1
|
Barros MHM, Alves PDS. Contribution of the Epstein-Barr virus to the oncogenesis of mature T-cell lymphoproliferative neoplasms. Front Oncol 2023; 13:1240359. [PMID: 37781191 PMCID: PMC10538126 DOI: 10.3389/fonc.2023.1240359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
EBV is a lymphotropic virus, member of the Herpesviridae family that asymptomatically infects more than 90% of the human population, establishing a latent infection in memory B cells. EBV exhibits complex survival and persistence dynamics, replicating its genome through the proliferation of infected B cells or production of the lytic virions. Many studies have documented the infection of T/NK cells by EBV in healthy individuals during and after primary infection. This feature has been confirmed in humanized mouse models. Together these results have challenged the hypothesis that the infection of T/NK cells per se by EBV could be a triggering event for lymphomagenesis. Extranodal NK/T-cell lymphoma (ENKTCL) and Epstein-Barr virus (EBV)-positive nodal T- and NK-cell lymphoma (NKTCL) are two EBV-associated lymphomas of T/NK cells. These two lymphomas display different clinical, histological and molecular features. However, they share two intriguing characteristics: the association with EBV and a geographical prevalence in East Asia and Latin America. In this review we will discuss the genetic characteristics of EBV in order to understand the possible role of this virus in the oncogenesis of ENKTCL and NKTCL. In addition, the main immunohistological, molecular, cytogenetic and epigenetic differences between ENKTCL and NKTCL will be discussed, as well as EBV differences in latency patterns and other viral molecular characteristics.
Collapse
Affiliation(s)
| | - Paula Daniela S. Alves
- Oncovirology Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Saikumar Lakshmi P, Oduor CI, Forconi CS, M'Bana V, Bly C, Gerstein RM, Otieno JA, Ong'echa JM, Münz C, Luftig MA, Brehm MA, Bailey JA, Moormann AM. Endemic Burkitt lymphoma avatar mouse models for exploring inter-patient tumor variation and testing targeted therapies. Life Sci Alliance 2023; 6:e202101355. [PMID: 36878637 PMCID: PMC9990458 DOI: 10.26508/lsa.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/08/2023] Open
Abstract
Endemic Burkitt lymphoma (BL) is a childhood cancer in sub-Saharan Africa characterized by Epstein-Barr virus and malaria-associated aberrant B-cell activation and MYC chromosomal translocation. Survival rates hover at 50% after conventional chemotherapies; therefore, clinically relevant models are necessary to test additional therapies. Hence, we established five patient-derived BL tumor cell lines and corresponding NSG-BL avatar mouse models. Transcriptomics confirmed that our BL lines maintained fidelity from patient tumors to NSG-BL tumors. However, we found significant variation in tumor growth and survival among NSG-BL avatars and in Epstein-Barr virus protein expression patterns. We tested rituximab responsiveness and found one NSG-BL model exhibiting direct sensitivity, characterized by apoptotic gene expression counterbalanced by unfolded protein response and mTOR pro-survival pathways. In rituximab-unresponsive tumors, we observed an IFN-α signature confirmed by the expression of IRF7 and ISG15. Our results demonstrate significant inter-patient tumor variation and heterogeneity, and that contemporary patient-derived BL cell lines and NSG-BL avatars are feasible tools to guide new therapeutic strategies and improve outcomes for these children.
Collapse
Affiliation(s)
- Priya Saikumar Lakshmi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cliff I Oduor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Catherine S Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Viriato M'Bana
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Courtney Bly
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rachel M Gerstein
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Juliana A Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Medical Services, Kisumu, Kenya
| | - John M Ong'echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Brehm
- Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ann M Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
Zhang L. A common mechanism links Epstein-Barr virus infections and autoimmune diseases. J Med Virol 2023; 95:e28363. [PMID: 36451313 DOI: 10.1002/jmv.28363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Epstein-Barr virus (EBV) infection is associated with a variety of the autoimmune diseases. There is apparently no unified model for the role of EBV in autoimmune diseases. In this article, the development of autoimmune diseases is proposed as a simple two-step process: specific autoimmune initiators may cause irreversible changes to genetic materials that increase autoimmune risks, and autoimmune promoters promote autoimmune disease formation once cells are susceptible to autoimmunity. EBV has several types of latencies including type III latency with higher proliferation potential. EBV could serve as autoimmune initiators for some autoimmune diseases. At the same time, EBV may play a promotional role in majority of the autoimmune diseases by repeated replenishment of EBV type III latency cells and inflammatory cytokine productions in persistent stage. The type III latency cells have enhanced capacity as antigen-presenting cells that would facilitate the development of both B and T cell-mediated autoimmunity. The repeated cytokine productions are achieved by the repeated infection of naive B-lymphocytes and proliferation of type III latency cells that produce inflammatory cytokines. Presentation of viral or self-antigens by EBV type III latency B lymphocytes may promote autoreactive B cell and T cell proliferation, which can be amplified by type III latency cells-mediated cytokines productions. Different autoimmune diseases may require different kinds of pathogenic immune cells and/or specific cytokines. Frequency of the replenishment of EBV type III latency cells may determine the specific effect of the promoter functions. A specific initiator plus EBV-mediated common promoter function may lead to development of a specific autoimmune disease and link EBV-infection to a variety of autoimmunity.
Collapse
Affiliation(s)
- Luwen Zhang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
4
|
SoRelle ED, Reinoso-Vizcaino NM, Horn GQ, Luftig MA. Epstein-Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Front Immunol 2022; 13:1001145. [PMID: 36248899 PMCID: PMC9554744 DOI: 10.3389/fimmu.2022.1001145] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 02/03/2023] Open
Abstract
Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, United States
| | | | - Gillian Q. Horn
- Department of Immunology, Duke University, Durham, NC, United States
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
5
|
Frappier L. Epstein-Barr virus: Current questions and challenges. Tumour Virus Res 2021; 12:200218. [PMID: 34052467 PMCID: PMC8173096 DOI: 10.1016/j.tvr.2021.200218] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects most people worldwide and persists for life due to complicated interplay between lytic infection and multiple types of latent infections. While usually asymptomatic, EBV is a causative agent in several types of cancer and has a strong association with multiple sclerosis. Exactly how EBV promotes these diseases and why they are rare consequences of infection are incompletely understood. Here I will discuss current ideas on disease induction by EBV, including the importance of lytic protein expression in the context of latent infection as well as the possible importance of specific EBV variants in disease induction.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
6
|
Zaffiri L, Frankel C, Bush EJ, Neely ML, Pavlisko EN, Mokrova IL, Luftig MA, Palmer SM. Evidence of Epstein-Barr virus heterogeneous gene expression in adult lung transplant recipients with posttransplant lymphoproliferative disorder. J Med Virol 2021; 93:5040-5047. [PMID: 33704812 PMCID: PMC9208898 DOI: 10.1002/jmv.26936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 11/10/2022]
Abstract
Epstein-Barr virus (EBV)-driven posttransplant lymphoproliferative disorder (PTLD) is a serious complication following lung transplant. The extent to which the presence of EBV in PTLD tissue is associated with survival is uncertain. Moreover, whether the heterogeneity in expression of EBV latency programs is related to the timing of PTLD onset remains unexplored. We retrospectively performed a comprehensive histological evaluation of EBV markers at the tissue level in 34 adult lung transplant recipients with early- and late-onset PTLD. Early-onset PTLD, occurring within the first 12 months posttransplant, had higher odds to express EBV markers. The presence of EBV in PTLD was not associated with a difference in survival relative to EBV-negative tumors. However, we found evidence of heterogeneous expression of EBV latency programs, including type III, IIb, IIa, and 0/I. Our study suggests that the heterogeneous expression of EBV latency programs may represent a mechanism for immune evasion in patients with PLTD after lung transplants. The recognition of multiple EBV latency programs can be used in personalized medicine in patients who are nonresponsive to traditional types of chemotherapy and can be potentially evaluated in other types of solid organ transplants.
Collapse
Affiliation(s)
- Lorenzo Zaffiri
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Courtney Frankel
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Erika J Bush
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Megan L Neely
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | | | - Irina L Mokrova
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University, Durham, North Carolina, USA
| | - Scott M Palmer
- Department of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
7
|
Xia TL, Li X, Wang X, Zhu YJ, Zhang H, Cheng W, Chen ML, Ye Y, Li Y, Zhang A, Dai DL, Zhu QY, Yuan L, Zheng J, Huang H, Chen SQ, Xiao ZW, Wang HB, Roy G, Zhong Q, Lin D, Zeng YX, Wang J, Zhao B, Gewurz BE, Chen J, Zuo Z, Zeng MS. N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep 2021; 22:e50128. [PMID: 33605073 PMCID: PMC8025027 DOI: 10.15252/embr.202050128] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
N6‐methyladenosine (m6A) modification of mRNA mediates diverse cellular and viral functions. Infection with Epstein–Barr virus (EBV) is causally associated with nasopharyngeal carcinoma (NPC), 10% of gastric carcinoma, and various B‐cell lymphomas, in which the viral latent and lytic phases both play vital roles. Here, we show that EBV transcripts exhibit differential m6A modification in human NPC biopsies, patient‐derived xenograft tissues, and cells at different EBV infection stages. m6A‐modified EBV transcripts are recognized and destabilized by the YTHDF1 protein, which leads to the m6A‐dependent suppression of EBV infection and replication. Mechanistically, YTHDF1 hastens viral RNA decapping and mediates RNA decay by recruiting RNA degradation complexes, including ZAP, DDX17, and DCP2, thereby post‐transcriptionally downregulating the expression of EBV genes. Taken together, our results reveal the critical roles of m6A modifications and their reader YTHDF1 in EBV replication. These findings contribute novel targets for the treatment of EBV‐associated cancers.
Collapse
Affiliation(s)
- Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xingyang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueping Wang
- Department of Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun-Jia Zhu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weisheng Cheng
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Department of Medical Bioinformatics, Zhongshan School of Medicine, Ministry of Education, Guangzhou, China
| | - Mei-Ling Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan-Ling Dai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Qi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Wen Xiao
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China.,Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Bo Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gaurab Roy
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongxin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinkai Wang
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Department of Medical Bioinformatics, Zhongshan School of Medicine, Ministry of Education, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin E Gewurz
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, CA, USA
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
8
|
Bayda N, Tilloy V, Chaunavel A, Bahri R, Halabi MA, Feuillard J, Jaccard A, Ranger-Rogez S. Comprehensive Epstein-Barr Virus Transcriptome by RNA-Sequencing in Angioimmunoblastic T Cell Lymphoma (AITL) and Other Lymphomas. Cancers (Basel) 2021; 13:610. [PMID: 33557089 PMCID: PMC7913808 DOI: 10.3390/cancers13040610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) is associated with angioimmunoblastic T cell lymphoma (AITL) in more than 80% of cases. Few studies have focused on this association and it is not clear now what role the virus plays in this pathology. We used next-generation sequencing (NGS) to study EBV transcriptome in 14 AITLs compared to 21 other lymphoma samples and 11 cell lines including 4 lymphoblastoid cell lines (LCLs). Viral transcripts were recovered using capture probes and sequencing was performed on Illumina. Bam-HI A rightward transcripts (BARTs) were the most latency transcripts expressed in AITLs, suggesting they may play a role in this pathology. Thus, BARTs, already described as highly expressed in carcinoma cells, are also very present in AITLs and other lymphomas. They were poorly expressed in cell lines other than LCLs. AITLs showed a latency IIc, with BNLF2a gene expression. For most AITLs, BCRF1, which encodes a homologous protein of human interleukin 10, vIL-10, was in addition expressed. This co-expression can contribute to immune escape and survival of infected cells. Considering these results, it can be assumed that EBV plays a pathogenic role in AITLs.
Collapse
Affiliation(s)
- Nader Bayda
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
- Department of Infectious Disease Control, Faculty of Public Health, Jinan University, Tripoli 1300, Lebanon
| | - Valentin Tilloy
- National Reference Center for Herpesviruses, Bioinformatics, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Alain Chaunavel
- Pathology Department, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Racha Bahri
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
| | - Mohamad Adnan Halabi
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
| | - Jean Feuillard
- Biological Hematology Department, UMR CNRS 7276, INSERM U1262, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Arnaud Jaccard
- Clinical Hematology Department, UMR CNRS 7276, INSERM U1262, University Hospital Dupuytren, 87042 Limoges, France;
| | - Sylvie Ranger-Rogez
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
- Virology Department, UMR CNRS 7276, INSERM U1262, Centre de Biologie Recherche et Santé, 87000 Limoges, France
| |
Collapse
|
9
|
Role of Epstein-Barr Virus and Human Papillomavirus Coinfection in Cervical Cancer: Epidemiology, Mechanisms and Perspectives. Pathogens 2020; 9:pathogens9090685. [PMID: 32839399 PMCID: PMC7557835 DOI: 10.3390/pathogens9090685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
High-risk human papillomavirus (HR-HPV) is etiologically associated with the development and progression of cervical cancer, although other factors are involved. Epstein-Barr virus (EBV) detection in premalignant and malignant tissues from uterine cervix has been widely reported; however, its contribution to cervical cancer development is still unclear. Here, a comprehensive analysis regarding EBV presence and its potential role in cervical cancer, the frequency of EBV/HR-HPV coinfection in uterine cervix and EBV infection in tissue-infiltrating lymphocytes were revised. Overall, reports suggest a potential link of EBV to the development of cervical carcinomas in two possible pathways: (1) Infecting epithelial cells, thus synergizing with HR-HPV (direct pathway), and/or (2) infecting tissue-infiltrating lymphocytes that could generate local immunosuppression (indirect pathway). In situ hybridization (ISH) and/or immunohistochemical methods are mandatory for discriminating the cell type infected by EBV. However, further studies are needed for a better understanding of the EBV/HR-HPV coinfection role in cervical carcinogenesis.
Collapse
|
10
|
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019; 17:691-700. [PMID: 31477887 DOI: 10.1038/s41579-019-0249-7] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) was the first tumour virus identified in humans. The virus is primarily associated with lymphomas and epithelial cell cancers. These tumours express latent EBV antigens and the oncogenic potential of individual latent EBV proteins has been extensively explored. Nevertheless, it was presumed that the pro-proliferative and anti-apoptotic functions of these oncogenes allow the virus to persist in humans; however, recent evidence suggests that cellular transformation is not required for virus maintenance. Vice versa, lytic EBV replication was assumed to destroy latently infected cells and thereby inhibit tumorigenesis, but at least the initiation of the lytic cycle has now been shown to support EBV-driven malignancies. In addition to these changes in the roles of latent and lytic EBV proteins during tumorigenesis, the function of non-coding RNAs has become clearer, suggesting that they might mainly mediate immune escape rather than cellular transformation. In this Review, these recent findings will be discussed with respect to the role of EBV-encoded oncogenes in viral persistence and the contributions of lytic replication as well as non-coding RNAs in virus-driven tumour formation. Accordingly, early lytic EBV antigens and attenuated viruses without oncogenes and microRNAs could be harnessed for immunotherapies and vaccination.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
11
|
Kozireva S, Rudevica Z, Baryshev M, Leonciks A, Kashuba E, Kholodnyuk I. Upregulation of the Chemokine Receptor CCR2B in Epstein‒Barr Virus-Positive Burkitt Lymphoma Cell Lines with the Latency III Program. Viruses 2018; 10:v10050239. [PMID: 29751565 PMCID: PMC5977232 DOI: 10.3390/v10050239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/19/2022] Open
Abstract
CCR2 is the cognate receptor to the chemokine CCL2. CCR2–CCL2 signaling mediates cancer progression and metastasis dissemination. However, the role of CCR2–CCL2 signaling in pathogenesis of B-cell malignancies is not clear. Previously, we showed that CCR2B was upregulated in ex vivo peripheral blood B cells upon Epstein‒Barr virus (EBV) infection and in established lymphoblastoid cell lines with the EBV latency III program. EBV latency III is associated with B-cell lymphomas in immunosuppressed patients. The majority of EBV-positive Burkitt lymphoma (BL) tumors are characterized by latency I, but the BL cell lines drift towards latency III during in vitro culture. In this study, the CCR2A and CCR2B expression was assessed in the isogenic EBV-positive BL cell lines with latency I and III using RT-PCR, immunoblotting, and immunostaining analyses. We found that CCR2B is upregulated in the EBV-positive BL cells with latency III. Consequently, we detected the migration of latency III cells toward CCL2. Notably, the G190A mutation, corresponding to SNP CCR2-V64I, was found in one latency III cell line with a reduced migratory response to CCL2. The upregulation of CCR2B may contribute to the enhanced migration of malignant B cells into CCL2-rich compartments.
Collapse
Affiliation(s)
- Svetlana Kozireva
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| | - Zhanna Rudevica
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str k-1, 1067 Riga, Latvia.
| | - Mikhail Baryshev
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| | - Ainars Leonciks
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str k-1, 1067 Riga, Latvia.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 16 Nobelsväg, Box 280, 171 77 Stockholm, Sweden.
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NASU, 45 Vasylkivska str, 03022 Kyiv, Ukraine.
| | - Irina Kholodnyuk
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| |
Collapse
|
12
|
McHugh D, Caduff N, Barros MHM, Rämer PC, Raykova A, Murer A, Landtwing V, Quast I, Styles CT, Spohn M, Fowotade A, Delecluse HJ, Papoudou-Bai A, Lee YM, Kim JM, Middeldorp J, Schulz TF, Cesarman E, Zbinden A, Capaul R, White RE, Allday MJ, Niedobitek G, Blackbourn DJ, Grundhoff A, Münz C. Persistent KSHV Infection Increases EBV-Associated Tumor Formation In Vivo via Enhanced EBV Lytic Gene Expression. Cell Host Microbe 2018; 22:61-73.e7. [PMID: 28704654 DOI: 10.1016/j.chom.2017.06.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 06/20/2017] [Indexed: 11/15/2022]
Abstract
The human tumor viruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) establish persistent infections in B cells. KSHV is linked to primary effusion lymphoma (PEL), and 90% of PELs also contain EBV. Studies on persistent KSHV infection in vivo and the role of EBV co-infection in PEL development have been hampered by the absence of small animal models. We developed mice reconstituted with human immune system components as a model for KSHV infection and find that EBV/KSHV dual infection enhanced KSHV persistence and tumorigenesis. Dual-infected cells displayed a plasma cell-like gene expression pattern similar to PELs. KSHV persisted in EBV-transformed B cells and was associated with lytic EBV gene expression, resulting in increased tumor formation. Evidence of elevated lytic EBV replication was also found in EBV/KSHV dually infected lymphoproliferative disorders in humans. Our data suggest that KSHV augments EBV-associated tumorigenesis via stimulation of lytic EBV replication.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/virology
- Cell Line, Tumor
- Coinfection
- Cytokines/blood
- DNA, Viral/analysis
- Disease Models, Animal
- Epstein-Barr Virus Infections/blood
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- Gene Expression Regulation, Viral
- Genes, Viral/genetics
- Herpesviridae Infections/blood
- Herpesviridae Infections/immunology
- Herpesviridae Infections/virology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Herpesvirus 8, Human/physiology
- High-Throughput Nucleotide Sequencing
- Humans
- Lymphoma, Primary Effusion/etiology
- Lymphoma, Primary Effusion/virology
- Mice
- Neoplasms/virology
- Spleen/pathology
- Spleen/virology
- Survival Rate
- Virus Replication
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | | | - Patrick C Rämer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ana Raykova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Vanessa Landtwing
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Isaak Quast
- Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christine T Styles
- Section of Virology, Faculty of Medicine, Imperial College London, London, UK
| | - Michael Spohn
- Virus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Adeola Fowotade
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | | | - Yong-Moon Lee
- Departments of Pathology and Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin-Man Kim
- Departments of Pathology and Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jaap Middeldorp
- Department of Pathology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover and German Centre of Infection Research (DZIF), Hannover-Braunschweig Site, Germany
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Riccarda Capaul
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Robert E White
- Section of Virology, Faculty of Medicine, Imperial College London, London, UK
| | - Martin J Allday
- Section of Virology, Faculty of Medicine, Imperial College London, London, UK
| | | | | | - Adam Grundhoff
- Virus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
13
|
Almeida JFM, Campos AH, Marcello MA, Bufalo NE, Rossi CL, Amaral LHP, Marques AB, Cunha LL, Alvarenga CA, Tincani PC, Tincani AJ, Ward LS. Investigation on the association between thyroid tumorigeneses and herpesviruses. J Endocrinol Invest 2017; 40:823-829. [PMID: 28276007 DOI: 10.1007/s40618-017-0609-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Herpesviruses have been associated with various human malignancies and with thyroid autoimmunity. Aiming to investigate the presence of these viruses in thyroid nodules, we analyzed serum and thyroid tissue from 183 patients (83 benign and 100 malignant thyroid nodules). We also obtained 104 normal thyroid tissues extracted from the contralateral lobe of these patients. We used ELISA to screen the serology of all patients and a real-time quantitative PCR to analyze thyroid tissue viral load in antibody-positive patients. In addition, the presence of herpesviruses was tested by histological analysis in 20 EBV-positive tissues using the expression of LMP-1 by immunohistochemistry (IHC) and EBER by in situ hybridization (ISH). There was no evidence of HSV-2 or CMV DNA, but we found EBV DNA sequences in 29 (16%) thyroid tissue samples. We also found 7 positive EBV cases out of 104 normal tissues. Viral load was higher in tumors than in their respective normal tissues (p = 0.0002). ISH analysis revealed EBER expression in 11 out of 20 (52%) EBV-positive tissues, mostly in malignant cases (8/11, 73%). The presence of high EBV copy numbers in thyroid tumors and the expression of EBER only in malignant cases suggest an association between EBV and thyroid malignancies. However, we did not find any association between the presence of EBV and/or its viral load and any clinical or pathological tumor feature. Further studies aiming to clarify the mechanisms of EBV infection in thyroid cells are necessary to support a possible role in the development of thyroid cancer.
Collapse
Affiliation(s)
- J F M Almeida
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - A H Campos
- Department of Anatomic Pathology, AC Camargo Cancer Center, Taguá Street, 440, Liberdade, São Paulo, SP, 01508-010, Brazil
| | - M A Marcello
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - N E Bufalo
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - C L Rossi
- Clinical Pathology Department, Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Vital Brasil Street, 251, Cidade Universitária, Campinas, São Paulo, 13083-888, Brazil
| | - L H P Amaral
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - A B Marques
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - L L Cunha
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - C A Alvarenga
- Laboratory of Pathology, Clinical Pathology Institute (IPC), Av. Orosimbo Maia, 165, Vila Itapura, Campinas, São Paulo, 13023-002, Brazil
| | - P C Tincani
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil
| | - A J Tincani
- Head and Neck Surgery Department, University of Campinas Teaching Hospital (HC-Unicamp), Vital Brasil Street, 251, Cidade Universitária, Campinas, SP, 13083-888, Brazil
| | - L S Ward
- Laboratory of Cancer Molecular Genetics (Gemoca), Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Tessália Vieira de Camargo Street, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
| |
Collapse
|
14
|
Abstract
Epstein-Barr virus (EBV) is a common human herpes virus known to infect the majority of the world population. Infection with EBV is often asymptomatic but can manifest in a range of pathologies from infectious mononucleosis to severe cancers of epithelial and lymphocytic origin. Indeed, in the past decade, EBV has been linked to nearly 10% of all gastric cancers. Furthermore, recent advances in high-throughput next-generation sequencing and the development of humanized mice, which effectively model EBV pathogenesis, have led to a wealth of knowledge pertaining to strain variation and host-pathogen interaction. This review highlights some recent advances in our understanding of EBV biology, focusing on new findings on the early events of infection, the role EBV plays in gastric cancer, new strain variation, and humanized mouse models of EBV infection.
Collapse
Affiliation(s)
- Brent A Stanfield
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University Medical Center, Durham, NC, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
15
|
Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:39-69. [PMID: 26659263 DOI: 10.1007/978-3-319-24738-0_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Klein E, Nagy N, Rasul E. Modification of cell differentiation, one of the mechanisms in the surveillance of malignancy. Cancer Immunol Res 2015; 3:97-102. [PMID: 25660552 DOI: 10.1158/2326-6066.cir-14-0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most humans carry the potentially life-endangering Epstein-Barr virus (EBV). The immediate danger after infection is imposed by proliferation of the B cells that carry the viral genome. Although a number of different cell types can be infected with EBV, B lymphocytes are exceptionally sensitive; they express a set of virus-encoded proteins, which collaborate with host proteins to induce proliferation. This phenomenon can be demonstrated in vitro with experimentally infected B cells. These viral genes are expressed only in B lymphocytes and are restricted to a defined differentiation stage. This limitation is of high importance for the maintenance of the controlled EBV-carrier state of humans. The emergence of EBV-induced B-cell malignancies is counteracted by highly efficient immunologic mechanisms. Recognition of EBV-transformed immunoblasts in an MHC class I-restricted manner by cytotoxic CD8 T cells and, to a lesser extent, by CD4 T cells, is thought to play the major role. The in vitro experimental results are in accordance with the emergence of EBV(+) B-cell malignancies in immunosuppressive conditions. In this Masters primer, we emphasize that in addition to eliminating B cells that carry the virus genome, the regulatory circuit of the immune response also operates in surveillance, particularly in the early phase of infection. This mechanism involves T-cell-mediated regulation of B-cell differentiation. Because of the strict dependence of the viral growth program on the expression of host cell factors, altering the differentiation state can curb the proliferation of B cells that harbor the viral genome.
Collapse
Affiliation(s)
- Eva Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden.
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Eahsan Rasul
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Agathangelidis A, Scarfò L, Barbaglio F, Apollonio B, Bertilaccio MTS, Ranghetti P, Ponzoni M, Leone G, De Pascali V, Pecciarini L, Ghia P, Caligaris-Cappio F, Scielzo C. Establishment and Characterization of PCL12, a Novel CD5+ Chronic Lymphocytic Leukaemia Cell Line. PLoS One 2015; 10:e0130195. [PMID: 26110819 PMCID: PMC4481539 DOI: 10.1371/journal.pone.0130195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Immortalized cell lines representative of chronic lymphocytic leukemia (CLL) can assist in understanding disease pathogenesis and testing new therapeutic agents. At present, very few representative cell lines are available. We here describe the characterization of a new cell line (PCL12) that grew spontaneously from the peripheral blood (PB) of a CLL patient with progressive disease and EBV infection. The CLL cell origin of PCL12 was confirmed after the alignment of its IGH sequence against the “original” clonotypic sequence. The IGH gene rearrangement was truly unmutated and no CLL-related cytogenetic or genetic lesions were detected. PCL12 cells express CD19, CD20, CD5, CD23, low levels of IgM and IgD and the poor-outcome-associated prognostic markers CD38, ZAP70 and TCL1. In accordance with its aggressive phenotype the cell line is inactive in terms of LYN and HS1 phosphorylation. BcR signalling pathway is constitutively active and anergic in terms of p-ERK and Calcium flux response to α-IgM stimulation. PCL12 cells strongly migrate in vitro in response to SDF-1 and form clusters. Finally, they grow rapidly and localize in all lymphoid organs when xenotrasplanted in Rag2-/-γc-/- mice. PCL12 represents a suitable preclinical model for testing pharmacological agents.
Collapse
MESH Headings
- Animals
- CD5 Antigens/metabolism
- Cell Line, Tumor
- Gene Rearrangement
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Neoplasm Transplantation
- Phenotype
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Andreas Agathangelidis
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
| | - Lydia Scarfò
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Federica Barbaglio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Benedetta Apollonio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Maria Teresa Sabrina Bertilaccio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Maurilio Ponzoni
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Pathology Unit, Milan, Italy
| | - Gabriella Leone
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Pathology Unit, Milan, Italy
| | | | | | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Federico Caligaris-Cappio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Cristina Scielzo
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
- * E-mail:
| |
Collapse
|
18
|
|
19
|
To be or not IIb: a multi-step process for Epstein-Barr virus latency establishment and consequences for B cell tumorigenesis. PLoS Pathog 2015; 11:e1004656. [PMID: 25790223 PMCID: PMC4366242 DOI: 10.1371/journal.ppat.1004656] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
Niller HH, Szenthe K, Minarovits J. Epstein-Barr virus-host cell interactions: an epigenetic dialog? Front Genet 2014; 5:367. [PMID: 25400657 PMCID: PMC4212275 DOI: 10.3389/fgene.2014.00367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/02/2014] [Indexed: 12/23/2022] Open
Abstract
Here, we wish to highlight the genetic exchange and epigenetic interactions between Epstein–Barr virus (EBV) and its host. EBV is associated with diverse lymphoid and epithelial malignancies. Their molecular pathogenesis is accompanied by epigenetic alterations which are distinct for each of them. While lymphoblastoid cell lines derived from B cells transformed by EBV in vitro are characterized by a massive demethylation and euchromatinization of the viral and cellular genomes, the primarily malignant lymphoid tumor Burkitt’s lymphoma and the epithelial tumors nasopharyngeal carcinoma and EBV-associated gastric carcinoma are characterized by hypermethylation of a multitude of cellular tumor suppressor gene loci and of the viral genomes. In some cases, the viral latency and oncoproteins including the latent membrane proteins LMP1 and LMP2A and several nuclear antigens affect the level of cellular DNA methyltransferases or interact with the histone modifying machinery. Specific molecular mechanisms of the epigenetic dialog between virus and host cell remain to be elucidated.
Collapse
Affiliation(s)
- Hans H Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg , Regensburg, Germany
| | - Kalman Szenthe
- RT-Europe Nonprofit Research Ltd, Mosonmagyaróvár , Hungary
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged , Szeged, Hungary
| |
Collapse
|
21
|
Rasul E, Salamon D, Nagy N, Leveau B, Banati F, Szenthe K, Koroknai A, Minarovits J, Klein G, Klein E. The MEC1 and MEC2 lines represent two CLL subclones in different stages of progression towards prolymphocytic leukemia. PLoS One 2014; 9:e106008. [PMID: 25162594 PMCID: PMC4146575 DOI: 10.1371/journal.pone.0106008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/25/2014] [Indexed: 11/23/2022] Open
Abstract
The EBV carrying lines MEC1 and MEC2 were established earlier from explants of blood derived cells of a chronic lymphocytic leukemia (CLL) patient at different stages of progression to prolymphocytoid transformation (PLL). This pair of lines is unique in several respects. Their common clonal origin was proven by the rearrangement of the immunoglobulin genes. The cells were driven to proliferation in vitro by the same indigenous EBV strain. They are phenotypically different and represent subsequent subclones emerging in the CLL population. Furthermore they reflect the clinical progression of the disease. We emphasize that the support for the expression of the EBV encoded growth program is an important differentiation marker of the CLL cells of origin that was shared by the two subclones. It can be surmised that proliferation of EBV carrying cells in vitro, but not in vivo, reflects the efficient surveillance that functions even in the severe leukemic condition. The MEC1 line arose before the aggressive clinical stage from an EBV carrying cell within the subclone that was in the early prolymphocytic transformation stage while the MEC2 line originated one year later, from the subsequent subclone with overt PLL characteristics. At this time the disease was disseminated and the blood lymphocyte count was considerably elevated. The EBV induced proliferation of the MEC cells belonging to the subclones with markers of PLL agrees with earlier reports in which cells of PLL disease were infected in vitro and immortalized to LCL. They prove also that the expression of EBV encoded set of proteins can be determined at the event of infection. This pair of lines is particularly important as they provide in vitro cells that represent the subclonal evolution of the CLL disease. Furthermore, the phenotype of the MEC1 cells shares several characteristics of ex vivo CLL cells.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Biomarkers/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Clonal Evolution/immunology
- Clone Cells/immunology
- Clone Cells/pathology
- Clone Cells/virology
- Disease Progression
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Expression
- Herpesvirus 4, Human/physiology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Leukemia, Prolymphocytic/immunology
- Leukemia, Prolymphocytic/pathology
- Leukemia, Prolymphocytic/virology
- Lymphocyte Count
- Time Factors
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Eahsan Rasul
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Daniel Salamon
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Benjamin Leveau
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Ferenc Banati
- RT-Europe Nonprofit Research Ltd, Mosonmagyaróvár, Hungary
| | - Kalman Szenthe
- RT-Europe Nonprofit Research Ltd, Mosonmagyaróvár, Hungary
| | - Anita Koroknai
- Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary
| | - Janos Minarovits
- Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| | - George Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Eva Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| |
Collapse
|
22
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Hervé Fridman W, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 3:e28185. [PMID: 24800178 PMCID: PMC4008456 DOI: 10.4161/onci.28185] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022] Open
Abstract
During the past 2 decades, the possibility that preparations capable of eliciting tumor-specific immune responses would mediate robust therapeutic effects in cancer patients has received renovated interest. In this context, several approaches to vaccinate cancer patients against their own malignancies have been conceived, including the administration of DNA constructs coding for one or more tumor-associated antigens (TAAs). Such DNA-based vaccines conceptually differ from other types of gene therapy in that they are not devised to directly kill cancer cells or sensitize them to the cytotoxic activity of a drug, but rather to elicit a tumor-specific immune response. In spite of an intense wave of preclinical development, the introduction of this immunotherapeutic paradigm into the clinical practice is facing difficulties. Indeed, while most DNA-based anticancer vaccines are well tolerated by cancer patients, they often fail to generate therapeutically relevant clinical responses. In this Trial Watch, we discuss the latest advances on the use of DNA-based vaccines in cancer therapy, discussing the literature that has been produced around this topic during the last 13 months as well as clinical studies that have been launched in the same time frame to assess the actual therapeutic potential of this intervention.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers; Paris, France
| | - Wolf Hervé Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
23
|
T cells modulate Epstein-Barr virus latency phenotypes during infection of humanized mice. J Virol 2014; 88:3235-45. [PMID: 24390326 DOI: 10.1128/jvi.02885-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Human B cells, the main target of Epstein-Barr virus (EBV), can display several types of latent viral protein expression, denoted 0, I, IIa, IIb, or III. Of these, only type III expression induces proliferation of cells in vitro. These latency types are present at specific stages of infection and are also characteristic of different tumor types, but their generation is not fully understood. In this study, we analyzed the role of T cells in the regulation of EBV viral latency by using humanized NOD/SCID/IL2Rγ(-/-) mice. Several spleens presented macroscopic tumors 4 weeks after infection. Explanted spleen B cells from some of the EBV-infected mice proliferated in vitro, but this was usually lowered when cyclosporine was added to the cultures. This suggested that the in vitro growth of EBV-infected B cells required T cell help; thus, cells other than type III cells were also present in the spleens. Quantitative PCR analysis of promoter activities specific for the different EBV latency types confirmed that in addition to type III cells, type IIa and type I cells were present in the spleen. The relative usage of the viral promoter specific for I and IIa latency types (Q promoter) was higher in CD8(+) cell-depleted mice, and it was absent from CD4(+) cell-depleted mice. These results indicate that CD4(+) T cells are necessary for the generation/maintenance of cells with latency I/IIa in the humanized mice. CD4(+) T cells contributed to this process through their CD40L expression. IMPORTANCE At primary infection with EBV, the infected B cells are proliferating and express viral proteins that have transforming potential. However, when the acute infection is resolved, in healthy individuals EBV is carried by a small fraction of B cells that express a restricted number of viral proteins unable to induce proliferation. Understanding the details of this transition is of fundamental importance. We studied this question in humanized mice by manipulating their different T cell compartments before and during infection with EBV. Our results indicate that CD4(+) T cells are responsible for the switch to a nonproliferating EBV program during primary infection with EBV.
Collapse
|
24
|
Interplay among viral antigens, cellular pathways and tumor microenvironment in the pathogenesis of EBV-driven lymphomas. Semin Cancer Biol 2013; 23:441-56. [DOI: 10.1016/j.semcancer.2013.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022]
|