1
|
Boothe PF, Kumar VP, Kong Y, Wang K, Levinson H, Mu D, Brown ML. Radiation Induced Skin Fibrosis (RISF): Opportunity for Angiotensin II-Dependent Intervention. Int J Mol Sci 2024; 25:8261. [PMID: 39125831 PMCID: PMC11312688 DOI: 10.3390/ijms25158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Medical procedures, such as radiation therapy, are a vital element in treating many cancers, significantly contributing to improved survival rates. However, a common long-term complication of such exposure is radiation-induced skin fibrosis (RISF), a complex condition that poses substantial physical and psychological challenges. Notably, about 50% of patients undergoing radiation therapy may achieve long-term remission, resulting in a significant number of survivors managing the aftereffects of their treatment. This article delves into the intricate relationship between RISF, reactive oxygen species (ROS), and angiotensin II (Ang II) signaling. It proposes the underlying mechanisms and examines potential treatments for mitigating skin fibrosis. The primary goal is to offer essential insights in order to better care for and improve the quality of life of cancer survivors who face the risk of developing RISF.
Collapse
Affiliation(s)
- Patricia F. Boothe
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, The Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Yali Kong
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Kan Wang
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Howard Levinson
- The Center for Plastic Surgery at Sentara, 301 Riverview Ave. #400, Norfolk, VA 23510, USA;
| | - David Mu
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
- Leroy T. Canoles Jr. Cancer Research Center, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Milton L. Brown
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
2
|
Mikhalkevich N, Russ E, Iordanskiy S. Cellular RNA and DNA sensing pathways are essential for the dose-dependent response of human monocytes to ionizing radiation. Front Immunol 2023; 14:1235936. [PMID: 38152396 PMCID: PMC10751912 DOI: 10.3389/fimmu.2023.1235936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Circulating monocytes are important players of the inflammatory response to ionizing radiation (IR). These IR-resistant immune cells migrate to radiation-damaged tissues and differentiate into macrophages that phagocytize dying cells, but also facilitate inflammation. Besides the effect of damage-associated molecular patterns, released from irradiated tissues, the inflammatory activation of monocytes and macrophages is largely dependent on IR-induced DNA damage and aberrant transcriptional activity, which may facilitate expression of type I interferons (IFN-I) and numerous inflammation-related genes. We analyzed the accumulation of dsRNA, dsDNA fragments, and RNA:DNA hybrids in the context of induction of RNA-triggered MAVS-mediated and DNA-triggered STING-mediated signaling pathways, in primary human monocytes and a monocytic cell line, THP1, in response to various doses of gamma IR. We found that exposure to lower doses (<7.5 Gy) led to the accumulation of dsRNA, along with dsDNA and RNA:DNA hybrids and activated both MAVS and STING pathway-induced gene expression and signaling activity of IFN-I. Higher doses of IR resulted in the reduced dsRNA level, degradation of RNA-sensing mediators involved in MAVS signaling and coincided with an increased accumulation of dsDNA and RNA:DNA hybrids that correlated with elevated STING signaling and NF-κB-dependent gene expression. While both pathways activate IFN-I expression, using MAVS- and STING-knockout THP1 cells, we identified differences in the spectra of interferon-stimulated genes (ISGs) that are associated with each specific signaling pathway and outlined a large group of STING signaling-associated genes. Using the RNAi technique, we found that increasing the dose of IR activates STING signaling through the DNA sensor cGAS, along with suppression of the DDX41 helicase, which is known to reduce the accumulation of RNA:DNA hybrids and thereby limit cGAS/STING signaling activity. Together, these results indicate that depending on the applied dose, IR leads to the activation of either dsRNA-induced MAVS signaling, which predominantly leads to the expression of both pro- and anti-inflammatory markers, or dsDNA-induced STING signaling that contributes to pro-inflammatory activation of the cells. While RNA:DNA hybrids boost both MAVS- and STING-mediated signaling pathways, these structures being accumulated upon high IR doses promote type I interferon expression and appear to be potent enhancers of radiation dose-dependent pro-inflammatory activation of monocytes.
Collapse
Affiliation(s)
- Natallia Mikhalkevich
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Eric Russ
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
- The American Genome Center (TAGC), Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sergey Iordanskiy
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of The Health Sciences, Bethesda, MD, United States
| |
Collapse
|
3
|
Zhou H, Tu C, Yang P, Li J, Kepp O, Li H, Zhang L, Zhang L, Zhao Y, Zhang T, Sheng C, Wang J. Carbon ion radiotherapy triggers immunogenic cell death and sensitizes melanoma to anti-PD-1 therapy in mice. Oncoimmunology 2022; 11:2057892. [PMID: 35355680 PMCID: PMC8959514 DOI: 10.1080/2162402x.2022.2057892] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Carbon ion radiotherapy (CIRT) is an emerging type of radiotherapy for the treatment of solid tumors. In recent years, evidence accumulated that CIRT improves the therapeutic outcome in patients with otherwise poor response to immune checkpoint blockade. Here, we aimed at identifying the underlying mechanisms of CIRT-induced tumor immunogenicity and treatment efficacy. We used human U2OS osteosarcoma cells for the in vitro assessment of immunogenic cell death and established several in vivo models of melanoma in mice. We treated the animals with conventional radiation, CIRT, PD-1-targeting immune checkpoint blockade or a sequential combinations of radiotherapy with checkpoint blockade. We utilized flow cytometry, polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis, immunofluorescence, immunohistochemistry, as well as enzyme-linked immunosorbent assays (ELISA) to assess biomarkers of immunogenic cell death in vitro. Treatment efficacy was studied by tumor growth assessment and the tumor immune infiltrate was analyzed by flow cytometry and immunohistochemistry. Compared with conventional radioimmunotherapy, the combination of CIRT with anti-PD-1 more efficiently triggered traits of immunogenic cell death including the exposure of calreticulin, the release of adenosine triphosphate (ATP), the exodus of high-mobility group box 1 (HMGB1) as well as the induction of type-1 interferon responses. In addition, CIRT plus anti-PD-1 led to an increased infiltration of CD4+, and CD8+ lymphocytes into the tumor bed, significantly decreased tumor growth and prolonged survival of melanoma bearing mice. We herein provide evidence that CIRT-triggered immunogenic cell death, enhanced tumor immunogenicity and improved the efficacy of subsequent anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Heng Zhou
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,Gansu, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing,China
| | - Chen Tu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Pengfei Yang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,Gansu, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing,China
| | - Jin Li
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,Gansu, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM, Paris, France
| | - Haining Li
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, China
| | - Liying Zhang
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lixin Zhang
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yang Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tianyi Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,Gansu, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing,China
| | - Chengyan Sheng
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,Gansu, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing,China
| |
Collapse
|
4
|
Cruz-Garcia L, Badie C, Anbalagan S, Moquet J, Gothard L, O'Brien G, Somaiah N, Ainsbury EA. An ionising radiation-induced specific transcriptional signature of inflammation-associated genes in whole blood from radiotherapy patients: a pilot study. Radiat Oncol 2021; 16:83. [PMID: 33941218 PMCID: PMC8094544 DOI: 10.1186/s13014-021-01807-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND This communication reports the identification of a new panel of transcriptional changes in inflammation-associated genes observed in response to ionising radiation received by radiotherapy patients. METHODS Peripheral blood samples were taken with ethical approval and informed consent from a total of 20 patients undergoing external beam radiotherapy for breast, lung, gastrointestinal or genitourinary tumours. Nanostring nCounter analysis of transcriptional changes was carried out in samples prior and 24 h post-delivery of the 1st radiotherapy fraction, just prior to the 5th or 6th fraction, and just before the last fraction. RESULTS Statistical analysis with BRB-ArrayTools, GLM MANOVA and nSolver, revealed a radiation responsive panel of genes which varied by patient group (type of cancer) and with time since exposure (as an analogue for dose received), which may be useful as a biomarker of radiation response. CONCLUSION Further validation in a wider group of patients is ongoing, together with work towards a full understanding of patient specific responses in support of personalised approaches to radiation medicine.
Collapse
Affiliation(s)
| | - Christophe Badie
- PHE CRCE, Chilton, Didcot, Oxford, OX11 0RQ, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Selvakumar Anbalagan
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5NG, UK
| | | | - Lone Gothard
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5NG, UK
| | | | - Navita Somaiah
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5NG, UK
| | - Elizabeth A Ainsbury
- PHE CRCE, Chilton, Didcot, Oxford, OX11 0RQ, UK.
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK.
| |
Collapse
|
5
|
Vacchelli E, Aranda F, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2021; 3:e27048. [PMID: 24605265 PMCID: PMC3937194 DOI: 10.4161/onci.27048] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 02/06/2023] Open
Abstract
In 1997, for the first time in history, a monoclonal antibody (mAb), i.e., the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug Administration for use in cancer patients. Since then, the panel of mAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has not stopped to expand, nowadays encompassing a stunning amount of 15 distinct molecules. This therapeutic armamentarium includes mAbs that target tumor-associated antigens, as well as molecules that interfere with tumor-stroma interactions or exert direct immunostimulatory effects. These three classes of mAbs exert antineoplastic activity via distinct mechanisms, which may or may not involve immune effectors other than the mAbs themselves. In previous issues of OncoImmunology, we provided a brief scientific background to the use of mAbs, all types confounded, in cancer therapy, and discussed the results of recent clinical trials investigating the safety and efficacy of this approach. Here, we focus on mAbs that primarily target malignant cells or their interactions with stromal components, as opposed to mAbs that mediate antineoplastic effects by activating the immune system. In particular, we discuss relevant clinical findings that have been published during the last 13 months as well as clinical trials that have been launched in the same period to investigate the therapeutic profile of hitherto investigational tumor-targeting mAbs.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 15, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
6
|
Mikhalkevich N, O’Carroll IP, Tkavc R, Lund K, Sukumar G, Dalgard CL, Johnson KR, Li W, Wang T, Nath A, Iordanskiy S. Response of human macrophages to gamma radiation is mediated via expression of endogenous retroviruses. PLoS Pathog 2021; 17:e1009305. [PMID: 33556144 PMCID: PMC7895352 DOI: 10.1371/journal.ppat.1009305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/19/2021] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Ionizing radiation-induced tissue damage recruits monocytes into the exposed area where they are differentiated to macrophages. These implement phagocytic removal of dying cells and elicit an acute inflammatory response, but can also facilitate tumorigenesis due to production of anti-inflammatory cytokines. Using primary human monocyte-derived macrophages (MDMs) and the THP1 monocytic cell line, we demonstrate that gamma radiation triggers monocyte differentiation toward the macrophage phenotype with increased expression of type I interferons (IFN-I) and both pro- and anti-inflammatory macrophage activation markers. We found that these changes correlate with significantly upregulated expression of 622 retroelements from various groups, particularly of several clades of human endogenous retroviruses (HERVs). Elevated transcription was detected in both sense and antisense directions in the HERV subgroups tested, including the most genetically homogeneous clade HML-2. The level of antisense transcription was three- to five-fold higher than of the sense strand levels. Using a proximity ligation assay and immunoprecipitation followed by RNA quantification, we identified an increased amount of the dsRNA receptors MDA-5 and TLR3 bound to an equivalent number of copies of sense and antisense chains of HERVK HML-2 RNA. This binding triggered MAVS-associated signaling pathways resulting in increased expression of IFN-I and inflammation related genes that enhanced the cumulative inflammatory effect of radiation-induced senescence. HML-2 knockdown was accompanied with reduced expression and secretion of IFNα, pro-inflammatory (IL-1β, IL-6, CCL2, CCL3, CCL8, and CCL20) and anti-inflammatory (IL10) modulators in irradiated monocytes and MDMs. Taken together, our data indicate that radiation stress-induced HERV expression enhances the IFN-I and cytokine response and results in increased levels of pro-inflammatory modulators along with expression of anti-inflammatory factors associated with the macrophage tumorigenic phenotype. Ionizing radiation is a powerful stressogenic factor that induces massive cell damage. The signals released from radiation-damaged tissues recruit the monocytes, which are differentiated into macrophages that remove dying cells via phagocytosis and facilitate inflammation but can also contribute to tumorigenesis through anti-inflammatory and regenerative activities. The mechanism of this dual response of macrophages to irradiation is not fully understood. Using primary human macrophages and a monocytic cell line, we demonstrated that gamma radiation doses activate expression of various human endogenous retroviruses (HERVs). At the molecular level, we have shown that increased numbers of sense and antisense transcripts of tested HERV subgroups bind to double-stranded RNA receptors inducing the expression of type I interferons, multiple pro-inflammatory and some anti-inflammatory factors. At the phenotypic level, polarized macrophages exhibit a potent inflammatory response along with potentially tumorigenic characteristics. Our data suggest that endogenous retroviruses represent an important contributor of the macrophage-mediated inflammation in response to radiation-induced stress but may also indirectly influence tumorigenesis via biased macrophage polarization.
Collapse
Affiliation(s)
- Natallia Mikhalkevich
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ina P. O’Carroll
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland, United States of America
| | - Rok Tkavc
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kateryna Lund
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Gauthaman Sukumar
- The American Genome Center (TAGC), Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Clifton L. Dalgard
- The American Genome Center (TAGC), Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tongguang Wang
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AN); (SI)
| | - Sergey Iordanskiy
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail: (AN); (SI)
| |
Collapse
|
7
|
Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021; 12:230-250. [PMID: 33613850 PMCID: PMC7869576 DOI: 10.18632/oncotarget.27870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation and progression due to their unlimited self-renewal capacity and their ability to induce tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), establish a tumor microenvironment to protect and induce CSCs development and dissemination. Many studies in the past decade have been performed to understand the molecular mediators of CSCs and TAMs, and several studies have elucidated the complex crosstalk that occurs between these two cell types. The aim of this review is to define the complex crosstalk between these two cell types and to highlight potential future anti-cancer strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
8
|
Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. Int J Mol Sci 2020; 21:ijms21239324. [PMID: 33297519 PMCID: PMC7730562 DOI: 10.3390/ijms21239324] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, modern therapies involving immune checkpoint inhibitors, cytokines, and oncolytic virus have been developed. Because of the limited treatment effect of modern therapy alone, the immunostimulatory effect of radiotherapy attracted increasing attention. The combined use of radiotherapy and modern therapy has been examined clinically and non-clinically, and its effectiveness has been confirmed recently. Because melanomas have high immunogenicity, better therapeutic outcomes are desired when using immunotherapy. However, sufficient therapeutic effects have not yet been achieved. Thus far, radiotherapy has been used only for local control of tumors. Although extremely rare, radiotherapy has also been reported for systemic control, i.e., abscopal effect. This is thought to be due to an antitumor immune response. Therefore, we herein summarize past information on not only the mechanism of immune effects on radiotherapy but also biomarkers reported in case reports on abscopal effects. We also reviewed the animal model suitable for evaluating abscopal effects. These results pave the way for further basic research or clinical studies on new treatment methods for melanoma. Currently, palliative radiation is administered to patients with metastatic melanoma for local control. If it is feasible to provide both systemic and local control, the treatment benefit for the patients is very large.
Collapse
|
9
|
Ye J, Mills BN, Zhao T, Han BJ, Murphy JD, Patel AP, Johnston CJ, Lord EM, Belt BA, Linehan DC, Gerber SA. Assessing the Magnitude of Immunogenic Cell Death Following Chemotherapy and Irradiation Reveals a New Strategy to Treat Pancreatic Cancer. Cancer Immunol Res 2020; 8:94-107. [PMID: 31719057 PMCID: PMC6946873 DOI: 10.1158/2326-6066.cir-19-0373] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/18/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to have a dismal prognosis, in part, due to ineffective treatment strategies. The efficacy of some chemotherapies and especially radiotherapy is mediated partially by the immune system. Therefore, we hypothesized that profiling the immune response following chemotherapy and/or irradiation can be used as a readout for treatment efficacy but also to help identify optimal therapeutic schedules for PDAC. Using murine models of PDAC, we demonstrated that concurrent administration of stereotactic body radiotherapy (SBRT) and a modified dose of FOLFIRINOX (mFX) resulted in superior tumor control when compared with single or sequential treatment groups. Importantly, this combined treatment schedule enhanced the magnitude of immunogenic cell death, which in turn amplified tumor antigen presentation by dendritic cells and intratumoral CD8+ T-cell infiltration. Concurrent therapy also resulted in systemic immunity contributing to the control of established metastases. These findings provide a rationale for pursuing concurrent treatment schedules of SBRT with mFX in PDAC.
Collapse
Affiliation(s)
- Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Bradley N Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Tony Zhao
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Booyeon J Han
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Joseph D Murphy
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Ankit P Patel
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Carl J Johnston
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Edith M Lord
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Brian A Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - David C Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Scott A Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, New York.
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
10
|
Palata O, Hradilova Podzimkova N, Nedvedova E, Umprecht A, Sadilkova L, Palova Jelinkova L, Spisek R, Adkins I. Radiotherapy in Combination With Cytokine Treatment. Front Oncol 2019; 9:367. [PMID: 31179236 PMCID: PMC6538686 DOI: 10.3389/fonc.2019.00367] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Radiotherapy (RT) plays an important role in the management of cancer patients. RT is used in more than 50% of patients during the course of their disease in a curative or palliative setting. In the past decades it became apparent that the abscopal effect induced by RT might be dependent on the activation of immune system, and that the induction of immunogenic cancer cell death and production of danger-associated molecular patterns from dying cells play a major role in the radiotherapy-mediated anti-tumor efficacy. Therefore, the combination of RT and immunotherapy is of a particular interest that is reflected in designing clinical trials to treat patients with various malignancies. The use of cytokines as immunoadjuvants in combination with RT has been explored over the last decades as one of the immunotherapeutic combinations to enhance the clinical response to anti-cancer treatment. Here we review mainly the data on the efficacy of IFN-α, IL-2, IL-2-based immunocytokines, GM-CSF, and TNF-α used in combinations with various radiotherapeutic techniques in clinical trials. Moreover, we discuss the potential of IL-15 and its analogs and IL-12 cytokines in combination with RT based on the efficacy in preclinical mouse tumor models.
Collapse
Affiliation(s)
- Ondrej Palata
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Nada Hradilova Podzimkova
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | | | | | | | - Lenka Palova Jelinkova
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Radek Spisek
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Irena Adkins
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| |
Collapse
|
11
|
Abstract
Humans are a colonized with trillions of commensal microorganisms which exert a profound effect on normal host physiology and immune function through an abundance of genetic and metabolic by-products. Although the commensal microbiome has beneficial functions to host physiology, perturbations of the composition of the commensal microbiome or the homeostatic mucosal environment can lead to the induction of immune pathology and systemic inflammation. In the context of cancer progression or response to immune therapy, this inflammation can be detrimental, resulting in tumor growth and the promotion of immune suppression. On the other hand, significant associations have been identified whereby certain commensal microorganisms are able to enhance T cell function or are required for tumor control in cancer patients treated with certain immune therapies and chemotherapies. The focus of this chapter is to highlight the role of the commensal microbiome during tumor progression and in response to immune therapies.
Collapse
|
12
|
de Leve S, Wirsdörfer F, Jendrossek V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front Immunol 2019; 10:698. [PMID: 31024543 PMCID: PMC6460721 DOI: 10.3389/fimmu.2019.00698] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine is a potent endogenous immunosuppressive mediator critical to the maintenance of homeostasis in various normal tissues including the lung. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (CD73) that catabolize ATP to adenosine. An acute CD73-dependent increase of adenosine in normal tissues mostly exerts tissue protective functions whereas chronically increased adenosine-levels in tissues exposed to DNA damaging chemotherapy or radiotherapy promote pathologic remodeling processes and fibrosis for example in the skin and the lung. Importantly, cancer cells also express CD73 and high CD73 expression in the tumor tissue has been linked to poor overall survival and recurrence free survival in patients suffering from breast and ovarian cancer. CD73 and adenosine support growth-promoting neovascularization, metastasis, and survival in cancer cells. In addition, adenosine can promote tumor intrinsic or therapy-induced immune escape by various mechanisms that dampen the immune system. Consequently, modulating CD73 or cancer-derived adenosine in the tumor microenvironment emerges as an attractive novel therapeutic strategy to limit tumor progression, improve antitumor immune responses, avoid therapy-induced immune deviation, and potentially limit normal tissue toxicity. However, the role of CD73/adenosine signaling in the tumor and normal tissue responses to radiotherapy and its use as therapeutic target to improve the outcome of radiotherapy approaches is less understood. The present review will highlight the dual role of CD73 and adenosine in tumor and tissue responses to radiotherapy with a special focus to the lung. It will also discuss the potential benefits and risks of pharmacologic modulation of the CD73/adenosine system to increase the therapeutic gain of radiotherapy or combined radioimmunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Raza MH, Gul K, Arshad A, Riaz N, Waheed U, Rauf A, Aldakheel F, Alduraywish S, Rehman MU, Abdullah M, Arshad M. Microbiota in cancer development and treatment. J Cancer Res Clin Oncol 2019; 145:49-63. [PMID: 30542789 DOI: 10.1007/s00432-018-2816-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Human microbiota comprises of a variety of organisms ranging from bacterial species to viruses, fungi, and protozoa which are present on the epidermal and mucosal barriers of the body. It plays a key role in health and survival of the host by regulation of the systemic functions. Its apparent functions in modulation of the host immune system, inducing carcinogenesis and regulation of the response to the cancer therapy through a variety of mechanisms such as bacterial dysbiosis, production of genotoxins, pathobionts, and disruption of the host metabolism are increasingly becoming evident. METHODS Different electronic databases such as PubMed, Google Scholar, and Web of Science were searched for relevant literature which has been reviewed in this article. RESULTS Characterization of the microbiome particularly gut microbiota, understanding of the host-microbiota interactions, and its potential for therapeutic exploitation are necessary for the development of novel anticancer therapeutic strategies with better efficacy and lowered off-target side effects. CONCLUSION In this review, the role of microbiota is explained in carcinogenesis, mechanisms of microbiota-mediated carcinogenesis, and role of gut microbiota in modulation of cancer therapy.
Collapse
Affiliation(s)
- Muhammad Hassan Raza
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Kamni Gul
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Abida Arshad
- Department of Biology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveeda Riaz
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Usman Waheed
- Department of Pathology and Blood Bank, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Abdul Rauf
- Department of Zoology, Azad Jammu and Kashmir University, Muzaffarabad, Pakistan
| | - Fahad Aldakheel
- Department of Clinical Laboratory Medicine, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shatha Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Maqbool Ur Rehman
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan.
| |
Collapse
|
14
|
Li C, Ke Q, Yao C, Yao C, Mi Y, Wu M, Ge L. Comparison of Bipolar and Unipolar Pulses in Cell Electrofusion: Simulation and Experimental Research. IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING 2018; 66:1353-1360. [PMID: 30281431 DOI: 10.1109/tbme.2018.2872909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Unipolar pulses have been used in cell electrofusion over the last decades. However, the problem of high mortality with unipolar pulses has not been solved effectively. The cell fusion rate is restricted by cell mortality. By using the advantages of bipolar pulses which cause less cell damage, this paper attempts to use bipolar pulses to increase the cell fusion rate. METHODS the transmembrane voltage and pore density of cells subjected to unipolar/bipolar pulses were simulated in COMSOL software. In an experiment, two 40 μs unipolar and two 20-20 μs bipolar pulses with electric fields of 2, 2.5, and 3 kV/cm were applied to SP2/0 murine myeloma cells. To determine the cell fusion rate and cell mortality, cells were stained with Hoechst 33342 and propidium iodide. RESULTS the simulation in this paper showed that a high transmembrane voltage and a high pores density were concentrated only at the contact area of cells when bipolar pulses were used. The results of the cell staining experiment verified the simulation analysis. When bipolar pulses were applied, the cell mortality was significantly reduced. In addition, the cell fusion rate with bipolar pulses was almost two times higher than that with unipolar pulses. CONCLUSION for cell electrofusion, compared with unipolar pulses, bipolar pulses can not only reduce the cell mortality remarkably but also improve the cell fusion rate obviously. SIGNIFICANCE this paper introduces a novel way to increase the fusion rate of cells.
Collapse
|
15
|
Meziani L, Deutsch E, Mondini M. Macrophages in radiation injury: a new therapeutic target. Oncoimmunology 2018; 7:e1494488. [PMID: 30288363 PMCID: PMC6169587 DOI: 10.1080/2162402x.2018.1494488] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy can induce toxicity in healthy tissues such as radiation-induced fibrosis (RIF), and macrophages are proposed as new profibrogenic cells. In this Point-of-View, we summarize the role of the immune response in ionizing radiation injury, and we focus on macrophages as a new therapeutic target in RIF.
Collapse
Affiliation(s)
- Lydia Meziani
- Gustave Roussy, Université Paris-Saclay, Inserm U1030, Villejuif, France.,Inserm U1030, Molecular radiotherapy, Labex LERMIT, DHU TORINO, SIRIC SOCRATE
| | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, Inserm U1030, Villejuif, France.,Inserm U1030, Molecular radiotherapy, Labex LERMIT, DHU TORINO, SIRIC SOCRATE.,Département de radiothérapie, Gustave Roussy, Villejuif, France
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, Inserm U1030, Villejuif, France.,Inserm U1030, Molecular radiotherapy, Labex LERMIT, DHU TORINO, SIRIC SOCRATE
| |
Collapse
|
16
|
Pilla L, Ferrone S, Maccalli C. Methods for improving the immunogenicity and efficacy of cancer vaccines. Expert Opin Biol Ther 2018; 18:765-784. [PMID: 29874943 PMCID: PMC8670419 DOI: 10.1080/14712598.2018.1485649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cancer vaccines represent one of the oldest immunotherapy strategies. A variety of tumor-associated antigens have been exploited to investigate their immunogenicity as well as multiple strategies for vaccine administration. These efforts have led to the development of several clinical trials in tumors with different histological origins to test the clinical efficacy of cancer vaccines. However, suboptimal clinical results have been reported mainly due to the lack of optimized strategies to induce strong and sustained systemic tumor antigen-specific immune responses. AREAS COVERED We provide an overview of different types of cancer vaccines that have been developed and used in the context of clinical studies. Moreover, we review different preclinical and clinical strategies pursued to enhance the immunogenicity, stability, and targeting at tumor site of cancer vaccines. EXPERT OPINION Additional and appropriate preclinical studies are warranted to optimize the immunogenicity and delivery of cancer vaccines. The appropriate choice of target antigens is challenging; however, the exploitation of neoantigens generated from somatic mutations of tumor cells represents a promising approach to target highly immunogenic tumor-specific antigens. Remarkably, the investigation of the combination of cancer vaccines with immunomodulating agents able to skew the tumor microenvironment from immunosuppressive to immunostimulating will dramatically improve their clinical efficacy.
Collapse
Affiliation(s)
- Lorenzo Pilla
- Medical Oncology Unit, San Gerardo Hospital, Monza, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Maccalli
- Clinical Research Center, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
17
|
Chaoul N, Tang A, Desrues B, Oberkampf M, Fayolle C, Ladant D, Sainz-Perez A, Leclerc C. Lack of MHC class II molecules favors CD8 + T-cell infiltration into tumors associated with an increased control of tumor growth. Oncoimmunology 2017; 7:e1404213. [PMID: 29399403 PMCID: PMC5790350 DOI: 10.1080/2162402x.2017.1404213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Regulatory T-cells (Tregs) are crucial for the maintenance of immune tolerance and homeostasis as well as for preventing autoimmune diseases, but their impact on the survival of cancer patients remains controversial. In the TC-1 mouse model of human papillomavirus (HPV)-related carcinoma, we have previously demonstrated that the therapeutic efficacy of the CyaA-E7-vaccine, targeting the HPV-E7 antigen, progressively declines with tumor growth, in correlation with increased intratumoral recruitment of Tregs. In the present study, we demonstrated that these TC-1 tumor-infiltrating Tregs were highly activated, with increased expression of immunosuppressive molecules. Both intratumoral effector CD4+ T-cells (Teffs) and Tregs expressed high levels of PD-1, but anti-PD-1 antibody treatment did not impact the growth of the TC-1 tumor nor restore the therapeutic effect of the CyaA-E7 vaccine. To analyze the mechanisms by which Tregs are recruited to the tumor site, we used MHC-II KO mice with drastically reduced numbers of CD4+ effector T-cells. We demonstrated that these mice still had significant numbers of Tregs in their lymphoid organs which were recruited to the tumor. In MHC-II KO mice, the growth of the TC-1 tumor was delayed in correlation with a strong increase in the intratumoral recruitment of CD8+ T-cells. In addition, in mice that spontaneously rejected their tumors, the infiltration of E7-specific CD8+ T-cells was significantly higher than in MHC-II KO mice with a growing tumor. These results demonstrate that tumor-specific CD8+ T-cells can be efficiently activated and recruited in the absence of MHC class II molecules and of CD4+ T-cell help.
Collapse
Affiliation(s)
- Nada Chaoul
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Alexandre Tang
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Belinda Desrues
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Marine Oberkampf
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Catherine Fayolle
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Daniel Ladant
- Département de biologie structurale et de chimie, Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Paris, France.,CNRS, UMR 3528, Paris, France
| | - Alexander Sainz-Perez
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Claude Leclerc
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| |
Collapse
|
18
|
Abstract
The microbiota is composed of commensal bacteria and other microorganisms that live on the epithelial barriers of the host. The commensal microbiota is important for the health and survival of the organism. Microbiota influences physiological functions from the maintenance of barrier homeostasis locally to the regulation of metabolism, haematopoiesis, inflammation, immunity and other functions systemically. The microbiota is also involved in the initiation, progression and dissemination of cancer both at epithelial barriers and in sterile tissues. Recently, it has become evident that microbiota, and particularly the gut microbiota, modulates the response to cancer therapy and susceptibility to toxic side effects. In this Review, we discuss the evidence for the ability of the microbiota to modulate chemotherapy, radiotherapy and immunotherapy with a focus on the microbial species involved, their mechanism of action and the possibility of targeting the microbiota to improve anticancer efficacy while preventing toxicity.
Collapse
Affiliation(s)
- Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Cirincione R, Di Maggio FM, Forte GI, Minafra L, Bravatà V, Castiglia L, Cavalieri V, Borasi G, Russo G, Lio D, Messa C, Gilardi MC, Cammarata FP. High-Intensity Focused Ultrasound- and Radiation Therapy-Induced Immuno-Modulation: Comparison and Potential Opportunities. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:398-411. [PMID: 27780661 DOI: 10.1016/j.ultrasmedbio.2016.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 05/12/2023]
Abstract
In recent years, high-intensity focused ultrasound (HIFU) has emerged as a new and promising non-invasive and non-ionizing ablative technique for the treatment of localized solid tumors. Extensive pre-clinical and clinical studies have evidenced that, in addition to direct destruction of the primary tumor, HIFU-thermoablation may elicit long-term systemic host anti-tumor immunity. In particular, an important consequence of HIFU treatment includes the release of tumor-associated antigens (TAAs), the secretion of immuno-suppressing factors by cancer cells and the induction of cytotoxic T lymphocyte (CTL) activity. Radiation therapy (RT) is the main treatment modality used for many types of tumors and about 50% of all cancer patients receive RT, often used in combination with surgery and chemotherapy. It is well known that RT can modulate anti-tumor immune responses, modifying micro-environment and stimulating inflammatory factors that can greatly affect cell invasion, bystander effects, radiation tissue complications (such as fibrosis), genomic instability and thus, intrinsic cellular radio-sensitivity. To date, various combined therapeutic strategies (such as immuno-therapy) have been performed in order to enhance RT success in treating locally advanced and recurrent tumors. Recent works suggested the combined use of HIFU and RT treatments to increase the tumor cell radio-sensitivity, in order to synergize the effects reaching the maximum results with minimal doses of ionizing radiation (IR). Here, we highlight the opposite immuno-modulation roles of RT and HIFU, providing scientific reasons to test, by experimental approaches, the use of HIFU immune-stimulatory capacity to improve tumor radio-sensitivity, to reduce the RT induced inflammatory response and to decrease the dose-correlated side effects in normal tissues.
Collapse
Affiliation(s)
| | - Federica Maria Di Maggio
- IBFM CNR, Cefalù, Palermo, Italy; Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | | | | | - Valentina Bravatà
- IBFM CNR, Cefalù, Palermo, Italy; Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | | | - Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | | | - Domenico Lio
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Cristina Messa
- IBFM CNR, Cefalù, Palermo, Italy; Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy
| | - Maria Carla Gilardi
- IBFM CNR, Cefalù, Palermo, Italy; Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
20
|
van Meir H, Nout RA, Welters MJP, Loof NM, de Kam ML, van Ham JJ, Samuels S, Kenter GG, Cohen AF, Melief CJM, Burggraaf J, van Poelgeest MIE, van der Burg SH. Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 2016; 6:e1267095. [PMID: 28344877 PMCID: PMC5353924 DOI: 10.1080/2162402x.2016.1267095] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/13/2022] Open
Abstract
New treatments based on combinations of standard therapeutic modalities and immunotherapy are of potential use, but require a profound understanding of immune modulatory properties of standard therapies. Here, the impact of standard (chemo)radiotherapy on the immune system of cervical cancer patients was evaluated. Thirty patients with cervical cancer were treated with external beam radiation therapy (EBRT), using conventional three-dimensional or intensity modulated radiation therapy without constraints for bone marrow sparing. Serial blood sampling for immunomonitoring was performed before, midway and at 3, 6 and 9 weeks after EBRT to analyze the composition of lymphocyte and myeloid-cell populations, the expression of co-stimulatory molecules, T-cell reactivity and antigen presenting cell (APC) function. Therapy significantly decreased the absolute numbers of circulating leukocytes and lymphocytes. Furthermore, the capacity of the remaining T cells to respond to antigenic or mitogenic stimulation was impaired. During treatment the frequency of both CD4+ and CD8+ T cells dropped and CD4+ T cells displayed an increased expression of programmed cell death-1 (PD-1). In vitro blocking of PD-1 successfully increased T-cell reactivity in all five samples isolated before radiotherapy but was less successful in restoring reactivity in samples isolated at later time points. Moreover, (chemo)radiotherapy was associated with an increase in both circulating monocytes and myeloid-derived suppressor cells (MDSCs) and an impaired capacity of APCs to stimulate allogeneic T cells. T-cell reactivity was slowly restored at 6–9 weeks after cessation of therapy. We conclude that conventional (chemo)radiotherapy profoundly suppresses the immune system in cervical cancer patients, and may restrict its combination with immunotherapy.
Collapse
Affiliation(s)
- H van Meir
- Department of Gynecology, Leiden University Medical Center, Leiden, the Netherlands; Centre for Human Drug Research, Leiden, the Netherlands
| | - R A Nout
- Department of Radiation Oncology, Leiden University Medical Center , Leiden, the Netherlands
| | - M J P Welters
- Department of Medical Oncology, Leiden University Medical Center , Leiden, the Netherlands
| | - N M Loof
- Department of Medical Oncology, Leiden University Medical Center , Leiden, the Netherlands
| | - M L de Kam
- Centre for Human Drug Research , Leiden, the Netherlands
| | - J J van Ham
- Department of Medical Oncology, Leiden University Medical Center , Leiden, the Netherlands
| | - S Samuels
- Center Gynecological Oncology Amsterdam , NKI-AvL , Amsterdam, the Netherlands
| | - G G Kenter
- Center Gynecological Oncology Amsterdam , NKI-AvL , Amsterdam, the Netherlands
| | - A F Cohen
- Centre for Human Drug Research , Leiden, the Netherlands
| | | | - J Burggraaf
- Centre for Human Drug Research , Leiden, the Netherlands
| | - M I E van Poelgeest
- Department of Gynecology, Leiden University Medical Center , Leiden, the Netherlands
| | - S H van der Burg
- Department of Medical Oncology, Leiden University Medical Center , Leiden, the Netherlands
| |
Collapse
|
21
|
Vacchelli E, Bloy N, Aranda F, Buqué A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncoimmunology 2016; 5:e1214790. [PMID: 27757313 DOI: 10.1080/2162402x.2016.1214790] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Malignant cells succumbing to some forms of radiation therapy are particularly immunogenic and hence can initiate a therapeutically relevant adaptive immune response. This reflects the intrinsic antigenicity of malignant cells (which often synthesize a high number of potentially reactive neo-antigens) coupled with the ability of radiation therapy to boost the adjuvanticity of cell death as it stimulates the release of endogenous adjuvants from dying cells. Thus, radiation therapy has been intensively investigated for its capacity to improve the therapeutic profile of several anticancer immunotherapies, including (but not limited to) checkpoint blockers, anticancer vaccines, oncolytic viruses, Toll-like receptor (TLR) agonists, cytokines, and several small molecules with immunostimulatory effects. Here, we summarize recent preclinical and clinical advances in this field of investigation.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College , New York, NY, USA
| | | | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; INSERM, U970, Paris, France; Paris-Cardiovascular Research Center (PARCC), Paris, France; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT1428, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
22
|
Liu L, Mao Z, Zhang J, Liu N, Liu QH. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field. PLoS One 2016; 11:e0158739. [PMID: 27391692 PMCID: PMC4938614 DOI: 10.1371/journal.pone.0158739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/21/2016] [Indexed: 11/19/2022] Open
Abstract
The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments.
Collapse
Affiliation(s)
- Linying Liu
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University, Xiamen, 361005, P.R. China
| | - Zheng Mao
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University, Xiamen, 361005, P.R. China
| | - Jianhua Zhang
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University, Xiamen, 361005, P.R. China
| | - Na Liu
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University, Xiamen, 361005, P.R. China
| | - Qing Huo Liu
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University, Xiamen, 361005, P.R. China
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, United States of America
| |
Collapse
|
23
|
Ménager J, Gorin JB, Fichou N, Gouard S, Morgenstern A, Bruchertseifer F, Davodeau F, Kraeber-Bodéré F, Chérel M, Gaschet J, Guilloux Y. [Alpha-Radioimmunotherapy: principle and relevance in anti-tumor immunity]. Med Sci (Paris) 2016; 32:362-9. [PMID: 27137693 DOI: 10.1051/medsci/20163204014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alpha-radioimmunotherapy (α-RIT) is a targeted anti-tumor therapy using usually a monoclonal antibody specific for a tumor antigen that is coupled to an α-particle emitter. α-emitters represent an ideal tool to eradicate disseminated tumors or metastases. Recent data demonstrate that ionizing radiation in addition to its direct cytotoxic ability can also induce an efficient anti-tumor immunity. This suggests that biologic effects on irradiated tissues could be used to potentiate immunotherapy efficacy and opens the way for development of new therapies combining α-RIT and different types of immunotherapy.
Collapse
Affiliation(s)
- Jérémie Ménager
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Jean-Baptiste Gorin
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Nolwenn Fichou
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Sébastien Gouard
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Alfred Morgenstern
- European Commission, Joint research centre, Institute for transuranium elements, Karlsruhe, Allemagne
| | - Frank Bruchertseifer
- European Commission, Joint research centre, Institute for transuranium elements, Karlsruhe, Allemagne
| | - François Davodeau
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Françoise Kraeber-Bodéré
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France - Institut de Cancérologie de l'Ouest, Saint-Herblain, France - CHU Nantes, département de médecine nucléaire, Nantes, France
| | - Michel Chérel
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France - Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Joëlle Gaschet
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Yannick Guilloux
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| |
Collapse
|
24
|
Schernberg A, Marabelle A, Massard C, Armand JP, Dumont S, Deutsch E, Dhermain F. [What's next in glioblastoma treatment: Tumor-targeted or immune-targeted therapies?]. Bull Cancer 2016; 103:484-98. [PMID: 27032303 DOI: 10.1016/j.bulcan.2016.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is associated with a poor prognosis. This review will discuss different directions of treatment, mostly regarding immunotherapies and combinatorial approaches. DEVELOPMENT Standard treatment for newly diagnosed GBM is maximal and safe surgical resection followed by concurrent radiochemotherapy (RCT) based on temozolomide, allowing 14.6 months median survival. Nowadays, no combination with molecular-targeted therapy had significantly improved prognosis. Phases I and II data are emerging, highlighting the potential efficacy of associations with other therapies. Studies have suggested the potential of targeting tumor stem cells, at less partially responsible for resistance to RCT. There is now some evidence that immunotherapy is also relevant for brain tumors. Treatment strategies have mainly explored vaccines strategies, such as the dendritic cell, heat shock protein or EGFRvIII vaccines. Of the work initiated in melanoma, immune checkpoints inhibitors have exhibited stimulating results. Others trials have demonstrated potential of autologous stimulated lymphocytes. Moreover, strong data indicates that radiation therapy has the potential to promote immunogenicity and create a sort of in situ personalized vaccine. CONCLUSION These data provide strong evidence to support the potential of associating combinatorial targeted and/or immunotherapeutic regimens in patients with GBM that may change patient outcome.
Collapse
Affiliation(s)
- Antoine Schernberg
- Institut Gustave-Roussy, département de radiothérapie, 114, rue Édouard-Vaillant, 94805 Villejuif, France.
| | - Aurélien Marabelle
- Institut Gustave-Roussy, département d'oncologie médicale, 94800 Villejuif, France
| | - Christophe Massard
- Institut Gustave-Roussy, département d'oncologie médicale, 94800 Villejuif, France
| | - Jean-Pierre Armand
- Institut Gustave-Roussy, département d'oncologie médicale, 94800 Villejuif, France
| | - Sarah Dumont
- Institut Gustave-Roussy, département d'oncologie médicale, 94800 Villejuif, France
| | - Eric Deutsch
- Institut Gustave-Roussy, département de radiothérapie, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| | - Frédéric Dhermain
- Institut Gustave-Roussy, département de radiothérapie, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| |
Collapse
|
25
|
Therapy-induced microenvironmental changes in cancer. J Mol Med (Berl) 2016; 94:497-508. [DOI: 10.1007/s00109-016-1401-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
|
26
|
Dhermain F, Deutsch E. Stereotactic radiation and checkpoint inhibitors in melanoma patients with BM: a question of drug, timing or both? Ann Oncol 2016; 27:371-2. [DOI: 10.1093/annonc/mdw001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, Preville X, Sautès-Fridman C, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology 2016; 5:e1117740. [PMID: 27057469 PMCID: PMC4801444 DOI: 10.1080/2162402x.2015.1117740] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
28
|
Teresa Pinto A, Laranjeiro Pinto M, Patrícia Cardoso A, Monteiro C, Teixeira Pinto M, Filipe Maia A, Castro P, Figueira R, Monteiro A, Marques M, Mareel M, Dos Santos SG, Seruca R, Adolfo Barbosa M, Rocha S, José Oliveira M. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci Rep 2016; 6:18765. [PMID: 26735768 PMCID: PMC4702523 DOI: 10.1038/srep18765] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
In order to improve the efficacy of conventional radiotherapy, attention has been paid to immune cells, which not only modulate cancer cell response to therapy but are also highly recruited to tumours after irradiation. Particularly, the effect of ionizing radiation on macrophages, using therapeutically relevant doses, is not well understood. To evaluate how radiotherapy affects macrophage behaviour and macrophage-mediated cancer cell activity, human monocyte derived-macrophages were subjected, for a week, to cumulative ionizing radiation doses, as used during cancer treatment (2 Gy/fraction/day). Irradiated macrophages remained viable and metabolically active, despite DNA damage. NF-kappaB transcription activation and increased Bcl-xL expression evidenced the promotion of pro-survival activity. A significant increase of pro-inflammatory macrophage markers CD80, CD86 and HLA-DR, but not CCR7, TNF and IL1B was observed after 10 Gy cumulative doses, while anti-inflammatory markers CD163, MRC1, VCAN and IL-10 expression decreased, suggesting the modulation towards a more pro-inflammatory phenotype. Moreover, ionizing radiation induced macrophage morphological alterations and increased their phagocytic rate, without affecting matrix metalloproteases (MMP)2 and MMP9 activity. Importantly, irradiated macrophages promoted cancer cell-invasion and cancer cell-induced angiogenesis. Our work highlights macrophage ability to sustain cancer cell activities as a major concern that needs to be addressed to improve radiotherapy efficacy.
Collapse
Affiliation(s)
- Ana Teresa Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,FEUP-Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Marta Laranjeiro Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Ana Patrícia Cardoso
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,FEUP-Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Cátia Monteiro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Marta Teixeira Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal
| | - André Filipe Maia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC-Institute for Molecular and Cell Biology, University of Porto, Porto, 4200-465, Portugal
| | - Patrícia Castro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, B-9000, Belgium
| | - Susana Gomes Dos Santos
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Raquel Seruca
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| | - Mário Adolfo Barbosa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Sónia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Maria José Oliveira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|
29
|
Lamrani M, Sassi N, Paul C, Yousfi N, Boucher JL, Gauthier N, Labbé J, Seignez C, Racoeur C, Athias A, Guerreiro R, Vergely C, Rochette L, Bettaieb A, Jeannin JF. TLR4/IFNγ pathways induce tumor regression via NOS II-dependent NO and ROS production in murine breast cancer models. Oncoimmunology 2015; 5:e1123369. [PMID: 27467924 DOI: 10.1080/2162402x.2015.1123369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor (TLR) 4 agonists have emerged as a new group of molecules used for cancer therapy. They have been exploited to enhance the immunogenicity of current chemotherapeutic regimens. However, their effects on cancer cells remain elusive. Here, we showed that a TLR4 agonist, namely a synthetic lipid A analog (ALA), OM-174, exhibits antitumor effects in several mammary tumor mouse models. We also showed that immune components are involved in such effects, as attested to by the failure of ALA to induce tumor regression or an increase of animal survival in mice knocked-out for interferon γ (IFNγ) or TLR4. TLR4 and IFNγ receptor (INFR2) expressed by cancer cells are involved in the antitumor efficacy of ALA since this last did not inhibit tumor growth in mice bearing a tumor but lacking TLR4 or IFNγ receptor 2 (IFNR2). Mechanistic investigations revealed that nitric oxide (NO), superoxide and peroxynitrite produced by uncoupling of inducible NO synthase (NOS II) in cancer cells are key mediators of ALA and IFNγ-mediated tumor growth inhibition. We present here a comprehensive picture of tumor cell death induction, in vivo and in vitro, by immunotherapy and for the first time the involvement of the TLR4/IFNγ/NOS II pathway in immunotherapy was investigated.
Collapse
Affiliation(s)
- Myriam Lamrani
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Nejia Sassi
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Catherine Paul
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Nadhir Yousfi
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France
| | | | - Nolwenn Gauthier
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; INSERM U 866, Burgundy University, Dijon, France
| | - Jérôme Labbé
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; INSERM U 866, Burgundy University, Dijon, France
| | - Cédric Seignez
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Cindy Racoeur
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Anne Athias
- INSERM U 866, Burgundy University , Dijon, France
| | | | | | - Luc Rochette
- INSERM U 866, Burgundy University , Dijon, France
| | - Ali Bettaieb
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| | - Jean-François Jeannin
- EPHE, PSL Research University, Laboratoire d'Immunologie et Immunothérapie des Cancers, F-75014, Paris, France; Univ. Bourgogne Franche-Comté, LIIC EA7269, Dijon, France; INSERM U 866, Burgundy University, Dijon, France
| |
Collapse
|
30
|
Vacchelli E, Aranda F, Bloy N, Buqué A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Immunostimulation with cytokines in cancer therapy. Oncoimmunology 2015; 5:e1115942. [PMID: 27057468 DOI: 10.1080/2162402x.2015.1115942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023] Open
Abstract
During the past decade, great efforts have been dedicated to the development of clinically relevant interventions that would trigger potent (and hence potentially curative) anticancer immune responses. Indeed, developing neoplasms normally establish local and systemic immunosuppressive networks that inhibit tumor-targeting immune effector cells, be them natural or elicited by (immuno)therapy. One possible approach to boost anticancer immunity consists in the (generally systemic) administration of recombinant immunostimulatory cytokines. In a limited number of oncological indications, immunostimulatory cytokines mediate clinical activity as standalone immunotherapeutic interventions. Most often, however, immunostimulatory cytokines are employed as immunological adjuvants, i.e., to unleash the immunogenic potential of other immunotherapeutic agents, like tumor-targeting vaccines and checkpoint blockers. Here, we discuss recent preclinical and clinical advances in the use of some cytokines as immunostimulatory agents in oncological indications.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)
| | - Norma Bloy
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
31
|
Fichou N, Gouard S, Maurel C, Barbet J, Ferrer L, Morgenstern A, Bruchertseifer F, Faivre-Chauvet A, Bigot-Corbel E, Davodeau F, Gaschet J, Chérel M. Single-Dose Anti-CD138 Radioimmunotherapy: Bismuth-213 is More Efficient than Lutetium-177 for Treatment of Multiple Myeloma in a Preclinical Model. Front Med (Lausanne) 2015; 2:76. [PMID: 26582128 PMCID: PMC4631990 DOI: 10.3389/fmed.2015.00076] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022] Open
Abstract
Objectives Radioimmunotherapy (RIT) has emerged as a potential treatment option for multiple myeloma (MM). In humans, a dosimetry study recently showed the relevance of RIT using an antibody targeting the CD138 antigen. The therapeutic efficacy of RIT using an anti-CD138 antibody coupled to 213Bi, an α-emitter, was also demonstrated in a preclinical MM model. Since then, RIT with β-emitters has shown efficacy in treating hematologic cancer. In this paper, we investigate the therapeutic efficacy of RIT in the 5T33 murine MM model using a new anti-CD138 monoclonal antibody labeled either with 213Bi for α-RIT or 177Lu for β-RIT. Methods A new monoclonal anti-CD138 antibody, 9E7.4, was generated by immunizing a rat with a murine CD138-derived peptide. Antibody specificity was validated by flow cytometry, biodistribution, and α-RIT studies. Then, a β-RIT dose-escalation assay with the 177Lu-radiolabeled 9E7.4 mAb was performed in KalwRij C57/BL6 mice 10 days after i.v. engraftment with 5T33 MM cells. Animal survival and toxicological parameters were assessed to define the optimal activity. Results α-RIT performed with 3.7 MBq of 213Bi-labeled 9E7.4 anti-CD138 mAb increased median survival to 80 days compared to 37 days for the untreated control and effected cure in 45% of animals. β-RIT performed with 18.5 MBq of 177Lu-labeled 9E7.4 mAb was well tolerated and significantly increased mouse survival (54 vs. 37 days in the control group); however, no mice were cured with this treatment. Conclusion This study revealed the advantages of α-RIT in the treatment of MM in a preclinical model where β-RIT shows almost no efficacy.
Collapse
Affiliation(s)
- Nolwenn Fichou
- Centre Régional de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 INSERM, Université de Nantes , Nantes , France ; CNRS 6299, Université de Nantes , Nantes , France ; Université de Nantes , Nantes , France
| | - Sébastien Gouard
- Centre Régional de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 INSERM, Université de Nantes , Nantes , France ; CNRS 6299, Université de Nantes , Nantes , France ; Université de Nantes , Nantes , France
| | - Catherine Maurel
- Centre Régional de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 INSERM, Université de Nantes , Nantes , France ; CNRS 6299, Université de Nantes , Nantes , France ; Université de Nantes , Nantes , France
| | - Jacques Barbet
- Centre Régional de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 INSERM, Université de Nantes , Nantes , France ; CNRS 6299, Université de Nantes , Nantes , France ; Université de Nantes , Nantes , France
| | - Ludovic Ferrer
- Centre Régional de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 INSERM, Université de Nantes , Nantes , France ; CNRS 6299, Université de Nantes , Nantes , France ; Université de Nantes , Nantes , France ; Institut de Cancérologie de l'Ouest , Saint-Herblain , France
| | | | | | - Alain Faivre-Chauvet
- Centre Régional de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 INSERM, Université de Nantes , Nantes , France ; CNRS 6299, Université de Nantes , Nantes , France ; Université de Nantes , Nantes , France ; Nuclear Medicine Department, CHU Nantes , Nantes , France
| | - Edith Bigot-Corbel
- Centre Régional de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 INSERM, Université de Nantes , Nantes , France ; CNRS 6299, Université de Nantes , Nantes , France ; Université de Nantes , Nantes , France
| | - François Davodeau
- Centre Régional de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 INSERM, Université de Nantes , Nantes , France ; CNRS 6299, Université de Nantes , Nantes , France ; Université de Nantes , Nantes , France
| | - Joëlle Gaschet
- Centre Régional de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 INSERM, Université de Nantes , Nantes , France ; CNRS 6299, Université de Nantes , Nantes , France ; Université de Nantes , Nantes , France
| | - Michel Chérel
- Centre Régional de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 INSERM, Université de Nantes , Nantes , France ; CNRS 6299, Université de Nantes , Nantes , France ; Université de Nantes , Nantes , France ; Institut de Cancérologie de l'Ouest , Saint-Herblain , France
| |
Collapse
|
32
|
O'Sullivan Coyne G, Gulley JL. Adding fuel to the fire: immunogenic intensification. Hum Vaccin Immunother 2015; 10:3306-12. [PMID: 25483630 DOI: 10.4161/21645515.2014.973318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The durable long term clinical benefits seen for certain patients treated with immunotherapy agents has suggested there is significant therapeutic potential to be derived from these agents, as shown by the increasing prominence of this treatment strategy in upcoming clinical trials. There has been a renewed interest and focus on the drivers of tumoral antigen recognition, and the pathways by which various cells of the immune system can stimulate, propagate and execute an effective anti-tumor response. Various challenges lie ahead in the further development of these treatments, including induction of an endogenous anti-tumor response, tumor microenvironment modulation, and T-cell response amplification. Novel treatment combinations may prove of significant added benefit by immunogenic intensification.
Collapse
Key Words
- APC, antigen-presenting cells
- CARs, chimeric antigen receptors
- HER2, epidermal growth factor receptor 2
- MDSCs, myeloid-derived suppressor cells
- MHC I, major histocompatibility class I molecules
- PD-1, programmed death-1
- PD-L1
- PD-L1, programmed death-ligand-1
- TAA, tumor-associated antigen
- TAP, transporter of antigen processing
- TILs, tumor infiltrating lymphocytes
- Tregs, regulatory T cells
- activated T cell
- cancer
- checkpoint inhibitor
- immunogenic intensification
- mAB, monoclonal antibodies
- mCRPC, metastatic castration-resistant prostate cancer
- vaccine
Collapse
Affiliation(s)
- Geraldine O'Sullivan Coyne
- a Genitourinary Malignancies Branch; Medical Oncology Service; National Cancer Institute; National Institutes of Health ; Bethesda , MD USA
| | | |
Collapse
|
33
|
Immunogénicité de la chimiothérapie. ONCOLOGIE 2015. [DOI: 10.1007/s10269-015-2543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Fan Y, Moon JJ. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines (Basel) 2015; 3:662-85. [PMID: 26350600 PMCID: PMC4586472 DOI: 10.3390/vaccines3030662] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Garnett-Benson C, Hodge JW, Gameiro SR. Combination regimens of radiation therapy and therapeutic cancer vaccines: mechanisms and opportunities. Semin Radiat Oncol 2015; 25:46-53. [PMID: 25481266 DOI: 10.1016/j.semradonc.2014.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Radiation therapy (RT) is widely used with curative or palliative intent in the clinical management of multiple cancers. Although mainly aimed at direct tumor cell killing, mounting evidence suggests that radiation can alter the tumor to become an immunostimulatory milieu. Data suggest that the immunogenic effects of radiation can be exploited to promote synergistic antitumor effects in combination with immunotherapeutic agents. We review concepts associated with the immunogenic consequences of RT and highlight how preclinical findings are translating into clinical benefit for patients receiving combination regimens of RT and therapeutic cancer vaccines.
Collapse
Affiliation(s)
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
36
|
Yoshimoto Y, Kono K, Suzuki Y. ANTI-TUMOR IMMUNE RESPONSES INDUCED BY RADIOTHERAPY: A REVIEW. Fukushima J Med Sci 2015; 61:13-22. [PMID: 26135666 DOI: 10.5387/fms.2015-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An anti-tumor immune response is one of the most important factors that can determine treatment response and prognosis of cancer patients. Recent studies have demonstrated that radiotherapy can activate tumor-specific immune responses and that these responses contribute to the therapeutic efficacy. However, the exact mechanisms underlying the radiation-induced immune responses remain unclear. Better understanding of the mechanisms could facilitate the application of immune-activating radiotherapy and provide new treatment strategies. We previously demonstrated that tumor-specific T cell responses could be induced in esophageal cancer patients during and after chemoradiotherapy. Furthermore, in a mouse model, immune responses played an important role in determining the local and systemic therapeutic efficacy of radiotherapy that could be augmented by the immune checkpoint blockade. In this review, radiotherapy-induced immune responses, the mechanisms underlying the induction of those responses, and a practical application of the therapy are discussed.
Collapse
Affiliation(s)
- Yuya Yoshimoto
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet
| | | | | |
Collapse
|
37
|
Ménager J, Gorin JB, Maurel C, Drujont L, Gouard S, Louvet C, Chérel M, Faivre-Chauvet A, Morgenstern A, Bruchertseifer F, Davodeau F, Gaschet J, Guilloux Y. Combining α-Radioimmunotherapy and Adoptive T Cell Therapy to Potentiate Tumor Destruction. PLoS One 2015; 10:e0130249. [PMID: 26098691 PMCID: PMC4476754 DOI: 10.1371/journal.pone.0130249] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/19/2015] [Indexed: 11/18/2022] Open
Abstract
Ionizing radiation induces direct and indirect killing of cancer cells and for long has been considered as immunosuppressive. However, this concept has evolved over the past few years with the demonstration that irradiation can increase tumor immunogenicity and can actually favor the implementation of an immune response against tumor cells. Adoptive T-cell transfer (ACT) is also used to treat cancer and several studies have shown that the efficacy of this immunotherapy was enhanced when combined with radiation therapy. α-Radioimmunotherapy (α-RIT) is a type of internal radiotherapy which is currently under development to treat disseminated tumors. α-particles are indeed highly efficient to destroy small cluster of cancer cells with minimal impact on surrounding healthy tissues. We thus hypothesized that, in the setting of α-RIT, an immunotherapy like ACT, could benefit from the immune context induced by irradiation. Hence, we decided to further investigate the possibilities to promote an efficient and long-lasting anti-tumor response by combining α-RIT and ACT. To perform such study we set up a multiple myeloma murine model which express the tumor antigen CD138 and ovalbumine (OVA). Then we evaluated the therapeutic efficacy in the mice treated with α-RIT, using an anti-CD138 antibody coupled to bismuth-213, followed by an adoptive transfer of OVA-specific CD8+ T cells (OT-I CD8+ T cells). We observed a significant tumor growth control and an improved survival in the animals treated with the combined treatment. These results demonstrate the efficacy of combining α-RIT and ACT in the MM model we established.
Collapse
Affiliation(s)
- Jérémie Ménager
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | - Jean-Baptiste Gorin
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | - Catherine Maurel
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | | | - Sébastien Gouard
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | | | - Michel Chérel
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Alain Faivre-Chauvet
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France; CHU Nantes, Nuclear Medicine Department, Nantes, France
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - François Davodeau
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | - Joëlle Gaschet
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| | - Yannick Guilloux
- CRCNA-UMR 892 INSERM, Nantes, France; 6299 CNRS, Nantes, France; Université de Nantes, Nantes, France
| |
Collapse
|
38
|
Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev 2015; 41:503-10. [PMID: 25872878 PMCID: PMC4816218 DOI: 10.1016/j.ctrv.2015.03.011] [Citation(s) in RCA: 443] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 02/09/2023]
Abstract
BACKGROUND Recently, immunologic responses to localized irradiation are proposed as mediator of systemic effects after localized radiotherapy (called the abscopal effect). Here, we give an overview of both preclinical and clinical data about the abscopal effect in particular and link them with the immunogenic properties of radiotherapy. METHODS We searched Medline and Embase with the search term "abscopal", "(non-targeted irradiation) OR (non-targeted radiotherapy)" and "distant bystander" from 1960 until July, 2014. Only papers that cover radiotherapy in an oncological setting were selected and only if no concurrent cytotoxic treatment was given. Targeted immune therapy was allowed. RESULTS Twenty-three case reports, one retrospective study and 13 preclinical papers were selected. Eleven preclinical papers used a combination of immune modification and radiotherapy to achieve abscopal effects. Patient age range (28-83years) and radiation dose (median total dose 32Gy) varied. Fractionation size ranged from 1.2Gy to 26Gy. Time to documented abscopal response ranged between less than one and 24months, with a median reported time of 5months. Once an abscopal response was achieved, a median time of 13months went by before disease progression occurred or the reported follow-up ended (range 3-39months). CONCLUSION Preclinical data points heavily toward a strong synergy between radiotherapy and immune treatments. Recent case reports already illustrate that such a systemic effect of radiotherapy is possible when enhanced by targeted immune treatments. However, several issues concerning dosage, timing, patient selection and toxicity need to be resolved before the abscopal effect can become clinically relevant.
Collapse
Affiliation(s)
- Kobe Reynders
- KU Leuven - University of Leuven, Department of Oncology, Experimental Radiation Oncology, University Hospitals Leuven, Department of Radiation Oncology, B-3000 Leuven, Belgium.
| | - Tim Illidge
- Institute of Cancer Sciences, University of Manchester, Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Wilmslow Road, Withington M20 4BX, United Kingdom
| | - Shankar Siva
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 8006, Australia
| | - Joe Y Chang
- Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dirk De Ruysscher
- KU Leuven - University of Leuven, Department of Oncology, Experimental Radiation Oncology, University Hospitals Leuven, Department of Radiation Oncology, B-3000 Leuven, Belgium
| |
Collapse
|
39
|
Schölch S, Rauber C, Weitz J, Koch M, Huber PE. TLR activation and ionizing radiation induce strong immune responses against multiple tumor entities. Oncoimmunology 2015; 4:e1042201. [PMID: 26451314 DOI: 10.1080/2162402x.2015.1042201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022] Open
Abstract
Toll-like receptor (TLR) 7/8 ligands act together with radiotherapy and induce profound systemic antitumor immune reactions coordinated by dendritic cells and executed by natural killer (NK) and cytotoxic T cells. Combining TLR ligands and radiation improves both local and distant tumor control and has been shown to be effective against multiple tumor entities.
Collapse
Affiliation(s)
- Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery; Medizinische Fakultät Carl Gustav Carus; Technische Universität Dresden ; Dresden, Germany ; CCU Molecular and Radiation Oncology; German Cancer Research Center ; Heidelberg, Germany
| | - Conrad Rauber
- Department of Gastroenterology and Hepatology; University Hospital Heidelberg ; Heidelberg, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery; Medizinische Fakultät Carl Gustav Carus; Technische Universität Dresden ; Dresden, Germany
| | - Moritz Koch
- Department of Gastrointestinal, Thoracic and Vascular Surgery; Medizinische Fakultät Carl Gustav Carus; Technische Universität Dresden ; Dresden, Germany
| | - Peter E Huber
- CCU Molecular and Radiation Oncology; German Cancer Research Center ; Heidelberg, Germany ; Department of Radiation Oncology; University Hospital Center ; Heidelberg, Germany
| |
Collapse
|
40
|
Aranda F, Buqué A, Bloy N, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for oncological indications. Oncoimmunology 2015; 4:e1046673. [PMID: 26451319 DOI: 10.1080/2162402x.2015.1046673] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/15/2022] Open
Abstract
One particular paradigm of anticancer immunotherapy relies on the administration of (potentially) tumor-reactive immune effector cells. Generally, these cells are obtained from autologous peripheral blood lymphocytes (PBLs) ex vivo (in the context of appropriate expansion, activation and targeting protocols), and re-infused into lymphodepleted patients along with immunostimulatory agents. In spite of the consistent progress achieved throughout the past two decades in this field, no adoptive cell transfer (ACT)-based immunotherapeutic regimen is currently approved by regulatory agencies for use in cancer patients. Nonetheless, the interest of oncologists in ACT-based immunotherapy continues to increase. Accumulating clinical evidence indicates indeed that specific paradigms of ACT, such as the infusion of chimeric antigen receptor (CAR)-expressing autologous T cells, are associated with elevated rates of durable responses in patients affected by various neoplasms. In line with this notion, clinical trials investigating the safety and therapeutic activity of ACT in cancer patients are being initiated at an ever increasing pace. Here, we review recent preclinical and clinical advances in the development of ACT-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Fernando Aranda
- Group of Immune Receptors of the Innate and Adaptive System; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) ; Barcelona, Spain
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Francesca Castoldi
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Wolf Hervé Fridman
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Dept. of Immunology; 2nd Faculty of Medicine and University Hospital Motol; Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM; U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Dept. of Immunology; 2nd Faculty of Medicine and University Hospital Motol; Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France ; INSERM; U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France
| |
Collapse
|
41
|
Yoshimoto Y, Oike T, Okonogi N, Suzuki Y, Ando K, Sato H, Noda SE, Isono M, Mimura K, Kono K, Nakano T. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation. JOURNAL OF RADIATION RESEARCH 2015; 56:509-14. [PMID: 25755254 PMCID: PMC4426931 DOI: 10.1093/jrr/rrv007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/13/2015] [Accepted: 01/31/2015] [Indexed: 05/23/2023]
Abstract
X-ray radiotherapy activates tumor antigen-specific T-cell responses, and increases in the serum levels of high mobility group box 1 (HMGB1) induced by X-ray irradiation play a pivotal role in activating anti-tumor immunity. Here, we examined whether carbon-ion beams, as well as X-rays, can induce HMGB1 release from human cancer cell lines. The study examined five human cancer cell lines: TE2, KYSE70, A549, NCI-H460 and WiDr. The proportion of cells surviving X- or carbon-ion beam irradiation was assessed in a clonogenic assay. The D10, the dose at which 10% of cells survive, was calculated using a linear-quadratic model. HMGB1 levels in the culture supernatants were assessed by an ELISA. The D10 dose for X-rays in TE2, KYSE70, A549, NCI-H460 and WiDr cells was 2.1, 6.7, 8.0, 4.8 and 7.1 Gy, respectively, whereas that for carbon-ion beams was 0.9, 2.5, 2.7, 1.8 and 3.5 Gy, respectively. X-rays and carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of A549, NCI-H460 and WiDr cells at 72 h post-irradiation with a D10 dose. Furthermore, irradiation with X-rays or carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of all five cell lines at 96 h post-irradiation. There was no significant difference in the amount of HMGB1 induced by X-rays and carbon-ion beams at any time-point (except at 96 h for NCI-H460 cells); thus we conclude that comparable levels of HMGB1 were detected after irradiation with iso-survival doses of X-rays and carbon-ion beams.
Collapse
Affiliation(s)
- Yuya Yoshimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Noriyuki Okonogi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan Department of Radiation Oncology, Fukushima Medical University, 1-Hikariga-oka, Fukushima City 960-1295, Japan
| | - Ken Ando
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Shin-ei Noda
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Mayu Isono
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kousaku Mimura
- Department of Surgery, National University of Singapore, Level 8, NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Koji Kono
- Department of Surgery, National University of Singapore, Level 8, NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
42
|
Apetoh L, Ladoire S, Coukos G, Ghiringhelli F. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure? Ann Oncol 2015; 26:1813-1823. [PMID: 25922066 DOI: 10.1093/annonc/mdv209] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022] Open
Abstract
Recent clinical trials revealed the impressive efficacy of immunological checkpoint blockade in different types of metastatic cancers. Such data underscore that immunotherapy is one of the most promising strategies for cancer treatment. In addition, preclinical studies provide evidence that some cytotoxic drugs have the ability to stimulate the immune system, resulting in anti-tumor immune responses that contribute to clinical efficacy of these agents. These observations raise the hypothesis that the next step for cancer treatment is the combination of cytotoxic agents and immunotherapies. The present review aims to summarize the immune-mediated effects of chemotherapeutic agents and their clinical relevance, the biological and clinical features of immune checkpoint blockers and finally, the preclinical and clinical rationale for novel therapeutic strategies combining anticancer agents and immune checkpoint blockers.
Collapse
Affiliation(s)
- L Apetoh
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France
| | - S Ladoire
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France
| | - G Coukos
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - F Ghiringhelli
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France.
| |
Collapse
|
43
|
Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 2015; 6:187. [PMID: 25964783 PMCID: PMC4408862 DOI: 10.3389/fimmu.2015.00187] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/06/2015] [Indexed: 12/12/2022] Open
Abstract
The term "immunogenic cell death" (ICD) is commonly employed to indicate a peculiar instance of regulated cell death (RCD) that engages the adaptive arm of the immune system. The inoculation of cancer cells undergoing ICD into immunocompetent animals elicits a specific immune response associated with the establishment of immunological memory. Only a few agents are intrinsically endowed with the ability to trigger ICD. These include a few chemotherapeutics that are routinely employed in the clinic, like doxorubicin, mitoxantrone, oxaliplatin, and cyclophosphamide, as well as some agents that have not yet been approved for use in humans. Accumulating clinical data indicate that the activation of adaptive immune responses against dying cancer cells is associated with improved disease outcome in patients affected by various neoplasms. Thus, novel therapeutic regimens that trigger ICD are urgently awaited. Here, we discuss current combinatorial approaches to convert otherwise non-immunogenic instances of RCD into bona fide ICD.
Collapse
Affiliation(s)
- Lucillia Bezu
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France ; Faculté de Medecine, Université Paris-Sud , Le Kremlin-Bicêtre , France
| | - Ligia C Gomes-de-Silva
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France ; Department of Chemistry, University of Coimbra , Coimbra , Portugal
| | - Heleen Dewitte
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University , Ghent , Belgium ; Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel , Jette , Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel , Jette , Belgium
| | - Jitka Fucikova
- Sotio a.c. , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Radek Spisek
- Sotio a.c. , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Gustave Roussy Campus Cancer , Villejuif , France ; Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France
| | - Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Campus Cancer , Villejuif , France ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic ; Université Paris Descartes , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP , Paris , France
| |
Collapse
|
44
|
Abstract
Cancer vaccines are designed to promote tumor specific immune responses, particularly cytotoxic CD8 positive T cells that are specific to tumor antigens. The earliest vaccines, which were developed in 1994-95, tested non-mutated, shared tumor associated antigens that had been shown to be immunogenic and capable of inducing clinical responses in a minority of people with late stage cancer. Technological developments in the past few years have enabled the investigation of vaccines that target mutated antigens that are patient specific. Several platforms for cancer vaccination are being tested, including peptides, proteins, antigen presenting cells, tumor cells, and viral vectors. Standard of care treatments, such as surgery and ablation, chemotherapy, and radiotherapy, can also induce antitumor immunity, thereby having cancer vaccine effects. The monitoring of patients' immune responses at baseline and after standard of care treatment is shedding light on immune biomarkers. Combination therapies are being tested in clinical trials and are likely to be the best approach to improving patient outcomes.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Departments of Medicine, Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
45
|
Gaya A, Akle CA, Mudan S, Grange J. The Concept of Hormesis in Cancer Therapy - Is Less More? Cureus 2015; 7:e261. [PMID: 26180685 PMCID: PMC4494563 DOI: 10.7759/cureus.261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 12/21/2022] Open
Abstract
There has, in recent years, been a paradigm shift in our understanding of the role of the immune system in the development of cancers. Immune dysregulation, manifesting as chronic inflammation, not only facilitates the growth and spread of tumors but prevents the host from mounting effective immune defenses against it. Many attempts are being made to develop novel immunotherapeutic strategies, but there is growing evidence that a radical reevaluation of the mode of action of chemotherapeutic agents and ionizing radiation is required in the light of advances in immunology. Based on the concept of hormesis – defined as the presence of different modes of action of therapeutic modalities at different doses – a ‘repositioning’ of chemotherapy and radiotherapy may be required in all aspects of cancer management. In the case of chemotherapy, this may involve a change from the maximum tolerated dose concept to low dose intermittent (‘metronomic’) therapy, whilst in radiation therapy, highly accurate stereotactic targeting enables ablative, antigen-releasing (immunogenic) doses of radiation to be delivered to the tumor with sparing of surrounding normal tissues. Coupled with emerging immunotherapeutic procedures, the future of cancer treatment may well lie in repositioned chemotherapy, radiotherapy, and more localized debulking surgery.
Collapse
Affiliation(s)
- Andy Gaya
- London Oncology Clinic, Guy's and St Thomas' NHS Foundation Trust
| | | | | | | |
Collapse
|
46
|
Pol J, Bloy N, Buqué A, Eggermont A, Cremer I, Sautès-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide-based anticancer vaccines. Oncoimmunology 2015; 4:e974411. [PMID: 26137405 PMCID: PMC4485775 DOI: 10.4161/2162402x.2014.974411] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023] Open
Abstract
Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventions with superior adjuvant activity in patients. Here, we summarize the latest advances in the development of peptide vaccines for cancer therapy.
Collapse
Key Words
- APC, antigen-presenting cell
- CMP, carbohydrate-mimetic peptide
- EGFR, epidermal growth factor receptor
- FDA, Food and Drug Administration
- GM-CSF, granulocyte macrophage colony stimulating factor
- HPV, human papillomavirus
- IDH1, isocitrate dehydrogenase 1 (NADP+), soluble
- IDO1, indoleamine 2, 3-dioxygenase 1
- IFNα, interferon α
- IL-2, interleukin-2
- MUC1, mucin 1
- NSCLC, non-small cell lung carcinoma
- PADRE, pan-DR binding peptide epitope
- PPV, personalized peptide vaccination
- SLP, synthetic long peptide
- TAA, tumor-associated antigen
- TERT, telomerase reverse transcriptase
- TLR, Toll-like receptor
- TRA, tumor rejection antigen
- WT1
- carbohydrate-mimetic peptides
- immune checkpoint blockers
- immunostimulatory cytokines
- survivin
- synthetic long peptides
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM; U970; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM; U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
47
|
Buqué A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e1008814. [PMID: 26137403 PMCID: PMC4485728 DOI: 10.1080/2162402x.2015.1008814] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
Immunomodulatory monoclonal antibodies (mAbs) differ from their tumor-targeting counterparts because they exert therapeutic effects by directly interacting with soluble or (most often) cellular components of the immune system. Besides holding promise for the treatment of autoimmune and inflammatory disorders, immunomodulatory mAbs have recently been shown to constitute a potent therapeutic weapon against neoplastic conditions. One class of immunomodulatory mAbs operates by inhibiting safeguard systems that are frequently harnessed by cancer cells to establish immunological tolerance, the so-called "immune checkpoints." No less than 3 checkpoint-blocking mAbs have been approved worldwide for use in oncological indications, 2 of which during the past 12 months. These molecules not only mediate single-agent clinical activity in patients affected by specific neoplasms, but also significantly boost the efficacy of several anticancer chemo-, radio- or immunotherapies. Here, we summarize recent advances in the development of checkpoint-blocking mAbs, as well as of immunomodulatory mAbs with distinct mechanisms of action.
Collapse
Key Words
- CRC, colorectal carcinoma
- CTLA4, cytotoxic T lymphocyte-associated protein 4
- FDA, Food and Drug Administration
- IL, interleukin
- KIR, killer cell immunoglobulin-like receptor
- MEDI4736
- MPDL3280A
- NK, natural killer
- NSCLC, non-small cell lung carcinoma
- PD-1, programmed cell death 1
- RCC, renal cell carcinoma
- TGFβ1, transforming growth factor β1
- TLR, Toll-like receptor
- TNFRSF, tumor necrosis factor receptor superfamily
- Treg, regulatory T cell
- ipilimumab
- mAb, monoclonal antibody
- nivolumab
- pembrolizumab
- urelumab
Collapse
Affiliation(s)
- Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c.; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Wolf Hervé Fridman
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jitka Fucikova
- Sotio a.c.; Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Radek Spisek
- Sotio a.c.; Prague, Czech Republic
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
48
|
Obrist F, Manic G, Kroemer G, Vitale I, Galluzzi L. Trial Watch: Proteasomal inhibitors for anticancer therapy. Mol Cell Oncol 2015; 2:e974463. [PMID: 27308423 PMCID: PMC4904962 DOI: 10.4161/23723556.2014.974463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.
Collapse
Affiliation(s)
- Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”
| | - Lorenzo Galluzzi
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
49
|
Evgin L, Acuna SA, Tanese de Souza C, Marguerie M, Lemay CG, Ilkow CS, Findlay CS, Falls T, Parato KA, Hanwell D, Goldstein A, Lopez R, Lafrance S, Breitbach CJ, Kirn D, Atkins H, Auer RC, Thurman JM, Stahl GL, Lambris JD, Bell JC, McCart JA. Complement inhibition prevents oncolytic vaccinia virus neutralization in immune humans and cynomolgus macaques. Mol Ther 2015; 23:1066-1076. [PMID: 25807289 DOI: 10.1038/mt.2015.49] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) have shown promising clinical activity when administered by direct intratumoral injection. However, natural barriers in the blood, including antibodies and complement, are likely to limit the ability to repeatedly administer OVs by the intravenous route. We demonstrate here that for a prototype of the clinical vaccinia virus based product Pexa-Vec, the neutralizing activity of antibodies elicited by smallpox vaccination, as well as the anamnestic response in hyperimmune virus treated cancer patients, is strictly dependent on the activation of complement. In immunized rats, complement depletion stabilized vaccinia virus in the blood and led to improved delivery to tumors. Complement depletion also enhanced tumor infection when virus was directly injected into tumors in immunized animals. The feasibility and safety of using a complement inhibitor, CP40, in combination with vaccinia virus was tested in cynomolgus macaques. CP40 pretreatment elicited an average 10-fold increase in infectious titer in the blood early after the infusion and prolonged the time during which infectious virus was detectable in the blood of animals with preexisting immunity. Capitalizing on the complement dependence of antivaccinia antibody with adjunct complement inhibitors may increase the infectious dose of oncolytic vaccinia virus delivered to tumors in virus in immune hosts.
Collapse
Affiliation(s)
- Laura Evgin
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sergio A Acuna
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Monique Marguerie
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Chantal G Lemay
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Carolina S Ilkow
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Scott Findlay
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Theresa Falls
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kelley A Parato
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David Hanwell
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | - Alyssa Goldstein
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | - Roberto Lopez
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | - Sandra Lafrance
- Animal Resources Centre, University Health Network, Toronto, Ontario, Canada
| | | | | | - Harold Atkins
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rebecca C Auer
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua M Thurman
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Gregory L Stahl
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John C Bell
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| | - J Andrea McCart
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Kepp O, Semeraro M, Bravo-San Pedro JM, Bloy N, Buqué A, Huang X, Zhou H, Senovilla L, Kroemer G, Galluzzi L. eIF2α phosphorylation as a biomarker of immunogenic cell death. Semin Cancer Biol 2015; 33:86-92. [PMID: 25749194 DOI: 10.1016/j.semcancer.2015.02.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 12/20/2022]
Abstract
Cancer cells exposed to some forms of chemotherapy and radiotherapy die while eliciting an adaptive immune response. Such a functionally peculiar variant of apoptosis has been dubbed immunogenic cell death (ICD). One of the central events in the course of ICD is the activation of an endoplasmic reticulum (ER) stress response. This is instrumental for cells undergoing ICD to emit all the signals that are required for their demise to be perceived as immunogenic by the host, and culminates with the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). In particular, eIF2α phosphorylation is required for the pre-apoptotic exposure of the ER chaperone calreticulin (CALR) on the cell surface, which is a central determinant of ICD. Importantly, phosphorylated eIF2α can be quantified in both preclinical and clinical samples by immunoblotting or immunohistochemistry using phosphoneoepitope-specific monoclonal antibodies. Of note, the phosphorylation of eIF2α and CALR exposure do not necessarily correlate with each other, and neither of these parameters is sufficient for cell death to be perceived as immunogenic. Nonetheless, accumulating data indicate that assessing the degree of phosphorylation of eIF2α provides a convenient parameter to monitor ICD. Here, we discuss the role of the ER stress response in ICD and the potential value of eIF2α phosphorylation as a biomarker for this clinically relevant variant of apoptosis.
Collapse
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Michaela Semeraro
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, Paris, France
| | - José Manuel Bravo-San Pedro
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Xing Huang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Heng Zhou
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Laura Senovilla
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|