1
|
Li X, Liang L, Zhu Z, Hua H, Qiu Y. DB-1310, a HER3-targeting antibody-drug conjugate, has synergistic anti-tumor activity with trastuzumab in HER2- and HER3-expressing breast cancer. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0586. [PMID: 40110648 PMCID: PMC11976708 DOI: 10.20892/j.issn.2095-3941.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Affiliation(s)
- Xi Li
- Department of Research and Development, Duality Biologics, Ltd., Shanghai 201204, China
| | - Liwen Liang
- Department of Research and Development, Duality Biologics, Ltd., Shanghai 201204, China
| | - Zhongyuan Zhu
- Department of Research and Development, Duality Biologics, Ltd., Shanghai 201204, China
| | - Haiqing Hua
- Department of Research and Development, Duality Biologics, Ltd., Shanghai 201204, China
| | - Yang Qiu
- Department of Research and Development, Duality Biologics, Ltd., Shanghai 201204, China
| |
Collapse
|
2
|
Mechahougui H, Gutmans J, Colarusso G, Gouasmi R, Friedlaender A. Advances in Personalized Oncology. Cancers (Basel) 2024; 16:2862. [PMID: 39199633 PMCID: PMC11352922 DOI: 10.3390/cancers16162862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Advances in next-generation sequencing (NGS) have catalyzed a paradigm shift in cancer treatment, steering the focus from conventional, organ-specific protocols to precision medicine. Emerging targeted therapies offer a cutting-edge approach to cancer treatment, while companion diagnostics play an essential role in aligning therapeutic choices with specific molecular changes identified through NGS. Despite these advances, interpreting the clinical implications of a rapidly expanding catalog of genetic mutations remains a challenge. The selection of therapies in the presence of multiple mutations requires careful clinical judgment, supported by quality-centric genomic testing that emphasizes actionable mutations. Molecular tumor boards can play an increasing role in assimilating genomic data into clinical trials, thereby refining personalized treatment approaches and improving patient outcomes.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - James Gutmans
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - Gina Colarusso
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - Roumaïssa Gouasmi
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69100 Lyon, France
| | | |
Collapse
|
3
|
Zhu M, Yu M, Meng Y, Yang J, Wang X, Li L, Liang Y, Kong F. HER3 receptor and its role in the therapeutic management of metastatic breast cancer. J Transl Med 2024; 22:665. [PMID: 39020378 PMCID: PMC11253420 DOI: 10.1186/s12967-024-05445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Metastatic breast cancer (mBC) poses a significant threat to women's health and is a major cause of malignant neoplasms in women. Human epidermal growth factor receptor (HER)3, an integral member of the ErbB/HER receptor tyrosine kinase family, is a crucial activator of the phosphoinositide-3 kinase/protein kinase B signaling pathway. HER3 overexpression significantly contributes to the development of resistance to drugs targeting other HER receptors, such as HER2 and epidermal growth factor receptors, and plays a crucial role in the onset and progression of mBC. Recently, numerous HER3-targeted therapeutic agents, such as monoclonal antibodies (mAbs), bispecific antibodies (bAbs), and antibody-drug conjugates (ADCs), have emerged. However, the efficacy of HER3-targeted mAbs and bAbs is limited when used individually, and their combination may result in toxic adverse effects. On the other hand, ADCs are cytotoxic to cancer cells and can bind to target cells through antibodies, which highlights their use in targeted HER3 therapy for mBC. This review provides an overview of recent advancements in HER3 research, historical initiatives, and innovative approaches in targeted HER3 therapy for metastatic breast cancer. Evaluating the advantages and disadvantages of current methods may yield valuable insights and lessons.
Collapse
Affiliation(s)
- Meiying Zhu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Minghui Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuan Meng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jie Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuerui Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Longhui Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyueying Liang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
4
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. HER3 in cancer: from the bench to the bedside. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:310. [PMID: 36271429 PMCID: PMC9585794 DOI: 10.1186/s13046-022-02515-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
The HER3 protein, that belongs to the ErbB/HER receptor tyrosine kinase (RTK) family, is expressed in several types of tumors. That fact, together with the role of HER3 in promoting cell proliferation, implicate that targeting HER3 may have therapeutic relevance. Furthermore, expression and activation of HER3 has been linked to resistance to drugs that target other HER receptors such as agents that act on EGFR or HER2. In addition, HER3 has been associated to resistance to some chemotherapeutic drugs. Because of those circumstances, efforts to develop and test agents targeting HER3 have been carried out. Two types of agents targeting HER3 have been developed. The most abundant are antibodies or engineered antibody derivatives that specifically recognize the extracellular region of HER3. In addition, the use of aptamers specifically interacting with HER3, vaccines or HER3-targeting siRNAs have also been developed. Here we discuss the state of the art of the preclinical and clinical development of drugs aimed at targeting HER3 with therapeutic purposes.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Ocaña
- grid.411068.a0000 0001 0671 5785Hospital Clínico San Carlos and CIBERONC, 28040 Madrid, Spain
| | - Atanasio Pandiella
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Expression and purification of a recombinant ELRL-MAP30 with dual-targeting anti-tumor bioactivity. Protein Expr Purif 2021; 185:105893. [PMID: 33933613 DOI: 10.1016/j.pep.2021.105893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/26/2022]
Abstract
MAP30 (Momordica antiviral protein 30kD) is a single-chain Ⅰ-type ribosome inactivating protein with a variety of biological activities, including anti-tumor ability. It was reported that MAP30 would serve as a novel and relatively safe agent for prophylaxis and treatment of liver cancer. To determine whether adding two tumor targeting peptides could improve the antitumor activities of MAP30, we genetically modified MAP30 with an RGD motif and a EGFRi motif, which is a ligand with high affinity for αvβ3 integrins and with high affinity for EGFR. The recombinant protein ELRL-MAP30 (rELRL-MAP30) containing a GST-tag was expressed in E. coli. The rELRL-MAP30 was highly expressed in the soluble fraction after induction with 0.15 mM IPTG for 20 h at 16 °C. The purified rELRL-MAP30 appeared as a band on SDS-PAGE. It was identified by western blotting. Cytotoxicity of recombinant protein to HepG2, MDA-MB-231, HUVEC and MCF-7 cells was detected by MTT analysis. Half maximal inhibitory concentration (IC50) values were 54.64 μg/mL, 70.13 μg/mL, 146 μg/mL, 466.4 μg/mL, respectively. Proliferation inhibition assays indicated that rELRL-MAP30 could inhibit the growth of Human liver cancer cell HepG2 effectively. We found that rELRL-MAP30 significantly induced apoptosis in liver cancer cells, as evidenced by nuclear staining of DAPI. In addition, rELRL-MAP30 induced apoptosis in human liver cancer HepG2 cells by up-regulation of Bax as well as down-regulation of Bcl-2. Migration of cell line were markedly inhibited by rELRL-MAP30 in a dose-dependent manner compared to the recombinant MAP30 (rMAP30). In summary, the fusion protein displaying extremely potent cytotoxicity might be highly effective for tumor therapy.
Collapse
|
6
|
Al-Akhrass H, Conway JRW, Poulsen ASA, Paatero I, Kaivola J, Padzik A, Andersen OM, Ivaska J. A feed-forward loop between SorLA and HER3 determines heregulin response and neratinib resistance. Oncogene 2021; 40:1300-1317. [PMID: 33420373 PMCID: PMC7892347 DOI: 10.1038/s41388-020-01604-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
Current evidence indicates that resistance to the tyrosine kinase-type cell surface receptor (HER2)-targeted therapies is frequently associated with HER3 and active signaling via HER2-HER3 dimers, particularly in the context of breast cancer. Thus, understanding the response to HER2-HER3 signaling and the regulation of the dimer is essential to decipher therapy relapse mechanisms. Here, we investigate a bidirectional relationship between HER2-HER3 signaling and a type-1 transmembrane sorting receptor, sortilin-related receptor (SorLA; SORL1). We demonstrate that heregulin-mediated signaling supports SorLA transcription downstream of the mitogen-activated protein kinase pathway. In addition, we demonstrate that SorLA interacts directly with HER3, forming a trimeric complex with HER2 and HER3 to attenuate lysosomal degradation of the dimer in a Ras-related protein Rab4-dependent manner. In line with a role for SorLA in supporting the stability of the HER2 and HER3 receptors, loss of SorLA compromised heregulin-induced cell proliferation and sensitized metastatic anti-HER2 therapy-resistant breast cancer cells to neratinib in cancer spheroids in vitro and in vivo in a zebrafish brain xenograft model.
Collapse
Affiliation(s)
- Hussein Al-Akhrass
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
| | - James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Annemarie Svane Aavild Poulsen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of biomedicine, Aarhus University, Aarhus, Denmark
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Artur Padzik
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Olav M Andersen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of biomedicine, Aarhus University, Aarhus, Denmark
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
| |
Collapse
|
7
|
Rau A, Kocher K, Rommel M, Kühl L, Albrecht M, Gotthard H, Aschmoneit N, Noll B, Olayioye MA, Kontermann RE, Seifert O. A bivalent, bispecific Dab-Fc antibody molecule for dual targeting of HER2 and HER3. MAbs 2021; 13:1902034. [PMID: 33752566 PMCID: PMC7993124 DOI: 10.1080/19420862.2021.1902034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Dual targeting of surface receptors with bispecific antibodies is attracting increasing interest in cancer therapy. Here, we present a novel bivalent and bispecific antagonistic molecule (Dab-Fc) targeting human epidermal growth factors 2 and 3 (HER2 and HER3) derived from the Db-Ig platform, which was developed for the generation of multivalent and multispecific antibody molecules. Dab-Fc comprises the variable domains of the anti-HER2 antibody trastuzumab and the anti-HER3 antibody 3-43 assembled into a diabody-like structure stabilized by CH1 and CL domains and further fused to a human γ1 Fc region. The resulting Dab-Fc 2 × 3 molecule retained unhindered binding to both antigens and was able to bind both antigens sequentially. In cellular experiments, the Dab-Fc 2 × 3 molecule strongly bound to different tumor cell lines expressing HER2 and HER3 and was efficiently internalized. This was associated with potent inhibition of the proliferation and migration of these tumor cell lines. Furthermore, IgG-like pharmacokinetics and anti-tumoral activity were demonstrated in a xenograft tumor model of the gastric cancer cell-line NCI-N87. These results illustrate the suitability of our versatile Db-Ig platform technology for the generation of bivalent bispecific molecules, which has been successfully used here for the dual targeting of HER2 and HER3.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/pharmacokinetics
- Antibodies, Bispecific/pharmacology
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Humans
- Immunoglobulin Fc Fragments/pharmacology
- MCF-7 Cells
- Mice, SCID
- Molecular Targeted Therapy
- Neoplasm Invasiveness
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/immunology
- Receptor, ErbB-3/metabolism
- Signal Transduction
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/immunology
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Alexander Rau
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Katharina Kocher
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Mirjam Rommel
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Maximilian Albrecht
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Hannes Gotthard
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Bettina Noll
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Monilola A. Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
8
|
Yang J, Wang Q, Feng G, Zeng M. Significance of Selective Protein Degradation in the Development of Novel Targeted Drugs and Its Implications in Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Guo‐Kai Feng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Mu‐Sheng Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| |
Collapse
|
9
|
Chockalingam K, Peng Z, Vuong CN, Berghman LR, Chen Z. Golden Gate assembly with a bi-directional promoter (GBid): A simple, scalable method for phage display Fab library creation. Sci Rep 2020; 10:2888. [PMID: 32076016 PMCID: PMC7031318 DOI: 10.1038/s41598-020-59745-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Fabs offer an attractive platform for monoclonal antibody discovery/engineering, but library construction can be cumbersome. We report a simple method – Golden Gate assembly with a bi-directional promoter (GBid) – for constructing phage display Fab libraries. In GBid, the constant domains of the Fabs are located in the backbone of the phagemid vector and the library insert comprises only the variable regions of the antibodies and a central bi-directional promoter. This vector design reduces the process of Fab library construction to “scFv-like” simplicity and the double promoter ensures robust expression of both constituent chains. To maximize the library size, the 3 fragments comprising the insert – two variable chains and one bi-directional promoter – are assembled via a 3-fragment overlap extension PCR and the insert is incorporated into the vector via a high-efficiency one-fragment, one-pot Golden Gate assembly. The reaction setup requires minimal preparatory work and enzyme quantities, making GBid highly scalable. Using GBid, we constructed a chimeric chicken-human Fab phage display library comprising 1010 variants targeting the multi-transmembrane protein human CD20 (hCD20). Selection/counter-selection on transfected whole cells yielded hCD20-specific antibodies in four rounds of panning. The simplicity and scalability of GBid makes it a powerful tool for the discovery/engineering of Fabs and IgGs.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA.,Biosion, Inc., Nanjing, 210061, China
| | - Christine N Vuong
- Department of Poultry Science, Texas A&M University, College Station, Texas, 77843, USA.,Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, 72703, USA
| | - Luc R Berghman
- Department of Poultry Science, Texas A&M University, College Station, Texas, 77843, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
10
|
Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect 2019; 7:e00535. [PMID: 31859459 PMCID: PMC6923804 DOI: 10.1002/prp2.535] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) have emerged as a major class of therapeutic agents on the market. To date, approximately 80 mAbs have been granted marketing approval. In 2018, 12 new mAbs were approved by the FDA, representing 20% of the total number of approved drugs. The majority of mAb therapeutics are for oncological and immunological/infectious diseases, but these are expanding into other disease areas. Over 100 monoclonal antibodies are in development, and their unique features ensure that these will remain a part of the therapeutic pipeline. Thus, the therapeutic value and the elucidation of their pharmacological properties supporting clinical development of these large molecules are unquestioned. However, their utilization as pharmacological tools in academic laboratories has lagged behind their small molecule counterparts. Early therapeutic mAbs targeted soluble cytokines, but now that mAbs also target membrane-bound receptors and have increased circulating half-life, their pharmacology is more complex. The principles of pharmacology have enabled the development of high affinity, potent and selective small molecule therapeutics with reduced off-target effects and drug-drug interactions. This review will discuss how the same basic principles can be applied to mAbs, with some important differences. Monoclonal antibodies have several benefits, such as fewer off-target adverse effects, fewer drug-drug interactions, higher specificity, and potentially increased efficacy through targeted therapy. Modifications to decrease the immunogenicity and increase the efficacy are described, with examples of optimizing their pharmacokinetic properties and enabling oral bioavailability. Increased awareness of these advances may help to increase their use in exploratory research and further understand and characterize their pharmacological properties.
Collapse
Affiliation(s)
- María Sofía Castelli
- Department of Physiology and PharmacologyCollege of MedicineDrexel UniversityPhiladelphiaPAUSA
| | - Paul McGonigle
- Department of Physiology and PharmacologyCollege of MedicineDrexel UniversityPhiladelphiaPAUSA
| | - Pamela J. Hornby
- Department of Physiology and PharmacologyCollege of MedicineDrexel UniversityPhiladelphiaPAUSA
- Cardiovascular & Metabolic Disease DiscoveryJanssen R&DLLCSpring HousePAUSA
| |
Collapse
|
11
|
Cao M, Wang C, Chung WK, Motabar D, Wang J, Christian E, Lin S, Hunter A, Wang X, Liu D. Characterization and analysis of scFv-IgG bispecific antibody size variants. MAbs 2018; 10:1236-1247. [PMID: 30130449 PMCID: PMC6284595 DOI: 10.1080/19420862.2018.1505398] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bispecific antibodies are an emergent class of biologics that is of increasing interest for therapeutic applications. In one bispecific antibody format, single-chain variable fragments (scFv) are linked to or inserted in different locations of an intact immunoglobulin G (IgG) molecule to confer dual epitope binding. To improve biochemical stability, cysteine residues are often engineered on the heavy- and light-chain regions of the scFv to form an intrachain disulfide bond. Although this disulfide bond often improves stability, it can also introduce unexpected challenges to manufacturing or development. We report size variants that were observed for an appended scFv-IgG bispecific antibody. Structural characterization studies showed that the size variants resulted from the engineered disulfide bond on the scFv, whereby the engineered disulfide was found to be either open or unable to form an intrachain disulfide bond due to cysteinylation or glutathionylation of the cysteines. Furthermore, the scFv engineered cysteines also formed intermolecular disulfide bonds, leading to the formation of highly stable dimers and aggregates. Because both the monomer variants and dimers showed lower bioactivity, they were considered to be product-related impurities that must be monitored and controlled. To this end, we developed and optimized a robust, precise, and accurate high-resolution size-exclusion chromatographic method, using a statistical design-of-experiments methodology.
Collapse
Affiliation(s)
- Mingyan Cao
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Chunlei Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Wai Keen Chung
- b Department of Purification Process Sciences , MedImmune , Gaithersburg , USA
| | - Dana Motabar
- b Department of Purification Process Sciences , MedImmune , Gaithersburg , USA
| | - Jihong Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | | | - Shihua Lin
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Alan Hunter
- b Department of Purification Process Sciences , MedImmune , Gaithersburg , USA
| | - Xiangyang Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Dengfeng Liu
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| |
Collapse
|
12
|
Yun S, Koh J, Nam SK, Park JO, Lee SM, Lee K, Lee KS, Ahn SH, Park DJ, Kim HH, Choe G, Kim WH, Lee HS. Clinical significance of overexpression of NRG1 and its receptors, HER3 and HER4, in gastric cancer patients. Gastric Cancer 2018; 21:225-236. [PMID: 28573357 DOI: 10.1007/s10120-017-0732-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuregulin 1 (NRG1), a ligand for human epidermal growth factor (HER) 3 and HER4, can activates cell signaling pathways to promote carcinogenesis and metastasis. METHODS To investigate the clinicopathologic significance of NRG1 and its receptors, immunohistochemistry was performed for NRG1, HER3, and HER4 in 502 consecutive gastric cancers (GCs). Furthermore, HER2, microsatellite instability (MSI), and Epstein-Barr virus (EBV) status were investigated. NRG1 gene copy number (GCN) was determined by dual-color fluorescence in situ hybridization (FISH) in 388 available GCs. RESULTS NRG1 overexpression was observed in 141 (28.1%) GCs and closely correlated with HER3 (P = 0.034) and HER4 (P < 0.001) expression. NRG1 overexpression was significantly associated with aggressive features, including infiltrative tumor growth, lymphovascular, and neural invasion, high pathologic stage, and poor prognosis (all P < 0.05), but not associated with EBV, MSI, or HER2 status. Multivariate analysis identified NRG1 overexpression as an independent prognostic factor for survival (P = 0.040). HER3 and HER4 expressions were observed in 157 (31.3%) and 277 (55.2%), respectively. In contrast to NRG1, expression of these proteins was not associated with survival. NRG1 GCN gain (GCN ≥ 2.5) was detected in 14.7% patients, including two cases of amplification, and was moderately correlated with NRG1 overexpression (κ, 0.459; P < 0.001). CONCLUSIONS Although our results indicate a lack of prognostic significance of HER3 and HER4 overexpression in GC, overexpression of their ligand, NRG1, was associated with aggressive clinical features and represented an independent unfavorable prognostic factor. Therefore, NRG1 is a potential prognostic and therapeutic biomarker in GC patients.
Collapse
Affiliation(s)
- Sumi Yun
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Diagnostic Pathology, Samkwang Medical Laboratories, Seoul, South Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Soo Kyung Nam
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Jung Ok Park
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Sung Mi Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Kyoungyul Lee
- Department of Pathology, Kangwon National University Hospital, Chuncheon, Kangwon, South Korea
| | - Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea.
| |
Collapse
|
13
|
Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs 2017; 9:182-212. [PMID: 28071970 PMCID: PMC5297537 DOI: 10.1080/19420862.2016.1268307] [Citation(s) in RCA: 670] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
During the past two decades we have seen a phenomenal evolution of bispecific antibodies for therapeutic applications. The 'zoo' of bispecific antibodies is populated by many different species, comprising around 100 different formats, including small molecules composed solely of the antigen-binding sites of two antibodies, molecules with an IgG structure, and large complex molecules composed of different antigen-binding moieties often combined with dimerization modules. The application of sophisticated molecular design and genetic engineering has solved many of the technical problems associated with the formation of bispecific antibodies such as stability, solubility and other parameters that confer drug properties. These parameters may be summarized under the term 'developability'. In addition, different 'target product profiles', i.e., desired features of the bispecific antibody to be generated, mandates the need for access to a diverse panel of formats. These may vary in size, arrangement, valencies, flexibility and geometry of their binding modules, as well as in their distribution and pharmacokinetic properties. There is not 'one best format' for generating bispecific antibodies, and no single format is suitable for all, or even most of, the desired applications. Instead, the bispecific formats collectively serve as a valuable source of diversity that can be applied to the development of therapeutics for various indications. Here, a comprehensive overview of the different bispecific antibody formats is provided.
Collapse
Affiliation(s)
- Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Im Nonnenwald, Penzberg, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstraße, Stuttgart, Germany
| |
Collapse
|
14
|
Detection of phosphatidylserine-positive exosomes as a diagnostic marker for ovarian malignancies: a proof of concept study. Oncotarget 2017; 8:14395-14407. [PMID: 28122335 PMCID: PMC5362413 DOI: 10.18632/oncotarget.14795] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
There are no suitable screening modalities for ovarian carcinomas (OC) and repeated imaging and CA-125 levels are often needed to triage equivocal ovarian masses. Definitive diagnosis of malignancy, however, can only be established by histologic confirmation. Thus, the ability to detect OC at early stages is low, and most cases are diagnosed as advanced disease. Since tumor cells expose phosphatidylserine (PS) on their plasma membrane, we predicted that tumors might secrete PS-positive exosomes into the bloodstream that could be a surrogate biomarker for cancer. To address this, we developed a highly stringent ELISA that detects picogram quantities of PS in patient plasma. Blinded plasma from 34 suspect ovarian cancer patients and 10 healthy subjects were analyzed for the presence of PS-expressing vesicles. The nonparametric Wilcoxon rank sum test showed the malignant group had significantly higher PS values than the benign group (median 0.237 vs. -0.027, p=0.0001) and the malignant and benign groups had significantly higher PS values than the healthy group (median 0.237 vs -0.158, p<0.0001 and -0.027 vs -0.158, p=0.0002, respectively). ROC analysis of the predictive accuracy of PS-expressing exosomes/vesicles in predicting malignant against normal, benign against normal and malignant against benign revealed AUCs of 1.0, 0.95 and 0.911, respectively. This study provides proof-of-concept data that supports the high diagnostic power of PS detection in the blood of women with suspect ovarian malignancies.
Collapse
|
15
|
Li R, Chiguru S, Li L, Kim D, Velmurugan R, Kim D, Devanaboyina SC, Tian H, Schroit A, Mason RP, Ober RJ, Ward ES. Targeting Phosphatidylserine with Calcium-Dependent Protein-Drug Conjugates for the Treatment of Cancer. Mol Cancer Ther 2017; 17:169-182. [PMID: 28939556 DOI: 10.1158/1535-7163.mct-17-0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/04/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022]
Abstract
In response to cellular stress, phosphatidylserine is exposed on the outer membrane leaflet of tumor blood vessels and cancer cells, motivating the development of phosphatidylserine-specific therapies. The generation of drug-conjugated phosphatidylserine-targeting agents represents an unexplored therapeutic approach, for which antitumor effects are critically dependent on efficient internalization and lysosomal delivery of the cytotoxic drug. In the current study, we have generated phosphatidylserine-targeting agents by fusing phosphatidylserine-binding domains to a human IgG1-derived Fc fragment. The tumor localization and pharmacokinetics of several phosphatidylserine-specific Fc fusions have been analyzed in mice and demonstrate that Fc-Syt1, a fusion containing the synaptotagmin 1 C2A domain, effectively targets tumor tissue. Conjugation of Fc-Syt1 to the cytotoxic drug monomethyl auristatin E results in a protein-drug conjugate (PDC) that is internalized into target cells and, due to the Ca2+ dependence of phosphatidylserine binding, dissociates from phosphatidylserine in early endosomes. The released PDC is efficiently delivered to lysosomes and has potent antitumor effects in mouse xenograft tumor models. Interestingly, although an engineered, tetravalent Fc-Syt1 fusion shows increased binding to target cells, this higher avidity variant demonstrates reduced persistence and therapeutic effects compared with bivalent Fc-Syt1. Collectively, these studies show that finely tuned, Ca2+-switched phosphatidylserine-targeting agents can be therapeutically efficacious. Mol Cancer Ther; 17(1); 169-82. ©2017 AACR.
Collapse
Affiliation(s)
- Ran Li
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas
| | - Srinivas Chiguru
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Li Li
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dongyoung Kim
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Ramraj Velmurugan
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas.,Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David Kim
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Siva Charan Devanaboyina
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas
| | - Hong Tian
- China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Alan Schroit
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Raimund J Ober
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - E Sally Ward
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas. .,Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas
| |
Collapse
|
16
|
Koch J, Tesar M. Recombinant Antibodies to Arm Cytotoxic Lymphocytes in Cancer Immunotherapy. Transfus Med Hemother 2017; 44:337-350. [PMID: 29070979 PMCID: PMC5649249 DOI: 10.1159/000479981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has the potential to support and expand the body's own armamentarium of immune effector functions, which have been circumvented during malignant transformation and establishment of cancer and is presently considered to be the most promising treatment option for cancer patients. Recombinant antibody technologies have led to a multitude of novel antibody formats, which are in clinical development and hold great promise for future therapies. Among these formats, bispecific antibodies are extremely versatile due to their high efficacy to recruit and activate anti-tumoral immune effector cells, their excellent safety profile, and the opportunity for use in combination with cellular therapies. This review article summarizes the latest developments in cancer immunotherapy using immuno-engagers for recruiting T cells and NK cells to the tumor site. In addition to antibody formats, malignant cell targets, and immune cell targets, opportunities for combination therapies, including check point inhibitors, cytokines and adoptive transfer of immune cells, will be summarized and discussed.
Collapse
Affiliation(s)
- Joachim Koch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | |
Collapse
|
17
|
Schardt JS, Oubaid JM, Williams SC, Howard JL, Aloimonos CM, Bookstaver ML, Lamichhane TN, Sokic S, Liyasova MS, O'Neill M, Andresson T, Hussain A, Lipkowitz S, Jay SM. Engineered Multivalency Enhances Affibody-Based HER3 Inhibition and Downregulation in Cancer Cells. Mol Pharm 2017; 14:1047-1056. [PMID: 28248115 DOI: 10.1021/acs.molpharmaceut.6b00919] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase HER3 has emerged as a therapeutic target in ovarian, prostate, breast, lung, and other cancers due to its ability to potently activate the PI3K/Akt pathway, especially via dimerization with HER2, as well as for its role in mediating drug resistance. Enhanced efficacy of HER3-targeted therapeutics would therefore benefit a wide range of patients. This study evaluated the potential of multivalent presentation, through protein engineering, to enhance the effectiveness of HER3-targeted affibodies as alternatives to monoclonal antibody therapeutics. Assessment of multivalent affibodies on a variety of cancer cell lines revealed their broad ability to improve inhibition of Neuregulin (NRG)-induced HER3 and Akt phosphorylation compared to monovalent analogues. Engineered multivalency also promoted enhanced cancer cell growth inhibition by affibodies as single agents and as part of combination therapy approaches. Mechanistic investigations revealed that engineered multivalency enhanced affibody-mediated HER3 downregulation in multiple cancer cell types. Overall, these results highlight the promise of engineered multivalency as a general strategy for enhanced efficacy of HER3-targeted therapeutics against a variety of cancers.
Collapse
Affiliation(s)
- John S Schardt
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Jinan M Oubaid
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Sonya C Williams
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - James L Howard
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Chloe M Aloimonos
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Michelle L Bookstaver
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Tek N Lamichhane
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Sonja Sokic
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Mariya S Liyasova
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Maura O'Neill
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States
| | - Arif Hussain
- Baltimore VA Medical Center , Baltimore, Maryland 21201, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Program in Molecular and Cellular Biology, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
18
|
Shi H, Zhang W, Zhi Q, Jiang M. Lapatinib resistance in HER2+ cancers: latest findings and new concepts on molecular mechanisms. Tumour Biol 2016; 37:15411–15431. [PMID: 27726101 DOI: 10.1007/s13277-016-5467-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
In the era of new and mostly effective molecular targeted therapies, human epidermal growth factor receptor 2 positive (HER2+) cancers are still intractable diseases. Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor, has greatly improved breast cancer prognosis in recent years after the initial introduction of trastuzumab (Herceptin). However, clinical evidence indicates the existence of both primary unresponsiveness and secondary lapatinib resistance, which leads to the failure of this agent in HER2+ cancer patients. It remains a major clinical challenge to target the oncogenic pathways with drugs having low resistance. Multiple pathways are involved in the occurrence of lapatinib resistance, including the pathways of receptor tyrosine kinase, non-receptor tyrosine kinase, autophagy, apoptosis, microRNA, cancer stem cell, tumor metabolism, cell cycle, and heat shock protein. Moreover, understanding the relationship among these mechanisms may contribute to future tumor combination therapies. Therefore, it is of urgent necessity to elucidate the precise mechanisms of lapatinib resistance and improve the therapeutic use of this agent in clinic. The present review, in the hope of providing further scientific support for molecular targeted therapies in HER2+ cancers, discusses about the latest findings and new concepts on molecular mechanisms underlying lapatinib resistance.
Collapse
Affiliation(s)
- Huiping Shi
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu Province, 215131, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
19
|
Malm M, Frejd FY, Ståhl S, Löfblom J. Targeting HER3 using mono- and bispecific antibodies or alternative scaffolds. MAbs 2016; 8:1195-1209. [PMID: 27532938 PMCID: PMC5058629 DOI: 10.1080/19420862.2016.1212147] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER3) has in recent years been recognized as a key node in the complex signaling network of many different cancers. It is implicated in de novo and acquired resistance against therapies targeting other growth factor receptors, e.g., EGFR, HER2, and it is a major activator of the PI3K/Akt signaling pathway. Consequently, HER3 has attracted substantial attention, and is today a key target for drugs in clinical development. Sophisticated protein engineering approaches have enabled the generation of a range of different affinity proteins targeting this receptor, including antibodies and alternative scaffolds that are either mono- or bispecific. Here, we describe HER3 and its role as a key tumor target, and give a comprehensive review of HER3-targeted proteins currently in development, including discussions on the opportunities and challenges of targeting this receptor.
Collapse
Affiliation(s)
- Magdalena Malm
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| | - Fredrik Y Frejd
- b Affibody AB, SE, Stockholm , Sweden.,c Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | - Stefan Ståhl
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| | - John Löfblom
- a Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, SE , Stockholm
| |
Collapse
|
20
|
Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α. Mol Cell Biol 2016; 36:2011-26. [PMID: 27185877 DOI: 10.1128/mcb.00180-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/06/2016] [Indexed: 01/11/2023] Open
Abstract
The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions -1376 to -1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4.
Collapse
|
21
|
Velmurugan R, Challa DK, Ram S, Ober RJ, Ward ES. Macrophage-Mediated Trogocytosis Leads to Death of Antibody-Opsonized Tumor Cells. Mol Cancer Ther 2016; 15:1879-89. [PMID: 27226489 DOI: 10.1158/1535-7163.mct-15-0335] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Understanding the complex behavior of effector cells such as monocytes or macrophages in regulating cancerous growth is of central importance for cancer immunotherapy. Earlier studies using CD20-specific antibodies have demonstrated that the Fcγ receptor (FcγR)-mediated transfer of the targeted receptors from tumor cells to these effector cells through trogocytosis can enable escape from antibody therapy, leading to the viewpoint that this process is protumorigenic. In the current study, we demonstrate that persistent trogocytic attack results in the killing of HER2-overexpressing breast cancer cells. Further, antibody engineering to increase FcγR interactions enhances this tumoricidal activity. These studies extend the complex repertoire of activities of macrophages to trogocytic-mediated cell death of HER2-overexpressing target cells and have implications for the development of effective antibody-based therapies. Mol Cancer Ther; 15(8); 1879-89. ©2016 AACR.
Collapse
Affiliation(s)
- Ramraj Velmurugan
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas. Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas. Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Immunology, UT Southwestern Medical Center, Dallas, Texas
| | - Dilip K Challa
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas. Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas. Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Immunology, UT Southwestern Medical Center, Dallas, Texas
| | - Sripad Ram
- Department of Immunology, UT Southwestern Medical Center, Dallas, Texas
| | - Raimund J Ober
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas. Department of Biomedical Engineering, Texas A&M University, College Station, Texas. Department of Immunology, UT Southwestern Medical Center, Dallas, Texas.
| | - E Sally Ward
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas. Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas. Department of Immunology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
22
|
Rhoden JJ, Dyas GL, Wroblewski VJ. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets. J Biol Chem 2016; 291:11337-47. [PMID: 27022022 DOI: 10.1074/jbc.m116.714287] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts.
Collapse
Affiliation(s)
- John J Rhoden
- From the Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Gregory L Dyas
- From the Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Victor J Wroblewski
- From the Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| |
Collapse
|
23
|
Gaborit N, Lindzen M, Yarden Y. Emerging anti-cancer antibodies and combination therapies targeting HER3/ERBB3. Hum Vaccin Immunother 2016; 12:576-92. [PMID: 26529100 PMCID: PMC4964743 DOI: 10.1080/21645515.2015.1102809] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/11/2015] [Accepted: 09/26/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer progression depends on stepwise accumulation of oncogenic mutations and a select group of growth factors essential for tumor growth, metastasis and angiogenesis. Agents blocking the epidermal growth factor receptor (EGFR, also called HER1 and ERBB1) and the co-receptor called HER2/ERBB2 have been approved over the last decade as anti-cancer drugs. Because the catalytically defective member of the family, HER3/ERBB3, plays critical roles in emergence of resistance of carcinomas to various drugs, current efforts focus on antibodies and other anti-HER3/ERBB3 agents, which we review herein with an emphasis on drug combinations and some unique biochemical features of HER3/ERBB3.
Collapse
Affiliation(s)
- Nadège Gaborit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
Karamouzis MV, Dalagiorgou G, Georgopoulou U, Nonni A, Kontos M, Papavassiliou AG. HER-3 targeting alters the dimerization pattern of ErbB protein family members in breast carcinomas. Oncotarget 2016; 7:5576-5597. [PMID: 26716646 PMCID: PMC4868707 DOI: 10.18632/oncotarget.6762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023] Open
Abstract
Breast carcinogenesis is a multi-step process in which membrane receptor tyrosine kinases are crucial participants. Lots of research has been done on epidermal growth factor receptor (EGFR) and HER-2 with important clinical results. However, breast cancer patients present intrinsic or acquired resistance to available HER-2-directed therapies, mainly due to HER-3. Using new techniques, such as proximity ligation assay, herein we evaluate the dimerization pattern of HER-3 and the importance of context-dependent dimer formation between HER-3 and other HER protein family members. Additionally, we show that the efficacy of novel HER-3 targeting agents can be better predicted in certain breast cancer patient sub-groups based on the dimerization pattern of HER protein family members. Moreover, this model was also evaluated and reproduced in human paraffin-embedded breast cancer tissues.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Dalagiorgou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis Kontos
- Department of Propaedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 'Laikon' General Hospital, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
25
|
Poovassery JS, Kang JC, Kim D, Ober RJ, Ward ES. Antibody targeting of HER2/HER3 signaling overcomes heregulin-induced resistance to PI3K inhibition in prostate cancer. Int J Cancer 2014; 137:267-77. [PMID: 25471734 DOI: 10.1002/ijc.29378] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022]
Abstract
Dysregulated expression and/or mutations of the various components of the phosphoinositide 3-kinase (PI3K)/Akt pathway occur with high frequency in prostate cancer and are associated with the development and progression of castration resistant tumors. However, small molecule kinase inhibitors that target this signaling pathway have limited efficacy in inhibiting tumor growth, primarily due to compensatory survival signals through receptor tyrosine kinases (RTKs). Although members of the epidermal growth factor receptor (EGFR), or HER, family of RTKs are strongly implicated in the development and progression of prostate cancer, targeting individual members of this family such as EGFR or HER2 has resulted in limited success in clinical trials. Multiple studies indicate a critical role for HER3 in the development of resistance against both HER-targeted therapies and PI3K/Akt pathway inhibitors. In this study, we found that the growth inhibitory effect of GDC-0941, a class I PI3K inhibitor, is markedly reduced in the presence of heregulin. Interestingly, this effect is more pronounced in cells lacking phosphatase and tensin homolog function. Heregulin-mediated resistance to GDC-0941 is associated with reactivation of Akt downstream of HER3 phosphorylation. Importantly, combined blockade of HER2 and HER3 signaling by an anti-HER2/HER3 bispecific antibody or a mixture of anti-HER2 and anti-HER3 antibodies restores sensitivity to GDC-0941 in heregulin-treated androgen-dependent and -independent prostate cancer cells. These studies indicate that the combination of PI3K inhibitors with HER2/HER3 targeting antibodies may constitute a promising therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
| | - Jeffrey C Kang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, College Station, TX
| | - Dongyoung Kim
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, College Station, TX.,Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - Raimund J Ober
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, College Station, TX.,Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - E Sally Ward
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, College Station, TX.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX
| |
Collapse
|