1
|
Lee GK, Kim HY, Park JH. Inhibiting eukaryotic initiation factor 5A (eIF5A) hypusination attenuated activation of the SIK2 (salt-inducible kinase 2)-p4E-BP1 pathway involved in ovarian cancer cell proliferation and migration. Mol Biol Rep 2023:10.1007/s11033-023-08510-5. [PMID: 37219665 DOI: 10.1007/s11033-023-08510-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Eukaryotic initiation factor 5A hypusine (eIF5AHyp) stimulates the translation of proline repeat motifs. Salt inducible kinase 2 (SIK2) containing a proline repeat motif is overexpressed in ovarian cancers, in which it promotes cell proliferation, migration, and invasion. METHODS AND RESULTS Western blotting and dual luciferase analyses showed that depletion of eIF5AHyp by GC7 or eIF5A-targeting siRNA downregulated SIK2 level and decreased luciferase activity in cells transfected with a luciferase-based reporter construct containing consecutive proline residues, whereas the activity of the mutant control reporter construct (replacing P825L, P828H, and P831Q) did not change. According to the MTT assay, GC7, which has a potential antiproliferative effect, reduced the viability of several ovarian cancer cell lines by 20-35% at high concentrations (ES2 > CAOV-3 > OVCAR-3 > TOV-112D) but not at low concentrations. In a pull-down assay, we identified eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 4E-BP1 (p4E-BP1) phosphorylated at Ser 65 as downstream binding partners of SIK2, and we validated that the level of p4E-BP1(Ser 65) was downregulated by SIK2-targeting siRNA. Conversely, in ES2 cells overexpressing SIK2, the p4E-BP1(Ser 65) level was increased but decreased in the presence of GC7 or eIF5A-targeting siRNA. Finally, the migration, clonogenicity, and viability of ES2 ovarian cancer cells were reduced by GC7 treatment as well as by siRNA for eIF5A gene silencing and siRNA for SIK2 and 4E-BP1 gene silencing. Conversely, those activities were increased in cells overexpressing SIK2 or 4E-BP1 and decreased again in the presence of GC7. CONCLUSION The depletion of eIF5AHyp by GC7 or eIF5A-targeting siRNA attenuated activation of the SIK2-p4EBP1 pathway. In that way, eIF5AHyp depletion reduces the migration, clonogenicity, and viability of ES2 ovarian cancer cells.
Collapse
Affiliation(s)
- Grace Kelly Lee
- Chingchai Wanidworanun, MD PLLC, 4001 9th St N Suite 228, Arlington, VA, 22203, USA
| | - Hae-Yeong Kim
- Institute of Life Science and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| | - Jong Hwan Park
- Research Institute of Medical Science, School of Medicine, KonKuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
2
|
Kalous J, Aleshkina D. Multiple Roles of PLK1 in Mitosis and Meiosis. Cells 2023; 12:cells12010187. [PMID: 36611980 PMCID: PMC9818836 DOI: 10.3390/cells12010187] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
Collapse
|
3
|
Fang Z, Gao ZJ, Yu X, Sun SR, Yao F. Identification of a centrosome-related prognostic signature for breast cancer. Front Oncol 2023; 13:1138049. [PMID: 37035151 PMCID: PMC10073657 DOI: 10.3389/fonc.2023.1138049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Background As the major microtubule organizing center in animal cells, the centrosome is implicated with human breast tumor in multiple ways, such as promotion of tumor cell immune evasion. Here, we aimed to detect the expression of centrosome-related genes (CRGs) in normal and malignant breast tissues, and construct a novel centrosome-related prognostic model to discover new biomarkers and screen drugs for breast cancer. Methods We collected CRGs from the public databases and literature. The differentially expressed CRGs between normal and malignant breast tissues were identified by the DESeq2. Univariate Cox and LASSO regression analyses were conducted to screen candidate prognostic CRGs and develop a centrosome-related signature (CRS) to score breast cancer patients. We further manipulated and visualized data from TCGA, GEO, IMvigor210, TCIA and TIMER to explore the correlation between CRS and patient outcomes, clinical manifestations, mutational landscapes, tumor immune microenvironments, and responses to diverse therapies. Single cell analyses were performed to investigate the difference of immune cell landscape between high- and low-risk group patients. In addition, we constructed a nomogram to guide clinicians in precise treatment. Results A total of 726 CRGs were collected from the public databases and literature. PSME2, MAPK10, EIF4EBP1 were screened as the prognostic genes in breast cancer. Next, we constructed a centrosome-related prognostic signature and validated its efficacy based on the genes for predicting the survival of breast cancer patients. The high-risk group patients had poor prognoses, the area under the ROC curve for 1-, 3-, and 5-year overall survival (OS) was 0.77, 0.67, and 0.65, respectively. The predictive capacity of CRS was validated by other datasets from GEO dataset. In addition, high-risk group patients exhibited elevated level of mutational landscapes and decreased level of immune infiltration, especially T and B lymphocytes. In terms of treatment responses, patients in the high-risk group were found to be resistant to immunotherapy but sensitive to chemotherapy. Moreover, we screened a series of candidate anticancer drugs with high sensitivity in the high-risk group. Conclusion Our work exploited a centrosome-related prognostic signature and developed a predictive nomogram capable of accurately predicting breast cancer OS. The above discoveries provide deeper insights into the vital roles of the centrosome and contribute to the development of personalized treatment for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Feng Yao
- *Correspondence: Feng Yao, ; Sheng-Rong Sun,
| |
Collapse
|
4
|
de Witte CJ, Espejo Valle-Inclan J, Hami N, Lõhmussaar K, Kopper O, Vreuls CPH, Jonges GN, van Diest P, Nguyen L, Clevers H, Kloosterman WP, Cuppen E, Snippert HJG, Zweemer RP, Witteveen PO, Stelloo E. Patient-Derived Ovarian Cancer Organoids Mimic Clinical Response and Exhibit Heterogeneous Inter- and Intrapatient Drug Responses. Cell Rep 2021; 31:107762. [PMID: 32553164 DOI: 10.1016/j.celrep.2020.107762] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 01/19/2023] Open
Abstract
There remains an unmet need for preclinical models to enable personalized therapy for ovarian cancer (OC) patients. Here we evaluate the capacity of patient-derived organoids (PDOs) to predict clinical drug response and functional consequences of tumor heterogeneity. We included 36 whole-genome-characterized PDOs from 23 OC patients with known clinical histories. OC PDOs maintain the genomic features of the original tumor lesion and recapitulate patient response to neoadjuvant carboplatin/paclitaxel combination treatment. PDOs display inter- and intrapatient drug response heterogeneity to chemotherapy and targeted drugs, which can be partially explained by genetic aberrations. PDO drug screening identifies high responsiveness to at least one drug for 88% of patients. PDOs are valuable preclinical models that can provide insights into drug response for individual patients with OC, complementary to genetic testing. Generating PDOs of multiple tumor locations can improve clinical decision making and increase our knowledge of genetic and drug response heterogeneity.
Collapse
Affiliation(s)
- Chris Jenske de Witte
- Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Jose Espejo Valle-Inclan
- Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Nizar Hami
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands; Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Kadi Lõhmussaar
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Oded Kopper
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Celien Philomena Henrieke Vreuls
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Geertruida Nellie Jonges
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Paul van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Luan Nguyen
- Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Wigard Pieter Kloosterman
- Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Edwin Cuppen
- Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands; Hartwig Medical Foundation, Science Park 408, 1098 XH Amsterdam, the Netherlands
| | - Hugo Johannes Gerhardus Snippert
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands; Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ronald Peter Zweemer
- Division of Imaging and Oncology, Department of Gynecological Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Petronella Oda Witteveen
- Department of Medical Oncology, Cancer Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Ellen Stelloo
- Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
5
|
Venugopal N, Ghosh A, Gala H, Aloysius A, Vyas N, Dhawan J. The primary cilium dampens proliferative signaling and represses a G2/M transcriptional network in quiescent myoblasts. BMC Mol Cell Biol 2020; 21:25. [PMID: 32293249 PMCID: PMC7161131 DOI: 10.1186/s12860-020-00266-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/19/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Reversible cell cycle arrest (quiescence/G0) is characteristic of adult stem cells and is actively controlled at multiple levels. Quiescent cells also extend a primary cilium, which functions as a signaling hub. Primary cilia have been shown to be important in multiple developmental processes, and are implicated in numerous developmental disorders. Although the association of the cilium with G0 is established, the role of the cilium in the control of the quiescence program is still poorly understood. RESULTS Primary cilia are dynamically regulated across different states of cell cycle exit in skeletal muscle myoblasts: quiescent myoblasts elaborate a primary cilium in vivo and in vitro, but terminally differentiated myofibers do not. Myoblasts where ciliogenesis is ablated using RNAi against a key ciliary assembly protein (IFT88) can exit the cell cycle but display an altered quiescence program and impaired self-renewal. Specifically, the G0 transcriptome in IFT88 knockdown cells is aberrantly enriched for G2/M regulators, suggesting a focused repression of this network by the cilium. Cilium-ablated cells also exhibit features of activation including enhanced activity of Wnt and mitogen signaling and elevated protein synthesis via inactivation of the translational repressor 4E-BP1. CONCLUSIONS Taken together, our results show that the primary cilium integrates and dampens proliferative signaling, represses translation and G2/M genes, and is integral to the establishment of the quiescence program.
Collapse
Affiliation(s)
- Nisha Venugopal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
| | - Ananga Ghosh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Hardik Gala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
| | - Ajoy Aloysius
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
- National Centre for Biological Sciences, Bengaluru, 560065, India
| | - Neha Vyas
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
- Present address: St. John's Research Institute, Bengaluru, 560034, India
| | - Jyotsna Dhawan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India.
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, 560065, India.
| |
Collapse
|
6
|
Mitchell DC, Menon A, Garner AL. Cyclin-dependent kinase 4 inhibits the translational repressor 4E-BP1 to promote cap-dependent translation during mitosis-G1 transition. FEBS Lett 2019; 594:1307-1318. [PMID: 31853978 DOI: 10.1002/1873-3468.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023]
Abstract
Phosphorylation of translational repressor eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) controls the initiation of cap-dependent translation, a type of protein synthesis that is frequently upregulated in human diseases such as cancer. Because of its critical cellular function, it is not surprising that multiple kinases can post-translationally modify 4E-BP1 to drive aberrant cap-dependent translation. We recently reported a site-selective chemoproteomic method for uncovering kinase-substrate interactions, and using this approach, we discovered the cyclin-dependent kinase (CDK)4 as a new 4E-BP1 kinase. Herein, we describe our extension of this work and reveal the role of CDK4 in modulating 4E-BP1 activity in the transition from mitosis to G1, thereby demonstrating a novel role for this kinase in cell cycle regulation.
Collapse
Affiliation(s)
- Dylan C Mitchell
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Chen R, Malagola E, Dietrich M, Zuellig R, Tschopp O, Bombardo M, Saponara E, Reding T, Myers S, Hills AP, Graf R, Sonda S. Akt1 signalling supports acinar proliferation and limits acinar-to-ductal metaplasia formation upon induction of acute pancreatitis. J Pathol 2019; 250:42-54. [PMID: 31531867 DOI: 10.1002/path.5348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022]
Abstract
Molecular signalling mediated by the phosphatidylinositol-3-kinase (PI3K)-Akt axis is a key regulator of cellular functions. Importantly, alteration of the PI3K-Akt signalling underlies the development of different human diseases, thus prompting the investigation of the pathway as a molecular target for pharmacologic intervention. In this regard, recent studies showed that small molecule inhibitors of PI3K, the upstream regulator of the pathway, reduced the development of inflammation during acute pancreatitis, a highly debilitating and potentially lethal disease. Here we investigated whether a specific reduction of Akt activity, by using either pharmacologic Akt inhibition, or genetic inactivation of the Akt1 isoform selectively in pancreatic acinar cells, is effective in ameliorating the onset and progression of the disease. We discovered that systemic reduction of Akt activity did not protect the pancreas from initial damage and only transiently delayed leukocyte recruitment. However, reduction of Akt activity decreased acinar proliferation and exacerbated acinar-to-ductal metaplasia (ADM) formation, two critical events in the progression of pancreatitis. These phenotypes were recapitulated upon conditional inactivation of Akt1 in acinar cells, which resulted in reduced expression of 4E-BP1, a multifunctional protein of key importance in cell proliferation and metaplasia formation. Collectively, our results highlight the critical role played by Akt1 during the development of acute pancreatitis in the control of acinar cell proliferation and ADM formation. In addition, these results harbour important translational implications as they raise the concern that inhibitors of PI3K-Akt signalling pathways may negatively affect the regeneration of the pancreas. Finally, this work provides the basis for further investigating the potential of Akt1 activators to boost pancreatic regeneration following inflammatory insults. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rong Chen
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Maren Dietrich
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital, Zurich, Switzerland
| | - Richard Zuellig
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital, Zurich, Switzerland
| | - Oliver Tschopp
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital, Zurich, Switzerland
| | - Marta Bombardo
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Enrica Saponara
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Theresia Reding
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Stephen Myers
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Andrew P Hills
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland.,School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Rutkovsky AC, Yeh ES, Guest ST, Findlay VJ, Muise-Helmericks RC, Armeson K, Ethier SP. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer. BMC Cancer 2019; 19:491. [PMID: 31122207 PMCID: PMC6533768 DOI: 10.1186/s12885-019-5667-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.
Collapse
Affiliation(s)
- Alexandria C. Rutkovsky
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Elizabeth S. Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, MSC 509, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Stephen T. Guest
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109 USA
| | - Victoria J. Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB 601, MSC 508, Charleston, SC 29425 USA
| | - Kent Armeson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street Suite 303 MSC 835, Charleston, USA
| | - Stephen P. Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| |
Collapse
|
9
|
Liu TT, Yang KX, Yu J, Cao YY, Ren JS, Hao JJ, Pan BQ, Ma S, Yang LY, Cai Y, Wang MR, Zhang Y. Co-targeting PLK1 and mTOR induces synergistic inhibitory effects against esophageal squamous cell carcinoma. J Mol Med (Berl) 2018; 96:807-817. [PMID: 29959473 DOI: 10.1007/s00109-018-1663-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Both polo-like kinase 1 (PLK1) and mammalian/mechanistic target of rapamycin (mTOR) are attractive therapeutic targets for cancer therapy. However, the efficacy of the combined inhibition of both pathways for treating esophageal squamous cell carcinoma (ESCC), an aggressive malignancy with poor prognosis, remains unknown. In this study, we found that suppression of PLK1 by specific siRNA or inhibitor attenuated mTOR activity in ESCC cells. Phosphorylated S6, a downstream effector of mTOR signaling, was significantly correlated with overexpression of PLK1 in a subset of ESCC. These data suggest that PLK1 activates mTOR signaling in vitro and in vivo. More importantly, the mTOR inhibitor rapamycin synergized with PLK1 inhibitor BI 2536 to inhibit ESCC cell proliferation in culture and in mice. Notably, combined treatment with BI 2536 and rapamycin produced more potent inhibitory effects on the activation of S6 and AKT than either alone. Further analysis reveals that PLK1 modulates both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) cascades. Therefore, dual inhibition of PLK1 and mTOR yields stronger antitumor effects, at least partially due to synergistic abrogated the activation of S6, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and AKT by cooperatively blocking mTORC1 and mTORC2 cascades. These results provide evidence that the mTOR inhibitor rapamycin synergistically enhances the antitumor effect of PLK1 inhibitor BI 2536 in ESCC cells. Simultaneous targeting of PLK1 and mTOR may thus be a novel and promising therapeutic strategy for ESCC. KEY MESSAGES PLK1 potentiates both mTORC1 and mTORC2 activities in ESCC cells. PLK1 expression positively correlated with mTOR activity in a subset of ESCC. Co-targeting of PLK1 and mTOR produced stronger antitumor effects partially due to synergistic inhibition of AKT, 4E-BP1 and S6 through cooperatively blocking mTORC2 and mTORC1 cascades. Combination targeting of PLK1 and mTOR may be a novel and promising therapeutic strategy for ESCC treatment.
Collapse
Affiliation(s)
- Ting-Ting Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Kai-Xia Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jing Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ying-Ya Cao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jian-Song Ren
- Program Office for Cancer Screening in Urban China, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Bei-Qing Pan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Sai Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
10
|
Severance AL, Latham KE. Meeting the meiotic challenge: Specializations in mammalian oocyte spindle formation. Mol Reprod Dev 2018; 85:178-187. [PMID: 29411912 DOI: 10.1002/mrd.22967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023]
Abstract
Oocytes uniquely accumulate cytoplasmic constituents to support early embryogenesis. This unique specialization is accompanied by acquisition of a large size and by execution of asymmetric meiotic divisions that preserve precious ooplasm through the expulsion of minimal size polar bodies. While often taken for granted, these basic features of oogenesis necessitate unique specializations of the meiotic apparatus. These include a chromatin-sourced RanGTP gradient that restricts spindle size by defining a spatial domain where meiotic spindles form, acentriolar centrosomes that rely on microtubule organizing centers to form spindle poles, and an actin-based mechanism for asymmetric spindle positioning. Additionally, localized protein synthesis to support spindle formation is achieved in the spindle forming region, whilst protein synthesis is reduced elsewhere in the ooplasm. This is achieved through enrichment of spindle-related mRNAs in the spindle forming region combined with local PLK1-mediated phosphorylation and inactivation of the translational repressor EIF4EBP1. This allows PLK1 to function as an important regulatory nexus through which endogenous and exogenous signals can impact spindle formation and function, and highlights the important role that PLK1 may have in maintaining oocyte quality and fertility.
Collapse
Affiliation(s)
- Ashley L Severance
- Genetics Graduate Program, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, East Lansing, Michigan
| | - Keith E Latham
- Reproductive and Developmental Sciences Program, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology and Reproductive Biology, East Lansing, Michigan
| |
Collapse
|
11
|
Severance AL, Latham KE. PLK1 regulates spindle association of phosphorylated eukaryotic translation initiation factor 4E-binding protein and spindle function in mouse oocytes. Am J Physiol Cell Physiol 2017; 313:C501-C515. [PMID: 28794108 PMCID: PMC5792166 DOI: 10.1152/ajpcell.00075.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/22/2022]
Abstract
Oocyte meiotic spindles are associated with spindle-enriched mRNAs, phosphorylated ribosome protein S6, and phosphorylated variants of the key translational regulator, eukaryotic translation initiation factor 4E-binding protein 1 (eIF4E-BP1), consistent with translational control of localized mRNAs by eIF4E-BP1 in facilitating spindle formation and stability. Using specific kinase inhibitors, we determined which kinases regulate phosphorylation status of eIF4E-BP1 associated with meiotic spindles in mouse oocytes and effects of kinase inhibition on chromosome congression and spindle formation. Neither ataxia telangiectasia-mutated kinase nor mechanistic target of rapamycin inhibition significantly affected phosphorylation status of spindle-associated eIF4E-BP1 at the phosphorylation sites examined. Spindle-associated phospho-eIF4E-BP1, spindle formation, and chromosome congression were strongly disrupted by polo-like kinase I (PLK1) inhibition at both metaphase I (MI) and MII. In addition, direct inhibition of eIF4E-BP1 via 4EGI led to spindle defects at MI, indicating a direct role for eIF4E-BP1 phosphorylation in meiotic spindle formation. PLK1 also regulated microtubule dynamics throughout the ooplasm, indicating likely coordination between spindle dynamics and broader ooplasm cytoskeletal dynamics. Because diverse upstream signaling pathways converge on PLK1, these results implicate PLK1 as a major regulatory nexus coupling endogenous and exogenous signals via eIF4E-BP1 to the regulation of spindle formation and stability.
Collapse
Affiliation(s)
- Ashley L Severance
- Reproductive and Developmental Sciences Program, Michigan State University , East Lansing, Michigan
- Genetics Graduate Program, Michigan State University , East Lansing, Michigan
| | - Keith E Latham
- Reproductive and Developmental Sciences Program, Michigan State University , East Lansing, Michigan
- Genetics Graduate Program, Michigan State University , East Lansing, Michigan
- Department of Animal Science, Michigan State University , East Lansing, Michigan ; and
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
12
|
Jansova D, Koncicka M, Tetkova A, Cerna R, Malik R, del Llano E, Kubelka M, Susor A. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle 2017; 16:927-939. [PMID: 28272965 PMCID: PMC5462087 DOI: 10.1080/15384101.2017.1295178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 01/03/2023] Open
Abstract
Fully grown mammalian oocytes utilize transcripts synthetized and stored during earlier development. RNA localization followed by a local translation is a mechanism responsible for the regulation of spatial and temporal gene expression. Here we show that the mouse oocyte contains 3 forms of cap-dependent translational repressor expressed on the mRNA level: 4E-BP1, 4E-BP2 and 4E-BP3. However, only 4E-BP1 is present as a protein in oocytes, it becomes inactivated by phosphorylation after nuclear envelope breakdown and as such it promotes cap-dependent translation after NEBD. Phosphorylation of 4E-BP1 can be seen in the oocytes after resumption of meiosis but it is not detected in the surrounding cumulus cells, indicating that 4E-BP1 promotes translation at a specific cell cycle stage. Our immunofluorescence analyses of 4E-BP1 in oocytes during meiosis I showed an even localization of global 4E-BP1, as well as of its 4E-BP1 (Thr37/46) phosphorylated form. On the other hand, 4E-BP1 phosphorylated on Ser65 is localized at the spindle poles, and 4E-BP1 phosphorylated on Thr70 localizes on the spindle. We further show that the main positive regulators of 4E-BP1 phosphorylation after NEBD are mTOR and CDK1 kinases, but not PLK1 kinase. CDK1 exerts its activity toward 4E-BP1 phosphorylation via phosphorylation and activation of mTOR. Moreover, both CDK1 and phosphorylated mTOR co-localize with 4E-BP1 phosphorylated on Thr70 on the spindle at the onset of meiotic resumption. Expression of the dominant negative 4E-BP1 mutant adversely affects translation and results in spindle abnormality. Taken together, our results show that the phosphorylation of 4E-BP1 promotes translation at the onset of meiosis to support the spindle assembly and suggest an important role of CDK1 and mTOR kinases in this process. We also show that the mTOR regulatory pathway is present in human oocytes and is likely to function in a similar way as in mouse oocytes.
Collapse
Affiliation(s)
- Denisa Jansova
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Marketa Koncicka
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Anna Tetkova
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Renata Cerna
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics, ASCR, Prague, Czech Republic
| | - Edgar del Llano
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| |
Collapse
|
13
|
The centrosomal OFD1 protein interacts with the translation machinery and regulates the synthesis of specific targets. Sci Rep 2017; 7:1224. [PMID: 28450740 PMCID: PMC5430665 DOI: 10.1038/s41598-017-01156-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/08/2017] [Indexed: 01/03/2023] Open
Abstract
Protein synthesis is traditionally associated with specific cytoplasmic compartments. We now show that OFD1, a centrosomal/basal body protein, interacts with components of the Preinitiation complex of translation (PIC) and of the eukaryotic Initiation Factor (eIF)4F complex and modulates the translation of specific mRNA targets in the kidney. We demonstrate that OFD1 cooperates with the mRNA binding protein Bicc1 to functionally control the protein synthesis machinery at the centrosome where also the PIC and eIF4F components were shown to localize in mammalian cells. Interestingly, Ofd1 and Bicc1 are both involved in renal cystogenesis and selected targets were shown to accumulate in two models of inherited renal cystic disease. Our results suggest a possible role for the centrosome as a specialized station to modulate translation for specific functions of the nearby ciliary structures and may provide functional clues for the understanding of renal cystic disease.
Collapse
|
14
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
15
|
Affiliation(s)
- Patrick Cormier
- a Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff , Roscoff cedex , France.,b CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff , Roscoff cedex , France
| |
Collapse
|
16
|
Li M, Li S, Liu B, Gu MM, Zou S, Xiao BB, Yu L, Ding WQ, Zhou PK, Zhou J, Shang ZF. PIG3 promotes NSCLC cell mitotic progression and is associated with poor prognosis of NSCLC patients. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:39. [PMID: 28259183 PMCID: PMC5336678 DOI: 10.1186/s13046-017-0508-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is the most commonly diagnosed type of lung cancer that is associated with poor prognosis. In this study we explored the potential role of p53-induced gene 3 (PIG3) in the progression of NSCLC. Methods Immunohistochemistry was used to determine the expression levels of PIG3 in 201 NSCLC patients. We performed in vitro studies and silenced endogenous PIG3 by using specific siRNAs that specific target PIG3. Immunofluorescent staining was performed to determine the effect of PIG3 on mitotic progression in NSCLC cells. The growth rates of microtubules were determined by microtubule nucleation analysis. Cell proliferation and chemosensitivity were analyzed by CCK8 assays. Annexin V staining and β-galactosidase activity analysis were used to evaluate PIG3 deficiency-related apoptosis and senescence, respectively. Results PIG3 expression levels negatively correlated with overall survival and disease-free survival of NSCLC patients. Knock down of PIG3 resulted in repressed proliferation of NSCLC cells and increased aberrant mitosis, which included misaligning and lagging chromosomes, and bi- or multi-nucleated giant cells. In addition, PIG3 contributed to mitotic spindle assembly by promoting microtubule growth. Furthermore, loss of PIG3 sensitized NSCLC cells to docetaxel by enhancing docetaxel-induced apoptosis and senescence. Conclusions Our results indicate that PIG3 promotes NSCLC progression and therefore suggest that PIG3 may be a potential prognostic biomarker and novel therapeutic target for the treatment of NSCLC. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0508-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Li
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Shanhu Li
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, People's Republic of China
| | - Biao Liu
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, People's Republic of China
| | - Meng-Meng Gu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, People's Republic of China
| | - Bei-Bei Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Lan Yu
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center, Dallas, 75390, TX, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, People's Republic of China.
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, People's Republic of China. .,Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center, Dallas, 75390, TX, USA.
| |
Collapse
|
17
|
Yu ZJ, Luo HH, Shang ZF, Guan H, Xiao BB, Liu XD, Wang Y, Huang B, Zhou PK. Stabilization of 4E-BP1 by PI3K kinase and its involvement in CHK2 phosphorylation in the cellular response to radiation. Int J Med Sci 2017; 14:452-461. [PMID: 28539821 PMCID: PMC5441037 DOI: 10.7150/ijms.18329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/01/2017] [Indexed: 11/16/2022] Open
Abstract
Objectives: 4E-BP1 is a family member of eIF4E binding proteins (4E-BPs) which act as the suppressors of cap-dependent translation of RNA via competitively associating with cap-bound eIF4E. RNA translation regulation is an important manner to control the cellular responses to a series of stress conditions such as ionizing radiation (IR)-induced DNA damage response and cell cycle controlling. This study aimed to determine the mechanism of 4E-BP1 stabilization and its potential downstream target(s) in the response to IR. Methods: PI3Ks kinase inhibitors were used to determine the signaling control of 4E-BP1 phosphorylation and protein stability. shRNA strategy was employed to silence the expression of 4E-BP1 in HeLa and HepG2 cells, and determine its effect on the irradiation-induced CHK2 phosphorylation. The protein degradation/stability was investigated by western blotting on the condition of blocking novel protein synthesis by cycloheximide (CHX). Results: The phosphorylation of 4E-BP1 at Thr37/46 was significantly increased in both HepG2 and HeLa cells by ionizing radiation. Depression of 4E-BP1 by shRNA strategy resulted in an incomplete G2 arrest at the early stage of 2 hours post-irradiation, as well as a higher accumulation of mitotic cells at 10 and 12 hours post-irradiation as compared to the control cells. Consistently, the CHK2 phosphorylation at Thr68 induced by IR was also attenuated by silencing 4E-BP1 expression. Both PI3K and DNA-PKcs kinase inhibitors significantly decreased the protein level of 4E-BP1, which was associated with the accelerated degradation mediated by ubiquitination-proteasome pathway. Conclusion: PI3K kinase activity is necessary for maintaining 4E-BP1 stability. Our results also suggest 4E-BP1 a novel biological role of regulating cell cycle G2 checkpoint in responding to IR stress in association with controlling CHK2 phosphorylation.
Collapse
Affiliation(s)
- Zi-Jian Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan Province 421001, P.R. China
| | - Hui-Hui Luo
- Institute for Environmental Medicine and Radiation Health, the College of Public Health, University of South China, Hengyang, Hunan Province 421001, P.R. China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, 100850 Beijing, P.R. China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province 215123, P.R. China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, 100850 Beijing, P.R. China
| | - Bei-Bei Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province 215123, P.R. China
| | - Xiao-Dan Liu
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, 100850 Beijing, P.R. China
| | - Yu Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, 100850 Beijing, P.R. China
| | - Bo Huang
- Institute for Environmental Medicine and Radiation Health, the College of Public Health, University of South China, Hengyang, Hunan Province 421001, P.R. China
| | - Ping-Kun Zhou
- Institute for Environmental Medicine and Radiation Health, the College of Public Health, University of South China, Hengyang, Hunan Province 421001, P.R. China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, 100850 Beijing, P.R. China
| |
Collapse
|
18
|
Abstract
Fully grown oocytes arrest meiosis at prophase I and deposit maternal RNAs. A subset of maternal transcripts is stored in a dormant state in the oocyte, and the timely driven translation of specific mRNAs guides meiotic progression, the oocyte-embryo transition, and early embryo development. In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization and at the level of protein synthesis.This chapter focuses on the recent findings on RNA distribution related to the temporal and spatial translational control of the meiotic cycle progression in mammalian oocytes. We discuss the most relevant mechanisms involved in the organization of the oocyte's maternal transcriptome storage and localization, and the regulation of translation, in correlation with the regulation of oocyte meiotic progression.
Collapse
|
19
|
Yu L, Shang ZF, Wang J, Wang H, Huang F, Zhang Z, Wang Y, Zhou J, Li S. PC-1/PrLZ confers resistance to rapamycin in prostate cancer cells through increased 4E-BP1 stability. Oncotarget 2016; 6:20356-69. [PMID: 26011939 PMCID: PMC4653010 DOI: 10.18632/oncotarget.3931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/29/2015] [Indexed: 01/12/2023] Open
Abstract
An important strategy for improving advanced PCa treatment is targeted therapies combined with chemotherapy. PC-1, a prostate Leucine Zipper gene (PrLZ), is specifically expressed in prostate tissue as an androgen-induced gene and is up-regulated in advanced PCa. Recent work confirmed that PC-1 expression promotes PCa growth and androgen-independent progression. However, how this occurs and whether this can be used as a biomarker is uncertain. Here, we report that PC-1 overexpression confers PCa cells resistance to rapamycin treatment by antagonizing rapamycin-induced cytostasis and autophagy (rapamycin-sensitivity was observed in PC-1-deficient (shPC-1) C4-2 cells). Analysis of the mTOR pathway in PCa cells with PC-1 overexpressed and depressed revealed that eukaryotic initiation factor 4E-binding protein 1(4E-BP1) was highly regulated by PC-1. Immunohistochemistry assays indicated that 4E-BP1 up-regulation correlates with increased PC-1 expression in human prostate tumors and in PCa cells. Furthermore, PC-1 interacts directly with 4E-BP1 and stabilizes 4E-BP1 protein via inhibition of its ubiquitination and proteasomal degradation. Thus, PC-1 is a novel regulator of 4E-BP1 and our work suggests a potential mechanism through which PC-1 enhances PCa cell survival and malignant progression and increases chemoresistance. Thus, the PC-1-4E-BP1 interaction may represent a therapeutic target for treating advanced PCa.
Collapse
Affiliation(s)
- Lan Yu
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, PR China
| | - Jian Wang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300200, PR China
| | - Fang Huang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Zhe Zhang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Ying Wang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Jianguang Zhou
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Shanhu Li
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| |
Collapse
|
20
|
Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation. Proc Natl Acad Sci U S A 2016; 113:8466-71. [PMID: 27402756 DOI: 10.1073/pnas.1607768113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin (mTOR)-directed eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation promotes cap-dependent translation and tumorigenesis. During mitosis, cyclin-dependent kinase 1 (CDK1) substitutes for mTOR and fully phosphorylates 4E-BP1 at canonical sites (T37, T46, S65, and T70) and the noncanonical S83 site, resulting in a mitosis-specific hyperphosphorylated δ isoform. Colocalization studies with a phospho-S83 specific antibody indicate that 4E-BP1 S83 phosphorylation accumulates at centrosomes during prophase, peaks at metaphase, and decreases through telophase. Although S83 phosphorylation of 4E-BP1 does not affect general cap-dependent translation, expression of an alanine substitution mutant 4E-BP1.S83A partially reverses rodent cell transformation induced by Merkel cell polyomavirus small T antigen viral oncoprotein. In contrast to inhibitory mTOR 4E-BP1 phosphorylation, these findings suggest that mitotic CDK1-directed phosphorylation of δ-4E-BP1 may yield a gain of function, distinct from translation regulation, that may be important in tumorigenesis and mitotic centrosome function.
Collapse
|
21
|
Cristóbal I, Rojo F, Madoz-Gúrpide J, García-Foncillas J. Cross Talk between Wnt/β-Catenin and CIP2A/Plk1 Signaling in Prostate Cancer: Promising Therapeutic Implications. Mol Cell Biol 2016; 36:1734-9. [PMID: 27090640 PMCID: PMC4907099 DOI: 10.1128/mcb.00130-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aberrant activation of the Wnt/β-catenin pathway and polo-like kinase 1 (Plk1) overexpression represent two common events in prostate cancer with relevant functional implications. This minireview analyzes their potential therapeutic significance in prostate cancer based on their role as androgen receptor (AR) signaling regulators and the pivotal role of the tumor suppressor protein phosphatase 2A (PP2A) modulating these pathways.
Collapse
Affiliation(s)
- Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, IIS Fundación Jiménez Diaz, UAM, University Hospital Fundación Jiménez Diaz, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS Fundación Jiménez Diaz, UAM, Madrid, Spain
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS Fundación Jiménez Diaz, UAM, University Hospital Fundación Jiménez Diaz, Madrid, Spain
| |
Collapse
|
22
|
NSCLC cells demonstrate differential mode of cell death in response to the combined treatment of radiation and a DNA-PKcs inhibitor. Oncotarget 2016; 6:3848-60. [PMID: 25714019 PMCID: PMC4414158 DOI: 10.18632/oncotarget.2975] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/20/2014] [Indexed: 12/19/2022] Open
Abstract
The current standard of care for lung cancer consists of concurrent chemotherapy and radiation. Several studies have shown that the DNA-PKcs inhibitor NU7441 is a highly potent radiosensitizer, however, the mechanism of NU7441's anti-proliferation effect has not been fully elucidated. In this study, the combined effect of NU7441 and ionizing radiation (IR) in a panel of non-small cell lung cancer cell lines (A549, H460 and H1299) has been investigated. We found that NU7441 significantly enhances the effect of IR in all cell lines. The notable findings in response to this combined treatment are (i) prolonged delay in IR-induced DNA DSB repair, (ii) induced robust G2/M checkpoint, (iii) increased aberrant mitosis followed by mitotic catastrophe specifically in H1299, (iv) dramatically induced autophagy in A549 and (v) IR-induced senescence specifically in H460. H1299 cells show greater G2 checkpoint adaptation after combined treatment, which can be attributed to higher expression level of Plk1 compared to A549 and H460. The enhanced autophagy after NU7441 treatment in A549 is possibly due to the higher endogenous expression of pS6K compared to H1299 and H460 cells. In conclusion, choice of cell death pathway is dependent on the mutation status and other genetic factors of the cells treated.
Collapse
|
23
|
CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation. Proc Natl Acad Sci U S A 2015; 112:5875-82. [PMID: 25883264 PMCID: PMC4434708 DOI: 10.1073/pnas.1505787112] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitosis is commonly thought to be associated with reduced cap-dependent protein translation. Here we show an alternative control mechanism for maintaining cap-dependent translation during mitosis revealed by a viral oncoprotein, Merkel cell polyomavirus small T (MCV sT). We find MCV sT to be a promiscuous E3 ligase inhibitor targeting the anaphase-promoting complex, which increases cell mitogenesis. MCV sT binds through its Large T stabilization domain region to cell division cycle protein 20 (Cdc20) and, possibly, cdc20 homolog 1 (Cdh1) E3 ligase adapters. This activates cyclin-dependent kinase 1/cyclin B1 (CDK1/CYCB1) to directly hyperphosphorylate eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP1) at authentic sites, generating a mitosis-specific, mechanistic target of rapamycin (mTOR) inhibitor-resistant δ phospho-isoform not present in G1-arrested cells. Recombinant 4E-BP1 inhibits capped mRNA reticulocyte translation, which is partially reversed by CDK1/CYCB1 phosphorylation of 4E-BP1. eIF4G binding to the eIF4E-m(7)GTP cap complex is resistant to mTOR inhibition during mitosis but sensitive during interphase. Flow cytometry, with and without sT, reveals an orthogonal pH3(S10+) mitotic cell population having higher inactive p4E-BP1(T37/T46+) saturation levels than pH3(S10-) interphase cells. Using a Click-iT flow cytometric assay to directly measure mitotic protein synthesis, we find that most new protein synthesis during mitosis is cap-dependent, a result confirmed using the eIF4E/4G inhibitor drug 4E1RCat. For most cell lines tested, cap-dependent translation levels were generally similar between mitotic and interphase cells, and the majority of new mitotic protein synthesis was cap-dependent. These findings suggest that mitotic cap-dependent translation is generally sustained during mitosis by CDK1 phosphorylation of 4E-BP1 even under conditions of reduced mTOR signaling.
Collapse
|
24
|
Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat Commun 2015; 6:6078. [PMID: 25629602 PMCID: PMC4317492 DOI: 10.1038/ncomms7078] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
The fully grown mammalian oocyte is transcriptionally quiescent and utilizes only transcripts synthesized and stored during early development. However, we find that an abundant RNA population is retained in the oocyte nucleus and contains specific mRNAs important for meiotic progression. Here we show that during the first meiotic division, shortly after nuclear envelope breakdown, translational hotspots develop in the chromosomal area and in a region that was previously surrounded the nucleus. These distinct translational hotspots are separated by endoplasmic reticulum and Lamin, and disappear following polar body extrusion. Chromosomal translational hotspots are controlled by the activity of the mTOR–eIF4F pathway. Here we reveal a mechanism that—following the resumption of meiosis—controls the temporal and spatial translation of a specific set of transcripts required for normal spindle assembly, chromosome alignment and segregation. Meiotic maturation of oocytes and early development of mammalian embryos is largely dependent on the translation of mRNAs stored in the oocyte. Here the authors uncover a population of mRNA retained in the oocyte nucleus whose translation is spatially and temporally regulated by the mTOR–eIF4F pathway during meiosis.
Collapse
|
25
|
Huang B, Shang ZF, Li B, Wang Y, Liu XD, Zhang SM, Guan H, Rang WQ, Hu JA, Zhou PK. DNA-PKcs associates with PLK1 and is involved in proper chromosome segregation and cytokinesis. J Cell Biochem 2014; 115:1077-88. [PMID: 24166892 DOI: 10.1002/jcb.24703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022]
Abstract
Accurate mitotic regulation is as important as intrinsic DNA repair for maintaining genomic stability. It is believed that these two cellular mechanisms are interconnected with DNA damage. DNA-PKcs is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair, and it was recently discovered to be involved in mitotic processing. However, the underlying mechanism of DNA-PKcs action in mitotic control is unknown. Here, we demonstrated that depletion of DNA-PKcs led to the dysregulation of mitotic progression in response to DNA damage, which eventually resulted in multiple failures, including failure to segregate sister chromatids and failure to complete cytokinesis, with daughter cells becoming fused again. The depletion of DNA-PKcs resulted in a notable failure of cytokinesis, with a high incidence of multinucleated cells. There were also cytoplasmic bridges containing DNA that continuously connected the daughter cells after DNA damage was induced. Phosphorylated DNA-PKcs (T2609) colocalizes with PLK1 throughout mitosis, including at the centrosomes from prophase to anaphase and at the kinetochores from prometaphase to metaphase, with accumulation at the midbody during cytokinesis. Importantly, DNA-PKcs was found to associate with PLK1 in the mitotic phase, and the depletion of DNA-PKcs resulted in the overexpression of PLK1 due to increased protein stability. However, deficiency in DNA-PKcs attenuated the recruitment of phosphorylated PLK1 to the midbody but not to the kinetochores and centrosomes. Our results demonstrate the functional association of DNA-PKcs with PLK1, especially in chromosomal segregation and cytokinesis control.
Collapse
Affiliation(s)
- Bo Huang
- School of Public Heath, Central South University, Changsha, Hunan Province, 410078, P.R. China; Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China; Institute for Environmental Medicine and Radiation Hygiene, The College of Public Health, University of South China, Hengyang, Hunan Province, 421000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhu HL, Xie SM, Fang M, Zhang JJ, Weng ZP, Zhong XY. 4E-BP1 regulates the sensitivity of human glioma cells to chemotherapy through PI3K/Akt/mTOR-independent pathway. Neuropathology 2013; 34:227-35. [PMID: 24354477 DOI: 10.1111/neup.12085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Drug resistance is one of the most formidable obstacles for treatment of glioma. Eukaryotic initiation factor 4E-binding protein (4E-BP1), a key component in the rate-limiting step of protein translation initiation, is closely associated with poor prognosis in multiple tumor types. However, it is unclear whether 4E-BP1 is involved in the drug resistance of human glioma. Herein we show that the expression of 4E-BP1 in human SWOZ2-BCNU drug-resistant glioma cells is significantly lower than that of the parent SWOZ2 cell line. Moreover, down-regulation of 4E-BP1 by short interfering RNA significantly impaired the sensitivity of SWOZ2 and U251 cells to carmustine (BCNU). Furthermore, overexpression of 4E-BP1 with plasmid transfection regained this sensitivity. Clinical studies showed that the expression levels of 4E-BP1 in primary glioma tissues were markedly higher than those of recrudescent glioma tissues. Taken together, our results suggest that 4E-BP1 is a novel protein that contributes to acquired drug resistance and it may be a potential target for reversing drug resistance in human glioma.
Collapse
Affiliation(s)
- Hui-Li Zhu
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Pathology, Medical College of Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
27
|
Tu WZ, Li B, Huang B, Wang Y, Liu XD, Guan H, Zhang SM, Tang Y, Rang WQ, Zhou PK. γH2AX foci formation in the absence of DNA damage: mitotic H2AX phosphorylation is mediated by the DNA-PKcs/CHK2 pathway. FEBS Lett 2013; 587:3437-43. [PMID: 24021642 DOI: 10.1016/j.febslet.2013.08.028] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/06/2013] [Accepted: 08/21/2013] [Indexed: 12/15/2022]
Abstract
Phosphorylated H2AX is considered to be a biomarker for DNA double-strand breaks (DSB), but recent evidence suggests that γH2AX does not always indicate the presence of DSB. Here we demonstrate the bimodal dynamic of H2AX phosphorylation induced by ionizing radiation, with the second peak appearing when G2/M arrest is induced. An increased level of γH2AX occurred in mitotic cells, and this increase was attenuated by DNA-PKcs inactivation or Chk2 depletion, but not by ATM inhibition. The phosphorylation-mimic CHK2-T68D abrogated the attenuation of mitotic γH2AX induced by DNA-PKcs inactivation. Thus, the DNA-PKcs/CHK2 pathway mediates the mitotic phosphorylation of H2AX in the absence of DNA damage.
Collapse
Affiliation(s)
- Wen-Zhi Tu
- Institute for Environmental Medicine and Radiation Hygiene, The College of Public Health, University of South China, Hengyang, Hunan Province 421000, PR China; Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zou J, Rezvani K, Wang H, Lee KS, Zhang D. BRCA1 downregulates the kinase activity of Polo-like kinase 1 in response to replication stress. Cell Cycle 2013; 12:2255-65. [PMID: 24067368 PMCID: PMC3755076 DOI: 10.4161/cc.25349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 01/19/2023] Open
Abstract
In response to DNA damage or replication stress, proliferating cells are arrested at different cell cycle stages for DNA repair by downregulating the activity of both the cyclin-dependent kinases (CDKs) and other important cell cycle kinases, including Polo-like kinase 1 (PLK1) . The signaling pathway to inhibit CDKs is relatively well understood, and breast cancer gene 1 (BRCA1) and other DNA damage response (DDR) factors play a key role in this process. However, the DNA damage-induced inhibition of PLK1 is still largely a mystery. Here we show that DNA damage and replication stress stimulate the association between BRCA1 and PLK1. Most importantly, we demonstrate that BRCA1 downregulates the kinase activity of PLK1 by modulating the dynamic interactions of Aurora A, hBora, and PLK1. Together with previous findings, we propose that in response to replication stress and DNA damage, BRCA1 plays a critical role in downregulating the kinase activity of both CDKs and PLK1.
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| | - Khosrow Rezvani
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| | - Hongmin Wang
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| | - Kyung S Lee
- Laboratory of Metabolism; Center for Cancer Research; National Cancer Institute of Health; Bethesda, MD USA
| | - Dong Zhang
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| |
Collapse
|
29
|
Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals. Genetics 2013; 195:349-58. [PMID: 23852387 DOI: 10.1534/genetics.113.154005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In contrast to other species, localized maternal mRNAs are not believed to be prominent features of mammalian oocytes. We find by cDNA microarray analysis enrichment for maternal mRNAs encoding spindle and other proteins on the mouse oocyte metaphase II (MII) spindle. We also find that the key translational regulator, EIF4EBP1, undergoes a dynamic and complex spatially regulated pattern of phosphorylation at sites that regulate its association with EIF4E and its ability to repress translation. These phosphorylation variants appear at different positions along the spindle at different stages of meiosis. These results indicate that dynamic spatially restricted patterns of EIF4EBP1 phosphorylation may promote localized mRNA translation to support spindle formation, maintenance, function, and other nearby processes. Regulated EIF4EBP1 phosphorylation at the spindle may help coordinate spindle formation with progression through the cell cycle. The discovery that EIF4EBP1 may be part of an overall mechanism that integrates and couples cell cycle progression to mRNA translation and subsequent spindle formation and function may be relevant to understanding mechanisms leading to diminished oocyte quality, and potential means of avoiding such defects. The localization of maternal mRNAs at the spindle is evolutionarily conserved between mammals and other vertebrates and is also seen in mitotic cells, indicating that EIF4EBP1 control of localized mRNA translation is likely key to correct segregation of genetic material across cell types.
Collapse
|
30
|
Leonard MK, Hill NT, Bubulya PA, Kadakia MP. The PTEN-Akt pathway impacts the integrity and composition of mitotic centrosomes. Cell Cycle 2013; 12:1406-15. [PMID: 23574721 PMCID: PMC3674068 DOI: 10.4161/cc.24516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/18/2022] Open
Abstract
Loss of the tumor suppressor PTEN is observed in many human cancers that display increased chromosome instability and aneuploidy. The subcellular fractions of PTEN are associated with different functions that regulate cell growth, invasion and chromosome stability. In this study, we show a novel role for PTEN in regulating mitotic centrosomes. PTEN localization at mitotic centrosomes peaks between prophase and metaphase, paralleling the centrosomal localization of PLK-1 and γ-tubulin and coinciding with the time frame of centrosome maturation. In primary keratinocytes, knockdown of PTEN increased whole-cell levels of γ-tubulin and PLK-1 in an Akt-dependent manner and had little effect on recruitment of either protein to mitotic centrosomes. Conversely, knockdown of PTEN reduced centrosomal levels of pericentrin in an Akt-independent manner. Inhibition of Akt activation with MK2206 reduced the whole-cell and centrosome levels of PLK-1 and γ-tubulin and also prevented the recruitment of PTEN to mitotic centrosomes. This reduction in centrosome-associated proteins upon inhibition of Akt activity may contribute to the increase in defects in centrosome number and separation observed in metaphase cells. Concomitant PTEN knockdown and Akt inhibition reduced the frequency of metaphase cells with centrosome defects when compared with MK2206 treatment alone, indicating that both PTEN and pAkt are required to properly regulate centrosome composition during mitosis. The findings presented in this study demonstrate a novel role for PTEN and Akt in controlling centrosome composition and integrity during mitosis and provide insight into how PTEN functions as a multifaceted tumor suppressor.
Collapse
Affiliation(s)
- Mary K. Leonard
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, OH USA
| | - Natasha T. Hill
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, OH USA
| | - Paula A. Bubulya
- Department of Biological Sciences; Wright State University; Dayton, OH USA
| | - Madhavi P. Kadakia
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, OH USA
| |
Collapse
|