1
|
Luo L, Meleties M, Beaudet J, Cao Y, Wang W, Hu Q, Sidnam S, Lastro M, Liu D, Shameem M. Prediction of long-term stability of high-concentration formulations to support rapid development of antibodies against SARS-CoV-2. MAbs 2025; 17:2471465. [PMID: 40021360 PMCID: PMC11875475 DOI: 10.1080/19420862.2025.2471465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
Long-term stability of antibody therapeutics is required to ensure their safety and efficacy when administered to patients. However, obtaining shelf life supporting, long-term stability data are often a limiting factor for new drug candidates starting clinical trials. Predictive stability, which uses short-term accelerated stability data and kinetic modeling to forecast long-term storage stability, has the potential to provide justification to support establishing shelf life, although its application for biologics has only recently gained traction. We have developed empirical models for key stability-indicating quality attributes of high-concentration IgG1 liquid formulations. Using short-term accelerated stability data and Arrhenius-based approaches, including Arrhenius plotting and global fitting, we applied empirical kinetics to predict the long-term stability of seven anti-SARS-CoV-2 antibodies. Arrhenius plotting determines kinetics by plotting the reaction rate logarithm against inverse temperature, while global fitting simultaneously fits a model with data at multiple temperatures to comprehensively understand kinetics. These approaches were used to fit empirical kinetics to short-term data to predict long-term stability, leveraging stability data collected at shelf life storage conditions (5°C) and at least 1 month of accelerated stability data at three temperatures within 25-40°C. Model accuracy was demonstrated using long-term (up to 36 months) storage stability data at 5°C. The approach was applied successfully in anti-SARS-CoV-2 antibody drug development to enable rapid regulatory Investigational New Drug and Investigational Medicinal Product Dossier filings and support shelf life justification where limited shelf life stability data were available at the time of filing. Our results show that successful long-term stability predictions and shelf life estimation can be achieved with high accuracy using 1 month of accelerated stability data, which may be especially beneficial for rapid response programs with severely constrained development timelines. Thus, the described model demonstrates how predictive stability models can, in addition to enabling earlier decision-making in drug development, also be used to justify product shelf life in regulatory submissions, enabling faster patient access to life-saving drug products.
Collapse
Affiliation(s)
- Lin Luo
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Michael Meleties
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Julie Beaudet
- Regulatory Sciences, Regeneron Pharmaceuticals, Inc, Rensselaer, NY, USA
| | - Yuan Cao
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Wenhua Wang
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Qingyan Hu
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Sarah Sidnam
- Regulatory Sciences, Regeneron Pharmaceuticals, Inc, Rensselaer, NY, USA
| | - Michele Lastro
- Regulatory Sciences, Regeneron Pharmaceuticals, Inc, Rensselaer, NY, USA
| | - Dingjiang Liu
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Mohammed Shameem
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| |
Collapse
|
2
|
Barreau P, Feutry F, Abelé M, Villain A, Sakji I, Marliot G. Transportation of protein drugs at hospital: Comparison of mechanical stress occurring during pneumatic transportation and hand-carried transport. J Pharm Sci 2025; 114:103715. [PMID: 40049322 DOI: 10.1016/j.xphs.2025.103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025]
Abstract
In this study, we quantitatively characterize the mechanical shock generated in the pneumatic transport systems (PTS) in our center, determine the PTS pipeline with the highest risk of mechanical stress, and compare these results with hand-carried transport by trolleys or transportation boxes. Acceleration measurements were performed in triplicate for each of the five departments using a 3-axis accelerometer, which was fixed to three distinct experimental bags and a syringe. We measured the area under the curve (AUC) of the acceleration distribution with a threshold of 2 g, and the number of acceleration peaks (NAP) from >3 to 15 g-forces. The data obtained were calculated using bilateral Wilcoxon-Mann-Whitney non-parametric tests. The AUC and NAP3-15 g-forces for PTS were significantly greater than those for hand-carried transport by trolley and box (p < 0.001), which did not show any peak above the NAP10. The PTS pipeline with more curves and redirection airlocks had the highest risk of mechanical stress, whereas no difference was observed per type of container. Transport by trolley had significantly greater (p < 0.001) AUC, NAP3, and NAP5 than by box. Our results indicate that there is greater mechanical stress arising during PTS transportation than during hand-carried transport, preferentially in transportation boxes.
Collapse
Affiliation(s)
- Pauline Barreau
- Department of Pharmacy, Centre Oscar Lambret, Lille, France.
| | | | - Marie Abelé
- Department of Pharmacy, Centre Oscar Lambret, Lille, France
| | | | - Ilyes Sakji
- Department of Pharmacy, Centre Oscar Lambret, Lille, France
| | | |
Collapse
|
3
|
Fang Y, Song M, Pu T, Song X, Xu K, Shen P, Cao T, Zhao Y, Hsu S, Han D, Huang Q. Enhancing the Protein Stability of an Anticancer VHH-Fc Heavy Chain Antibody through Computational Modeling and Variant Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500004. [PMID: 40271725 DOI: 10.1002/advs.202500004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/16/2025] [Indexed: 04/25/2025]
Abstract
VHHs (also known as nanobodies) are important therapeutic antibodies. To prolong their half-life in bloodstream, VHHs are usually fused to the Fc fragment of full-length antibodies. However, stability is often the main challenge for their commercialization, and methods to improve stability are still lacking. Here, an in silico pipeline is developed for analyzing the stability of an anticancer VHH-Fc fusion antibody (VFA01) and designing its stable variants. Computational modeling is used to analyze the VFA01 structure and evaluate its conformational stability, disulfide bond reduction state, and aggregation and degradation tendency. By building mechanistic models of aggregation and degradation, the hotspot residues affecting stability: C130, F57, Y106, L120, and W111 are identified. Based on them, a series of VFA01 variants are designed and obtained a variant M11 (C130S/W111F/F57K) whose stability is significantly enhanced compared to VFA01: there are no visible particles in solution, and the change rate of DLS average hydrodynamic size, SEC HMW%, and CE-SDS purity are improved by 6.2-, 3.4-, and 1.5-fold, respectively. Both antigen-binding activity and production yield are also improved by about 1.5-fold. The results show that our computational pipeline is a very promising approach for improving the protein stability of therapeutic VHH-Fc fusion antibodies.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Technical Operations, Shanghai Henlius Biotech, Inc., Shanghai, 200233, China
| | - Menghua Song
- Department of Technical Operations, Shanghai Henlius Biotech, Inc., Shanghai, 200233, China
| | - Tianning Pu
- Department of Technical Operations, Shanghai Henlius Biotech, Inc., Shanghai, 200233, China
| | - Xiaoqing Song
- Department of Technical Operations, Shanghai Henlius Biotech, Inc., Shanghai, 200233, China
| | - Kailu Xu
- Department of Technical Operations, Shanghai Henlius Biotech, Inc., Shanghai, 200233, China
| | - Pengcheng Shen
- Department of Technical Operations, Shanghai Henlius Biotech, Inc., Shanghai, 200233, China
| | - Ting Cao
- Department of Technical Operations, Shanghai Henlius Biotech, Inc., Shanghai, 200233, China
| | - Yiman Zhao
- Department of Technical Operations, Shanghai Henlius Biotech, Inc., Shanghai, 200233, China
| | - Simon Hsu
- Department of Technical Operations, Shanghai Henlius Biotech, Inc., Shanghai, 200233, China
| | - Dongmei Han
- Department of Technical Operations, Shanghai Henlius Biotech, Inc., Shanghai, 200233, China
| | - Qiang Huang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 201203, China
| |
Collapse
|
4
|
Vishwakarma S, Ramteke S. Optimization and Validation of the Cationization Method for the Fab' Fragment of Antibody Rituximab. ACS OMEGA 2025; 10:12880-12890. [PMID: 40224423 PMCID: PMC11983203 DOI: 10.1021/acsomega.4c07727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 04/15/2025]
Abstract
This study aimed to optimize and validate a cationization method for the Fab' fragment of antibody rituximab, following the guidelines set by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH). The optimization process involved fragmentation of antibody rituximab into an F(ab)2 fragment using pepsin, followed by reduction into the Fab' fragment, and subsequent cationization. Various parameters, such as time intervals, enzyme ratios, reducing agent concentrations, pH levels, and reaction durations, were systematically investigated to achieve optimal cationization efficiency. The developed method was validated through spectrophotometry using the bromophenol blue (BPB) dye assay method. The validation process included assessment of linearity, robustness, and sensitivity. Results demonstrated the efficacy of the optimized cationization method, providing a reliable approach for analyzing rituximab antibody cationization of Fab'.
Collapse
Affiliation(s)
- Sandeep Vishwakarma
- School
of Pharmaceutical Sciences, Rajiv Gandhi
Proudyogiki Vishwavidyalaya (RGPV), Bhopal 462033, India
- Gennova
Biopharmaceutical Pvt. Ltd., Pune 411057, India
| | - Suman Ramteke
- School
of Pharmaceutical Sciences, Rajiv Gandhi
Proudyogiki Vishwavidyalaya (RGPV), Bhopal 462033, India
| |
Collapse
|
5
|
Basu P, Verma N, Indra Kumar S, Nanath M, Kaligatla SG, Sivalanka G, Veeraraghavan VM, Aggarwal L, A Nankar S, Marikanti RK, Jayaraman M. Mechanism of low molecular weight impurity formation in an IgG1 monoclonal antibody formulation. J Pharm Sci 2025; 114:1464-1471. [PMID: 39826838 DOI: 10.1016/j.xphs.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Formulation robustness study was performed for a biosimilar monoclonal antibody (IgG1) manufactured at Dr. Reddy's Laboratory, where the pH and concentration level of excipients in the drug product formulation were systematically varied from the target formulation. It was observed that the IgG1 formulation having relatively low pH and high citrate (buffer salt) concentration were predisposed to the formation of low molecular weight impurities. Mass spectrometry analysis of the mAb1 fragments detected the pyroglutamate species from LC-LC dimer and fragmentation in the -DKTH- amino acid sequence of the heavy chain. Blind docking indicated binding of citrate with Lysine 222 residue in the proximity of Cys224 could have potentially fragmented IgG1.
Collapse
Affiliation(s)
- Pinaki Basu
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Nidhi Verma
- Data Analytics, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Sigireddi Indra Kumar
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Maya Nanath
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | | | - Giridhar Sivalanka
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | | | - Lovisha Aggarwal
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Sunil A Nankar
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Ravi Kumar Marikanti
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Murali Jayaraman
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India.
| |
Collapse
|
6
|
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:158. [PMID: 39940134 PMCID: PMC11820047 DOI: 10.3390/nano15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
7
|
Yen L, Henao-Díaz A, Zimmerman J, Giménez-Lirola L. Considerations on the stability of IgG antibody in clinical specimens. J Vet Diagn Invest 2025; 37:13-26. [PMID: 39673476 PMCID: PMC11645686 DOI: 10.1177/10406387241296848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
The 1890s marked a significant milestone with the introduction of antibody-based agglutination and precipitation assays, revolutionizing the detection of bacterial pathogens in both animals and humans. This era also witnessed pivotal contributions to our understanding of humoral immunity, as researchers elucidated the structure and functions of antibody molecules, laying the groundwork for diagnostic applications. Among antibody isotypes, IgG is of paramount importance in diagnostic investigations given its definitive indication of infection or vaccination, coupled with its widespread presence and detectability across various specimen types, such as serum, colostrum, milk, oral fluids, urine, feces, and tissue exudate. Despite their resilience, immunoglobulins are susceptible to structural alterations induced by physicochemical and enzymatic processes, which can compromise the reliability of their detection. Here we review comprehensively the historical milestones, underlying mechanisms, and influencing factors (e.g., temperature, pH, storage) that shape the structural integrity and stability of IgG antibodies in aqueous solutions and various clinical specimens.
Collapse
Affiliation(s)
- Lu Yen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alexandra Henao-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Pig Improvement Company México, Santiago de Querétaro, Querétaro, México
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
8
|
Xin L, Prorok M, Zhang Z, Barboza G, More R, Bonfiglio M, Cheng L, Robbie K, Ren S, Li Y. Rapid Development of High Concentration Protein Formulation Driven by High-Throughput Technologies. Pharm Res 2025; 42:151-171. [PMID: 39824982 DOI: 10.1007/s11095-024-03801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality. METHODOLOGY A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening. Collectively, the biophysical and viscosity screening data are leveraged to design the phase 2 of short-term stability study, executed using 96-well plates under thermal and freeze/thaw stresses. In phase 2, samples are analyzed by stability-indicating assays and processed with pair-wise Student's t-test analyses to choose the final formulations. In phase 3, the final formulations are then confirmed through a one-month accelerated stability in glass vials. RESULTS Using a model antibody A (mAb-A), the initial HT screening successfully established the 384-well based platform. A lead formulation was chosen from the second round based on statistical analyses and subsequently tested against the commercial formulation of mAb-A as a control. Compared to the control, the lead formulation reduced the viscosity of mAb-A by 30% and decreased subvisible particles after thermal stress by 80%. CONCLUSIONS HT biophysical screening in 384-well plates was demonstrated to effectively guide the rational design of a high-throughput stability screening study using 96-well plates. This platform enables the identification of a high concentration formulation within seven weeks within the first two phases of study that strategically balance stability with solution properties, thus achieving a rapid development of HCPF.
Collapse
Affiliation(s)
- Lun Xin
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Monika Prorok
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Zhe Zhang
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Guilherme Barboza
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Rahul More
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Michael Bonfiglio
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Lv Cheng
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Kevin Robbie
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Steven Ren
- CMC Management, WuXi Biologics, Cranbury, NJ, USA
| | - Yunsong Li
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA.
| |
Collapse
|
9
|
Rossmueller G, Mirkina I, Thiele M, Puchol Tarazona A, Rueker F, Kerschbaumer RJ, Schinagl A. Integrating In Silico and In Vitro Tools for Optimized Antibody Development-Design of Therapeutic Anti-oxMIF Antibodies. Antibodies (Basel) 2024; 13:104. [PMID: 39727487 DOI: 10.3390/antib13040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Rigorous assessment of antibody developability is crucial for optimizing lead candidates before progressing to clinical studies. Recent advances in predictive tools for protein structures, surface properties, stability, and immunogenicity have streamlined the development of new biologics. However, accurate prediction of the impact of single amino acid substitutions on antibody structures remains challenging, due to the diversity of complementarity-determining regions (CDRs), particularly CDR3s. METHODS In this study, we combined in silico tools with in vitro assessments to engineer improved antibodies against the oxidized isoform of the macrophage migration inhibitory factor (oxMIF), building on the first generation anti-oxMIF antibody imalumab. RESULTS We identified hydrophobic hotspots conferring increased self-interaction and aggregation propensity on imalumab, which unravels its unusually short half-life in humans. By introducing mutations into the variable regions, we addressed these liabilities. Structural prediction tools and molecular dynamics simulations guided the selection of mutations, which were then experimentally validated. The lead candidate antibody, C0083, demonstrated reduced hydrophobicity and self-interaction due to the restructuring of its heavy chain CDR3 loop. Despite these structural changes, C0083 retained target specificity and binding affinity to oxMIF. CONCLUSIONS Altogether, this study shows that a small number of well-selected mutations was sufficient to substantially improve the biophysicochemical properties of imalumab.
Collapse
Affiliation(s)
- Gregor Rossmueller
- OncoOne Research & Development GmbH, Karl-Farkas-Gasse 22, A-1030 Vienna, Austria
| | - Irina Mirkina
- OncoOne Research & Development GmbH, Karl-Farkas-Gasse 22, A-1030 Vienna, Austria
| | - Michael Thiele
- OncoOne Research & Development GmbH, Karl-Farkas-Gasse 22, A-1030 Vienna, Austria
| | | | - Florian Rueker
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | - Alexander Schinagl
- OncoOne Research & Development GmbH, Karl-Farkas-Gasse 22, A-1030 Vienna, Austria
| |
Collapse
|
10
|
Malani H, Kumar S, Rathore AS. Elucidation of Mg 2+ induced size and charge heterogeneity in monoclonal antibody therapeutics. Int J Biol Macromol 2024; 283:137736. [PMID: 39551289 DOI: 10.1016/j.ijbiomac.2024.137736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Changes in charge variant profile are known to affect mAb stability and vice versa. This report elucidates the effects of magnesium metal (0.5 mM Mg2+) on trastuzumab (IgG1 antibody). Mg2+ is often used as an excipient (50-100 mM) and lubricant (5-10 % w/w) in biopharmaceutical formulations. Analytical size-exclusion chromatography (SEC) and cation-exchange chromatography (CEX) coupled with mass spectrometry (MS) were used to evaluate the size and charge heterogeneity in the thermal and metal stressed samples and compared to the control sample (room temperature). The present study unveils that presence of Mg2+ significantly increases the rate of aggregation with 9 % aggregation observed in Mg2+ stressed samples as compared to that from thermal stress (~2 %) or control sample (<1 %). Similarly, a 2-fold elevation in acidic variants was observed both in presence of Mg2+ and thermal stress, when contrasted with the control sample. Application of stress also led to the formation of 17 additional chemical modifications (7 due to thermal stress and 10 due to Mg2+ stress) which were not identified in control, predominantly involving deamidation, isomerization of aspartic acid, oxidation, and succinimide modifications. The results indicate the need for a detailed analysis of the impact of presence of metals in biotherapeutic formulations.
Collapse
Affiliation(s)
- Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
11
|
Zhang X, Xu Y, Xie L, Shen P, Han J, Wang X, Wang L, Zhang L, Fang Y, Zhang Z. A Systematic Workflow for Fragmentation Identification of Therapeutic Antibodies by Liquid Chromatography-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39526578 DOI: 10.1021/jasms.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Fragmentation is a phenomenon ubiquitously observed during research and development of therapeutic antibodies. The clear identification of the cleavage site is vital for comprehending fragmentation mechanisms and optimizing processes. Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) is now widely used to detect and quantify fragments, while its peak identification is hindered by immature capillary electrophoresis-sodium dodecyl sulfate coupled with mass spectrometry techniques. In this study, we developed a systematic workflow for fragment characterization, which integrated direct identification, fragment enrichment, and fragmentation confirmation using multiple techniques, such as microscale peptide mapping (PM), PM of N-termini labeled sample, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in-gel extraction for molecular weight (MW) and PM measurements. By employing this innovative workflow, we successfully identified the cleavage sites of two therapeutic antibodies. In the first case, through direct liquid chromatography-mass spectrometry (LC-MS) characterization, the cleavages leading to the loss of biological function were identified on the linker of a bispecific antibody. In the second case involving a tetravalent antibody, direct LC-MS analysis failed. However, more sophisticated analysis nailed down the critical cleavage at the LC/HC: G105-R106 site in the CDR3 region of the antibody. Our systematic workflow provides a clear and accessible method for identifying cleavage sites with broad applicability across pharmaceutical laboratories.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- Analytical Science and Development Department, Henlius Biologics Co., Ltd., 5155 Guangfulin Road, Shanghai 201616, China
| | - Yanpeng Xu
- Analytical Science and Development Department, Henlius Biologics Co., Ltd., 5155 Guangfulin Road, Shanghai 201616, China
| | - Liqi Xie
- Analytical Science and Development Department, Henlius Biologics Co., Ltd., 5155 Guangfulin Road, Shanghai 201616, China
| | - Pengcheng Shen
- Analytical Science and Development Department, Henlius Biologics Co., Ltd., 5155 Guangfulin Road, Shanghai 201616, China
| | - Jing Han
- Analytical Science and Development Department, Henlius Biologics Co., Ltd., 5155 Guangfulin Road, Shanghai 201616, China
| | - Xinyi Wang
- Analytical Science and Development Department, Henlius Biologics Co., Ltd., 5155 Guangfulin Road, Shanghai 201616, China
| | - Limeng Wang
- Analytical Science and Development Department, Henlius Biologics Co., Ltd., 5155 Guangfulin Road, Shanghai 201616, China
| | - Lei Zhang
- Analytical Science and Development Department, Henlius Biologics Co., Ltd., 5155 Guangfulin Road, Shanghai 201616, China
| | - Yuan Fang
- Drug Product Development Department, Henlius Biotech., Inc., 1289 Yishan Road, Shanghai 201103, China
| | - Zhongli Zhang
- Analytical Science and Development Department, Henlius Biologics Co., Ltd., 5155 Guangfulin Road, Shanghai 201616, China
| |
Collapse
|
12
|
Bailey AO, Durbin KR, Robey MT, Palmer LK, Russell WK. Filling the gaps in peptide maps with a platform assay for top-down characterization of purified protein samples. Proteomics 2024; 24:e2400036. [PMID: 39004851 DOI: 10.1002/pmic.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.
Collapse
Affiliation(s)
- Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | - Lee K Palmer
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
13
|
Vogg B, Poetzl J, Schwebig A, Sekhar S, Kivitz A, Krivtsova N, Renner O, Body JJ, Eastell R. The Totality of Evidence for SDZ-deno: A Biosimilar to Reference Denosumab. Clin Ther 2024; 46:916-926. [PMID: 39294041 DOI: 10.1016/j.clinthera.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
PURPOSE Sandoz biosimilar denosumab (GP2411 [SDZ-deno]; Jubbonti/Wyost) is approved by the US FDA, EMA and Health Canada for all indications of reference denosumab (REF-deno; Prolia/Xgeva), a fully human IgG2κ monoclonal antibody that binds with high affinity and specificity to receptor activator of nuclear factor kappa-B ligand (RANKL). Denosumab blocks RANKL, preventing bone resorption and loss of bone density/architecture in conditions characterized by excessive bone loss such as osteoporosis in postmenopausal women and metastatic bone disease, among others. METHODS This narrative review summarizes the totality of evidence (ToE) for SDZ-deno that supported its approval as Jubbonti/Wyost in the EU and US. FINDINGS Analytical evaluation indicated that SDZ-deno has high purity and structural homology with REF-deno. SDZ-deno also demonstrated similar binding affinities, size and charge variants, and disulfide isoforms to REF-deno, and did not trigger clinically meaningful antibody-dependent cellular cytotoxicity. In clinical evaluation, SDZ-deno was similar to REF-deno in pharmacokinetics (PK) and pharmacodynamics (PD) in a 39-week Phase I study in 502 healthy male participants, and to REF-deno in a 72-week Phase III study in 527 postmenopausal women with osteoporosis. In both studies, the 90% and 95% confidence intervals (for PK and PD endpoints, respectively) of the geometric mean ratios for AUCinf, Cmax (and AUClast in the Phase I study; PK endpoints), and area under the effect versus time curve of percent change from baseline in serum carboxy-terminal crosslinked telopeptide of type I collagen (PD endpoint), were fully contained within the prespecified equivalence margins (0.80, 1.25). The Phase III study also demonstrated SDZ-deno is similar in efficacy to REF-deno in postmenopausal women with osteoporosis, as the difference in percent change from baseline in lumbar spine bone mineral density at week 52 between REF-deno and SDZ-deno was fully contained within the prespecified equivalence margins (-1.45, 1.45). SDZ-deno was well tolerated in both studies. As the ToE has established biosimilarity of SDZ-deno and REF-deno, extrapolation to all indications is justified based on the common mechanism of action and the comparable PK, safety, and immunogenicity across all indications. IMPLICATIONS The ToE for SDZ-deno suggests it will be an effective biosimilar to REF-deno, and its lower unit price is anticipated to increase the number of appropriate patients who will benefit.
Collapse
Affiliation(s)
- Barbara Vogg
- Hexal AG (a Sandoz company), Holzkirchen, Germany.
| | | | | | | | - Alan Kivitz
- Altoona Center for Clinical Research, Duncansville, Pennsylvania
| | | | | | - Jean-Jacques Body
- Department of Medicine, University Hospital Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Richard Eastell
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Jang D, Altern SH, Cramer SM. In silico mediated workflow for rapid development of downstream processing: Orthogonal product-related impurity removal for a Fc-containing therapeutic. J Chromatogr A 2024; 1735:465281. [PMID: 39243589 DOI: 10.1016/j.chroma.2024.465281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Therapeutic formats derived from the monoclonal antibody structure have been gaining significant traction in the biopharmaceutical market. Being structurally similar to mAbs, most Fc-containing therapeutics exhibit product-related impurities in the form of aggregates, charge variants, fragments, and glycoforms, which are inherently challenging to remove. In this work, we developed a workflow that employed rapid resin screening in conjunction with an in silico tool to identify and rank orthogonally selective processes for the removal of product-related impurities from a Fc-containing therapeutic product. Linear salt gradient screens were performed at various pH conditions on a set of ion-exchange, multimodal ion-exchange, and hydrophobic interaction resins. Select fractions from the screening experiments were analyzed by three different analytical techniques to characterize aggregates, charge variants, fragments, and glycoforms. The retention database generated by the resin screens and subsequent impurity characterization were then processed by an in silico tool that generated and ranked all possible two-step resin sequences for the removal of product-related impurities. A highly-ranked process was then evaluated and refined at the bench-scale to develop a completely flowthrough two-step polishing process which resulted in complete removal of the Man5 glycoform and aggregate impurities with a 73% overall yield. The successful implementation of the in silico mediated workflow suggests the possibility of a platformable workflow that could facilitate polishing process development for a wide variety of mAb-based therapeutics.
Collapse
Affiliation(s)
- Dongyoun Jang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Scott H Altern
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Steven M Cramer
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States.
| |
Collapse
|
15
|
Tiambeng TN, Yan Y, Patel SK, Cotham VC, Wang S, Li N. Characterization of adeno-associated virus capsid proteins using denaturing size-exclusion chromatography coupled with mass spectrometry. J Pharm Biomed Anal 2024; 253:116524. [PMID: 39442445 DOI: 10.1016/j.jpba.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Recombinant adeno-associated viruses (AAVs) are a highly effective platform for gene delivery for the treatment of many human diseases. Characterization of AAV viral protein attributes (VP), such as serotype identity, VP stoichiometry, and VP post-translational modifications, is essential to ensure product and process consistency. While size-exclusion chromatography (SEC) coupled with mass spectrometry (MS) is commonly used in the biopharmaceutical industry for analyzing protein therapeutics, its application to intact AAV VP components has not gained traction, presumably due to difficulties in achieving adequate resolution of VP(1-3) monomers. Herein, we describe the development of a denaturing SEC method and optimization of SEC parameters, including stationary phase pore size, column temperature, and mobile phase composition, to achieve effective chromatographic separation of VP(1-3). We demonstrate that an optimized dSEC-MS method featuring MS-compatible formic acid, can effectively separate VP(1-3) across AAV1, 2, 5, 6, 8, and 9 serotypes using a single column and mobile phase condition. A case study was included to showcase successful application of the dSEC-MS method in analyzing changes across different AAV production processes, yielding similar conclusions to an orthogonal approach, such as hydrophilic interaction chromatography (HILIC)- MS. Additionally, dSEC integrated with fluorescence (FLR) and ultraviolet (UV) detection can be used to semi-quantitatively identify both AAV DNA and VP components from empty and full AAV samples. Overall, this robust and MS-friendly methodological advancement could greatly streamline the development and analytical quality control processes for AAV-based gene therapies, providing a highly sensitive method for intact VP characterization.
Collapse
Affiliation(s)
- Timothy N Tiambeng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| | - Yuetian Yan
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA.
| | - Shailin K Patel
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| | - Victoria C Cotham
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| | - Shunhai Wang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| |
Collapse
|
16
|
Rodríguez-Mateos M, Carlos S, Jaso J, Holguín Á, Reina G. Influence of Hematocrit and Storage Temperature on the Stability of Dried Blood Samples in Serological Analyses of Tetanus, Diphtheria, and Pertussis. Diagnostics (Basel) 2024; 14:2195. [PMID: 39410599 PMCID: PMC11475551 DOI: 10.3390/diagnostics14192195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Dried blood spots (DBSs) enable the study of serological markers of various pathogens without the need to obtain serum/plasma through venipuncture. METHODS Sixty-four blood samples were prepared on Whatman™ 903 cards using specimens obtained by venipuncture to study the detection of serological markers of diphtheria, tetanus, and pertussis in DBSs, and their stability 4 months post-collection. An automated chemiluminescent immunoassay was used to investigate diphtheria, tetanus, and pertussis IgG levels from both DBSs and plasma samples. RESULTS An optimal cut-off value for DBSs was calculated to improve the performance of diphtheria and tetanus serological markers in DBSs, achieving high sensitivity (95% and 98%, respectively) and specificity (91.7% and 92.3%, respectively). No protection against pertussis was found in the population studied. The correlation observed between the plasma and the DBSs processed after sample collection was high (0.967-0.970) for all antibodies studied except pertussis (0.753), both considering hematocrit before sample elution or not. The correlation between DBSs and plasma for diphtheria and tetanus remained strong following a 4-month delay in DBS processing at 4 °C (0.925-0.964) and -20 °C (0.924-0.966), with only a minor decrease observed for diphtheria at room temperature (0.889), while maintaining a strong correlation for tetanus (0.960). For pertussis, the correlation between DBSs and plasma was drastically reduced after delaying its processing for 4 months at any temperature. CONCLUSIONS To summarize, hematocrit levels within the normal range do not affect the processing of DBSs in the study of serological markers of diphtheria, tetanus, and pertussis. The DBS stability for serological diagnosis of diphtheria and tetanus is adequate when samples are stored at -20 °C for a period of 4 months. The pertussis serological marker does not appear to remain stable after 4 months, even when the DBS is stored frozen at -20 °C.
Collapse
Affiliation(s)
- Mariano Rodríguez-Mateos
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.R.-M.); (J.J.)
| | - Silvia Carlos
- Department of Preventive Medicine and Public Health, Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Javier Jaso
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.R.-M.); (J.J.)
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, University Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP, 28034 Madrid, Spain;
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.R.-M.); (J.J.)
- Department of Preventive Medicine and Public Health, Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
17
|
Xin L, Lan L, Mellal M, McChesney N, Vaughan R, Berdugo C, Li Y, Zhang J. Leveraging high-throughput analytics and automation to rapidly develop high-concentration mAb formulations: integrated excipient compatibility and viscosity screening. Antib Ther 2024; 7:335-350. [PMID: 39678259 PMCID: PMC11646310 DOI: 10.1093/abt/tbae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Formulation screening is essential to experimentally balance stability and viscosity in high-concentration mAb formulations. We developed a high-throughput approach with automated sample preparation and analytical workflows to enable the integrated assessment of excipient compatibility and viscosity of mAb formulations. METHODS Ninety-six formulations of a trastuzumab biosimilar were screened by combining 8 types of excipient modifiers with 4 types of buffers across a pH range of 4.5 to 7.5. Key stability risks, including high molecular weight (HMW) aggregation and fragmentation, were thoroughly assessed along with viscosity at high concentrations. Additionally, several biophysical parameters were evaluated for their ability to predict stability or viscosity outcomes. Multiple linear regression was applied to fit the data and identify key factors. RESULTS The optimal pH range for the trastuzumab biosimilar was found to be 5.0 to 6.5, based on opposing pH dependencies for stability and viscosity. Buffer type had a minor effect on viscosity and fragmentation but played a significant role in influencing HMW aggregates, with Na-acetate and histidine-HCl being the best candidates. The impact of excipient modifiers on viscosity, HMW, and fragmentation depended on both pH and buffer type, showing strong interactions among factors. Arginine-HCl and lysine-HCl effectively lowered viscosity of the trastuzumab biosimilar at pH levels above 6.0, while glycine formulations were more effective at reducing viscosity below pH 6.0. Histidine-HCl, arginine-HCl, and lysine-HCl lowered the risk of HMW aggregation, whereas formulations containing Na-phosphate or NaCl showed higher HMW aggregation. Formulations with arginine-HCl, lysine-HCl, and NaCl demonstrated a rapid increase in fragmentation at pH levels below 5.0, while Na-aspartate formulations showed increased fragmentation at pH levels above 6.5. CONCLUSION Hence, it is important to optimize the levels of each chosen excipient in the formulation study to balance their benefits against potential incompatibilities. This study serves as a foundation for identifying high-concentration antibody formulations using a high-throughput approach, where minimal materials are required, and optimized formulation design spaces can be quickly identified.
Collapse
Affiliation(s)
- Lun Xin
- Product Development, Catalent Pharma Solutions, 3770 W. Jonathan Dr., Bloomington, IN 47404, United States
| | - Lan Lan
- Product Development, Catalent Pharma Solutions, 3770 W. Jonathan Dr., Bloomington, IN 47404, United States
| | - Mourad Mellal
- Product Development, Catalent Pharma Solutions, 14 School House Rd, Somerset, NJ 08873, United States
| | - Nathan McChesney
- Product Development, Catalent Pharma Solutions, 3770 W. Jonathan Dr., Bloomington, IN 47404, United States
| | - Robert Vaughan
- Product Development, Catalent Pharma Solutions, 3770 W. Jonathan Dr., Bloomington, IN 47404, United States
| | - Claudia Berdugo
- Product Development, Catalent Pharma Solutions, 3770 W. Jonathan Dr., Bloomington, IN 47404, United States
| | - Yunsong Li
- Product Development, Catalent Pharma Solutions, 3770 W. Jonathan Dr., Bloomington, IN 47404, United States
| | - Jingtao Zhang
- Product Development, Catalent Pharma Solutions, 14 School House Rd, Somerset, NJ 08873, United States
| |
Collapse
|
18
|
Marino SF, Daumke O. Structure-based humanization of a therapeutic antibody for multiple myeloma. J Mol Med (Berl) 2024; 102:1151-1161. [PMID: 39052065 PMCID: PMC11358308 DOI: 10.1007/s00109-024-02470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The optimal efficacy of xenogeneically generated proteins intended for application in humans requires that their own antigenicity be minimized. This necessary adaptation of antibodies to a humanized version poses challenges since modifications even distant from the binding sites can greatly influence antigen recognition and this is the primary feature that must be maintained during all modifications. Current strategies often rely on grafting and/or randomization/selection to arrive at a humanized variant retaining the binding properties of the original molecule. However, in terms of speed and efficiency, rationally directed approaches can be superior, provided the requisite structural information is available. We present here a humanization procedure based on the high-resolution X-ray structure of a chimaeric IgG against a marker for multiple myeloma. Based on in silico modelling of humanizing amino acid substitutions identified from sequence alignments, we devised a straightforward cloning procedure to rapidly evaluate the proposed sequence changes. Careful inspection of the structure allowed the identification of a potentially problematic amino acid change that indeed disrupted antigen binding. Subsequent optimization of the antigen binding loop sequences resulted in substantial recovery of binding affinity lost in the completely humanized antibody. X-ray structures of the humanized and optimized variants demonstrate that the antigen binding mode is preserved, with surprisingly few direct contacts to antibody atoms. These results underline the importance of structural information for the efficient optimization of protein therapeutics. KEY MESSAGES: Structure-based humanization of an IgG against BCMA, a marker for Multiple Myeloma. Identification of problematic mutations and unexpected modification sites. Structures of the modified IgG-antigen complexes verified predictions. Provision of humanized high-affinity IgGs against BCMA for therapeutic applications.
Collapse
Affiliation(s)
- Stephen F Marino
- Max Delbrück Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
- German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Oliver Daumke
- Max Delbrück Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| |
Collapse
|
19
|
Liu Q, Hong J, Zhang Y, Wang Q, Xia Q, Knierman MD, Lau J, Dayaratna C, Negron B, Nanda H, Gunawardena HP. Rapid identification of antibody impurities in size-based electrophoresis via CZE-MS generated spectral library. Sci Rep 2024; 14:20239. [PMID: 39215123 PMCID: PMC11364755 DOI: 10.1038/s41598-024-70914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Methods for the reliable and effective detection and identification of impurities are crucial to ensure the quality and safety of biopharmaceutical products. Technical limitations constrain the accurate identification of individual impurity peaks by size-based electrophoresis separations followed by mass spectrometry. This study presents a size-based electrophoretic method for detecting and identifying impurity peaks in antibody production. A hydrogen sulfide-accelerated degradation method was employed to generate known degradation products observed in bioreactors that forms the basis for size calibration. LabChip GXII channel electrophoresis enabled the rapid (< 1 min) detection of impurity peaks based on size, while capillary zone electrophoresis-mass spectrometry (CZE-MS) facilitated their accurate identification. We combine these techniques to examine impurities resulting from cell culture harvest conditions and forced degradation to assess antibody stability. To mimic cell culture harvest conditions and the impact of forced degradation, we subjected samples to cathepsin at different pH buffers or exposed them to high pH and temperature. Our method demonstrated the feasibility and broad applicability of using a CZE-MS generated spectral library to unambiguously assign peaks in high throughput size-based electrophoresis (i.e., LabChip GXII) with identifications or likely mass of the antibody impurity. Overall, this strategy combines the utility of CZE-MS as a high-resolution separation and detection method for impurities with size-based electrophoresis methods that are typically used to detect (not identify) impurities during the discovery and development of antibody therapeutics.
Collapse
Affiliation(s)
- Quan Liu
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Jiaying Hong
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Yukun Zhang
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Qiuyue Wang
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Qiangwei Xia
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Michael D Knierman
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA
| | - Jim Lau
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA
| | - Caleen Dayaratna
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Benjamin Negron
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Hirsh Nanda
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Harsha P Gunawardena
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA.
| |
Collapse
|
20
|
Fei M, Zhang Q, Zhang L, Zhang Y, Wang L, Zhao Y, Zhang Z. Characterization workflow for fragments detected in capillary electrophoresis sodium dodecyl sulfate analysis of therapeutic monoclonal antibodies. Electrophoresis 2024; 45:1325-1338. [PMID: 38458992 DOI: 10.1002/elps.202300282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Product-related fragments in monoclonal antibodies (mAbs) can have a significant impact on the efficacy and safety of the product. Capillary electrophoresis sodium dodecyl sulfate (CE-SDS) is a commonly used method for fragment quantification, but it has challenges in peak identification due to the inability to enrich components and the incompatibility of SDS with mass spectrometry (MS). This article presents a workflow for identifying peaks in CE-SDS analysis. The workflow involves comparing the migration time of peaks with that of standards and utilizing MS analysis to identify fragments. By employing this innovative systematic workflow, we successfully identified the CE-SDS impurity peaks of seven antibody products. Among them, four products exhibited characteristic fragments associated with disulfide bonds (light chain [LC], heavy-light [HL] chain, heavy-heavy [HH] chain, and HH-LC) and a glycosylation-related fragment non-glycosylated heavy chain. Additionally, one product showed a fragment formed by the connection of HC_C130 and HC_C130, which is associated with a thioether bond. Furthermore, two other products displayed amino acid backbone breakage, with one product showing clipping at the HC region of A233-G285 and the other product showing clipping at the HC regions of A97-S158 and N342-T366. This workflow can be applied in early drug research, process development, or during the biologics license application stage to characterize fragments in therapeutic mAbs analyzed by CE-SDS.
Collapse
Affiliation(s)
- Mengdan Fei
- Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, P. R. China
| | - Qiang Zhang
- Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, P. R. China
| | - Lei Zhang
- Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, P. R. China
| | - Yueze Zhang
- Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, P. R. China
| | - Lingyu Wang
- Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, P. R. China
| | - Yiman Zhao
- Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, P. R. China
| | - Zhongli Zhang
- Analytical Science and Development, Shanghai Henlius Biologics Co., Ltd., Shanghai, P. R. China
| |
Collapse
|
21
|
Rizzotto E, Inciardi I, Fongaro B, Trolese P, Miolo G, Polverino de Laureto P. Light exacerbates local and global effects induced by pH unfolding of Ipilimumab. Eur J Pharm Biopharm 2024; 201:114387. [PMID: 38944210 DOI: 10.1016/j.ejpb.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Monoclonal antibodies (mAbs) are an essential class of therapeutic proteins for the treatment of cancer, autoimmune and rare diseases. During their production, storage, and administration processes, these proteins encounter various stressors such as temperature fluctuations, vibrations, and light exposure, able to induce chemico-physical modifications to their structure. Viral inactivation is a key step in downstream processes, and it is achieved by titration of the mAb at low pH, followed by neutralization. The changes of the pH pose a significant risk of unfolding and subsequent aggregation to proteins, thereby affecting their manufacturing. This study aims to investigate whether a combined exposure to light during the viral inactivation process can further affect the structural integrity of Ipilimumab, a mAb primarily used in the treatment of metastatic melanoma. The biophysical and biochemical characterization of Ipilimumab revealed that pH variation is a considerable risk for its stability with irreversible unfolding at pH 2. The threshold for Ipilimumab denaturation lies between pH 2 and 3 and is correlated with the loss of the protein structural cooperativity, which is the most critical factor determining the protein refolding. Light has demonstrated to exacerbate some local and global effects making pH-induced exposed regions more vulnerable to structural and chemical changes. Therefore, specific precautions to real-life exposure to ambient light during the sterilization process of mAbs should be considered to avoid loss of the therapeutic activity and to increase the yield of production. Our findings underscore the critical role of pH optimization in preserving the structural integrity and therapeutic efficacy of mAbs. Moreover, a detailed conformational study on the structural modifications of Ipilimumab may improve the chemico-physical knowledge of this effective drug and suggest new production strategies for more stable products under some kind of stress conditions.
Collapse
Affiliation(s)
- Elena Rizzotto
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Ilenia Inciardi
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Philipp Trolese
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | | |
Collapse
|
22
|
Li M, Zhao X, Wu G, Wang W, Du J, Xu G, Duan M, Fu Z, Yu C, Wang L. Using capillary electrophoresis sodium dodecyl sulfate (CE-SDS) and liquid chromatograph mass spectrometry (LC-MS) to identify glycosylated heavy chain heterogeneity in the anti-VEGFR-2 monoclonal antibody. Electrophoresis 2024; 45:1281-1294. [PMID: 38361212 DOI: 10.1002/elps.202300258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
The size variant, which can be measured by capillary electrophoresis sodium dodecyl sulfate (CE-SDS), is a critical quality attribute of monoclonal antibodies (mAbs). The CE-SDS size heterogeneity can hardly be identified by tandem mass spectrometry, which is an intractable obstacle of mAb development and quality control across the industry. We analyzed the purity of an anti-vascular endothelial growth factor receptor 2 (VEGFR-2) mAb, an antagonist of the human VEGFR-2, through reduced CE-SDS and observed glycosylated heavy chain heterogeneity. The heterogeneity has potential impact on safety, efficacy, and stability of drugs for clinical use. Therefore, it should be characterized so as to evaluate its potential risk. In order to identify the heterogeneity, we used mass spectrometry to confirm that the molecular size heterogeneity was not due to peptide bond cleavage in the heavy chain. Subsequently, we employed mass-spectrometry-glycosylation profiling and CE-SDS analysis of various glycosidase-treated samples, in addition to the preparation of mAb references with different glycoforms. Ultimately, we demonstrated that the heavy chain heterogeneity was induced by different levels of galactosylation modifications which will potentially impact the efficacy of antibody drugs (i.e., complement-dependent cytotoxicity). In this study, potential risk caused by heavy chain size heterogeneity was evaluated, which addressed the obstacle of mAb development and quality control. Therefore, this study offers a feasible approach for the investigation and identification of heavy chain heterogeneity in reduced CE-SDS, providing a novel strategy for mAb quality control and evaluation.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, P. R. China
| | - Xueyu Zhao
- Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, P. R. China
| | - Gang Wu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, P. R. China
| | - Wenbo Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, P. R. China
| | - Jialiang Du
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, P. R. China
| | - Gangling Xu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, P. R. China
| | - Maoqin Duan
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, P. R. China
| | - Zhihao Fu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, P. R. China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, P. R. China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, P. R. China
| |
Collapse
|
23
|
Sankaran PK, Poskute R, Dewis L, Watanabe Y, Wong V, Fernandez LP, Shannon R, Wong L, Shrubsall R, Carman L, Holt A, Lepore G, Mishra R, Sewell L, Gothard M, Cheeks M, Lindo V. Comprehensive Stress Stability Studies Reveal the Prominent Stability of the Liquid-Formulated Biotherapeutic Asymmetric Monovalent Bispecific IgG1 Monoclonal Antibody Format. J Pharm Sci 2024; 113:2101-2113. [PMID: 38705464 DOI: 10.1016/j.xphs.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The developed asymmetric monovalent bispecific IgG1 or Duet monoclonal antibody (Duet mAb) has two distinct fragment antigen-binding region (Fab) subunits that target two different epitope specificities sequentially or simultaneously. The design features include unique engineered disulfide bridges, knob-into-hole mutations, and kappa and lambda chains to produce Duet mAbs. These make it structurally and functionally complex, so one expects challenging developability linked to instability, degradation of products and pathways, and limited reports available. Here, we have treated the product with different sources of extreme stress over a lengthy period, including varying heat, pH, photo stress, chemical oxidative stress, accelerated stress in physiological conditions, and forced glycation conditions. The effects of different stress conditions on the product were assessed using various analytical characterization tools to measure product-related substances, post-translational modifications (PTMs), structural integrity, higher-order disulfide linkages, and biological activity. The results revealed degradation products and pathways of Duet mAb. A moderate increase in size, charge, and hydrophobic variants, PTMs, including deamidation, oxidation, isomerization, and glycation were observed, with most conditions exhibiting biological activity. In addition, the characterization of fractionated charge variants, including deamidated species, showed satisfactory biological activity. This study demonstrated the prominent stability of the Duet mAb format comparable to most marketed mAbs.
Collapse
Affiliation(s)
| | - Ryte Poskute
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lydia Dewis
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Yasunori Watanabe
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Vanessa Wong
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | | | - Richard Shannon
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lisa Wong
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Rebecca Shrubsall
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lee Carman
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Alexander Holt
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Giordana Lepore
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Rahul Mishra
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Laura Sewell
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Matt Gothard
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Matthew Cheeks
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Viv Lindo
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
24
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
25
|
Yap SY, Butcher T, Spears RJ, McMahon C, Thanasi IA, Baker JR, Chudasama V. Chemo- and regio-selective differential modification of native cysteines on an antibody via the use of dehydroalanine forming reagents. Chem Sci 2024; 15:8557-8568. [PMID: 38846383 PMCID: PMC11151841 DOI: 10.1039/d4sc00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Protein modification has garnered increasing interest over the past few decades and has become an important tool in many aspects of chemical biology. In recent years, much effort has focused on site-selective modification strategies that generate more homogenous bioconjugates, and this is particularly so in the antibody modification space. Modifying native antibodies by targeting solvent-accessible cysteines liberated by interchain disulfide reduction is, perhaps, the predominant strategy for achieving more site-selectivity on an antibody scaffold. This is evidenced by numerous approved antibody therapeutics that have utilised cysteine-directed conjugation reagents and the plethora of methods/strategies focused on antibody cysteine modification. However, all of these methods have a common feature in that after the reduction of native solvent-accessible cystines, the liberated cysteines are all reacted in the same manner. Herein, we report the discovery and application of dehydroalanine forming reagents (including novel reagents) capable of regio- and chemo-selectively modifying these cysteines (differentially) on a clinically relevant antibody fragment and a full antibody. We discovered that these reagents could enable differential reactivity between light chain C-terminal cysteines, heavy chain hinge region cysteines (cysteines with an adjacent proline residue, Cys-Pro), and other heavy chain internal cysteines. This differential reactivity was also showcased on small molecules and on the peptide somatostatin. The application of these dehydroalanine forming reagents was exemplified in the preparation of a dually modified antibody fragment and full antibody. Additionally, we discovered that readily available amide coupling agents can be repurposed as dehydroalanine forming reagents, which could be of interest to the broader field of chemical biology.
Collapse
Affiliation(s)
- Steven Y Yap
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Tobias Butcher
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Richard J Spears
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Clíona McMahon
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
26
|
Gupta S, Schöneich C, Rathore AS. Assessment of change in the basic variants composition of trastuzumab during dilution in saline for administration. Eur J Pharm Biopharm 2024; 199:114295. [PMID: 38636881 DOI: 10.1016/j.ejpb.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Postproduction handling of drug products during preparation or clinical use may affect the structure and efficacy of the drug and perhaps remain unnoticed. Since chemical modifications can impact the product's structure, stability, and biological activity, this study investigates the impact of elevated temperature and subtle shift in pH on the drug product post-dilution in saline. The mAb sample diluted in saline for administration was stressed at elevated temperature and slightly acidic pH condition. Extended stability studies were performed and monitored for size and charge heterogeneity. Size heterogeneity shows no significant changes, whereas charge heterogeneity shows an increase in basic variants and a reduction in main species. Further, basic variants were isolated and characterized to identify the type and site of chemical modification. Intact mass analysis and peptide mapping identify that the basic variants were attributed mainly to the isomerization of HC Asp102 into iso-Asp or its succinimide intermediate. Four basic variants were found to exhibit similar structural properties as the main and control samples. However, basic variants showed reduced binding affinity to HER2 receptor, while there was no significant difference in FcRn binding. The results indicate that modification in the HC Asp102, which is present in the CDR, affects antigen binding and thus can influence the potency of the drug product. Hence, with the conventional stability studies required to license the drug product, including in-use or extended stability studies to mimic the postproduction handling would be desirable.
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi,New Delhi 110016, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi,New Delhi 110016, India.
| |
Collapse
|
27
|
Yamaguchi T, Ishikawa H, Fukuda M, Sugita Y, Furuie M, Nagano R, Suzawa T, Yamamoto K, Wakamatsu K. Catechins prevent monoclonal antibody fragmentation during production via fed-batch culture of Chinese hamster ovary cells. Biotechnol Prog 2024; 40:e3447. [PMID: 38415979 DOI: 10.1002/btpr.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used for the industrial production of therapeutic monoclonal antibodies (mAbs). To meet the increasing market demands, high productivity, and quality are required in cell culture. One of the critical attributes of mAbs, from a safety perspective, is mAb fragmentation. However, methods for preventing mAbs fragmentation in CHO cell culture are limited. In this study, we observed that the antibody fragment content increased with increasing titers in fed-batch cultures for all three cell lines expressing recombinant antibodies. Adding copper sulfate to the culture medium further increased the fragment content, suggesting the involvement of reactive oxygen species (ROS) in the fragmentation process. Though antioxidants may be helpful to scavenge ROS, several antioxidants are reported to decrease the productivity of CHO cells. Among the antioxidants examined, we observed that the addition of catechin or (-)-epigallocatechin gallate to the culture medium prevented fragmentation content by about 20% and increased viable cell density and titer by 30% and 10%, respectively. Thus, the addition of catechins or compounds of equivalent function would be beneficial for manufacturing therapeutic mAbs with a balance between high titers and good quality.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Science and Technology, Gunma University, Gunma, Japan
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Hiroko Ishikawa
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Mie Fukuda
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Yumi Sugita
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Misaki Furuie
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Ryuma Nagano
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | | | - Koichi Yamamoto
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Kaori Wakamatsu
- Graduate School of Science and Technology, Gunma University, Gunma, Japan
| |
Collapse
|
28
|
Venu A, Zhang Y, Seong J, Hong Y, Lee WS, Min JJ. Engineering of an EPHA2-Targeted Monobody for the Detection of Colorectal Cancer. Cancer Genomics Proteomics 2024; 21:285-294. [PMID: 38670584 PMCID: PMC11059598 DOI: 10.21873/cgp.20447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/AIM Colorectal cancer (CRC) is the third most common cancer worldwide, and is second only to lung cancer with respect to cancer-related deaths. Noninvasive molecular imaging using established markers is a new emerging method to diagnose CRC. The human ephrin receptor family type-A 2 (hEPHA2) oncoprotein is overexpressed at the early, but not late, stages of CRC. Previously, we reported development of an E1 monobody that is specific for hEPHA2-expressing cancer cells both in vitro and in vivo. Herein, we investigated the ability of the E1 monobody to detect hEPHA2 expressing colorectal tumors in a mouse model, as well as in CRC tissue. MATERIALS AND METHODS The expression of hEPHA2 on the surface of CRC cells was analyzed by western blotting and flow cytometry. The targeting efficacy of the E1 monobody for CRC cells was examined by flow cytometry, and immunofluorescence staining. E1 conjugated to the Renilla luciferase variant 8 (Rluc8) reporter protein was used for in vivo imaging in mice. Additionally, an enhanced green fluorescence protein (EGFP) conjugated E1 monobody was used to check the ability of the E1 monobody to target CRC tissue. RESULTS The E1 monobody bound efficiently to hEPHA2-expressing CRC cell lines, and E1 conjugated to the Rluc8 reporter protein targeted tumor tissues in mice transplanted with HCT116 CRC tumor cells. Finally, E1-EGFP stained tumor tissues from human CRC patients, showing a pattern similar to that of an anti-hEPHA2 antibody. CONCLUSION The E1 monobody has utility as an EPHA2 targeting agent for the detection of CRC.
Collapse
Affiliation(s)
- Akhil Venu
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
| | - Ying Zhang
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Jihyoun Seong
- Division of Gastroenterology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Wan-Sik Lee
- Division of Gastroenterology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea;
| | - Jung-Joon Min
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun, Republic of Korea;
| |
Collapse
|
29
|
Wu R, Kahl DM, Kloberdanz R, Rohilla KJ, Balasubramanian S. Demonstration of a robust high cell density transient CHO platform yielding mAb titers of up to 2 g/L without medium exchange. Biotechnol Prog 2024; 40:e3435. [PMID: 38329375 DOI: 10.1002/btpr.3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Biopharmaceuticals like therapeutic monoclonal antibodies (mAbs) and other derived proteins are popular for treating various diseases. Transient gene expression (TGE) is typically used as a fast yet efficient method to generate moderate amounts of material. It has been used to support early stage research and discovery processes. Introduction of a robust high yielding and predictive TGE platform in Chinese hamster ovary (CHO) is crucial. It maintains the consistency in cell lines and processes throughout the early drug discovery and downstream manufacturing processes. This helps researchers to identify the issues at an early stage for timely resolution. In this study, we have demonstrated a simple high-titer platform for TGE in CHO based on a dilution process of seeding cells. We achieved titers ranging from 0.8 to 1.9 g/L for eight model mAbs at three scales (1, 30, 100 mL) in 10 days using our new platform. The ability to seed by dilution significantly streamlined the process and dramatically enhanced platform throughput. We observed a modest reduction in titer ranging from 11% to 28% when cells were seeded using dilution compared to when cells were seeded using medium exchange. Further studies revealed that carry over of spent medium into transfection negatively affected the DNA uptake and transcription processes, while the translation and secretion was minimally impacted. In summary, our transient CHO platform using cells prepared by dilution at high densities can achieve high titers of up to 1.9 g/L, which can be further improved by targeting the bottlenecks of transfection and transcription.
Collapse
Affiliation(s)
- Rigumula Wu
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Danielle M Kahl
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Ronald Kloberdanz
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Kushal J Rohilla
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Sowmya Balasubramanian
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| |
Collapse
|
30
|
Sharma R, Gupta S, Rathore AS. Novel purification platform based on multimodal preparative scale separation of mAb fragments and aggregates. J Chromatogr A 2024; 1721:464806. [PMID: 38518514 DOI: 10.1016/j.chroma.2024.464806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Monoclonal antibodies (mAbs) continue to dominate the biopharmaceutical industry. Certain mAbs are prone to fragmentation and clipping and in these cases, adequate removal of these species is critical during manufacturing. Fragments can be generated during fermentation, purification, storage, formulation, and administration. Their addition to the acidic charge-variant of the purified mAb has been reported to decrease stability and potency of the final product. However, contrary to mAb aggregation, manufacturers have not given much attention to removal of fragments and clipped species and as a result most conventional mAb platforms offer at best limited capabilities for their removal. In this study, we propose a novel purification platform that uses multimodal chromatography and achieves complete removal of a range of mAb fragments and clipped products (25-120 kDa). The utility of the platform has been successfully demonstrated for 2 IgG1s and 2 IgG4s. Further, adequate removal of the various host cell impurities such as host cell proteins (<10 ppm) and host cell DNA (<5 ppb) has been achieved. Finally, the platform was able to deliver adequate removal of high molecular weight impurities (<1 %) and a 30 % clearance of the acidic charge variant. The proposed single step has been shown to deliver what the polishing chromatography and intermediate purification chromatography steps deliver in a traditional mAb platform.
Collapse
Affiliation(s)
- Rashmi Sharma
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, India
| | - Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Anurag S Rathore
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, India; Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
31
|
Yang J, Ostafe R, Bruening ML. In-Membrane Enrichment and Peptic Digestion to Facilitate Analysis of Monoclonal Antibody Glycosylation. Anal Chem 2024; 96:6347-6355. [PMID: 38607313 PMCID: PMC11283323 DOI: 10.1021/acs.analchem.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The number of therapeutic monoclonal antibodies (mAbs) is growing rapidly due to their widespread use for treating various diseases and health conditions. Assessing the glycosylation profile of mAbs during production is essential to ensuring their safety and efficacy. This research aims to rapidly isolate and digest mAbs for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of glycans and monitoring of glycosylation patterns, potentially during manufacturing. Immobilization of an Fc region-specific ligand, oFc20, in a porous membrane enables the enrichment of mAbs from cell culture supernatant and efficient elution with an acidic solution. Subsequent digestion of the mAb eluate occurred in a pepsin-modified membrane within 5 min. The procedure does not require alkylation and desalting, greatly shortening the sample preparation time. Subsequent LC-MS/MS analysis identified 11 major mAb N-glycan proteoforms and assessed the relative peak areas of the glycosylated peptides. This approach is suitable for the glycosylation profiling of various human IgG mAbs, including biosimilars and different IgG subclasses. The total time required for this workflow is less than 2 h, whereas the conventional enzymatic release and labeling of glycans can take much longer. Thus, the integrated membranes are suitable for facilitating the analysis of mAb glycosylation patterns.
Collapse
Affiliation(s)
- Junyan Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production Facility; Purdue Institute for Inflammation, Immunology and Infection Diseases, Purdue University, West Lafayette, IN 47907, United States
| | - Merlin L. Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
32
|
LeBarre JP, Chu W, Altern SH, Kocot AJ, Bhandari D, Barbieri E, Sly J, Crapanzano M, Cramer SM, Phillips M, Roush D, Carbonell R, Boi C, Menegatti S. Mixed-mode size-exclusion silica resin for polishing human antibodies in flow-through mode. J Chromatogr A 2024; 1720:464772. [PMID: 38452560 DOI: 10.1016/j.chroma.2024.464772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
The polishing step in the downstream processing of therapeutic antibodies removes residual impurities from Protein A eluates. Among the various classes of impurities, antibody fragments are especially challenging to remove due to the broad biomolecular diversity generated by a multitude of fragmentation patterns. The current approach to fragment removal relies on ion exchange or mixed-mode adsorbents operated in bind-and-gradient-elution mode. However, fragments that bear strong similarity to the intact product or whose biophysical features deviate from the ensemble average can elude these adsorbents, and the lack of a chromatographic technology enabling robust antibody polishing is recognized as a major gap in downstream bioprocessing. Responding to this challenge, this study introduces size-exclusion mixed-mode (SEMM) silica resins as a novel chromatographic adsorbent for the capture of antibody fragments irrespective of their biomolecular features. The pore diameter of the silica beads features a narrow distribution and is selected to exclude monomeric antibodies, while allowing their fragments to access the pores where they are captured by the mixed-mode ligands. The static and dynamic binding capacity of the adsorbent ranged respectively between 30-45 and 25-33 gs of antibody fragments per liter of resin. Selected SEMM-silica resins also demonstrated the ability to capture antibody aggregates, which adsorb on the outer layer of the beads. Optimization of the SEMM-silica design and operation conditions - namely, pore size (10 nm) and ligand composition (quaternary amine and alkyl chain) as well as the linear velocity (100 cm/h), ionic strength (5.7 mS/cm), and pH (7) of the mobile phase - afforded a significant reduction of both fragments and aggregates, resulting into a final antibody yield up to 80% and monomeric purity above 97%.
Collapse
Affiliation(s)
- Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Scott H Altern
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Andrew J Kocot
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Dipendra Bhandari
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Eduardo Barbieri
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Jae Sly
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Michael Crapanzano
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Steven M Cramer
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | | | - David Roush
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, Roush Biopharma Panacea, 20 Squire Terrace, Colts Neck, NJ, 07033, USA
| | - Ruben Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; Department of Civil, Chemical Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA.
| |
Collapse
|
33
|
Singh AK, Lewis CD, Boas CAWV, Diebolder P, Jethva PN, Rhee A, Song JH, Goo YA, Li S, Nickels ML, Liu Y, Rogers BE, Kapoor V, Hallahan DE. Development of a [89Zr]Zr-labeled Human Antibody using a Novel Phage-displayed Human scFv Library. Clin Cancer Res 2024; 30:1293-1306. [PMID: 38277241 PMCID: PMC10984770 DOI: 10.1158/1078-0432.ccr-23-3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE Tax-interacting protein 1 (TIP1) is a cancer-specific radiation-inducible cell surface antigen that plays a role in cancer progression and resistance to therapy. This study aimed to develop a novel anti-TIP1 human antibody for noninvasive PET imaging in patients with cancer. EXPERIMENTAL DESIGN A phage-displayed single-chain variable fragment (scFv) library was created from healthy donors' blood. High-affinity anti-TIP1 scFvs were selected from the library and engineered to human IgG1. Purified Abs were characterized by size exclusion chromatography high-performance liquid chromatography (SEC-HPLC), native mass spectrometry (native MS), ELISA, BIAcore, and flow cytometry. The labeling of positron emitter [89Zr]Zr to the lead Ab, L111, was optimized using deferoxamine (DFO) chelator. The stability of [89Zr]Zr-DFO-L111 was assessed in human serum. Small animal PET studies were performed in lung cancer tumor models (A549 and H460). RESULTS We obtained 95% pure L111 by SEC-HPLC. Native MS confirmed the intact mass and glycosylation pattern of L111. Conjugation of three molar equivalents of DFO led to the optimal DFO-to-L111 ratio of 1.05. Radiochemical purity of 99.9% and specific activity of 0.37 MBq/μg was obtained for [89Zr]Zr-DFO-L111. [89Zr]Zr-DFO-L111 was stable in human serum over 7 days. The immunoreactive fraction in cell surface binding studies was 96%. In PET, preinjection with 4 mg/kg cold L111 before [89Zr]Zr-DFO-L111 (7.4 MBq; 20 μg) significantly (P < 0.01) enhanced the tumor-to-muscle standard uptake values (SUVmax) ratios on day 5 compared with day 2 postinjection. CONCLUSIONS L111 Ab targets lung cancer cells in vitro and in vivo. [89Zr]Zr-DFO-L111 is a human antibody that will be evaluated in the first in-human study of safety and PET imaging.
Collapse
Affiliation(s)
- Abhay K. Singh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Calvin D. Lewis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cristian AWV Boas
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Diebolder
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, USA
| | - Aaron Rhee
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jong Hee Song
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute (MTAC@MGI), Washington University in St. Louis, Saint Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute (MTAC@MGI), Washington University in St. Louis, Saint Louis, MO, USA
| | - Shunqian Li
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA
| | - Michael L. Nickels
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
- Cyclotron Facility, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Buck E. Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| |
Collapse
|
34
|
Altern SH, Kocot AJ, LeBarre JP, Boi C, Phillips MW, Roush DJ, Menegatti S, Cramer SM. Mechanistic model-based characterization of size-exclusion-mixed-mode resins for removal of monoclonal antibody fragments. J Chromatogr A 2024; 1718:464717. [PMID: 38354506 DOI: 10.1016/j.chroma.2024.464717] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Although antibody fragments are a critical impurity to remove from process streams, few platformable purification techniques have been developed to this end. In this work, a novel size-exclusion-mixed-mode (SEMM) resin was characterized with respect to its efficacy in mAb fragment removal. Inverse size-exclusion chromatography showed that the silica-based resin had a narrow pore size distribution and a median pore radius of roughly 6.2 nm. Model-based characterization was carried out with Chromatography Analysis and Design Toolkit (CADET), using the general rate model and the multicomponent Langmuir isotherm. Model parameters were obtained from fitting breakthrough curves, performed at multiple residence times, for a mixture of mAb, aggregates, and an array of fragments (varying in size). Accurate fits were obtained to the frontal chromatographic data across a range of residence times. Model validation was then performed with a scaled-up column, altering residence time and feed composition from the calibration run. Accurate predictions were obtained, thereby illustrating the model's interpolative and extrapolative capabilities. Additionally, the SEMM resin achieved 90% mAb yield, 37% aggregate removal, 29% [Formula: see text] removal, 54% Fab/Fc removal, 100% Fc fragments removal, and a productivity of 72.3 g mAbL×h. Model predictions for these statistics were all within 5%. Simulated batch uptake experiments showed that resin penetration depth was directly related to protein size, with the exception of the aggregate species, and that separation was governed by differential pore diffusion rates. Additional simulations were performed to characterize the dependence of fragment removal on column dimension, load density, and feed composition. Fragment removal was found to be highly dependent on column load density, where optimal purification was achieved below 100 mg protein/mL column. Furthermore, fragment removal was dependent on column volume (constant load mass), but agnostic to whether column length or diameter was changed. Lastly, the dependence on feed composition was shown to be complex. While fragment removal was inversely related to fragment mass fraction in the feed, the extent depended on fragment size. Overall, the results from this study illustrated the efficacy of the SEMM resin in fragment and aggregate removal and elucidated relationships with key operational parameters through model-based characterization.
Collapse
Affiliation(s)
- Scott H Altern
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Andrew J Kocot
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA; Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, Italy
| | - Michael W Phillips
- Downstream Research and Development, EMD Millipore Corporation, Burlington, MA, USA
| | - David J Roush
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, NC, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
35
|
Chen J, Wang J, Hess R, Wang G, Studts J, Franzreb M. Application of Raman spectroscopy during pharmaceutical process development for determination of critical quality attributes in Protein A chromatography. J Chromatogr A 2024; 1718:464721. [PMID: 38341902 DOI: 10.1016/j.chroma.2024.464721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Raman spectroscopy is considered a Process Analytical Technology (PAT) tool in biopharmaceutical downstream processes. In the past decade, researchers have shown Raman spectroscopy's feasibility in determining Critical Quality Attributes (CQAs) in bioprocessing. This study verifies the feasibility of implementing a Raman-based PAT tool in Protein A chromatography as a CQA monitoring technique, for the purpose of accelerating process development and achieving real-time release in manufacturing. A system connecting Raman to a Tecan liquid handling station enables high-throughput model calibration. One calibration experiment collects Raman spectra of 183 samples with 8 CQAs within 25 h. After applying Butterworth high-pass filters and k-nearest neighbor (KNN) regression for model training, the model showed high predictive accuracy for fragments (Q2 = 0.965) and strong predictability for target protein concentration, aggregates, as well as charge variants (Q2≥ 0.922). The model's robustness was confirmed by varying the elution pH, load density, and residence time using 19 external validation preparative Protein A chromatography runs. The model can deliver elution profiles of multiple CQAs within a set point ± 0.3 pH range. The CQA readouts were presented as continuous chromatograms with a resolution of every 28 s for enhanced process understanding. In external validation datasets, the model maintained strong predictability especially for target protein concentration (Q2 = 0.956) and basic charge variants (Q2 = 0.943), except for overpredicted HCP (Q2 = 0.539). This study demonstrates a rapid, effective method for implementing Raman spectroscopy for in-line CQA monitoring in process development and biomanufacturing, eliminating the need for labor-intensive sample pooling and handling.
Collapse
Affiliation(s)
- Jingyi Chen
- Boehringer Ingelheim Pharma GmbH / Co. KG, Biberach an der Riss, Germany; Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Jiarui Wang
- Boehringer Ingelheim Pharma GmbH / Co. KG, Biberach an der Riss, Germany
| | - Rudger Hess
- Boehringer Ingelheim Pharma GmbH / Co. KG, Biberach an der Riss, Germany
| | - Gang Wang
- Boehringer Ingelheim Pharma GmbH / Co. KG, Biberach an der Riss, Germany
| | - Joey Studts
- Boehringer Ingelheim Pharma GmbH / Co. KG, Biberach an der Riss, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany.
| |
Collapse
|
36
|
Alsante A, Thornton DCO, Brooks SD. Effect of Aggregation and Molecular Size on the Ice Nucleation Efficiency of Proteins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4594-4605. [PMID: 38408303 PMCID: PMC10938890 DOI: 10.1021/acs.est.3c06835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Aerosol acts as ice-nucleating particles (INPs) by catalyzing the formation of ice crystals in clouds at temperatures above the homogeneous nucleation threshold (-38 °C). In this study, we show that the immersion mode ice nucleation efficiency of the environmentally relevant protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), occurs at temperatures between -6.8 and -31.6 °C. Further, we suggest that this range is controlled by the RuBisCO concentration and protein aggregation. The warmest median nucleation temperature (-7.9 ± 0.8 °C) was associated with the highest concentration of RuBisCO (2 × 10-1 mg mL-1) and large aggregates with a hydrodynamic diameter of ∼103 nm. We investigated four additional chemically and structurally diverse proteins, plus the tripeptide glutathione, and found that each of them was a less effective INP than RuBisCO. Ice nucleation efficiency of the proteins was independent of the size (molecular weight) for the five proteins investigated in this study. In contrast to previous work, increasing the concentration and degree of aggregation did not universally increase ice nucleation efficiency. RuBisCO was the exception to this generalization, although the underlying molecular mechanism determining why aggregated RuBisCO is such an effective INP remains elusive.
Collapse
Affiliation(s)
- Alyssa
N. Alsante
- Department
of Oceanography, Texas A&M University, College Station, Texas 77843, United States
| | - Daniel C. O. Thornton
- Department
of Oceanography, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah D. Brooks
- Department
of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
37
|
Kaur H, Rode S, Kp S, Mahto JK, Alam MS, Gupta DN, Kar B, Singla J, Kumar P, Sharma AK. Characterization of haloacid dehalogenase superfamily acid phosphatase from Staphylococcus lugdunensis. Arch Biochem Biophys 2024; 753:109888. [PMID: 38232797 DOI: 10.1016/j.abb.2024.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
The haloacid dehalogenase superfamily implicated in bacterial pathogenesis comprises different enzymes having roles in many metabolic pathways. Staphylococcus lugdunensis, a Gram-positive bacterium, is an opportunistic human pathogen causing infections in the central nervous system, urinary tract, bones, peritoneum, systemic conditions and cutaneous infection. The haloacid dehalogenase superfamily proteins play a significant role in the pathogenicity of certain bacteria, facilitating invasion, survival, and proliferation within host cells. The genome of S. lugdunensis encodes more than ten proteins belonging to this superfamily. However, none of them have been characterized. The present work reports the characterization of one of the haloacid dehalogenase superfamily proteins (SLHAD1) from Staphylococcus lugdunensis. The functional analysis revealed that SLHAD1 is a metal-dependent acid phosphatase, which catalyzes the dephosphorylation of phosphorylated metabolites of cellular pathways, including glycolysis, gluconeogenesis, nucleotides, and thiamine metabolism. Based on the substrate specificity and genomic analysis, the physiological function of SLHAD1 in thiamine metabolism has been tentatively assigned. The crystal structure of SLHAD1, lacking 49 residues at the C-terminal, was determined at 1.7 Å resolution with a homodimer in the asymmetric unit. It was observed that SLHAD1 exhibited time-dependent cleavage at a specific point, occurring through a self-initiated process. A combination of bioinformatics, biochemical, biophysical, and structural studies explored unique features of SLHAD1. Overall, the study revealed a detailed characterization of a critical enzyme of the human pathogen Staphylococcus lugdunensis, associated with several life-threatening infections.
Collapse
Affiliation(s)
- Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Sandra Kp
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Md Shahid Alam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Bibekananda Kar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| |
Collapse
|
38
|
Satława T, Tarkowski M, Wróbel S, Dudzic P, Gawłowski T, Klaus T, Orłowski M, Kostyn A, Kumar S, Buchanan A, Krawczyk K. LAP: Liability Antibody Profiler by sequence & structural mapping of natural and therapeutic antibodies. PLoS Comput Biol 2024; 20:e1011881. [PMID: 38442111 PMCID: PMC10957075 DOI: 10.1371/journal.pcbi.1011881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/21/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Antibody-based therapeutics must not undergo chemical modifications that would impair their efficacy or hinder their developability. A commonly used technique to de-risk lead biotherapeutic candidates annotates chemical liability motifs on their sequence. By analyzing sequences from all major sources of data (therapeutics, patents, GenBank, literature, and next-generation sequencing outputs), we find that almost all antibodies contain an average of 3-4 such liability motifs in their paratopes, irrespective of the source dataset. This is in line with the common wisdom that liability motif annotation is over-predictive. Therefore, we have compiled three computational flags to prioritize liability motifs for removal from lead drug candidates: 1. germline, to reflect naturally occurring motifs, 2. therapeutic, reflecting chemical liability motifs found in therapeutic antibodies, and 3. surface, indicative of structural accessibility for chemical modification. We show that these flags annotate approximately 60% of liability motifs as benign, that is, the flagged liabilities have a smaller probability of undergoing degradation as benchmarked on two experimental datasets covering deamidation, isomerization, and oxidation. We combined the liability detection and flags into a tool called Liability Antibody Profiler (LAP), publicly available at lap.naturalantibody.com. We anticipate that LAP will save time and effort in de-risking therapeutic molecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marek Orłowski
- Pure Biologics, Wrocław, Poland
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Sandeep Kumar
- Moderna Inc, Cambridge, Massachusetts, United States of America
| | - Andrew Buchanan
- Biologics Engineering, AstraZeneca, Cambridge, United Kingdom
| | | |
Collapse
|
39
|
Yan G, Lu X, Sun R, Zhou W, Zhou H. Intensified perfusion culture (IPC) reduced recombinant protein fragmentation. Biotechnol Prog 2024; 40:e3405. [PMID: 37997628 DOI: 10.1002/btpr.3405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Mammalian cells remain the mainstay of biological production host. In industry, cultivating and harvest strategies are sorted in batch mode (e.g., batch, fed-batch, concentrated fed-batch and intensified fed-batch) and continuous mode (e.g., perfusion). To retrieve greater productivity and better product quality, especially for the sensitive products prone to fragmentation, culture modes with various modifications are innovated (e.g., intensified perfusion culture [IPC]). In our study, we demonstrated that the fragmentation of Fc-fusion product (Molecule A) is time-dependent in traditional fed-batch (TFB) culture. The fragmentation proportion increased from 3.8% to 12.4% for Clone A, 0.8% to 1.7% for Clone B and 0.9% to 2.0% for Clone C from Day 10 to Day 14. By applying a novel bioprocess, IPC, which allows continuous feeding of the fresh medium and constant removal of the spent medium without bleeding cells to maintain a defined constant viable cell density, the fragmentation was reduced to 0.3% while the productivity was increased from 2.96 g/L to 15.51 g/L for Clone A. To validate whether the fragmentation reduction is product-sensitive, plasmids carrying the DNA sequences of two other Fc-fusion molecules (Molecule B and Molecule C) were transfected into the host. The results showed consistent fragmentation reducing effect by using IPC. Furthermore, the cultivation scale was expanded to 50 L and 1000 L. A minimum fragmentation level below 0.1% was observed for Molecule C. Our study revealed the capability of IPC in reducing Fc-fusion protein fragmentation and the reproducibility when scaling up while maintaining high productivity.
Collapse
Affiliation(s)
- Ge Yan
- Cell Culture Process Development, WuXi Biologics, Shanghai, China
| | - Xun Lu
- Cell Culture Process Development, WuXi Biologics, Shanghai, China
| | - Ruiqiang Sun
- Cell Culture Process Development, WuXi Biologics, Shanghai, China
| | - Weichang Zhou
- Biologics Development, WuXi Biologics, Shanghai, China
| | - Hang Zhou
- Bioprocess Research and Development, WuXi Biologics, Shanghai, China
| |
Collapse
|
40
|
Lou H, Zhang Y, Kuczera K, Hageman MJ, Schöneich C. Molecular Dynamics Simulation of an Iron(III) Binding Site on the Fc Domain of IgG1 Relevant for Visible Light-Induced Protein Fragmentation. Mol Pharm 2024; 21:501-512. [PMID: 38128475 DOI: 10.1021/acs.molpharmaceut.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Molecular dynamics simulations were employed to investigate the interaction between Fe(III) and an iron-binding site composed of THR259, ASP252, and GLU261 on the Fc domain of an IgG1. The goal was to provide microscopic mechanistic information for the photochemical, iron-dependent site-specific oxidative fragmentation of IgG1 at THR259 reported in our previous paper. The distance between Fe(III) and residues of interest as well as the binding pocket size was examined for both protonated and deprotonated THR259. The Fe(III) binding free energy (ΔG) was estimated by using an umbrella sampling approach. The pKa shift of the THR259 hydroxyl group caused by the presence of nearby Fe(III) was estimated based on a thermodynamic cycle. The simulation results show that Fe(III) resides inside the proposed binding pocket and profoundly changes the pocket configuration. The ΔG values indicate that the pocket possesses a strong binding affinity for Fe(III). Furthermore, Fe(III) profoundly lowers the pKa value of the THR259 hydroxyl group by 5.4 pKa units.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
41
|
Smith J, Carillo S, Kulkarni A, Redman E, Yu K, Bones J. Rapid characterization of adeno-associated virus (AAV) capsid proteins using microchip ZipChip CE-MS. Anal Bioanal Chem 2024; 416:1069-1084. [PMID: 38102410 PMCID: PMC10800304 DOI: 10.1007/s00216-023-05097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Adeno-associated viruses (AAVs) are viral vectors used as delivery systems for gene therapies. Intact protein characterization of AAV viral capsid proteins (VPs) and their post-translational modifications is critical to ensuring product quality. In this study, microchip-based ZipChip capillary electrophoresis-mass spectrometry (CE-MS) was applied for the rapid characterization of AAV intact VPs, specifically full and empty viral capsids of serotypes AAV6, AAV8 and AAV9, which was accomplished using 5 min of analysis time. Low levels of dimethyl sulfoxide (4%) in the background electrolyte (BGE) improved MS signal quality and component detection. A sensitivity evaluation revealed consistent detection of VP proteoforms when as little as 2.64 × 106 viral particles (≈26.4 picograms) were injected. Besides the traditional VP proteoforms used for serotype identification, multiple VP3 variants were detected, including truncated VP3 variants most likely generated by leaky scanning as well as unacetylated and un-cleaved VP3 proteoforms. Phosphorylation, known to impact AAV transduction efficiency, was also seen in all serotypes analysed. Additionally, low abundant fragments originating from either N- or C-terminus truncation were detected. As the aforementioned VP components can impact product quality and efficacy, the ZipChip's ability to rapidly characterize them illustrates its strength in monitoring product quality during AAV production.
Collapse
Affiliation(s)
- Josh Smith
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, A94 X099, Co. Dublin, Ireland
| | - Sara Carillo
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, A94 X099, Co. Dublin, Ireland
| | - Aditya Kulkarni
- 908 Devices Inc., 645 Summer Street #201, Boston, MA, 02210, USA
| | - Erin Redman
- 908 Devices Inc., 511 Davis Dr Suite 450, Morrisville, NC, 27560, USA
| | - Kate Yu
- 908 Devices Inc., 645 Summer Street #201, Boston, MA, 02210, USA
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, A94 X099, Co. Dublin, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
42
|
Geng SL, Zhao XJ, Zhang X, Zhang JH, Mi CL, Wang TY. Recombinant therapeutic proteins degradation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2024; 108:182. [PMID: 38285115 PMCID: PMC10824870 DOI: 10.1007/s00253-024-13008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiao-Jie Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ji-Hong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
43
|
Abdelghaffar SH, Hegazy MA, Eltanany BM. Stability and Biosimilarity Assessment of Bevacizumab Monoclonal Antibody; Orthogonal Testing Protocol Coupled With Peptide Mapping-Principal Component Analysis. J AOAC Int 2024; 107:177-188. [PMID: 37606972 DOI: 10.1093/jaoacint/qsad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Biologics are essential in cancer treatment because they stimulate the body's natural response to fight cancer, but they are expensive. Biosimilars are more affordable compared to patent biologicals, but it must be verified that they are as effective as their innovators. Characterization of biosimilars and assessment of interchangeability requires many data points for verification. OBJECTIVE The proposed study provides a quality assessment of two new bevacizumab (BVZ) biosimilars, produced by Amgen and Biocad, Inc., through the development and greenness assessment of an orthogonal testing protocol and purity indicating assay, including size-exclusion (SE-HPLC), reversed-phase (RP-HPLC), and cation exchange chromatography (CEX-HPLC) in addition to dynamic light scattering (DLS) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). METHODS SE-HPLC method was performed and validated to screen the BVZ monomer and its aggregates and/or fragments. Peak purity and system suitability parameters were calculated. Results indicate that the orthogonal protocol is a useful tool for assessing monoclonal antibody stability. It is a key criterion for biosimilarity assessment. DLS and SDS-PAGE results were compared to each other to reveal close retention times and banding patterns between BVZ innovator and its biosimilars. These results showed that Avastin® and the investigated biosimilars have the same profile in terms of peak area of related compounds within the acceptance limit and apparent molecular weight, and the SDS-PAGE technique was found to be the most eco-friendly technique among others. CONCLUSIONS The results obtained highlighted the importance of assessing similarities and differences in ensuring the biosimilarity and interchangeability of the studied products. HIGHLIGHTS BVZ is one of the essential monoclonal antibodies in the treatment of colorectal cancer (CRC). BVZ biosimilars were evaluated by developing an orthogonal testing protocol and a purity-indicating assay. The size-exclusion (SE)-HPLC method was applied and validated to monitor the BVZ monomer and its aggregates. The results demonstrated the importance of assessing the stability and biosimilarity of BVZ.
Collapse
Affiliation(s)
- Sara H Abdelghaffar
- Egyptian Drug Authority (EDA), 51 Ministry of Agriculture, Agouza District, Giza, Egypt
| | - Maha A Hegazy
- Cairo University, Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Basma M Eltanany
- Cairo University, Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
44
|
Amash A, Volkers G, Farber P, Griffin D, Davison KS, Goodman A, Tonikian R, Yamniuk A, Barnhart B, Jacobs T. Developability considerations for bispecific and multispecific antibodies. MAbs 2024; 16:2394229. [PMID: 39189686 DOI: 10.1080/19420862.2024.2394229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Bispecific antibodies (bsAb) and multispecific antibodies (msAb) encompass a diverse variety of formats that can concurrently bind multiple epitopes, unlocking mechanisms to address previously difficult-to-treat or incurable diseases. Early assessment of candidate developability enables demotion of antibodies with low potential and promotion of the most promising candidates for further development. Protein-based therapies have a stringent set of developability requirements in order to be competitive (e.g. high-concentration formulation, and long half-life) and their assessment requires a robust toolkit of methods, few of which are validated for interrogating bsAbs/msAbs. Important considerations when assessing the developability of bsAbs/msAbs include their molecular format, likelihood for immunogenicity, specificity, stability, and potential for high-volume production. Here, we summarize the critical aspects of developability assessment, and provide guidance on how to develop a comprehensive plan tailored to a given bsAb/msAb.
Collapse
Affiliation(s)
- Alaa Amash
- AbCellera Biologics Inc, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | - Tim Jacobs
- AbCellera Biologics Inc, Vancouver, BC, Canada
| |
Collapse
|
45
|
Coliat P, Erb S, Diemer H, Karouby D, Martin T, Banerjee M, Zhu C, Demarchi M, Cianférani S, Detappe A, Pivot X. Influence of pneumatic transportation on the stability of monoclonal antibodies. Sci Rep 2023; 13:21875. [PMID: 38072852 PMCID: PMC10710995 DOI: 10.1038/s41598-023-49235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Pneumatic transportation systems (PTS) were recently proposed as a method to carry ready-for-injection diluted monoclonal antibodies (mAbs) from the pharmacy to the bedside of patients. This method reduces transportation time and improves the efficiency of drug distribution process. However, mAbs are highly sensitive molecules for which subtle alterations may lead to deleterious clinical effects. These alterations can be caused by various external factors such as temperature, pH, pressure, and mechanical forces that may occur during transportation. Hence, it is essential to ensure that the mAbs transported by PTS remain stable and active throughout the transportation process. This study aims to determine the safety profile of PTS to transport 11 routinely used mAbs in a clinical setting through assessment of critical quality attributes (CQA) and orthogonal analysis. Hence, we performed aggregation/degradation profiling, post-translational modifications identification using complementary mass spectrometry-based methods, along with visible and subvisible particle formation determination by light absorbance and light obscuration analysis. Altogether, these results highlight that PTS can be safely used for this purpose when air is removed from the bags during preparation.
Collapse
Affiliation(s)
- Pierre Coliat
- Institut de Cancérologie Strasbourg Europe, ICANS, 17 Rue Albert Calmette, Strasbourg, France.
| | - Stéphane Erb
- Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Université de Strasbourg, Strasbourg, France
- Institut du Médicament Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, Strasbourg, France
| | - Hélène Diemer
- Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Université de Strasbourg, Strasbourg, France
- Institut du Médicament Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, Strasbourg, France
| | - Dan Karouby
- Institut de Cancérologie Strasbourg Europe, ICANS, 17 Rue Albert Calmette, Strasbourg, France
| | - Tristan Martin
- Institut de Cancérologie Strasbourg Europe, ICANS, 17 Rue Albert Calmette, Strasbourg, France
| | - Mainak Banerjee
- Institut de Cancérologie Strasbourg Europe, ICANS, 17 Rue Albert Calmette, Strasbourg, France
| | - Chen Zhu
- Institut de Cancérologie Strasbourg Europe, ICANS, 17 Rue Albert Calmette, Strasbourg, France
| | - Martin Demarchi
- Institut de Cancérologie Strasbourg Europe, ICANS, 17 Rue Albert Calmette, Strasbourg, France
| | - Sarah Cianférani
- Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Université de Strasbourg, Strasbourg, France
- Institut du Médicament Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, Strasbourg, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg Europe, ICANS, 17 Rue Albert Calmette, Strasbourg, France
- Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Université de Strasbourg, Strasbourg, France
- Institut du Médicament Strasbourg, Strasbourg, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe, ICANS, 17 Rue Albert Calmette, Strasbourg, France
| |
Collapse
|
46
|
Kumar S, Peruri V, Rathore AS. An Online Two-Dimensional Approach to Characterizing the Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies Using a 2D-CEX-AEX-MS Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2801-2810. [PMID: 37994779 DOI: 10.1021/jasms.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Assessment of product quality attributes such as charge heterogeneity is an upmost requisite for the release of a monoclonal antibody (mAb). Analytical techniques, such as cation-exchange chromatography (CEX), accomplish this, causing the mAb to separate into acidic, main species, and basic variants. Here, an online volatile-salt-containing two-dimensional liquid chromatography (2D-LC) method coupled with mass spectrometry (MS) was performed to characterize the charge heterogeneity of mAbs using CEX chromatography in the first dimension (D1) and anion-exchange chromatography (AEX) in the second dimension (D2). The main peak of the CEX profile of D1 was transferred through a 2D heart-cut method to D2 for further analysis by the AEX-MS method. In the CEX method, mAb A showed 10 distinct variants, while the AEX method resulted in eight variants. However, a total of 13 variants were successfully resolved for mAb A in the 2D method. Similarly, mAb B exhibited seven variants in the CEX method and four variants in the AEX method, but the 2D-LC method revealed a total of nine variants for mAb B. Likewise, mAb C displayed seven variants in CEX and seven variants in AEX, whereas the 2D-LC method unveiled a total of 11 variants for mAb C. Additionally, native MS analysis revealed that the resolved charge variants were identified as amidation, oxidation, and isomerization of Asp variants in the main peak, which were not resolved in stand-alone methods. The present study demonstrates how 2D-LC can assist in identifying minor variations in charge distribution or conformation of mAb variants that would otherwise not be picked up by a single analytical method alone.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vineela Peruri
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
47
|
Ruppen I, Verscheure L, Vandenheede I, Ortiz A, de Melo IS, Liebig T, Sandra P, Beydon ME, Sandra K. Characterization of mAb size heterogeneity originating from a cysteine to tyrosine substitution using denaturing and native LC-MS. J Pharm Biomed Anal 2023; 236:115743. [PMID: 37757547 DOI: 10.1016/j.jpba.2023.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Upon assessing the comparability between a biosimilar mAb and its reference product by non-reducing CE-SDS, increased levels of a heavy-heavy-light chain (HHL) variant, present as a low molecular weight (LMW) peak, were observed. RPLC-MS applied at top, middle-up and bottom-up level revealed the existence of Cys-to-Tyr substitutions, predominantly at position HC226 involved in connecting LC and HC, explaining the abundant HHL levels. Antigen binding was not impacted by the presence of this size variant suggesting a non-covalent association of Tyr substituted HHL and LC. The latter complex is not maintained in the denaturing conditions associated with CE-SDS and RPLC-MS. Its existence could, nevertheless, be confirmed by native SEC-MS which preserves non-covalent protein interactions during separation and electrospray ionization. Amino acid analysis furthermore demonstrated a depletion of Cys during the fed-batch process indicating that the observed size/sequence variant is not of genetic but rather of metabolic origin. Native SEC-MS showed that supplementing the cell culture medium with Cys halts misincorporation of Tyr and promotes the formation of the desired mAb structure. To the best of our knowledge, Cys-to-Tyr substitutions preventing interchain disulfide bridge formation have not been described earlier. This observation adds to the impressive structural heterogeneity reported to date for mAbs.
Collapse
Affiliation(s)
- Isabel Ruppen
- mAbxience Research, Manuel Pombo Angulo 28, 28050 Madrid, Spain
| | | | | | - Alexia Ortiz
- RIC group, President Kennedypark 26, 8500 Kortrijk, Belgium
| | | | - Timo Liebig
- mAbxience Research, Manuel Pombo Angulo 28, 28050 Madrid, Spain
| | - Pat Sandra
- RIC group, President Kennedypark 26, 8500 Kortrijk, Belgium
| | | | - Koen Sandra
- RIC group, President Kennedypark 26, 8500 Kortrijk, Belgium.
| |
Collapse
|
48
|
Uçan D, Hales JE, Aoudjane S, Todd N, Dalby PA. Column-free optical deconvolution of intrinsic fluorescence for a monoclonal antibody and its product-related impurities. J Chromatogr A 2023; 1711:464463. [PMID: 37866332 DOI: 10.1016/j.chroma.2023.464463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The quantification of monoclonal antibody (mAb) aggregates and fragments using high pressure liquid chromatography-size exclusion chromatography (HPLC-SEC) typically requires off-line measurements that are time-consuming and therefore not compatible with real-time monitoring. However, it has been crucial to manufacturing and process development, and remains the industrial standard in the assessment of product-related impurities. Here we demonstrate that our previously established intrinsic time-resolved fluorescence (TRF) approach can be used to quantify the bioprocess critical quality attribute (CQA) of antibody product purity at various stages of a typical downstream process, with the potential to be developed for in-line bioprocess monitoring. This was directly benchmarked against industry-standard HPLC-SEC. Strong linear correlations were observed between outputs from TRF spectroscopy and HPLC-SEC, for the monomer and aggregate-fragment content, with R2 coefficients of 0.99 and 0.69, respectively. At total protein concentrations above 1.41 mg/mL, HPLC-SEC UV-Vis chromatograms displayed signs of detector saturation which reduced the accuracy of protein quantification, thus requiring additional sample dilution steps. By contrast, TRF spectroscopy increased in accuracy at these concentrations due to higher signal-to-noise ratios. Our approach opens the potential for reducing the time and labour required for validating aggregate content in mAb bioprocess stages from the several hours required for HPLC-SEC to a few minutes per sample.
Collapse
Affiliation(s)
- Deniz Uçan
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London WC1E 6BT, UK
| | - John E Hales
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Samir Aoudjane
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Nathan Todd
- Cytiva, 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK
| | - Paul A Dalby
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
49
|
Gunawardena HP, Jayatilake MM, Brelsford JD, Nanda H. Diagnostic utility of N-terminal TMPP labels for unambiguous identification of clipped sites in therapeutic proteins. Sci Rep 2023; 13:18602. [PMID: 37903854 PMCID: PMC10616084 DOI: 10.1038/s41598-023-45446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Protein therapeutics are susceptible to clipping via enzymatic and nonenzymatic mechanisms that create neo-N-termini. Typically, neo-N-termini are identified by chemical derivatization of the N-terminal amine with (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) followed by proteolysis and mass spectrometric analysis. Detection of the TMPP-labeled peptide is achieved by mapping the peptide sequence to the product ion spectrum derived from collisional activation. The site-specific localization of the TMPP tag enables unambiguous determination of the true N-terminus or neo-N-termini. In addition to backbone product ions, TMPP reporter ions at m/z 573, formed via collision-induced dissociation, can be diagnostic for the presence of a processed N-termini. However, reporter ions generated by collision-induced dissociation may be uninformative because of their low abundance. We demonstrate a novel high-throughput LC-MS method for the facile generation of the TMPP reporter ion at m/z 533 and, in some instances m/z 590, upon electron transfer dissociation. We further demonstrate the diagnostic utility of TMPP labeled peptides derived from a total cell lysate shows high degree of specificity towards selective N-terminal labeling over labeling of lysine and tyrosine and highly-diagnostic Receiver Operating Characteristic's (ROC) of TMPP reporter ions of m/z 533 and m/z 590. The abundant generation of these reporters enables subsequent MS/MS by intensity and m/z-dependent triggering of complementary ion activation modes such as collision-induced dissociation, high-energy collision dissociation, or ultraviolet photo dissociation for subsequent peptide sequencing.
Collapse
Affiliation(s)
- Harsha P Gunawardena
- Janssen Research and Development LLC, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA.
| | - Meth M Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Jeffery D Brelsford
- Janssen Research and Development LLC, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Hirsh Nanda
- Janssen Research and Development LLC, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| |
Collapse
|
50
|
Gaikwad M, Richter F, Götz R, Dörrbaum A, Schumacher L, Tonillo J, Frech C, Kellner R, Hopf C. Site-Specific Structural Changes in Long-Term-Stressed Monoclonal Antibody Revealed with DEPC Covalent-Labeling and Quantitative Mass Spectrometry. Pharmaceuticals (Basel) 2023; 16:1418. [PMID: 37895889 PMCID: PMC10609731 DOI: 10.3390/ph16101418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Studies of structural changes in mAbs under forced stress and storage conditions are essential for the recognition of degradation hotspots, which can be further remodeled to improve the stability of the respective protein. Herein, we used diethyl pyrocarbonate (DEPC)-based covalent labeling mass spectrometry (CL-MS) to assess structural changes in a model mAb (SILuMAb). Structural changes in the heat-stressed mAb samples were confirmed at specific amino acid positions from the DEPC label mass seen in the fragment ion mass spectrum. The degree of structural change was also quantified by increased or decreased DEPC labeling at specific sites; an increase or decrease indicated an unfolded or aggregated state of the mAb, respectively. Strikingly, for heat-stressed SILuMAb samples, an aggregation-prone area was identified in the CDR region. In the case of longterm stress, the structural consequences for SILuMAb samples stored for up to two years at 2-8 °C were studied with SEC-UV and DEPC-based CL-MS. While SEC-UV analysis only indicated fragmentation of SILuMAb, DEPC-based CL-MS analysis further pinpointed the finding to structural disturbances of disulfide bonds at specific cysteines. This emphasized the utility of DEPC CL-MS for studying disulfide rearrangement. Taken together, our data suggests that DEPC CL-MS can complement more technically challenging methods in the evaluation of the structural stability of mAbs.
Collapse
Affiliation(s)
- Manasi Gaikwad
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany; (M.G.); (F.R.)
| | - Florian Richter
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany; (M.G.); (F.R.)
| | - Rabea Götz
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany; (M.G.); (F.R.)
| | - Aline Dörrbaum
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany; (M.G.); (F.R.)
| | - Lena Schumacher
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany; (M.G.); (F.R.)
| | - Jason Tonillo
- Merck Healthcare KGaA, ADCs & Targeted NBE Therapeutics, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Christian Frech
- Faculty of Biotechnology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Roland Kellner
- Merck Healthcare KGaA, ADCs & Targeted NBE Therapeutics, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany; (M.G.); (F.R.)
- Faculty of Biotechnology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Medical Faculty, Heidelberg University, 69117 Heidelberg, Germany
| |
Collapse
|