1
|
Lavin KM, O'Bryan SM, Pathak KV, Garcia-Mansfield K, Graham ZA, McAdam JS, Drummer DJ, Bell MB, Kelley CJ, Lixandrão ME, Peoples B, Seay RS, Torres AR, Reiman R, Alsop E, Hutchins E, Bonfitto A, Antone J, Palade J, Van Keuren-Jensen K, Huentelman MJ, Pirrotte P, Broderick T, Bamman MM. Divergent multiomic acute exercise responses reveal the impact of sex as a biological variable. Physiol Genomics 2025; 57:321-342. [PMID: 40014011 DOI: 10.1152/physiolgenomics.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
The majority of exercise physiology research has been conducted in males, resulting in a skewed biological representation of how exercise impacts the physiological system. Extrapolating male-centric physiological findings to females is not universally appropriate and may even be detrimental. Thus, addressing this imbalance and taking into consideration sex as a biological variable is mandatory for optimization of precision exercise interventions and/or regimens. Our present analysis focused on establishing multiomic profiles in young, exercise-naïve males (n = 23) and females (n = 17) at rest and following acute exercise. Sex differences were characterized at baseline and following exercise using skeletal muscle and extracellular vesicle transcriptomics, whole blood methylomics, and serum metabolomics. Sex-by-time analysis of the acute exercise response revealed notable overlap, and divergent molecular responses between males and females. An exploratory comparison of two combined exercise regimens [high-intensity tactical training (HITT) and traditional (TRAD)] was then performed using singular value decomposition, revealing latent data structures that suggest a complex dose-by-sex interaction response to exercise. These findings lay the groundwork for an understanding of key differences in responses to acute exercise exposure between sexes. This may be leveraged in designing optimal training strategies, understanding common and divergent molecular interplay guiding exercise responses, and elucidating the role of sex hormones and/or other sex-specific attributes in responses to acute and chronic exercise.NEW & NOTEWORTHY This study examined methylomics, transcriptomics, and metabolomics in circulation and/or skeletal muscle of young, healthy, exercise-naïve males and females before and after exposure to either traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found an overlapping yet considerably sex-divergent response in the molecular mechanisms activated by exercise. These findings may provide insight into optimal training strategies for adaptation when considering sex as a biological variable.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Samia M O'Bryan
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Khyatiben V Pathak
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Krystine Garcia-Mansfield
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Zachary A Graham
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
- Birmingham VA Health Care System, Birmingham, Alabama, United States
| | - Jeremy S McAdam
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Devin J Drummer
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Margaret B Bell
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Christian J Kelley
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Manoel E Lixandrão
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Brandon Peoples
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
| | - Regina S Seay
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Anakaren R Torres
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Rebecca Reiman
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Eric Alsop
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Elizabeth Hutchins
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Anna Bonfitto
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Jerry Antone
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Joanna Palade
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | | | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Patrick Pirrotte
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Timothy Broderick
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Marcas M Bamman
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| |
Collapse
|
2
|
Yin L, Jiang N, Xiong W, Yang S, Zhang J, Xiong M, Liu K, Zhang Y, Xiong X, Gui Y, Gao H, Li T, Li Y, Wang X, Zhang Y, Wang F, Yuan S. METTL16 is Required for Meiotic Sex Chromosome Inactivation and DSB Formation and Recombination during Male Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406332. [PMID: 39607422 PMCID: PMC11744674 DOI: 10.1002/advs.202406332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Meiosis in males is a critical process that ensures complete spermatogenesis and genetic diversity. However, the key regulators involved in this process and the underlying molecular mechanisms remain unclear. Here, we report an essential role of the m6A methyltransferase METTL16 in meiotic sex chromosome inactivation (MSCI), double-strand break (DSB) formation, homologous recombination and SYCP1 deposition during male meiosis. METTL16 depletion results in a significantly upregulated transcriptome on sex chromosomes in pachytene spermatocytes and leads to reduced DSB formation and recombination, and increased SYCP1 depositioin during the first wave of spermatogenesis. Mechanistically, in pachytene spermatocytes, METTL16 interacts with MDC1/SCML2 to coordinate DNA damage response (DDR) and XY body epigenetic modifications that establish and maintain MSCI, and in early meiotic prophase I, METTL16 regulates DSB formation and recombination by regulating protein levels of meiosis-related genes. Furthermore, multi-omics analyses reveal that METTL16 interacts with translational factors and controls m6A levels in the RNAs of meiosis-related genes (e.g., Ubr2) to regulate the expression of critical meiotic regulators. Collectively, this study identified METTL16 as a key regulator of male meiosis and demonstrated that it modulates meiosis by interacting with MSCI-related factors and regulating m6A levels and translational efficiency (TE) of meiosis-related genes.
Collapse
Affiliation(s)
- Lisha Yin
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Nan Jiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenjing Xiong
- Laboratory of Animal CenterHuazhong University of Science and TechnologyWuhan430030China
| | - Shiyu Yang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jin Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Mengneng Xiong
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kuan Liu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuting Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xinxin Xiong
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yiqian Gui
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huihui Gao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Obstetrics and GynecologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430014China
| | - Tao Li
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yi Li
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoli Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Youzhi Zhang
- School of PharmacyHubei University of Science and TechnologyXianning437100China
| | - Fengli Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shuiqiao Yuan
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Laboratory of Animal CenterHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
3
|
Chakraborty P, Magnuson T. INO80 regulates chromatin accessibility to facilitate suppression of sex-linked gene expression during mouse spermatogenesis. PLoS Genet 2024; 20:e1011431. [PMID: 39405305 PMCID: PMC11508167 DOI: 10.1371/journal.pgen.1011431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/25/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
The INO80 protein is the main catalytic subunit of the INO80-chromatin remodeling complex, which is critical for DNA repair and transcription regulation in murine spermatocytes. In this study, we explored the role of INO80 in silencing genes on meiotic sex chromosomes in male mice. INO80 immunolocalization at the XY body in pachytene spermatocytes suggested a role for INO80 in the meiotic sex body. Subsequent deletion of Ino80 resulted in high expression of sex-linked genes. Furthermore, the active form of RNA polymerase II at the sex chromosomes of Ino80-null pachytene spermatocytes indicates incomplete inactivation of sex-linked genes. A reduction in the recruitment of initiators of meiotic sex chromosome inhibition (MSCI) argues for INO80-facilitated recruitment of DNA repair factors required for silencing sex-linked genes. This role of INO80 is independent of a common INO80 target, H2A.Z. Instead, in the absence of INO80, a reduction in chromatin accessibility at DNA repair sites occurs on the sex chromosomes. These data suggest a role for INO80 in DNA repair factor localization, thereby facilitating the silencing of sex-linked genes during the onset of pachynema.
Collapse
Affiliation(s)
- Prabuddha Chakraborty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Terry Magnuson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
Chakraborty P, Magnuson T. INO80 regulates chromatin accessibility to facilitate suppression of sex-linked gene expression during mouse spermatogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.04.522761. [PMID: 36711658 PMCID: PMC9881943 DOI: 10.1101/2023.01.04.522761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The INO80 protein is the main catalytic subunit of the INO80-chromatin remodeling complex, which is critical for DNA repair and transcription regulation in murine spermatocytes. In this study, we explored the role of INO80 in silencing genes on meiotic sex chromosomes in male mice. INO80 immunolocalization at the XY body in pachytene spermatocytes suggested a role for INO80 in the meiotic sex body. Subsequent deletion of Ino80 resulted in high expression of sex-linked genes. Furthermore, the active form of RNA polymerase II at the sex chromosomes of Ino80 -null pachytene spermatocytes indicates incomplete inactivation of sex-linked genes. A reduction in the recruitment of initiators of meiotic sex chromosome inhibition (MSCI) argues for INO80-facilitated recruitment of DNA repair factors required for silencing sex-linked genes. This role of INO80 is independent of a common INO80 target H2A.Z. Instead, in the absence of INO80, a reduction in chromatin accessibility at DNA repair sites occurs on the sex chromosomes. These data suggest a role for INO80 in DNA repair factor localization, thereby facilitating the silencing of sex-linked genes during the onset of pachynema. Summary Statement Chromatin accessibility and DNA repair factor localization at the sex chromosomes are facilitated by INO80, which regulates sex-linked gene silencing during meiotic progression in spermatocytes.
Collapse
|
5
|
Moreno-Irusta A, Dominguez EM, Iqbal K, Zhang X, Wang N, Soares MJ. TAF7L regulates early stages of male germ cell development in the rat. FASEB J 2024; 38:e23376. [PMID: 38112167 PMCID: PMC11246239 DOI: 10.1096/fj.202301716rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Male germ cell development is dependent on the orchestrated regulation of gene networks. TATA-box binding protein associated factors (TAFs) facilitate interactions of TATA-binding protein with the TATA element, which is known to coordinate gene transcription during organogenesis. TAF7 like (Taf7l) is situated on the X chromosome and has been implicated in testis development. We examined the biology of TAF7L in testis development using the rat. Taf7l was prominently expressed in preleptotene to leptotene spermatocytes. To study the impact of TAF7L on the testis we generated a global loss-of-function rat model using CRISPR/Cas9 genome editing. Exon 3 of the Taf7l gene was targeted. A founder was generated possessing a 110 bp deletion within the Taf7l locus, which resulted in a frameshift and the premature appearance of a stop codon. The mutation was effectively transmitted through the germline. Deficits in TAF7L did not adversely affect pregnancy or postnatal survival. However, the Taf7l disruption resulted in male infertility due to compromised testis development and failed sperm production. Mutant germ cells suffer meiotic arrest at late zygotene/early pachynema stages, with defects in sex body formation. This testis phenotype was more pronounced than previously described for the subfertile Taf7l null mouse. We conclude that TAF7L is essential for male germ cell development in the rat.
Collapse
Affiliation(s)
- Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Esteban M. Dominguez
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaoyu Zhang
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ning Wang
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, Missouri, USA
| |
Collapse
|
6
|
Moreno-Irusta A, Dominguez EM, Iqbal K, Zhang X, Wang N, Soares MJ. TAF7L REGULATES EARLY STAGES OF MALE GERM CELL DEVELOPMENT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561408. [PMID: 37873461 PMCID: PMC10592675 DOI: 10.1101/2023.10.08.561408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Male germ cell development is dependent on the orchestrated regulation of gene networks. TATA-box binding protein associated factors (TAFs) facilitate interactions of TATA-binding protein with the TATA element, which is known to coordinate gene transcription during organogenesis. TAF7 like (Taf7l) is situated on the X chromosome and has been implicated in testis development. We examined the biology of TAF7L in testis development using the rat. Taf7l was prominently expressed in preleptotene to leptotene spermatocytes. To study the impact of TAF7L on the testis we generated a global loss-of-function rat model using CRISPR/Cas9 genome editing. Exon 3 of the Taf7l gene was targeted. A founder was generated possessing a 110 bp deletion within the Taf7l locus, which resulted in a frameshift and the premature appearance of a stop codon. The mutation was effectively transmitted through the germline. Deficits in TAF7L did not adversely affect pregnancy or postnatal survival. However, the Taf7l disruption resulted in male infertility due to compromised testis development and failed sperm production. Mutant germ cells suffer meiotic arrest at the zygotene stage, with defects in sex body formation and meiotic sex chromosome inactivation. This testis phenotype was more pronounced than previously described for the subfertile Taf7l null mouse. We conclude that TAF7L is essential for male germ cell development in the rat.
Collapse
Affiliation(s)
- Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Esteban M. Dominguez
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Xiaoyu Zhang
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Ning Wang
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO
| |
Collapse
|
7
|
Miller SC, MacDonald CC, Kellogg MK, Karamysheva ZN, Karamyshev AL. Specialized Ribosomes in Health and Disease. Int J Mol Sci 2023; 24:ijms24076334. [PMID: 37047306 PMCID: PMC10093926 DOI: 10.3390/ijms24076334] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Ribosomal heterogeneity exists within cells and between different cell types, at specific developmental stages, and occurs in response to environmental stimuli. Mounting evidence supports the existence of specialized ribosomes, or specific changes to the ribosome that regulate the translation of a specific group of transcripts. These alterations have been shown to affect the affinity of ribosomes for certain mRNAs or change the cotranslational folding of nascent polypeptides at the exit tunnel. The identification of specialized ribosomes requires evidence of the incorporation of different ribosomal proteins or of modifications to rRNA and/or protein that lead(s) to physiologically relevant changes in translation. In this review, we summarize ribosomal heterogeneity and specialization in mammals and discuss their relevance to several human diseases.
Collapse
Affiliation(s)
- Sarah C. Miller
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Morgana K. Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-4102
| |
Collapse
|
8
|
Xiong M, Zhou S, Feng S, Gui Y, Li J, Wu Y, Dong J, Yuan S. UHRF1 is indispensable for meiotic sex chromosome inactivation and interacts with the DNA damage response pathway in mice. Biol Reprod 2022; 107:168-182. [PMID: 35284939 DOI: 10.1093/biolre/ioac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
During male meiosis, the constitutively unsynapsed XY chromosomes undergo meiotic sex chromosome inactivation (MSCI), and the DNA damage response (DDR) pathway is critical for MSCI establishment. Our previous study showed that UHRF1(ubiquitin-like, with PHD and ring finger domains 1) deletion led to meiotic arrest and male infertility; however, the underlying mechanisms of UHRF1 in the regulation of meiosis remain unclear. Here, we report that UHRF1 is required for MSCI and cooperates with the DDR pathway in male meiosis. UHRF1-deficient spermatocytes display aberrant pairing and synapsis of homologous chromosomes during the pachytene stage. In addition, UHRF1 deficiency leads to aberrant recruitment of ATR and FANCD2 on the sex chromosomes and disrupts the diffusion of ATR to the XY chromatin. Furthermore, we show that UHRF1 acts as a cofactor of BRCA1 to facilitate the recruitment of DDR factors onto sex chromosomes for MSCI establishment. Accordingly, deletion of UHRF1 leads to the failure of meiotic silencing on sex chromosomes, resulting in meiotic arrest. In addition to our previous findings, the present study reveals that UHRF1 participates in MSCI, ensuring the progression of male meiosis. This suggests a multifunctional role of UHRF1 in the male germline.
Collapse
Affiliation(s)
- Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanqing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.,Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Alavattam KG, Maezawa S, Andreassen PR, Namekawa SH. Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cell Mol Life Sci 2021; 79:18. [PMID: 34971404 PMCID: PMC9188433 DOI: 10.1007/s00018-021-04075-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
In mammalian male meiosis, the heterologous X and Y chromosomes remain unsynapsed and, as a result, are subject to meiotic sex chromosome inactivation (MSCI). MSCI is required for the successful completion of spermatogenesis. Following the initiation of MSCI, the X and Y chromosomes undergo various epigenetic modifications and are transformed into a nuclear body termed the XY body. Here, we review the mechanisms underlying the initiation of two essential, sequential processes in meiotic prophase I: MSCI and XY-body formation. The initiation of MSCI is directed by the action of DNA damage response (DDR) pathways; downstream of the DDR, unique epigenetic states are established, leading to the formation of the XY body. Accumulating evidence suggests that MSCI and subsequent XY-body formation may be driven by phase separation, a physical process that governs the formation of membraneless organelles and other biomolecular condensates. Thus, here we gather literature-based evidence to explore a phase separation hypothesis for the initiation of MSCI and the formation of the XY body.
Collapse
Affiliation(s)
- Kris G Alavattam
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Bredemeyer KR, Seabury CM, Stickney MJ, McCarrey JR, vonHoldt BM, Murphy WJ. Rapid Macrosatellite Evolution Promotes X-Linked Hybrid Male Sterility in a Feline Interspecies Cross. Mol Biol Evol 2021; 38:5588-5609. [PMID: 34519828 PMCID: PMC8662614 DOI: 10.1093/molbev/msab274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The sterility or inviability of hybrid offspring produced from an interspecific mating result from incompatibilities between parental genotypes that are thought to result from divergence of loci involved in epistatic interactions. However, attributes contributing to the rapid evolution of these regions also complicates their assembly, thus discovery of candidate hybrid sterility loci is difficult and has been restricted to a small number of model systems. Here we reported rapid interspecific divergence at the DXZ4 macrosatellite locus in an interspecific cross between two closely related mammalian species: the domestic cat (Felis silvestris catus) and the Jungle cat (Felis chaus). DXZ4 is an interesting candidate due to its structural complexity, copy number variability, and described role in the critical yet complex biological process of X-chromosome inactivation. However, the full structure of DXZ4 was absent or incomplete in nearly every available mammalian genome assembly given its repetitive complexity. We compared highly continuous genomes for three cat species, each containing a complete DXZ4 locus, and discovered that the felid DXZ4 locus differs substantially from the human ortholog, and that it varies in copy number between cat species. Additionally, we reported expression, methylation, and structural conformation profiles of DXZ4 and the X chromosome during stages of spermatogenesis that have been previously associated with hybrid male sterility. Collectively, these findings suggest a new role for DXZ4 in male meiosis and a mechanism for feline interspecific incompatibility through rapid satellite divergence.
Collapse
Affiliation(s)
- Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | | | - Mark J Stickney
- Veterinary Medical Teaching Hospital, Texas A&M University, College Station, TX, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
11
|
Zhan J, Li J, Wu Y, Wu P, Yu Z, Cui P, Zhou M, Xu Y, Jin T, Du Z, Luo M, Liu C. Chromatin-Associated Protein Sugp2 Involved in mRNA Alternative Splicing During Mouse Spermatogenesis. Front Vet Sci 2021; 8:754021. [PMID: 34733907 PMCID: PMC8558236 DOI: 10.3389/fvets.2021.754021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian spermatogenesis is a highly ordered process that is determined by chromatin-associated moderators which still remain poorly understood. Through a multi-control group proteomics strategy, we confirmed that Sugp2 was a chromatin-associated candidate protein, and its signal arose along spermatogenesis. The expression results showed that Sugp2, which is mainly expressed in the testis, had two transcripts, encoding one protein. During spermatogenesis, Sugp2 was enriched in the nucleus of male germ cells. With the depletion of Sugp2 by CRISPER-Cas9 technology, we found that Sugp2 controlled a network of genes on metal ion and ATP binding, suggesting that alternative splicing regulation by Sugp2 is involved in cellular ion and energy metabolism during spermatogenesis, while it had a little effect on meiotic progression and male fertility. Collectively, these data demonstrated that, as a chromatin-associated protein, Sugp2 mediated the alternative splicing regulatory network during spermatogenesis.
Collapse
Affiliation(s)
- Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jianbo Li
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yuerong Wu
- Center for Animal Experiment, Wuhan University, Wuhan, China
| | - Panfeng Wu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Ziqi Yu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Peng Cui
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Mofan Zhou
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yumin Xu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Tingyu Jin
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Ziye Du
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Cong Liu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
12
|
Fan X, Moustakas I, Torrens-Juaneda V, Lei Q, Hamer G, Louwe LA, Pilgram GSK, Szuhai K, Matorras R, Eguizabal C, van der Westerlaken L, Mei H, Chuva de Sousa Lopes SM. Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline. PLoS Genet 2021; 17:e1009773. [PMID: 34499650 PMCID: PMC8428764 DOI: 10.1371/journal.pgen.1009773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare. Analysis of single-cell transcriptomics data from human fetal germ cells (FGC) allowed us to identify the molecular signatures of female meiotic prophase I stages leptotene, zygotene, pachytene and diplotene. We have compared those between male and female germ cells in similar stages of meiotic prophase I and revealed conserved and specific features between sexes. We identified not only key players involved in the process of meiosis, but also highlighted the molecular components that could be responsible for changes in cellular morphology that occur during this developmental period, when the female FGC acquire their typical (sex-specific) oocyte shape as well as sex-differences in the regulation of DNA methylation. Analysis of X-linked expression between sexes during meiotic prophase I suggested a transient X-linked enrichment during female pachytene, that contrasts with the meiotic sex chromosome inactivation in males. Our study of the events that take place during meiotic prophase I provide a better understanding not only of female meiosis during development, but also highlights biomarkers that can be used to study infertility and offers insights in germline sex dimorphism in humans.
Collapse
Affiliation(s)
- Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa Torrens-Juaneda
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Leoni A. Louwe
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonneke S. K. Pilgram
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roberto Matorras
- IVIRMA, IVI Bilbao, Bilbao, Spain; Human Reproduction Unit, Cruces University Hospital, Bilbao, Spain; Department of Obstetrics and Gynecology, Basque Country University, Spain; Biocruces Bizkaia Health Research Institute, Bilbao, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, Barakaldo, Spain
| | | | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
13
|
Muyle A, Bachtrog D, Marais GAB, Turner JMA. Epigenetics drive the evolution of sex chromosomes in animals and plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200124. [PMID: 33866802 DOI: 10.1098/rstb.2020.0124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Aline Muyle
- University of California Irvine, Irvine, CA 92697, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriel A B Marais
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France.,LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
14
|
Geisinger A, Rodríguez-Casuriaga R, Benavente R. Transcriptomics of Meiosis in the Male Mouse. Front Cell Dev Biol 2021; 9:626020. [PMID: 33748111 PMCID: PMC7973102 DOI: 10.3389/fcell.2021.626020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.
Collapse
Affiliation(s)
- Adriana Geisinger
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Pourrajab F, Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials). Heliyon 2021; 7:e06029. [PMID: 33532648 PMCID: PMC7829209 DOI: 10.1016/j.heliyon.2021.e06029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
There is a concept proposing that the primitive lineages of prokaryotes, eukaryotes, and viruses emerged from the primordial pool of primitive genetic elements. In this genetic pool, transposable elements (TEs) became a source of raw material for primitive genomes, tools of genetic innovation, and ancestors of modern genes (e.g. ncRNAs, tRNAs, and rRNAs). TEs contributed directly to the genome evolution of three forms of life on the earth. TEs now appear as tools that were used to giving rise to sexual dimorphism and sex determination, lineage-specific expression of genes and tissue differentiation and finally genome stability and lifespan determination.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
16
|
Rodríguez-Casuriaga R, Geisinger A. Contributions of Flow Cytometry to the Molecular Study of Spermatogenesis in Mammals. Int J Mol Sci 2021; 22:1151. [PMID: 33503798 PMCID: PMC7865295 DOI: 10.3390/ijms22031151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Abstract
Mammalian testes are very heterogeneous organs, with a high number of different cell types. Testicular heterogeneity, together with the lack of reliable in vitro culture systems of spermatogenic cells, have been an obstacle for the characterization of the molecular bases of the unique events that take place along the different spermatogenic stages. In this context, flow cytometry has become an invaluable tool for the analysis of testicular heterogeneity, and for the purification of stage-specific spermatogenic cell populations, both for basic research and for clinical applications. In this review, we highlight the importance of flow cytometry for the advances on the knowledge of the molecular groundwork of spermatogenesis in mammals. Moreover, we provide examples of different approaches to the study of spermatogenesis that have benefited from flow cytometry, including the characterization of mutant phenotypes, transcriptomics, epigenetic and genome-wide chromatin studies, and the attempts to establish cell culture systems for research and/or clinical aims such as infertility treatment.
Collapse
Affiliation(s)
- Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay
| | - Adriana Geisinger
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11400 Montevideo, Uruguay
| |
Collapse
|
17
|
Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G. Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. J Clin Med 2020; 9:jcm9030640. [PMID: 32121034 PMCID: PMC7141194 DOI: 10.3390/jcm9030640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.
Collapse
|
18
|
Lobo J, Nunes SP, Gillis AJM, Barros-Silva D, Miranda-Gonçalves V, Berg AVD, Cantante M, Guimarães R, Henrique R, Jerónimo C, Looijenga LHJ. XIST-Promoter Demethylation as Tissue Biomarker for Testicular Germ Cell Tumors and Spermatogenesis Quality. Cancers (Basel) 2019; 11:E1385. [PMID: 31533343 PMCID: PMC6769809 DOI: 10.3390/cancers11091385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The event of X chromosome inactivation induced by XIST, which is physiologically observed in females, is retained in testicular germ cell tumors (TGCTs), as a result of a supernumerary X chromosome constitution. X chromosome inactivation also occurs in male germline, specifically during spermatogenesis. We aimed to analyze the promoter methylation status of XIST in a series of TGCT tissues, representative cell lines, and testicular parenchyma. METHODS Two independent cohorts were included, comprising a total of 413 TGCT samples, four (T)GCT cell lines, and 86 testicular parenchyma samples. The relative amount of methylated and demethylated XIST promoter fragments was assessed by quantitative methylation-specific PCR (qMSP) and more sensitive high-resolution melting (HRM) methylation analyses. RESULTS Seminomas showed a lower amount of methylated XIST fragments as compared to non-seminomas or normal testis (p < 0.0001), allowing for a good discrimination among these groups (area under the curve 0.83 and 0.81, respectively). Seminomas showed a significantly higher content of demethylated XIST as compared to non-seminomas. The percentage of demethylated XIST fragment in cell lines reflected their chromosomal constitution (number of extra X chromosomes). A novel and strong positive correlation between the Johnsen's score and XIST demethylation was identified (r = 0.75, p < 0.0001). CONCLUSIONS The X chromosome inactivation event and demethylated XIST promoter are promising biomarkers for TGCTs and for assessing spermatogenesis quality.
Collapse
Affiliation(s)
- João Lobo
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal.
| | - Sandra P Nunes
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| | - Ad J M Gillis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| | - Annette van den Berg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
| | - Mariana Cantante
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| | - Rita Guimarães
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal.
| | - Leendert H J Looijenga
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands.
- Department of Pathology, Lab. for Exp. Patho-Oncology (LEPO), Erasmus MC-University Medical Center Rotterdam, Cancer Institute, Be-432A, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Scarselli F, Cursio E, Muzzì S, Casciani V, Ruberti A, Gatti S, Greco P, Varricchio MT, Minasi MG, Greco E. How 1 h of abstinence improves sperm quality and increases embryo euploidy rate after PGT-A: a study on 106 sibling biopsied blastocysts. J Assist Reprod Genet 2019; 36:1591-1597. [PMID: 31325068 DOI: 10.1007/s10815-019-01533-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of our study was to evaluate the influence of different ejaculatory abstinence time frames (several days versus 1 h) on semen parameters, blastocysts ploidy rate, and clinical results in assisted reproduction cycles on sibling oocytes. METHODS This is a prospective study including 22 preimplantation genetic testing for aneuploidy (PGT-A) cycles performed between November 2015 and December 2018. Male partners with oligoastenoteratozoospermia produced two semen samples on the day of oocyte retrieval: the first one after several days of abstinence and the second, 1 h after the first one. Oocytes from each patient were divided into two groups: those in group 1 were injected with spermatozoa from the first ejaculate (N = 121) and oocytes in group 2 with spermatozoa from the second one (N = 144). Outcomes of aniline blue test, fertilization, blastocyst formation, ploidy rates, and clinical results were compared between the two groups. RESULTS Semen volume resulted lower in the second sperm retrieval. Sperm concentration, motility, and morphology were similar in the two groups. A total of 106 blasotcysts were biospied. Higher blastocyst euploidy rates resulted in group 2 (43.6%) than in group 1 (27.5%). A higher percentage of mature chromatine was observed in group 2. CONCLUSION Using spermatozoa from samples with a shorter abstinence could be a simple method to select higher quality spermatozoa, reducing aneuploidy rate in blastocysts. Prospective randomized controlled trials should be performed to confirm the potential advantage of using semen samples with short abstinence period to improve the outcome of assisted reproduction cycles.
Collapse
Affiliation(s)
- Filomena Scarselli
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, 00149, Rome, Italy.
| | - Elisabetta Cursio
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, 00149, Rome, Italy
| | - Saverio Muzzì
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, 00149, Rome, Italy
| | - Valentina Casciani
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, 00149, Rome, Italy
| | - Alessandra Ruberti
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, 00149, Rome, Italy
| | - Simona Gatti
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, 00149, Rome, Italy
| | - Pierfrancesco Greco
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, 00149, Rome, Italy
| | | | - Maria Giulia Minasi
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, 00149, Rome, Italy
| | - Ermanno Greco
- Centre for Reproductive Medicine, European Hospital, Via Portuense 700, 00149, Rome, Italy
| |
Collapse
|
20
|
Jung M, Wells D, Rusch J, Ahmad S, Marchini J, Myers SR, Conrad DF. Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. eLife 2019; 8:e43966. [PMID: 31237565 PMCID: PMC6615865 DOI: 10.7554/elife.43966] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
To fully exploit the potential of single-cell functional genomics in the study of development and disease, robust methods are needed to simplify the analysis of data across samples, time-points and individuals. Here we introduce a model-based factor analysis method, SDA, to analyze a novel 57,600 cell dataset from the testes of wild-type mice and mice with gonadal defects due to disruption of the genes Mlh3, Hormad1, Cul4a or Cnp. By jointly analyzing mutant and wild-type cells we decomposed our data into 46 components that identify novel meiotic gene-regulatory programs, mutant-specific pathological processes, and technical effects, and provide a framework for imputation. We identify, de novo, DNA sequence motifs associated with individual components that define temporally varying modes of gene expression control. Analysis of SDA components also led us to identify a rare population of macrophages within the seminiferous tubules of Mlh3-/- and Hormad1-/- mice, an area typically associated with immune privilege.
Collapse
Affiliation(s)
- Min Jung
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Daniel Wells
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Jannette Rusch
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Suhaira Ahmad
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Jonathan Marchini
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Simon R Myers
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Donald F Conrad
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
- Division of Genetics, Oregon National Primate Research CenterOregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
21
|
Abstract
Mammalian sex chromosomes evolved from an ordinary pair of autosomes. The X chromosome is highly conserved, whereas the Y chromosome varies among species in size, structure, and gene content. Unlike autosomes that contain randomly mixed collections of genes, the sex chromosomes are enriched in testis-biased genes related to sexual development and reproduction, particularly in spermatogenesis and male fertility. This review focuses on how sex chromosome dosage compensation takes place and why meiotic sex chromosome inactivation occurs during spermatogenesis. Furthermore, the review also emphasizes how testis-biased genes are enriched on the sex chromosomes and their functions in male fertility. It is concluded that sex chromosomes are critical to sexual development and male fertility; however, our understanding of how sex chromosome genes direct sexual development and fertility has been hampered by the structural complexities of the sex chromosomes and by the multicopy nature of the testis gene families that also play a role in immunity, cancer development, and brain function.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
22
|
Hirota T, Blakeley P, Sangrithi MN, Mahadevaiah SK, Encheva V, Snijders AP, ElInati E, Ojarikre OA, de Rooij DG, Niakan KK, Turner JMA. SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice. Dev Cell 2018; 47:645-659.e6. [PMID: 30393076 PMCID: PMC6286383 DOI: 10.1016/j.devcel.2018.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/15/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
Meiotic synapsis and recombination ensure correct homologous segregation and genetic diversity. Asynapsed homologs are transcriptionally inactivated by meiotic silencing, which serves a surveillance function and in males drives meiotic sex chromosome inactivation. Silencing depends on the DNA damage response (DDR) network, but how DDR proteins engage repressive chromatin marks is unknown. We identify the histone H3-lysine-9 methyltransferase SETDB1 as the bridge linking the DDR to silencing in male mice. At the onset of silencing, X chromosome H3K9 trimethylation (H3K9me3) enrichment is downstream of DDR factors. Without Setdb1, the X chromosome accrues DDR proteins but not H3K9me3. Consequently, sex chromosome remodeling and silencing fail, causing germ cell apoptosis. Our data implicate TRIM28 in linking the DDR to SETDB1 and uncover additional factors with putative meiotic XY-silencing functions. Furthermore, we show that SETDB1 imposes timely expression of meiotic and post-meiotic genes. Setdb1 thus unites the DDR network, asynapsis, and meiotic chromosome silencing.
Collapse
Affiliation(s)
- Takayuki Hirota
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Blakeley
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mahesh N Sangrithi
- KK Women's and Children's Hospital, Department of Reproductive Medicine, Singapore 229899, Singapore; Duke-NUS Graduate Medical School, Singapore 119077, Singapore
| | | | - Vesela Encheva
- Mass Spectrometry Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Elias ElInati
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Obah A Ojarikre
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands; Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
23
|
MacDonald CC, Grozdanov PN. Nonsense in the testis: multiple roles for nonsense-mediated decay revealed in male reproduction. Biol Reprod 2018; 96:939-947. [PMID: 28444146 PMCID: PMC5803779 DOI: 10.1093/biolre/iox033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/20/2017] [Indexed: 01/23/2023] Open
Abstract
Nonsense-mediated mRNA decay, or NMD, is a quality control mechanism that identifies cytoplasmic mRNAs containing translational termination (stop) codons in specific contexts—either premature termination codons or unusually long 3΄ untranslated regions (UTRs)—and targets them for degradation. In recent studies, researchers in different labs have knocked out important genes involved in NMD, the up-frameshift genes Upf2 and Upf3a, and one component of chromatoid bodies, the Tudor domain-containing protein Tdrd6, and examined the consequences for spermatogenesis. Disruption of Upf2 during early stages of spermatogenesis resulted in disappearance of nearly all spermatogenic cells through loss of NMD. However, disruption of Upf2 during postmeiotic stages resulted in decreased long 3΄ UTR-mediated NMD but no interruption of exon junction-associated NMD. This difference in NMD targeting is possibly due to increased expression of Upf3a in postmeiotic germ cells that antagonizes the functions of Upf3b and somehow favors long 3΄ UTR-mediated NMD. Tying these all together, loss of Tdrd6, a structural component of the germ cell-specific cytoplasmic structures called chromatoid bodies, also resulted in loss of long 3΄ UTR-mediated NMD by interfering with UPF1/UPF2 interactions, delocalizing UPF1, and destroying chromatoid body integrity. These results suggest that chromatoid bodies play a specialized role in modulating the NMD machinery in postmeiotic spermatids.
Collapse
Affiliation(s)
- Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
- Correspondence: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA. Tel: +1-806-743-2524; Fax: +1-806-743-2990; E-mail:
| | - Petar N. Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
24
|
Steves AN, Bradner JM, Fowler KL, Clarkson-Townsend D, Gill BJ, Turry AC, Caudle WM, Miller GW, Chan AWS, Easley CA. Ubiquitous Flame-Retardant Toxicants Impair Spermatogenesis in a Human Stem Cell Model. iScience 2018; 3:161-176. [PMID: 29901031 PMCID: PMC5994764 DOI: 10.1016/j.isci.2018.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Sperm counts have rapidly declined in Western males over the past four decades. This rapid decline remains largely unexplained, but exposure to environmental toxicants provides one potential explanation for this decline. Flame retardants are highly prevalent and persistent in the environment, but many have not been assessed for their effects on human spermatogenesis. Using a human stem cell-based model of spermatogenesis, we evaluated two major flame retardants, hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA), under acute conditions simulating occupational-level exposures. Here we show that HBCDD and TBBPA are human male reproductive toxicants in vitro. Although these toxicants do not specifically affect the survival of haploid spermatids, they affect spermatogonia and primary spermatocytes through mitochondrial membrane potential perturbation and reactive oxygen species generation, ultimately causing apoptosis. Taken together, these results show that HBCDD and TBBPA affect human spermatogenesis in vitro and potentially implicate this highly prevalent class of toxicants in the decline of Western males' sperm counts.
Collapse
Affiliation(s)
- Alyse N Steves
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Joshua M Bradner
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen L Fowler
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Danielle Clarkson-Townsend
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Brittany J Gill
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Adam C Turry
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - W Michael Caudle
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Anthony W S Chan
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA 30322, USA.
| |
Collapse
|
25
|
Adams SR, Maezawa S, Alavattam KG, Abe H, Sakashita A, Shroder M, Broering TJ, Sroga Rios J, Thomas MA, Lin X, Price CM, Barski A, Andreassen PR, Namekawa SH. RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genet 2018; 14:e1007233. [PMID: 29462142 PMCID: PMC5834201 DOI: 10.1371/journal.pgen.1007233] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/02/2018] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
The sex chromosomes are enriched with germline genes that are activated during the late stages of spermatogenesis. Due to meiotic sex chromosome inactivation (MSCI), these sex chromosome-linked genes must escape silencing for activation in spermatids, thereby ensuring their functions for male reproduction. RNF8, a DNA damage response protein, and SCML2, a germline-specific Polycomb protein, are two major, known regulators of this process. Here, we show that RNF8 and SCML2 cooperate to regulate ubiquitination during meiosis, an early step to establish active histone modifications for subsequent gene activation. Double mutants of Rnf8 and Scml2 revealed that RNF8-dependent monoubiquitination of histone H2A at Lysine 119 (H2AK119ub) is deubiquitinated by SCML2, demonstrating interplay between RNF8 and SCML2 in ubiquitin regulation. Additionally, we identify distinct functions of RNF8 and SCML2 in the regulation of ubiquitination: SCML2 deubiquitinates RNF8-independent H2AK119ub but does not deubiquitinate RNF8-dependent polyubiquitination. RNF8-dependent polyubiquitination is required for the establishment of H3K27 acetylation, a marker of active enhancers, while persistent H2AK119ub inhibits establishment of H3K27 acetylation. Following the deposition of H3K27 acetylation, H3K4 dimethylation is established as an active mark on poised promoters. Together, we propose a model whereby regulation of ubiquitin leads to the organization of poised enhancers and promoters during meiosis, which induce subsequent gene activation from the otherwise silent sex chromosomes in postmeiotic spermatids.
Collapse
Affiliation(s)
- Shannel R. Adams
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kris G. Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Hironori Abe
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Megan Shroder
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Tyler J. Broering
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Julie Sroga Rios
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Michael A. Thomas
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Carolyn M. Price
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Paul R. Andreassen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Satoshi H. Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
26
|
Alavattam KG, Abe H, Sakashita A, Namekawa SH. Chromosome Spread Analyses of Meiotic Sex Chromosome Inactivation. Methods Mol Biol 2018; 1861:113-129. [PMID: 30218364 PMCID: PMC8243718 DOI: 10.1007/978-1-4939-8766-5_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A distinct form of X chromosome inactivation takes place during male meiosis, when the male sex chromosomes undergo a phenomenon known as meiotic sex chromosome inactivation (MSCI). MSCI is directed by DNA damage response signaling independent of Xist RNA to silence the transcriptional activity of the sex chromosomes, an essential event in male germ cell development. Here, we present protocols for the preparation and analyses of chromosome spread slides of mouse meiotic spermatocytes, thereby enabling a quick, inexpensive, and powerful cytological method to complement gene expression studies.
Collapse
Affiliation(s)
- Kris G Alavattam
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Hironori Abe
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
27
|
DNA damage response protein TOPBP1 regulates X chromosome silencing in the mammalian germ line. Proc Natl Acad Sci U S A 2017; 114:12536-12541. [PMID: 29114052 DOI: 10.1073/pnas.1712530114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Meiotic synapsis and recombination between homologs permits the formation of cross-overs that are essential for generating chromosomally balanced sperm and eggs. In mammals, surveillance mechanisms eliminate meiotic cells with defective synapsis, thereby minimizing transmission of aneuploidy. One such surveillance mechanism is meiotic silencing, the inactivation of genes located on asynapsed chromosomes, via ATR-dependent serine-139 phosphorylation of histone H2AFX (γH2AFX). Stimulation of ATR activity requires direct interaction with an ATR activation domain (AAD)-containing partner. However, which partner facilitates the meiotic silencing properties of ATR is unknown. Focusing on the best-characterized example of meiotic silencing, meiotic sex chromosome inactivation, we reveal this AAD-containing partner to be the DNA damage and checkpoint protein TOPBP1. Conditional TOPBP1 deletion during pachynema causes germ cell elimination associated with defective X chromosome gene silencing and sex chromosome condensation. TOPBP1 is essential for localization to the X chromosome of silencing "sensors," including BRCA1, and effectors, including ATR, γH2AFX, and canonical repressive histone marks. We present evidence that persistent DNA double-strand breaks act as silencing initiation sites. Our study identifies TOPBP1 as a critical factor in meiotic sex chromosome silencing.
Collapse
|
28
|
Xiong M, Zhu Z, Tian S, Zhu R, Bai S, Fu K, Davis JG, Sun Z, Baur JA, Zheng K, Ye L. Conditional ablation of
Raptor
in the male germline causes infertility due to meiotic arrest and impaired inactivation of sex chromosomes. FASEB J 2017; 31:3934-3949. [DOI: 10.1096/fj.201700251r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Mengneng Xiong
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Zhiping Zhu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Suwen Tian
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Ruping Zhu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Shun Bai
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Kaiqiang Fu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - James G. Davis
- Institute for Diabetes, Obesity, and MetabolismDepartment of PhysiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zheng Sun
- Baylor College of MedicineHoustonTexasUSA
| | - Joseph A. Baur
- Institute for Diabetes, Obesity, and MetabolismDepartment of PhysiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ke Zheng
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Lan Ye
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
29
|
Jiang L, Li T, Zhang X, Zhang B, Yu C, Li Y, Fan S, Jiang X, Khan T, Hao Q, Xu P, Nadano D, Huleihel M, Lunenfeld E, Wang PJ, Zhang Y, Shi Q. RPL10L Is Required for Male Meiotic Division by Compensating for RPL10 during Meiotic Sex Chromosome Inactivation in Mice. Curr Biol 2017; 27:1498-1505.e6. [DOI: 10.1016/j.cub.2017.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/05/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
|
30
|
Sangrithi MN, Royo H, Mahadevaiah SK, Ojarikre O, Bhaw L, Sesay A, Peters AHFM, Stadler M, Turner JMA. Non-Canonical and Sexually Dimorphic X Dosage Compensation States in the Mouse and Human Germline. Dev Cell 2017; 40:289-301.e3. [PMID: 28132849 PMCID: PMC5300051 DOI: 10.1016/j.devcel.2016.12.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/01/2016] [Accepted: 12/27/2016] [Indexed: 12/02/2022]
Abstract
Somatic X dosage compensation requires two mechanisms: X inactivation balances X gene output between males (XY) and females (XX), while X upregulation, hypothesized by Ohno and documented in vivo, balances X gene with autosomal gene output. Whether X dosage compensation occurs in germ cells is unclear. We show that mouse and human germ cells exhibit non-canonical X dosage states that differ from the soma and between the sexes. Prior to genome-wide reprogramming, X upregulation is present, consistent with Ohno's hypothesis. Subsequently, however, it is erased. In females, erasure follows loss of X inactivation, causing X dosage excess. Conversely, in males, erasure leads to permanent X dosage decompensation. Sex chromosomally abnormal models exhibit a “sex-reversed” X dosage state: XX males, like XX females, develop X dosage excess, while XO females, like XY males, develop X dosage decompensation. Thus, germline X dosage compensation states are determined by X chromosome number, not phenotypic sex. These unexpected differences in X dosage compensation states between germline and soma offer unique perspectives on sex chromosome infertility. X dosage compensation in germ cells is reset during GWR PGCs exhibit X upregulation before GWR, in keeping with Ohno's hypothesis X upregulation is lost during GWR Mouse and human germ cells exhibit X dosage states that are sexually dimorphic
Collapse
Affiliation(s)
- Mahesh N Sangrithi
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK; UCL EGA Institute for Women's Health UCL, Medical School Building, 74 Huntley Street, London WC1E 6AU, UK
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Shantha K Mahadevaiah
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Obah Ojarikre
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Leena Bhaw
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Abdul Sesay
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Michael Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - James M A Turner
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
31
|
Kwon JT, Jin S, Choi H, Kim J, Jeong J, Kim J, Cho C. TEX13 is a novel male germ cell-specific nuclear protein potentially involved in transcriptional repression. FEBS Lett 2016; 590:3526-3537. [PMID: 27670266 DOI: 10.1002/1873-3468.12433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/11/2016] [Accepted: 09/17/2016] [Indexed: 12/16/2022]
Abstract
The identification and characterization of male germ cell-specific genes is crucial to understanding the mechanisms of male germ cell development. In this study, we investigated the protein encoded by the novel mouse germ cell-specific gene testis-expressed gene 13 (Tex13). We found that TEX13 expression is testis- and germ cell-specific and is regulated in a stage-specific manner via translational repression. Immunostaining of testicular cells and sperm showed that TEX13 is localized in the nuclei of spermatogenic cells and the redundant nuclear envelope of mature sperm. Remarkably, we found that TEX13 possesses transcriptional repressor activity and that its overexpression in GC-2 cells altered the expression levels of 130 genes. Our results suggest that TEX13 has a potential role in transcriptional regulation during spermatogenesis.
Collapse
Affiliation(s)
- Jun Tae Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Korea
| | - Sora Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Korea
| | - Heejin Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Korea
| | - Jihye Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Korea
| | - Juri Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology, Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Korea.
| |
Collapse
|
32
|
Abstract
Meiosis is essential for reproduction in sexually reproducing organisms. A key stage in meiosis is the synapsis of maternal and paternal homologous chromosomes, accompanied by exchange of genetic material to generate crossovers. A decade ago, studies found that when chromosomes fail to synapse, the many hundreds of genes housed within them are transcriptionally inactivated. This process, meiotic silencing, is conserved in all mammals studied to date, but its purpose is not yet defined. Here, I review the molecular genetics of meiotic silencing and consider the many potential functions that it could serve in the mammalian germ line. In addition, I discuss how meiotic silencing influences sex differences in meiotic infertility and the profound impact that meiotic silencing has had on the evolution of mammalian sex chromosomes.
Collapse
|
33
|
Grozdanov PN, Amatullah A, Graber JH, MacDonald CC. TauCstF-64 Mediates Correct mRNA Polyadenylation and Splicing of Activator and Repressor Isoforms of the Cyclic AMP-Responsive Element Modulator (CREM) in Mouse Testis. Biol Reprod 2015; 94:34. [PMID: 26700942 PMCID: PMC4787626 DOI: 10.1095/biolreprod.115.134684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is coordinated by the spatial and temporal expression of many transcriptional and posttranscriptional factors. The cyclic AMP-responsive element modulator (CREM) gene encodes both activator and repressor isoforms that act as transcription factors to regulate spermiogenesis. We found that the testis-expressed paralog of CstF-64, tauCstF-64 (gene symbol Cstf2t), is involved in a polyadenylation site choice switch of Crem mRNA and leads to an overall decrease of the Crem mRNAs that are generated from internal promoters in Cstf2t(-/-) mice. More surprisingly, loss of tauCstF-64 also leads to alternative splicing of Crem exon 4, which contains an important activation domain. Thus, testis-specific CREMtau2 isoform protein levels are reduced in Cstf2t(-/-) mice. Consequently, expression of 15 CREM-regulated genes is decreased in testes of Cstf2t(-/-) mice at 25 days postpartum. These effects might further contribute to the infertility phenotype of these animals. This demonstrates that tauCstF-64 is an important stage-specific regulator of Crem mRNA processing that modulates the spatial and temporal expression of downstream stage-specific genes necessary for the proper development of sperm in mice.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Atia Amatullah
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joel H Graber
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine
| | - Clinton C MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
34
|
Royo H, Seitz H, ElInati E, Peters AHFM, Stadler MB, Turner JMA. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation. PLoS Genet 2015; 11:e1005461. [PMID: 26509798 PMCID: PMC4624941 DOI: 10.1371/journal.pgen.1005461] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions. During male germ cell formation, the X and the Y chromosomes are inactivated. This process is conserved and it is essential for germ cell generation. It is believed that X/Y silencing affects all protein-coding genes, but the status of miRNAs and other non-coding genes needs further investigation. MicroRNAs from the X-chromosome (X-miRNAs) have been reported as potential silencing escapers, and they have been proposed to play a role in the inactivation mechanism itself. By looking at the individual cell level, we show unambiguously that X-miRNAs are subject to X/Y silencing, a finding that contradicts the current literature. Moreover, we generated mouse mutants in which we forced expression of X-miRNAs during X/Y silencing, and this lead to germ cell death. We propose that X/Y silencing can influence transcription of essential germ cell genes by regulating X-repressors.
Collapse
Affiliation(s)
- Hélène Royo
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Hervé Seitz
- Institute of Human Genetics, UPR 1142, CNRS, Montpellier, France
| | - Elias ElInati
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | | | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - James M. A. Turner
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Sosa E, Flores L, Yan W, McCarrey JR. Escape of X-linked miRNA genes from meiotic sex chromosome inactivation. Development 2015; 142:3791-800. [PMID: 26395485 DOI: 10.1242/dev.127191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/08/2015] [Indexed: 01/25/2023]
Abstract
Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis.
Collapse
Affiliation(s)
- Enrique Sosa
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Luis Flores
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Wei Yan
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
36
|
Sree S, Radhakrishnan K, Indu S, Kumar PG. Dramatic Changes in 67 miRNAs During Initiation of First Wave of Spermatogenesis in Mus musculusTestis: Global Regulatory Insights Generated by miRNA-mRNA Network Analysis1. Biol Reprod 2014; 91:69. [DOI: 10.1095/biolreprod.114.119305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
37
|
Wang L, Liu W, Zhao W, Song G, Wang G, Wang X, Sun F. Phosphorylation of CDK2 on threonine 160 influences silencing of sex chromosome during male meiosis. Biol Reprod 2014; 90:138. [PMID: 24759790 DOI: 10.1095/biolreprod.113.116624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In mammalian meiosis, the X and Y chromosomes are largely unsynapsed and transcriptionally silenced during the pachytene stage of meiotic prophase (meiotic sex chromosome inactivation), forming a specialized nuclear territory called sex or XY body. An increasing number of proteins and noncoding RNAs were found to localize to the sex body and take part in influencing expression of sex chromosome genes. Cyclin-dependent kinase 2 (Cdk2 (-/-)) spermatocytes show incomplete sex chromosome pairing. Here, we further showed that phosphorylation of CDK2 isoform 1 (p-CDK2(39) [39 kDa]) on threonine 160 localizes to the sites of asynapsis and the sex body, interacting with phosphorylated gamma-H2AX. Meanwhile, p-CDK2(39) is frequently mislocalized throughout the sex body, and meiotic sex chromosome inactivation is disrupted in PWK×C57BL/6J hybrid mice. Furthermore, pachytene spermatocytes treated with mevastatin (an inhibitor of p-CDK2) showed overexpression of sex chromosome-linked genes. Our results highlight an important role for p-CDK2(39) in influencing silencing of the sex chromosomes during male meiosis by interacting with gamma-H2AX.
Collapse
Affiliation(s)
- Lu Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenjing Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China College of Life Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Weidong Zhao
- Engineering College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Gendi Song
- Engineering College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guishuan Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaorong Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Fei Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
38
|
Biswas U, Wetzker C, Lange J, Christodoulou EG, Seifert M, Beyer A, Jessberger R. Meiotic cohesin SMC1β provides prophase I centromeric cohesion and is required for multiple synapsis-associated functions. PLoS Genet 2013; 9:e1003985. [PMID: 24385917 PMCID: PMC3873225 DOI: 10.1371/journal.pgen.1003985] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/14/2013] [Indexed: 01/09/2023] Open
Abstract
Cohesin subunit SMC1β is specific and essential for meiosis. Previous studies showed functions of SMC1β in determining the axis-loop structure of synaptonemal complexes (SCs), in providing sister chromatid cohesion (SCC) in metaphase I and thereafter, in protecting telomere structure, and in synapsis. However, several central questions remained unanswered and concern roles of SMC1β in SCC and synapsis and processes related to these two processes. Here we show that SMC1β substantially supports prophase I SCC at centromeres but not along chromosome arms. Arm cohesion and some of centromeric cohesion in prophase I are provided by non-phosphorylated SMC1α. Besides supporting synapsis of autosomes, SMC1β is also required for synapsis and silencing of sex chromosomes. In absence of SMC1β, the silencing factor γH2AX remains associated with asynapsed autosomes and fails to localize to sex chromosomes. Microarray expression studies revealed up-regulated sex chromosome genes and many down-regulated autosomal genes. SMC1β is further required for non-homologous chromosome associations observed in absence of SPO11 and thus of programmed double-strand breaks. These breaks are properly generated in Smc1β−/− spermatocytes, but their repair is delayed on asynapsed chromosomes. SMC1α alone cannot support non-homologous associations. Together with previous knowledge, three main functions of SMC1β have emerged, which have multiple consequences for spermatocyte biology: generation of the loop-axis architecture of SCs, homologous and non-homologous synapsis, and SCC starting in early prophase I. The generation of mammalian gametes through meiosis comprises two subsequent cell divisions. The first division, meiosis I, features highly specific chromosome structures, and behavior, and requires distinct sets of chromosome-associated proteins. Cohesin proteins, of which some are meiosis-specific, are essential for meiosis, but their particular roles in meiosis are incompletely understood. We show here that SMC1β, a meiosis-specific cohesin, serves key functions already in prophase of meiosis I: SMC1β contributes to keeping sister chromatids in cohesion at their centromeres and supports synapsis of the four sister chromatids present in these cells. SMC1β is required for the synapsis of the X and Y sex chromosomes. The failure of autosomes to properly synapse in absence of SMC1β causes extensive alterations in gene expression. This leads to expression of sex chromosome-linked genes, which are lethal at this stage, explaining the death of spermatocytes in mid-prophase I. Together with the analyses of other cohesin proteins and of phosphorylated forms of SMC3 and SMC1α, this paper describes hitherto undescribed properties and functions of meiotic cohesin in sister chromatid cohesion and synapsis.
Collapse
Affiliation(s)
- Uddipta Biswas
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cornelia Wetzker
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | | | | | - Andreas Beyer
- Biotechnology Center, TU Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
39
|
Bao J, Wu J, Schuster AS, Hennig GW, Yan W. Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline. Biol Reprod 2013; 89:107. [PMID: 24048575 DOI: 10.1095/biolreprod.113.113308] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In mammals, the transcriptome of large noncoding RNAs (lncRNAs) is believed to be greater than that of messenger RNAs (mRNAs). Some lncRNAs, especially large intergenic noncoding RNAs (lincRNAs), participate in epigenetic regulation by binding chromatin-modifying protein complexes and regulating protein-coding gene expression. Given that epigenetic regulation plays a critical role in male germline development, we embarked on expression profiling of both lncRNAs and mRNAs during male germline reprogramming and postnatal development using microarray analyses. We identified thousands of lncRNAs and hundreds of lincRNAs that are either up- or downregulated at six critical time points during male germ cell development. In addition, highly regulated lncRNAs were correlated with nearby (<30 kb) mRNA gene clusters, which were also significantly up- or downregulated. Large ncRNAs can be localized to both the nucleus and cytoplasm, with nuclear lncRNAs mostly associated with key components of the chromatin-remodeling protein complexes. Our data indicate that expression of lncRNAs is dynamically regulated during male germline development and that lncRNAs may function to regulate gene expression at both transcriptional and posttranscriptional levels via genetic and epigenetic mechanisms.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | | | | | | | | |
Collapse
|
40
|
BAO JIANQIANG, YUAN SHUIQIAO, MAESTAS ASHLEY, BHETWAL BHUPALP, SCHUSTER ANDREW, YAN WEI. Stk31 is dispensable for embryonic development and spermatogenesis in mice. Mol Reprod Dev 2013; 80:786. [PMID: 23929668 PMCID: PMC5441557 DOI: 10.1002/mrd.22225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 11/11/2022]
Abstract
Mol. Reprod. Dev. 80: 786, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- JIANQIANG BAO
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - SHUIQIAO YUAN
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - ASHLEY MAESTAS
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - BHUPAL P. BHETWAL
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - ANDREW SCHUSTER
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - WEI YAN
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| |
Collapse
|
41
|
Royo H, Prosser H, Ruzankina Y, Mahadevaiah SK, Cloutier JM, Baumann M, Fukuda T, Höög C, Tóth A, de Rooij DG, Bradley A, Brown EJ, Turner JMA. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing. Genes Dev 2013; 27:1484-94. [PMID: 23824539 PMCID: PMC3713429 DOI: 10.1101/gad.219477.113] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In mammals, homologs that fail to synapse during meiosis are transcriptionally inactivated. This process, meiotic silencing, drives inactivation of the heterologous XY bivalent in male germ cells (meiotic sex chromosome inactivation [MSCI]) and is thought to act as a meiotic surveillance mechanism. The checkpoint protein ATM and Rad3-related (ATR) localizes to unsynapsed chromosomes, but its role in the initiation and maintenance of meiotic silencing is unknown. Here we show that ATR has multiple roles in silencing. ATR first regulates HORMA (Hop1, Rev7, and Mad2) domain protein HORMAD1/2 phosphorylation and localization of breast cancer I (BRCA1) and ATR cofactors ATR-interacting peptide (ATRIP)/topoisomerase 2-binding protein 1 (TOPBP1) at unsynapsed axes. Later, it acts as an adaptor, transducing signaling at unsynapsed axes into surrounding chromatin in a manner that requires interdependence with mediator of DNA damage checkpoint 1 (MDC1) and H2AFX. Finally, ATR catalyzes histone H2AFX phosphorylation, the epigenetic event leading to gene inactivation. Using a novel genetic strategy in which MSCI is used to silence a chosen gene in pachytene, we show that ATR depletion does not disrupt the maintenance of silencing and that silencing comprises two phases: The first is dynamic and reversible, and the second is stable and irreversible. Our work identifies a role for ATR in the epigenetic regulation of gene expression and presents a new technique for ablating gene function in the germline.
Collapse
Affiliation(s)
- Hélène Royo
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Identification of germ cell-specific genes in mammalian meiotic prophase. BMC Bioinformatics 2013; 14:72. [PMID: 23445120 PMCID: PMC3599307 DOI: 10.1186/1471-2105-14-72] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 02/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammalian germ cells undergo meiosis to produce sperm or eggs, haploid cells that are primed to meet and propagate life. Meiosis is initiated by retinoic acid and meiotic prophase is the first and most complex stage of meiosis when homologous chromosomes pair to exchange genetic information. Errors in meiosis can lead to infertility and birth defects. However, despite the importance of this process, germ cell-specific gene expression patterns during meiosis remain undefined due to difficulty in obtaining pure germ cell samples, especially in females, where prophase occurs in the embryonic ovary. Indeed, mixed signals from both germ cells and somatic cells complicate gonadal transcriptome studies. RESULTS We developed a machine-learning method for identifying germ cell-specific patterns of gene expression in microarray data from mammalian gonads, specifically during meiotic initiation and prophase. At 10% recall, the method detected spermatocyte genes and oocyte genes with 90% and 94% precision, respectively. Our method outperformed gonadal expression levels and gonadal expression correlations in predicting germ cell-specific expression. Top-predicted spermatocyte and oocyte genes were both preferentially localized to the X chromosome and significantly enriched for essential genes. Also identified were transcription factors and microRNAs that might regulate germ cell-specific expression. Finally, we experimentally validated Rps6ka3, a top-predicted X-linked spermatocyte gene. Protein localization studies in the mouse testis revealed germ cell-specific expression of RPS6KA3, mainly detected in the cytoplasm of spermatogonia and prophase spermatocytes. CONCLUSIONS We have demonstrated that, through the use of machine-learning methods, it is possible to detect germ cell-specific expression from gonadal microarray data. Results from this study improve our understanding of the transition from germ cells to meiocytes in the mammalian gonad. Further, this approach is applicable to other tissues for which isolating cell populations remains difficult.
Collapse
|
43
|
Sin HS, Barski A, Zhang F, Kartashov AV, Nussenzweig A, Chen J, Andreassen PR, Namekawa SH. RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Genes Dev 2013; 26:2737-48. [PMID: 23249736 DOI: 10.1101/gad.202713.112] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sex chromosomes are uniquely subject to chromosome-wide silencing during male meiosis, and silencing persists into post-meiotic spermatids. Against this background, a select set of sex chromosome-linked genes escapes silencing and is activated in post-meiotic spermatids. Here, we identify a novel mechanism that regulates escape gene activation in an environment of chromosome-wide silencing in murine germ cells. We show that RNF8-dependent ubiquitination of histone H2A during meiosis establishes active epigenetic modifications, including dimethylation of H3K4 on the sex chromosomes. RNF8-dependent active epigenetic memory, defined by dimethylation of H3K4, persists throughout meiotic division. Various active epigenetic modifications are subsequently established on the sex chromosomes in post-meiotic spermatids. These RNF8-dependent modifications include trimethylation of H3K4, histone lysine crotonylation (Kcr), and incorporation of the histone variant H2AFZ. RNF8-dependent epigenetic programming regulates escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Kcr accumulates at transcriptional start sites of sex-linked genes activated in an RNF8-dependent manner, and a chromatin conformational change is associated with RNF8-dependent epigenetic programming. Furthermore, we demonstrate that this RNF8-dependent pathway is distinct from that which recognizes DNA double-strand breaks. Our results establish a novel connection between a DNA damage response factor (RNF8) and epigenetic programming, specifically in establishing active epigenetic modifications and gene activation.
Collapse
Affiliation(s)
- Ho-Su Sin
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis.
Collapse
|
45
|
The τCstF-64 polyadenylation protein controls genome expression in testis. PLoS One 2012; 7:e48373. [PMID: 23110235 PMCID: PMC3482194 DOI: 10.1371/journal.pone.0048373] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022] Open
Abstract
The τCstF-64 polyadenylation protein (gene symbol Cstf2t) is a testis-expressed orthologue of CstF-64. Mice in which Cstf2t was knocked out had a phenotype that was only detected in meiotic and postmeiotic male germ cells, giving us the opportunity to examine CstF-64 function in an isolated developmental system. We performed massively parallel clonally amplified sequencing of cDNAs from testes of wild type and Cstf2t−/− mice. These results revealed that loss of τCstF-64 resulted in large-scale changes in patterns of genome expression. We determined that there was a significant overrepresentation of RNAs from introns and intergenic regions in testes of Cstf2t−/− mice, and a concomitant use of more distal polyadenylation sites. We observed this effect particularly in intronless small genes, many of which are expressed retroposons that likely co-evolved with τCstF-64. Finally, we observed overexpression of long interspersed nuclear element (LINE) sequences in Cstf2t−/− testes. These results suggest that τCstF-64 plays a role in 3′ end determination and transcription termination for a large range of germ cell-expressed genes.
Collapse
|
46
|
Evans EB, Hogarth C, Evanoff RM, Mitchell D, Small C, Griswold MD. Localization and regulation of murine Esco2 during male and female meiosis. Biol Reprod 2012; 87:61. [PMID: 22699483 DOI: 10.1095/biolreprod.112.099978] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Meiosis is essential for generation of healthy gametes in both sexes and involves recombination and segregation of homologous chromosomes to produce haploid gametes. The initiation of meiosis in both sexes relies upon retinoic acid (RA) (Griswold MD, Hogarth CA, Bowles J, Koopman P. Initiating Meiosis: The Case for Retinoic Acid. Biol Reprod 2012; 86(35):1-7). Previous studies have demonstrated that the stimulated by retinoic acid gene 8 (Stra8) was required for meiotic progression in both the mouse ovary and postnatal testis. To identify additional candidates that may play a role during meiosis, we used microarray databases to generate lists of transcripts with expression profiles similar to that of Stra8 in the embryonic ovary and postnatal testis. One such gene, establishment of cohesion 1 homolog 2 (Saccharomyces cerevisiae) (Esco2), has been described as a regulator of sister chromatid cohesion during mitosis. This study describes the first in-depth analysis of ESCO2 localization and regulation during meiosis in both males and females. ESCO2 colocalized with the gamma H2A histone family member X (H2AFX) in pachytene spermatocytes, indicating that ESCO2 is a component of the XY body. In pachytene cells of the embryonic ovary, ESCO2 colocalized with H2AFX, which is consistent with the presence of ESCO2 in areas of double-stranded breaks. In addition, the expression of Esco2 was found to be regulated by RA in the postnatal testis. These data indicate that ESCO2 may play a vital role in meiosis in both males and females.
Collapse
Affiliation(s)
- Elizabeth B Evans
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kurahashi H, Kogo H, Tsutsumi M, Inagaki H, Ohye T. Failure of homologous synapsis and sex-specific reproduction problems. Front Genet 2012; 3:112. [PMID: 22719750 PMCID: PMC3376420 DOI: 10.3389/fgene.2012.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/30/2012] [Indexed: 01/15/2023] Open
Abstract
The prophase of meiosis I ensures the correct segregation of chromosomes to each daughter cell. This includes the pairing, synapsis, and recombination of homologous chromosomes. A subset of chromosomal abnormalities, including translocation and inversion, disturbs these processes, resulting in the failure to complete synapsis. This activates the meiotic pachytene checkpoint, and the gametes are fated to undergo cell cycle arrest and subsequent apoptosis. Spermatogenic cells appear to be more vulnerable to the pachytene checkpoint, and male carriers of chromosomal abnormalities are more susceptible to infertility. In contrast, oocytes tend to bypass the checkpoint and instead generate other problems, such as chromosome imbalance that often leads to recurrent pregnancy loss in female carriers. Recent advances in genetic manipulation technologies have increased our knowledge about the pachytene checkpoint and surveillance systems that detect chromosomal synapsis. This review focuses on the consequences of synapsis failure in humans and provides an overview of the mechanisms involved. We also discuss the sexual dimorphism of the involved pathways that leads to the differences in reproductive outcomes between males and females.
Collapse
Affiliation(s)
- Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | |
Collapse
|
48
|
Guioli S, Lovell-Badge R, Turner JMA. Error-prone ZW pairing and no evidence for meiotic sex chromosome inactivation in the chicken germ line. PLoS Genet 2012; 8:e1002560. [PMID: 22412389 PMCID: PMC3297585 DOI: 10.1371/journal.pgen.1002560] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/12/2012] [Indexed: 12/21/2022] Open
Abstract
In the male mouse the X and Y chromosomes pair and recombine within the small pseudoautosomal region. Genes located on the unsynapsed segments of the X and Y are transcriptionally silenced at pachytene by Meiotic Sex Chromosome Inactivation (MSCI). The degree to which MSCI is conserved in other vertebrates is currently unclear. In the female chicken the ZW bivalent is thought to undergo a transient phase of full synapsis at pachytene, starting from the homologous ends and spreading through the heterologous regions. It has been proposed that the repair of the ZW DNA double-strand breaks (DSBs) is postponed until diplotene and that the ZW bivalent is subject to MSCI, which is independent of its synaptic status. Here we present a distinct model of meiotic pairing and silencing of the ZW pair during chicken oogenesis. We show that, in most oocytes, DNA DSB foci on the ZW are resolved by the end of pachytene and that the ZW desynapses in broad synchrony with the autosomes. We unexpectedly find that ZW pairing is highly error prone, with many oocytes failing to engage in ZW synapsis and crossover formation. Oocytes with unsynapsed Z and W chromosomes nevertheless progress to the diplotene stage, suggesting that a checkpoint does not operate during pachytene in the chicken germ line. Using a combination of epigenetic profiling and RNA-FISH analysis, we find no evidence for MSCI, associated with neither the asynaptic ZW, as described in mammals, nor the synaptic ZW. The lack of conservation of MSCI in the chicken reopens the debate about the evolution of MSCI and its driving forces.
Collapse
Affiliation(s)
- Silvana Guioli
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council, National Institute for Medical Research, London, United Kingdom.
| | | | | |
Collapse
|
49
|
Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways. Cell Mol Life Sci 2012; 69:2559-72. [PMID: 22382926 DOI: 10.1007/s00018-012-0941-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
Sex chromosome inactivation in male germ cells is a paradigm of epigenetic programming during sexual reproduction. Recent progress has revealed the underlying mechanisms of sex chromosome inactivation in male meiosis. The trigger of chromosome-wide silencing is activation of the DNA damage response (DDR) pathway, which is centered on the mediator of DNA damage checkpoint 1 (MDC1), a binding partner of phosphorylated histone H2AX (γH2AX). This DDR pathway shares features with the somatic DDR pathway recognizing DNA replication stress in the S phase. Additionally, it is likely to be distinct from the DDR pathway that recognizes meiosis-specific double-strand breaks. This review article extensively discusses the underlying mechanism of sex chromosome inactivation.
Collapse
|
50
|
Payer B, Lee JT, Namekawa SH. X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet 2011; 130:265-80. [PMID: 21667284 PMCID: PMC3744832 DOI: 10.1007/s00439-011-1024-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/27/2011] [Indexed: 01/07/2023]
Abstract
X-chromosome inactivation is an epigenetic hallmark of mammalian development. Chromosome-wide regulation of the X-chromosome is essential in embryonic and germ cell development. In the male germline, the X-chromosome goes through meiotic sex chromosome inactivation, and the chromosome-wide silencing is maintained from meiosis into spermatids before the transmission to female embryos. In early female mouse embryos, X-inactivation is imprinted to occur on the paternal X-chromosome, representing the epigenetic programs acquired in both parental germlines. Recent advances revealed that the inactive X-chromosome in both females and males can be dissected into two elements: repeat elements versus unique coding genes. The inactive paternal X in female preimplantation embryos is reactivated in the inner cell mass of blastocysts in order to subsequently allow the random form of X-inactivation in the female embryo, by which both Xs have an equal chance of being inactivated. X-chromosome reactivation is regulated by pluripotency factors and also occurs in early female germ cells and in pluripotent stem cells, where X-reactivation is a stringent marker of naive ground state pluripotency. Here we summarize recent progress in the study of X-inactivation and X-reactivation during mammalian reproduction and development as well as in pluripotent stem cells.
Collapse
Affiliation(s)
- Bernhard Payer
- Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Boston, MA, USA. Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeannie T. Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Boston, MA, USA. Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Satoshi H. Namekawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|