progression are varied, complex and remain to be understood. Studies have highlighted the involvement of oncogenic mutations, genomic instability and epigenetic alterations as well as metabolic reprogramming, in different processes of oncogenesis. However, the underlying mechanisms still have to be clarified. Mitochondria are central organelles at the crossroad of various energetic metabolisms. In addition to their pivotal roles in bioenergetic metabolism, they control redox homeostasis, biosynthesis of macromolecules and apoptotic signals, all of which are linked to carcinogenesis. In the present review, we discuss how mitochondria contribute to the initiation of carcinogenesis through gene mutations and production of oncometabolites, and how they promote tumor progression through the control of metabolic reprogramming and mitochondrial dynamics. Finally, we present mitochondrial metabolism as a promising target for the development of novel therapeutic strategies.
Collapse
|
35
|
Bebbere D, Ulbrich SE, Giller K, Zakhartchenko V, Reichenbach HD, Reichenbach M, Verma PJ, Wolf E, Ledda S, Hiendleder S. Mitochondrial DNA Depletion in Granulosa Cell Derived Nuclear Transfer Tissues. Front Cell Dev Biol 2021; 9:664099. [PMID: 34124044 PMCID: PMC8194821 DOI: 10.3389/fcell.2021.664099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a key technology with broad applications that range from production of cloned farm animals to derivation of patient-matched stem cells or production of humanized animal organs for xenotransplantation. However, effects of aberrant epigenetic reprogramming on gene expression compromise cell and organ phenotype, resulting in low success rate of SCNT. Standard SCNT procedures include enucleation of recipient oocytes before the nuclear donor cell is introduced. Enucleation removes not only the spindle apparatus and chromosomes of the oocyte but also the perinuclear, mitochondria rich, ooplasm. Here, we use a Bos taurus SCNT model with in vitro fertilized (IVF) and in vivo conceived controls to demonstrate a ∼50% reduction in mitochondrial DNA (mtDNA) in the liver and skeletal muscle, but not the brain, of SCNT fetuses at day 80 of gestation. In the muscle, we also observed significantly reduced transcript abundances of mtDNA-encoded subunits of the respiratory chain. Importantly, mtDNA content and mtDNA transcript abundances correlate with hepatomegaly and muscle hypertrophy of SCNT fetuses. Expression of selected nuclear-encoded genes pivotal for mtDNA replication was similar to controls, arguing against an indirect epigenetic nuclear reprogramming effect on mtDNA amount. We conclude that mtDNA depletion is a major signature of perturbations after SCNT. We further propose that mitochondrial perturbation in interaction with incomplete nuclear reprogramming drives abnormal epigenetic features and correlated phenotypes, a concept supported by previously reported effects of mtDNA depletion on the epigenome and the pleiotropic phenotypic effects of mtDNA depletion in humans. This provides a novel perspective on the reprogramming process and opens new avenues to improve SCNT protocols for healthy embryo and tissue development.
Collapse
Affiliation(s)
- Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy.,Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Katrin Giller
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Valeri Zakhartchenko
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany
| | - Horst-Dieter Reichenbach
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany.,Bavarian State Research Center for Agriculture, Institute of Animal Breeding, Grub, Germany
| | - Myriam Reichenbach
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany.,Bayern-Genetik GmbH, Grub, Germany
| | - Paul J Verma
- Livestock Sciences, South Australian Research and Development Institute, Roseworthy, SA, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Stefan Hiendleder
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany.,School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.,Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
36
|
Kozakiewicz P, Grzybowska-Szatkowska L, Ciesielka M, Rzymowska J. The Role of Mitochondria in Carcinogenesis. Int J Mol Sci 2021; 22:ijms22105100. [PMID: 34065857 PMCID: PMC8151940 DOI: 10.3390/ijms22105100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The mitochondria are essential for normal cell functioning. Changes in mitochondrial DNA (mtDNA) may affect the occurrence of some chronic diseases and cancer. This process is complex and not entirely understood. The assignment to a particular mitochondrial haplogroup may be a factor that either contributes to cancer development or reduces its likelihood. Mutations in mtDNA occurring via an increase in reactive oxygen species may favour the occurrence of further changes both in mitochondrial and nuclear DNA. Mitochondrial DNA mutations in postmitotic cells are not inherited, but may play a role both in initiation and progression of cancer. One of the first discovered polymorphisms associated with cancer was in the gene NADH-ubiquinone oxidoreductase chain 3 (mt-ND3) and it was typical of haplogroup N. In prostate cancer, these mutations and polymorphisms involve a gene encoding subunit I of respiratory complex IV cytochrome c oxidase subunit 1 gene (COI). At present, a growing number of studies also address the impact of mtDNA polymorphisms on prognosis in cancer patients. Some of the mitochondrial DNA polymorphisms occur in both chronic disease and cancer, for instance polymorphism G5913A characteristic of prostate cancer and hypertension.
Collapse
Affiliation(s)
- Paulina Kozakiewicz
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Department of Radiotherapy, St. John’s Cancer Centre, The Regional Oncology Centre of Lublin Jaczewskiego 7, 20-090 Lublin, Poland
- Correspondence:
| | - Ludmiła Grzybowska-Szatkowska
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Department of Radiotherapy, St. John’s Cancer Centre, The Regional Oncology Centre of Lublin Jaczewskiego 7, 20-090 Lublin, Poland
| | - Marzanna Ciesielka
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Chair and Department of Forensic Medicine, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jolanta Rzymowska
- Chair and Department of Biology and Genetics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
37
|
Lozoya OA, Xu F, Grenet D, Wang T, Grimm SA, Godfrey V, Waidyanatha S, Woychik RP, Santos JH. Single Nucleotide Resolution Analysis Reveals Pervasive, Long-Lasting DNA Methylation Changes by Developmental Exposure to a Mitochondrial Toxicant. Cell Rep 2021; 32:108131. [PMID: 32937126 PMCID: PMC7553240 DOI: 10.1016/j.celrep.2020.108131] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/16/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial-driven alterations of the epigenome have been reported, but whether they are relevant at the organismal level remains unknown. The viable yellow agouti mouse (Avy) is a powerful epigenetic biosensor model that reports on the DNA methylation status of the Avy locus, which is established prior to the three-germ-layer separation, through the coat color of the animals. Here we show that maternal exposure to rotenone, a potent mitochondrial complex I inhibitor, not only changes the DNA methylation status of the Avy locus in the skin but broadly affects the liver DNA methylome of the offspring. These effects are accompanied by altered gene expression programs that persist throughout life, and which associate with impairment of antioxidant activity and mitochondrial function in aged animals. These pervasive and lasting genomic effects suggest a putative role for mitochondria in regulating life-long gene expression programs through developmental nuclear epigenetic remodeling. Lozoya et al. provide in vivo evidence of the epigenetic effects of mitochondrial dysfunction. Developmental-only exposure to rotenone through the mother’s diet inhibits mitochondrial complex I in the dams and results in lifelong nuclear DNA methylation and gene expression changes in the offspring. Aged offspring also show functional outcomes.
Collapse
Affiliation(s)
- Oswaldo A Lozoya
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Fuhua Xu
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dagoberto Grenet
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Veronica Godfrey
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Suramya Waidyanatha
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Richard P Woychik
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Janine H Santos
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA; National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
38
|
Mitochondrial DNA Methylation and Human Diseases. Int J Mol Sci 2021; 22:ijms22094594. [PMID: 33925624 PMCID: PMC8123858 DOI: 10.3390/ijms22094594] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.
Collapse
|
39
|
Zaidieh T, Smith JR, Ball KE, An Q. Mitochondrial DNA abnormalities provide mechanistic insight and predict reactive oxygen species-stimulating drug efficacy. BMC Cancer 2021; 21:427. [PMID: 33865346 PMCID: PMC8053302 DOI: 10.1186/s12885-021-08155-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background Associations between mitochondrial genetic abnormalities (variations and copy number, i.e. mtDNAcn, change) and elevated ROS have been reported in cancer compared to normal cells. Since excessive levels of ROS can trigger apoptosis, treating cancer cells with ROS-stimulating agents may enhance their death. This study aimed to investigate the link between baseline ROS levels and mitochondrial genetic abnormalities, and how mtDNA abnormalities might be used to predict cancer cells’ response to ROS-stimulating therapy. Methods Intracellular and mitochondrial specific-ROS levels were measured using the DCFDA and MitoSOX probes, respectively, in four cancer and one non-cancerous cell lines. Cells were treated with ROS-stimulating agents (cisplatin and dequalinium) and the IC50s were determined using the MTS assay. Sanger sequencing and qPCR were conducted to screen the complete mitochondrial genome for variations and to relatively quantify mtDNAcn, respectively. Non-synonymous variations were subjected to 3-dimensional (3D) protein structural mapping and analysis. Results Our data revealed novel significant associations between the total number of variations in the mitochondrial respiratory chain (MRC) complex I and III genes, mtDNAcn, ROS levels, and ROS-associated drug response. Furthermore, functional variations in complexes I/III correlated significantly and positively with mtDNAcn, ROS levels and drug resistance, indicating they might mechanistically influence these parameters in cancer cells. Conclusions Our findings suggest that mtDNAcn and complexes I/III functional variations have the potential to be efficient biomarkers to predict ROS-stimulating therapy efficacy in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08155-2.
Collapse
Affiliation(s)
- Tarek Zaidieh
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK. .,Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP, UK.
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Karen E Ball
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Qian An
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
40
|
Wagner RN, Piñón Hofbauer J, Wally V, Kofler B, Schmuth M, De Rosa L, De Luca M, Bauer JW. Epigenetic and metabolic regulation of epidermal homeostasis. Exp Dermatol 2021; 30:1009-1022. [PMID: 33600038 PMCID: PMC8359218 DOI: 10.1111/exd.14305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023]
Abstract
Continuous exposure of the skin to environmental, mechanical and chemical stress necessitates constant self‐renewal of the epidermis to maintain its barrier function. This self‐renewal ability is attributed to epidermal stem cells (EPSCs), which are long‐lived, multipotent cells located in the basal layer of the epidermis. Epidermal homeostasis – coordinated proliferation and differentiation of EPSCs – relies on fine‐tuned adaptations in gene expression which in turn are tightly associated with specific epigenetic signatures and metabolic requirements. In this review, we will briefly summarize basic concepts of EPSC biology and epigenetic regulation with relevance to epidermal homeostasis. We will highlight the intricate interplay between mitochondrial energy metabolism and epigenetic events – including miRNA‐mediated mechanisms – and discuss how the loss of epigenetic regulation and epidermal homeostasis manifests in skin disease. Discussion of inherited epidermolysis bullosa (EB) and disorders of cornification will focus on evidence for epigenetic deregulation and failure in epidermal homeostasis, including stem cell exhaustion and signs of premature ageing. We reason that the epigenetic and metabolic component of epidermal homeostasis is significant and warrants close attention. Charting epigenetic and metabolic complexities also represents an important step in the development of future systemic interventions aimed at restoring epidermal homeostasis and ameliorating disease burden in severe skin conditions.
Collapse
Affiliation(s)
- Roland N Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Matthias Schmuth
- Department of Dermatology, Medical University Innsbruck, Innsbruck, Austria
| | - Laura De Rosa
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari", Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Johann W Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
41
|
Bressan P, Kramer P. Mental Health, Mitochondria, and the Battle of the Sexes. Biomedicines 2021; 9:biomedicines9020116. [PMID: 33530498 PMCID: PMC7911591 DOI: 10.3390/biomedicines9020116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/12/2023] Open
Abstract
This paper presents a broad perspective on how mental disease relates to the different evolutionary strategies of men and women and to growth, metabolism, and mitochondria—the enslaved bacteria in our cells that enable it all. Several mental disorders strike one sex more than the other; yet what truly matters, regardless of one’s sex, is how much one’s brain is “female” and how much it is “male”. This appears to be the result of an arms race between the parents over how many resources their child ought to extract from the mother, hence whether it should grow a lot or stay small and undemanding. An uneven battle alters the child’s risk of developing not only insulin resistance, diabetes, or cancer, but a mental disease as well. Maternal supremacy increases the odds of a psychosis-spectrum disorder; paternal supremacy, those of an autism-spectrum one. And a particularly lopsided struggle may invite one or the other of a series of syndromes that come in pairs, with diametrically opposite, excessively “male” or “female” characteristics. By providing the means for this tug of war, mitochondria take center stage in steadying or upsetting the precarious balance on which our mental health is built.
Collapse
|
42
|
Patananan AN, Sercel AJ, Wu TH, Ahsan FM, Torres A, Kennedy SAL, Vandiver A, Collier AJ, Mehrabi A, Van Lew J, Zakin L, Rodriguez N, Sixto M, Tadros W, Lazar A, Sieling PA, Nguyen TL, Dawson ER, Braas D, Golovato J, Cisneros L, Vaske C, Plath K, Rabizadeh S, Niazi KR, Chiou PY, Teitell MA. Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates. Cell Rep 2020; 33:108562. [PMID: 33378680 PMCID: PMC7927156 DOI: 10.1016/j.celrep.2020.108562] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 01/19/2023] Open
Abstract
Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mitochondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by transferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (ρ0) cells. Stable isolated mitochondrial recipient (SIMR) cells isolated in restrictive media permanently retain donor mtDNA and reacquire respiration. However, SIMR fibroblasts maintain a ρ0-like cell metabolome and transcriptome despite growth in restrictive media. We reprogrammed non-immortal SIMR fibroblasts into induced pluripotent stem cells (iPSCs) with subsequent differentiation into diverse functional cell types, including mesenchymal stem cells (MSCs), adipocytes, osteoblasts, and chondrocytes. Remarkably, after reprogramming and differentiation, SIMR fibroblasts molecularly and phenotypically resemble unmanipulated control fibroblasts carried through the same protocol. Thus, our MitoPunch "pipeline" enables the production of SIMR cells with unique mtDNA-nDNA combinations for additional studies and applications in multiple cell types.
Collapse
Affiliation(s)
- Alexander N Patananan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander J Sercel
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Fasih M Ahsan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Torres
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie A L Kennedy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Vandiver
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda J Collier
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | - Lise Zakin
- NantWorks, LLC, Culver City, CA 90232, USA
| | | | | | | | - Adam Lazar
- NantWorks, LLC, Culver City, CA 90232, USA
| | | | - Thang L Nguyen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma R Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Braas
- UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shahrooz Rabizadeh
- NanoCav LLC, Culver City, CA 90232, USA; NantWorks, LLC, Culver City, CA 90232, USA
| | - Kayvan R Niazi
- NanoCav LLC, Culver City, CA 90232, USA; NantWorks, LLC, Culver City, CA 90232, USA
| | - Pei-Yu Chiou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
43
|
F C Lopes A. Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes. Clin Epigenetics 2020; 12:182. [PMID: 33228792 PMCID: PMC7684747 DOI: 10.1186/s13148-020-00976-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are controlled by the coordination of two genomes: the mitochondrial and the nuclear DNA. As such, variations in nuclear gene expression as a consequence of mutations and epigenetic modifications can affect mitochondrial functionality. Conversely, the opposite could also be true. However, the relationship between mitochondrial dysfunction and epigenetics, such as nuclear DNA methylation, remains largely unexplored. Mitochondria function as central metabolic hubs controlling some of the main substrates involved in nuclear DNA methylation, via the one carbon metabolism, the tricarboxylic acid cycle and the methionine pathway. Here, we review key findings and highlight new areas of focus, with the ultimate goal of getting one step closer to understanding the genomic effects of mitochondrial dysfunction on nuclear epigenetic landscapes.
Collapse
Affiliation(s)
- Amanda F C Lopes
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Medical Research Council - Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
44
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
Alam MN, Shapla UM, Shen H, Huang Q. Linking emerging contaminants exposure to adverse health effects: Crosstalk between epigenome and environment. J Appl Toxicol 2020; 41:878-897. [PMID: 33113590 DOI: 10.1002/jat.4092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Environmental epigenetic findings shed new light on the roles of epigenetic regulations in environmental exposure-induced toxicities or disease susceptibilities. Currently, environmental emerging contaminants (ECs) are in focus for further investigation due to the evidence of human exposure in addition to their environmental occurrences. However, the adverse effects of these environmental ECs on health through epigenetic mechanisms are still poorly addressed in many aspects. This review discusses the epigenetic mechanisms (DNA methylation, histone modifications, and microRNA expressions) linking ECs exposure to health outcomes. We emphasized on the recent literature describing how ECs can dysregulate epigenetic mechanisms and lead to downstream health outcomes. These up-to-date research outputs could provide novel insights into the toxicological mechanisms of ECs. However, the field still faces a demand for further studies on the broad spectrum of health effects, synergistic/antagonistic effects, transgenerational epigenetic effects, and epidemiologic and demographic data of ECs.
Collapse
Affiliation(s)
- Md Nur Alam
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ummay Mahfuza Shapla
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Dhaka, Bangladesh
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
46
|
Galber C, Acosta MJ, Minervini G, Giorgio V. The role of mitochondrial ATP synthase in cancer. Biol Chem 2020; 401:1199-1214. [PMID: 32769215 DOI: 10.1515/hsz-2020-0157] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
The mitochondrial ATP synthase is a multi-subunit enzyme complex located in the inner mitochondrial membrane which is essential for oxidative phosphorylation under physiological conditions. In this review, we analyse the enzyme functions involved in cancer progression by dissecting specific conditions in which ATP synthase contributes to cancer development or metastasis. Moreover, we propose the role of ATP synthase in the formation of the permeability transition pore (PTP) as an additional mechanism which controls tumour cell death. We further describe transcriptional and translational modifications of the enzyme subunits and of the inhibitor protein IF1 that may promote adaptations leading to cancer metabolism. Finally, we outline ATP synthase gene mutations and epigenetic modifications associated with cancer development or drug resistance, with the aim of highlighting this enzyme complex as a potential novel target for future anti-cancer therapy.
Collapse
Affiliation(s)
- Chiara Galber
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, V.le G. Colombo 3, I-35121, Padova, Italy
- Department of Biomedical Sciences, University of Padova, I-35121, Padova, Italy
| | - Manuel Jesus Acosta
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, V.le G. Colombo 3, I-35121, Padova, Italy
- Department of Biomedical Sciences, University of Padova, I-35121, Padova, Italy
| | - Giovanni Minervini
- Department of Biomedical Sciences, University of Padova, I-35121, Padova, Italy
| | - Valentina Giorgio
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, V.le G. Colombo 3, I-35121, Padova, Italy
- Department of Biomedical Sciences, University of Padova, I-35121, Padova, Italy
| |
Collapse
|
47
|
Castellani CA, Longchamps RJ, Sumpter JA, Newcomb CE, Lane JA, Grove ML, Bressler J, Brody JA, Floyd JS, Bartz TM, Taylor KD, Wang P, Tin A, Coresh J, Pankow JS, Fornage M, Guallar E, O'Rourke B, Pankratz N, Liu C, Levy D, Sotoodehnia N, Boerwinkle E, Arking DE. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs. Genome Med 2020; 12:84. [PMID: 32988399 PMCID: PMC7523322 DOI: 10.1186/s13073-020-00778-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtDNA-CN) has been associated with a variety of aging-related diseases, including all-cause mortality. However, the mechanism by which mtDNA-CN influences disease is not currently understood. One such mechanism may be through regulation of nuclear gene expression via the modification of nuclear DNA (nDNA) methylation. METHODS To investigate this hypothesis, we assessed the relationship between mtDNA-CN and nDNA methylation in 2507 African American (AA) and European American (EA) participants from the Atherosclerosis Risk in Communities (ARIC) study. To validate our findings, we assayed an additional 2528 participants from the Cardiovascular Health Study (CHS) (N = 533) and Framingham Heart Study (FHS) (N = 1995). We further assessed the effect of experimental modification of mtDNA-CN through knockout of TFAM, a regulator of mtDNA replication, via CRISPR-Cas9. RESULTS Thirty-four independent CpGs were associated with mtDNA-CN at genome-wide significance (P < 5 × 10- 8). Meta-analysis across all cohorts identified six mtDNA-CN-associated CpGs at genome-wide significance (P < 5 × 10- 8). Additionally, over half of these CpGs were associated with phenotypes known to be associated with mtDNA-CN, including coronary heart disease, cardiovascular disease, and mortality. Experimental modification of mtDNA-CN demonstrated that modulation of mtDNA-CN results in changes in nDNA methylation and gene expression of specific CpGs and nearby transcripts. Strikingly, the "neuroactive ligand receptor interaction" KEGG pathway was found to be highly overrepresented in the ARIC cohort (P = 5.24 × 10- 12), as well as the TFAM knockout methylation (P = 4.41 × 10- 4) and expression (P = 4.30 × 10- 4) studies. CONCLUSIONS These results demonstrate that changes in mtDNA-CN influence nDNA methylation at specific loci and result in differential expression of specific genes that may impact human health and disease via altered cell signaling.
Collapse
Affiliation(s)
- Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason A Sumpter
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles E Newcomb
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John A Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Penglong Wang
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrienne Tin
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Josef Coresh
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James S Pankow
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eliseo Guallar
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
48
|
Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells. Sci Rep 2020; 10:14328. [PMID: 32868785 PMCID: PMC7459123 DOI: 10.1038/s41598-020-71199-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The permanent transfer of specific mtDNA sequences into mammalian cells could generate improved models of mtDNA disease and support future cell-based therapies. Previous studies documented multiple biochemical changes in recipient cells shortly after mtDNA transfer, but the long-term retention and function of transferred mtDNA remains unknown. Here, we evaluate mtDNA retention in new host cells using ‘MitoPunch’, a device that transfers isolated mitochondria into mouse and human cells. We show that newly introduced mtDNA is stably retained in mtDNA-deficient (ρ0) recipient cells following uridine-free selection, although exogenous mtDNA is lost from metabolically impaired, mtDNA-intact (ρ+) cells. We then introduced a second selective pressure by transferring chloramphenicol-resistant mitochondria into chloramphenicol-sensitive, metabolically impaired ρ+ mouse cybrid cells. Following double selection, recipient cells with mismatched nuclear (nDNA) and mitochondrial (mtDNA) genomes retained transferred mtDNA, which replaced the endogenous mutant mtDNA and improved cell respiration. However, recipient cells with matched mtDNA-nDNA failed to retain transferred mtDNA and sustained impaired respiration. Our results suggest that exogenous mtDNA retention in metabolically impaired ρ+ recipients depends on the degree of recipient mtDNA-nDNA co-evolution. Uncovering factors that stabilize exogenous mtDNA integration will improve our understanding of in vivo mitochondrial transfer and the interplay between mitochondrial and nuclear genomes.
Collapse
|
49
|
Obri A, Serra D, Herrero L, Mera P. The role of epigenetics in the development of obesity. Biochem Pharmacol 2020; 177:113973. [DOI: 10.1016/j.bcp.2020.113973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
|
50
|
Affiliation(s)
- Suzana D. Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA,
| |
Collapse
|