1
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Boissière-Michot F, Chateau MC, Thézenas S, Lafont V, Crapez E, Sharma P, Bobrie A, Roger P, Guiu S, Jacot W. Prognostic value of tertiary lymphoid structures in triple-negative breast cancer: integrated analysis with the tumor microenvironment and clinicopathological features. Front Immunol 2024; 15:1507371. [PMID: 39723208 PMCID: PMC11669358 DOI: 10.3389/fimmu.2024.1507371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Background In triple-negative breast cancer (TNBC), the most immunogenic breast cancer type, tumor-infiltrating lymphocytes (TILs) are an independent prognostic factor. Tertiary lymphoid structures (TLS) are an important TILs source, but they are not integrated in the current prognostic criteria. Methods In this retrospective study, TLS were assessed in hematein-eosin-saffron-stained (HES) histological sections from 397 early, chemotherapy-naive TNBC samples after primary surgical resection. Their association with i) classical clinicopathological features, ii) TILs and CD3+, CD8+, CD20+ lymphoid populations, iii) CD68+, CD163+, CD11b+, CD66b+ myeloid populations, and iv) expression of the PD1/PD-L1 and PVR/TIGIT axis immune checkpoint components and their prognostic significance were evaluated. Results TLS were observed in 88.2% of samples, mainly in peritumoral areas (86.1%). Increased amount of peritumoral TLS (PT-TLS) was significantly associated with younger age (p<0.001), smaller tumor size and higher tumor grade (both, p<0.001), HER2null tumors (versus HER2low tumors, p<0.002), and non-lobular histological type (p<0.016). TNBC with higher PT-TLS abundance displayed more often a basal-like (p<0.001) and not molecular-apocrine phenotype (p<0.001). TLS abundance was associated with TILs and hot tumor inflammatory pattern (both, p<0.001). Remarkably, PT-TLS abundance was positively associated with the density of the analyzed lymphoid (CD3+, CD8+, CD20+) and myeloid (CD68+, CD163+, CD11b+) cell populations (all p<0.001), with the exception of CD66b+ cells, as well as with expression of the PD1/PD-L1 and TIGIT/PVR immune checkpoint markers. In univariate analysis, beside the classical clinicopathological factors (tumor size, node involvement and adjuvant chemotherapy), TILs, hot tumors and PT-TLS were significantly associated with clinical outcome. Moreover, the risk of relapse was inversely correlated with PT-TLS abundance (Kaplan-Meier analysis). In multivariate analysis, pathological stage, adjuvant chemotherapy and PT-TLS remained correlated with relapse-free survival. Conclusion Our results suggest that TLS are a frequent feature in early TNBC and that their presence, particularly at the tumor periphery, recapitulates the tumor immune microenvironment. In our series, their prognostic value outperformed that of TILs. Therefore, their easy quantification on routine HES sections and their integration into the factors classically analyzed by pathologists could improve the clinical management of TNBC, a breast cancer type whose prognosis remains too poor.
Collapse
Affiliation(s)
| | - Marie-Christine Chateau
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France
| | - Simon Thézenas
- Biometry Department, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France
| | - Virginie Lafont
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier, France
| | - Evelyne Crapez
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier, France
| | - Priyanka Sharma
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier, France
| | - Angélique Bobrie
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier, France
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France
| | - Pascal Roger
- Pathology Department, Nîmes University Hospital, Nîmes, France
| | - Séverine Guiu
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier, France
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France
| | - William Jacot
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier, France
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, Montpellier, France
- Faculty of Medicine, Montpellier University, Montpellier, France
| |
Collapse
|
3
|
Roy N, Haq I, Ngo JC, Bennett DA, Teich AF, De Jager PL, Olah M, Sher F. Elevated expression of the retrotransposon LINE-1 drives Alzheimer's disease-associated microglial dysfunction. Acta Neuropathol 2024; 148:75. [PMID: 39604588 PMCID: PMC11602836 DOI: 10.1007/s00401-024-02835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Aberrant activity of the retrotransposable element long interspersed nuclear element-1 (LINE-1) has been hypothesized to contribute to cellular dysfunction in age-related disorders, including late-onset Alzheimer's disease (LOAD). However, whether LINE-1 is differentially expressed in cell types of the LOAD brain, and whether these changes contribute to disease pathology is largely unknown. Here, we examined patterns of LINE-1 expression across neurons, astrocytes, oligodendrocytes, and microglia in human postmortem prefrontal cortex tissue from LOAD patients and cognitively normal, age-matched controls. We report elevated immunoreactivity of the open reading frame 1 protein (ORF1p) encoded by LINE-1 in microglia from LOAD patients and find that this immunoreactivity correlates positively with disease-associated microglial morphology. In human iPSC-derived microglia (iMG), we found that CRISPR-mediated transcriptional activation of LINE-1 drives changes in microglial morphology and cytokine secretion and impairs the phagocytosis of amyloid beta (Aβ). We also find LINE-1 upregulation in iMG induces transcriptomic changes genes associated with antigen presentation and lipid metabolism as well as impacting the expression of many AD-relevant genes. Our data posit that heightened LINE-1 expression may trigger microglial dysregulation in LOAD and that these changes may contribute to disease pathogenesis, suggesting a central role for LINE-1 activity in human LOAD.
Collapse
Affiliation(s)
- Nainika Roy
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Imdadul Haq
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jason C Ngo
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew F Teich
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Olah
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Falak Sher
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Panda SK, Robinson N, Desiderio V. Decoding secret role of mesenchymal stem cells in regulating cancer stem cells and drug resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189205. [PMID: 39481663 DOI: 10.1016/j.bbcan.2024.189205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Drug resistance caused by the efflux of chemotherapeutic drugs is one of the most challenging obstacles to successful cancer therapy. Several efflux transporters have been identified since the discovery of the P-gp/ABCB1 transporter in 1976. Over the last four decades, researchers have focused on developing efflux transporter inhibitors to overcome drug resistance. However, even with the third-generation inhibitors available, we are still far from effectively inhibiting the efflux transporters. Additionally, Cancer stem cells (CSCs) pose another significant challenge, contributing to cancer recurrence even after successful treatment. The ability of CSCs to enter dormancy and evade detection makes them almost invulnerable to chemotherapeutic drug treatment. In this review, we discuss how Mesenchymal stem cells (MSCs), one of the key components of the Tumor Microenvironment (TME), regulate both the CSCs and efflux transporters. We propose a new approach focusing on MSCs, which can be crucial to successfully address CSCs and efflux transporters.
Collapse
Affiliation(s)
- Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Nirmal Robinson
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
5
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Dai X, Dai Z, Fu J, Liang Z, Du P, Wu T. Prognostic significance of negative lymph node count in microsatellite instability-high colorectal cancer. World J Surg Oncol 2024; 22:186. [PMID: 39030562 PMCID: PMC11264611 DOI: 10.1186/s12957-024-03469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) tumors, with elevated tumor mutational burden and expression of neoantigens, represent a distinct immune-activated subpopulation in colorectal cancer (CRC), characterized by strong lymph node reaction, locally advanced tumor and higher total lymph nodes harvested (TLN), but less metastatic lymph nodes and fewer incidence of III-IV stage. Host immune response to tumor and lymph nodes may be an important prognostic factor. However, N stage and LNR (Lymph-Node Ratio) have limitations in predicting the prognosis of MSI-H patients. Negative lymph node count (NLC) provided a more precise representation of immune activation status and extent of tumor metastasis. The study aims to detect prognostic significance of NLC in MSI-H CRC patients, and compare it with N stage, TLN and LNR. METHODS Retrospective data of 190 consecutive MSI-H CRC patients who received curative resection were collected. Survival analyses were performed using the Kaplan-Meier method. Clinicopathological variables including NLC, N stage, TLN and LNR were studied in univariate and multivariate COX regression analyses. ROC (receiver operating characteristic curve) and concordance index were employed to compare the differences in predictive efficacy between NLC, N stage, TLN and LNR. RESULTS Patients with increased NLC experienced a significantly improved 5-years DFS and OS in Kaplan-Meier analysis, univariate analysis, and multivariate analysis, independent of potential confounders examined. Increased NLC corresponded to elevated 5-years DFS rate and 5-years OS rate. AUC (area under curve) and concordance index of NLC in DFS and OS predicting were both significantly higher than N stage, TLN and LNR. CONCLUSIONS Negative lymph node is an important independent prognostic factor for MSI-H patients. Reduced NLC is associated with tumor recurrence and poor survival, which is a stronger prognostic factor than N stage, TLN and LNR.
Collapse
Affiliation(s)
- Xuan Dai
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhujiang Dai
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jihong Fu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonglin Liang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tingyu Wu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Hossain SM, Carpenter C, Eccles MR. Genomic and Epigenomic Biomarkers of Immune Checkpoint Immunotherapy Response in Melanoma: Current and Future Perspectives. Int J Mol Sci 2024; 25:7252. [PMID: 39000359 PMCID: PMC11241335 DOI: 10.3390/ijms25137252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) demonstrate durable responses, long-term survival benefits, and improved outcomes in cancer patients compared to chemotherapy. However, the majority of cancer patients do not respond to ICIs, and a high proportion of those patients who do respond to ICI therapy develop innate or acquired resistance to ICIs, limiting their clinical utility. The most studied predictive tissue biomarkers for ICI response are PD-L1 immunohistochemical expression, DNA mismatch repair deficiency, and tumour mutation burden, although these are weak predictors of ICI response. The identification of better predictive biomarkers remains an important goal to improve the identification of patients who would benefit from ICIs. Here, we review established and emerging biomarkers of ICI response, focusing on epigenomic and genomic alterations in cancer patients, which have the potential to help guide single-agent ICI immunotherapy or ICI immunotherapy in combination with other ICI immunotherapies or agents. We briefly review the current status of ICI response biomarkers, including investigational biomarkers, and we present insights into several emerging and promising epigenomic biomarker candidates, including current knowledge gaps in the context of ICI immunotherapy response in melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Carien Carpenter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Molimard C, Dor F, Overs A, Monnien F, Gessain G, Kedochim L, D'Angelo F, Abad M, Heberle M, Derangère V, Ghiringhelli F, Vuitton L, Valmary-Degano S, Borg C, Lakkis Z, Bibeau F. Evaluation of immune infiltrate according to the HER2 status in colorectal cancer. Dig Liver Dis 2024; 56:853-860. [PMID: 37845155 DOI: 10.1016/j.dld.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND AND AIMS In colorectal cancer (CRC), HER2 targeting is a promising treatment and immune infiltrate is an important area of research and strategy. Data regarding HER2 status and immune infiltrate are lacking. The aim of this study was to compare the immune infiltrate between HER2 amplified and non-amplified categories in proficient MisMatchRepair (pMMR)/microsatellite stable (MSS) CRC. METHODS HER2 immunohistochemistry (IHC) and fluorescence in situ hybridization were performed in a retrospective series of 654 CRC. Lymphocyte infiltrate was analysed by anti-CD3, CD8 and CD4 IHC and evaluated digitally using QuPath software. RESULTS Among the 654 CRC, we first observed a decreased CD3+ and CD8+ infiltrate between HER2 amplified (all IHC 3+ except one 2+) and non-amplified HER2 2+ IHC CRC (p = 0.059 and 0.072 respectively). A supplementary analysis of 258 pMMR/MSS CRC from the previous cohort, displaying all the IHC scores (0, 1+, 2+, 3+), showed a lower CD3+ infiltrate between HER2 amplified versus HER2 0 (p = 0.002), 1+ (p = 0.088) and non-amplified 2+ (p = 0.081) IHC cases. CONCLUSIONS Our original findings suggest that in pMMR/MSS CRC, the immune infiltrate is reduced in HER2 amplified versus other HER2 categories. These data might be useful for future strategies combining anti-HER2 treatments and immune checkpoint inhibitors and need to be confirmed in larger CRC cohorts.
Collapse
Affiliation(s)
- Chloé Molimard
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France.
| | - Fanny Dor
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | - Alexis Overs
- Department of Oncobiology, University Hospital of Besançon, Besançon, France
| | - Franck Monnien
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | | | - Loïs Kedochim
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | - Flavia D'Angelo
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | - Marine Abad
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | - Morgane Heberle
- Department of Clinical Research, University Hospital of Besançon, Besançon, France
| | - Valentin Derangère
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
| | - Lucine Vuitton
- Department of Gastroenterology, University Hospital of Besançon, Besançon, France
| | - Séverine Valmary-Degano
- University Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, CHU de Grenoble-Alpes, F-38000 Grenoble, France
| | - Christophe Borg
- Department of Oncology, University Hospital of Besançon, Besançon, France
| | - Zaher Lakkis
- Department of Digestive Surgery, University Hospital of Besançon, Besançon, France
| | - Fréderic Bibeau
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| |
Collapse
|
9
|
Pesce E, Cordiglieri C, Bombaci M, Eppenberger-Castori S, Oliveto S, Manara C, Crosti M, Ercan C, Coto M, Gobbini A, Campagnoli S, Donnarumma T, Martinelli M, Bevilacqua V, De Camilli E, Gruarin P, Sarnicola ML, Cassinotti E, Baldari L, Viale G, Biffo S, Abrignani S, Terracciano LM, Grifantini R. TMEM123 a key player in immune surveillance of colorectal cancer. Front Immunol 2023; 14:1194087. [PMID: 37426665 PMCID: PMC10327427 DOI: 10.3389/fimmu.2023.1194087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-associated death. In the tumor site, the interplay between effector immune cells and cancer cells determines the balance between tumor elimination or outgrowth. We discovered that the protein TMEM123 is over-expressed in tumour-infiltrating CD4 and CD8 T lymphocytes and it contributes to their effector phenotype. The presence of infiltrating TMEM123+ CD8+ T cells is associated with better overall and metastasis-free survival. TMEM123 localizes in the protrusions of infiltrating T cells, it contributes to lymphocyte migration and cytoskeleton organization. TMEM123 silencing modulates the underlying signaling pathways dependent on the cytoskeletal regulator WASP and the Arp2/3 actin nucleation complex, which are required for synaptic force exertion. Using tumoroid-lymphocyte co-culture assays, we found that lymphocytes form clusters through TMEM123, anchoring to cancer cells and contributing to their killing. We propose an active role for TMEM123 in the anti-cancer activity of T cells within tumour microenvironment.
Collapse
Affiliation(s)
- Elisa Pesce
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Bombaci
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Stefania Oliveto
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Manara
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Mariacristina Crosti
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Caner Ercan
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Mairene Coto
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Andrea Gobbini
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | - Valeria Bevilacqua
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa De Camilli
- Department of Pathology, European Institute of Oncology, Milan, Italy
| | - Paola Gruarin
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria L. Sarnicola
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- Department of Surgery, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovica Baldari
- Department of Surgery, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Stefano Biffo
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Luigi M. Terracciano
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- CheckmAb Srl, Milan, Italy
| |
Collapse
|
10
|
Frouin E, Alleyrat C, Godet J, Karayan-Tapon L, Sinson H, Morel F, Lecron JC, Favot L. The M2 macrophages infiltration of sebaceous tumors is linked to the aggressiveness of tumors but not to the mismatch repair pathway. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04629-x. [PMID: 36763173 DOI: 10.1007/s00432-023-04629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE The immune microenvironment of sebaceous neoplasms (SNs) has been poorly explored, especially in benign lesions, and never correlated to the mismatch repair (MMR) status. METHODS We conducted an immuno-histological study to analyze the immune microenvironment of SNs. A tissue microarray was constructed including sebaceous adenomas (SAs), sebaceomas (Ss) and sebaceous carcinomas (SCs) to performed immuno-histological analysis of T cells, B cells, macrophages, dendritic cells, and expression of Programmed Death-1 (PD-1) and Programmed Death Ligand 1 (PD-L1). An automatized count was performed using the QuPath® software. Composition of the cellular microenvironment was compared to the aggressiveness, the MMR status, and to Muir-Torre syndrome (MTS). RESULTS We included 123 SNs (43 SAs, 19 Ss and 61 SCs) for which 71.5% had a dMMR phenotype. A higher infiltration of macrophages (CD68 +) of M2 phenotype (CD163 +) and dendritic cells (CD11c +) was noticed in SCs compared to benign SNs (SAs and Ss). Programmed cell death ligand-1 but not PD-1 was expressed by more immune cells in SCs compared to benign SNs. No difference in the immune cell composition regarding the MMR status, or to MTS was observed. CONCLUSION In SNs, M2 macrophages and dendritic cells infiltrates are associated with the progression and the malignant transformation of tumors. High PD-L1 expression in immune cells in SCs is an argument for the use of immunotherapy by anti-PD1 or PD-L1 in metastatic patients. The lack of correlation between the composition of immune cells in SNs and the MMR status emphasizes the singularity of SNs among MMR-associated malignancies.
Collapse
Affiliation(s)
- Eric Frouin
- Pathology Department, University Hospital of Poitiers, Poitiers, France. .,LITEC, Université de Poitiers, Poitiers, France.
| | - Camille Alleyrat
- Plateforme Méthodologie Biostatistiques, Data-Management, University Hospital of Poitiers, 86073, Poitiers, France
| | - Julie Godet
- Pathology Department, University Hospital of Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- ProDiCeT, Université de Poitiers, Poitiers, France.,Department of Cancer Biology, CHU de Poitiers, University Hospital of Poitiers, Poitiers, France
| | - Hélinie Sinson
- Pathology Department, University Hospital of Poitiers, Poitiers, France
| | | | - Jean-Claude Lecron
- LITEC, Université de Poitiers, Poitiers, France.,Department of Immunology and Inflammation, University Hospital of Poitiers, Poitiers, France
| | - Laure Favot
- LITEC, Université de Poitiers, Poitiers, France
| |
Collapse
|
11
|
Gulubova MV, Chonov DC, Ivanova KV, Hristova MK, Krasimirova-Ignatova MM, Vlaykova TI. Intratumoural expression of IL-6/STAT3, IL-17 and FOXP3 immune cells in the immunosuppressive tumour microenvironment of colorectal cancer Immune cells-positive for IL-6, STAT3, IL-17 and FOXP3 and colorectal cancer development. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2072765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Dimitur Chavdarov Chonov
- Department of General and Operative Surgery, Trakia University, Medical Faculty, Stara Zagora Bulgaria
- Ward of Operative Surgery, University Hospital “Prof. D-r Stoyan Kirkovich”, Stara Zagora, Bulgaria
| | - Koni Vancho Ivanova
- Department of Pathology, Trakia University, Medical Faculty, Stara Zagora, Bulgaria
| | | | | | - Tatyana Ivanova Vlaykova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
12
|
Liang Z, Sun R, Tu P, Liang Y, Liang L, Liu F, Bian Y, Yin G, Zhao F, Jiang M, Gu J, Tang D. Immune-related gene-based prognostic index for predicting survival and immunotherapy outcomes in colorectal carcinoma. Front Immunol 2022; 13:944286. [PMID: 36591255 PMCID: PMC9795839 DOI: 10.3389/fimmu.2022.944286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Colorectal cancer shows high incidence and mortality rates. Immune checkpoint blockade can be used to treat colorectal carcinoma (CRC); however, it shows limited effectiveness in most patients. Methods To identify patients who may benefit from immunotherapy using immune checkpoint inhibitors, we constructed an immune-related gene prognostic index (IRGPI) for predicting the efficacy of immunotherapy in patients with CRC. Transcriptome datasets and clinical information of patients with CRC were used to identify differential immune-related genes between tumor and para-carcinoma tissue. Using weighted correlation network analysis and Cox regression analysis, the IRGPI was constructed, and Kaplan-Meier analysis was used to evaluate its predictive ability. We also analyzed the molecular and immune characteristics between IRGPI high-and low-risk subgroups, performed sensitivity analysis of ICI treatment, and constructed overall survival-related receiver operating characteristic curves to validate the IRGPI. Finally, IRGPI genes and tumor immune cell infiltration in CRC model mice with orthotopic metastases were analyzed to verify the results. Results The IRGPI was constructed based on the following 11 hub genes: ADIPOQ, CD36, CCL24, INHBE, UCN, IL1RL2, TRIM58, RBCK1, MC1R, PPARGC1A, and LGALS2. Patients with CRC in the high-risk subgroup showed longer overall survival than those in the low-risk subgroup, which was confirmed by GEO database. Clinicopathological features associated with cancer progression significantly differed between the high- and low-risk subgroups. Furthermore, Kaplan-Meier analysis of immune infiltration showed that the increased infiltration of naïve B cells, macrophages M1, and regulatory T cells and reduced infiltration of resting dendritic cells and mast cells led to a worse overall survival in patients with CRC. The ORC curves revealed that IRGPI predicted patient survival more sensitive than the published tumor immune dysfunction and rejection and tumor inflammatory signature. Discussion Thus, the low-risk subgroup is more likely to benefit from ICIs than the high-risk subgroup. CRC model mice showed higher proportions of Tregs, M1 macrophages, M2 macrophages and lower proportions of B cells, memory B cell immune cell infiltration, which is consistent with the IRGPI results. The IRGPI can predict the prognosis of patients with CRC, reflect the CRC immune microenvironment, and distinguish patients who are likely to benefit from ICI therapy.
Collapse
Affiliation(s)
- Zhongqing Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruolan Sun
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fuyan Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong Bian
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Gang Yin
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fan Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mingchen Jiang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Junfei Gu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Decai Tang, ; Junfei Gu,
| | - Decai Tang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Decai Tang, ; Junfei Gu,
| |
Collapse
|
13
|
Zhang Z, Zhou X, Guo J, Zhang F, Qian Y, Wang G, Duan M, Wang Y, Zhao H, Yang Z, Liu Z, Jiang X. TA-MSCs, TA-MSCs-EVs, MIF: their crosstalk in immunosuppressive tumor microenvironment. J Transl Med 2022; 20:320. [PMID: 35842634 PMCID: PMC9287873 DOI: 10.1186/s12967-022-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.
Collapse
Affiliation(s)
- Zhenghou Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinshuai Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiping Qian
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiying Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
14
|
Nebot-Bral L, Hollebecque A, Yurchenko AA, de Forceville L, Danjou M, Jouniaux JM, Rosa RCA, Pouvelle C, Aoufouchi S, Vuagnat P, Smolenschi C, Colomba E, Leary A, Marabelle A, Scoazec JY, Cassard L, Nikolaev S, Chaput N, Kannouche P. Overcoming resistance to αPD-1 of MMR-deficient tumors with high tumor-induced neutrophils levels by combination of αCTLA-4 and αPD-1 blockers. J Immunother Cancer 2022; 10:e005059. [PMID: 35896284 PMCID: PMC9335020 DOI: 10.1136/jitc-2022-005059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clinical studies have highlighted the efficacy of anti-programmed death 1 (αPD-1) monoclonal antibodies in patients with DNA mismatch repair-deficient (MMRD) tumors. However, the responsiveness of MMRD cancers to αPD-1 therapy is highly heterogeneous, and the origins of this variability remain not fully understood. METHODS 4T1 and CT26 mouse tumor cell lines were inactivated for the MMRD gene Msh2, leading to a massive accumulation of mutations after serial passages of cells. Insertions/deletion events and mutation load were evaluated by whole exome sequencing. Mice bearing highly mutated MMRD tumor or parental tumors were treated with αPD-1 and tumor volume was monitored. Immune cell type abundance was dynamically assessed in the tumor microenvironment and the blood by flow cytometry. Neutrophils were depleted in mice using αLY6G antibody, and regulatory T (Treg) cell population was reduced with αCD25 or anti-cytotoxic T-lymphocytes-associated protein 4 (αCTLA-4) antibodies. Patients with MMRD tumors treated with immune checkpoint blockade-based therapy were retrospectively identified and neutrophil-to-lymphocyte ratio (NLR) was evaluated and examined for correlation with clinical benefit. RESULTS By recapitulating mismatch repair deficiency in different mouse tumor models, we revealed that elevated circulating tumor-induced neutrophils (TIN) in hypermutated MMRD tumors hampered response to αPD-1 monotherapy. Importantly, depletion of TIN using αLy-6G antibody reduced Treg cells and restored αPD-1 response. Conversely, targeting Treg cells by αCD25 or αCTLA-4 antibodies limited peripheral TIN accumulation and elicited response in αPD-1-resistant MMRD tumors, highlighting a crosstalk between TIN and Treg cells. Thus, αPD-1+αCTLA-4 combination overcomes TIN-induced resistance to αPD-1 in mice bearing MMRD tumors. Finally, in a cohort of human (high microsatellite instability)/MMRD tumors we revealed that early on-treatment change in the NLR ratio may predict resistance to αPD-1 therapy. CONCLUSIONS TIN countered αPD-1 efficacy in MMRD tumors. Since αCTLA-4 could restrict TIN accumulation, αPD-1+αCTLA-4 combination overcomes αPD-1 resistance in hosts with hypermutated MMRD tumors displaying abnormal neutrophil accumulation.
Collapse
Affiliation(s)
- Laetitia Nebot-Bral
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Antoine Hollebecque
- Département d’Innovation Thérapeutique et d’Essais Précoces, Gustave Roussy, F-94805, Villejuif, France
| | - Andrey A Yurchenko
- INSERM-U981, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Louise de Forceville
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Mathieu Danjou
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Jean-Mehdi Jouniaux
- Laboratoire d'Immunomonitoring en Oncologie, Unité US-23 INSERM, UMS-3655 CNRS, Gustave Roussy, F-94805 Villejuif, France
| | - Reginaldo C A Rosa
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Caroline Pouvelle
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Said Aoufouchi
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Perrine Vuagnat
- Département d’Innovation Thérapeutique et d’Essais Précoces, Gustave Roussy, F-94805, Villejuif, France
| | - Cristina Smolenschi
- Département de médecine oncologique, Gustave Roussy, F-94805 Villejuif, France
| | - Emeline Colomba
- Département de médecine oncologique, Gustave Roussy, F-94805 Villejuif, France
| | - Alexandra Leary
- Département de médecine oncologique, Gustave Roussy, F-94805 Villejuif, France
| | - Aurelien Marabelle
- Département d’Innovation Thérapeutique et d’Essais Précoces, Gustave Roussy, F-94805, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Jean-Yves Scoazec
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Département de Biologie et pathologie médicales, Gustave Roussy, F-94805 Villejuif, France
| | - Lydie Cassard
- Laboratoire d'Immunomonitoring en Oncologie, Unité US-23 INSERM, UMS-3655 CNRS, Gustave Roussy, F-94805 Villejuif, France
| | - Sergey Nikolaev
- INSERM-U981, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Nathalie Chaput
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
- Laboratoire d'Immunomonitoring en Oncologie, Unité US-23 INSERM, UMS-3655 CNRS, Gustave Roussy, F-94805 Villejuif, France
- Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France
| | - Patricia Kannouche
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| |
Collapse
|
15
|
Sorrentino C, D'Antonio L, Fieni C, Ciummo SL, Di Carlo E. Colorectal Cancer-Associated Immune Exhaustion Involves T and B Lymphocytes and Conventional NK Cells and Correlates With a Shorter Overall Survival. Front Immunol 2022; 12:778329. [PMID: 34975867 PMCID: PMC8716410 DOI: 10.3389/fimmu.2021.778329] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer worldwide, with a growing impact on public health and clinical management. Immunotherapy has shown promise in the treatment of advanced cancers, but needs to be improved for CRC, since only a limited fraction of patients is eligible for treatment, and most of them develop resistance due to progressive immune exhaustion. Here, we identify the transcriptional, molecular, and cellular traits of the immune exhaustion associated with CRC and determine their relationships with the patient's clinic-pathological profile. Bioinformatic analyses of RNA-sequencing data of 594 CRCs from TCGA PanCancer collection, revealed that, in the wide range of immune exhaustion genes, those coding for PD-L1, LAG3 and T-bet were associated (Cramér's V=0.3) with MSI/dMMR tumors and with a shorter overall survival (log-rank test: p=0.0004, p=0.0014 and p=0.0043, respectively), whereas high levels of expression of EOMES, TRAF1, PD-L1, FCRL4, BTLA and SIGLEC6 were associated with a shorter overall survival (log-rank test: p=0.0003, p=0.0188, p=0.0004, p=0.0303, p=0.0052 and p=0.0033, respectively), independently from the molecular subtype of CRC. Expression levels of PD-L1, PD-1, LAG3, EOMES, T-bet, and TIGIT were significantly correlated with each other and associated with genes coding for CD4+ and CD8+CD3+ T cell markers and NKp46+CD94+EOMES+T-bet+ cell markers, (OR >1.5, p<0.05), which identify a subset of group 1 innate lymphoid cells, namely conventional (c)NK cells. Expression of TRAF1 and BTLA co-occurred with both T cell markers, CD3γ, CD3δ, CD3ε, CD4, and B cell markers, CD19, CD20 and CD79a (OR >2, p<0.05). Expression of TGFβ1 was associated only with CD4 + and CD8+CD3ε+ T cell markers (odds ratio >2, p<0.05). Expression of PD-L2 and IDO1 was associated (OR >1.5, p<0.05) only with cNK cell markers, whereas expression of FCRL4, SIGLEC2 and SIGLEC6 was associated (OR >2.5; p<0.05) with CD19+CD20+CD79a+ B cell markers. Morphometric examination of immunostained CRC tissue sections, obtained from a validation cohort of 53 CRC patients, substantiated the biostatistical findings, showing that the highest percentage of immune exhaustion gene expressing cells were found in tumors from short-term survivors and that functional exhaustion is not confined to T lymphocytes, but also involves B cells, and cNK cells. This concept was strengthened by CYBERSORTx analysis, which revealed the expression of additional immune exhaustion genes, in particular FOXP1, SIRT1, BATF, NR4A1 and TOX, by subpopulations of T, B and NK cells. This study provides novel insight into the immune exhaustion landscape of CRC and emphasizes the need for a customized multi-targeted therapeutic approach to overcome resistance to current immunotherapy.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
16
|
Chen L, Jiang X, Zhang Q, Li Q, Zhang X, Zhang M, Yu Q, Gao D. How to overcome tumor resistance to anti-PD-1/PD-L1 therapy by immunotherapy modifying the tumor microenvironment in MSS CRC. Clin Immunol 2022; 237:108962. [DOI: 10.1016/j.clim.2022.108962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
|
17
|
Mowat C, Mosley SR, Namdar A, Schiller D, Baker K. Anti-tumor immunity in mismatch repair-deficient colorectal cancers requires type I IFN-driven CCL5 and CXCL10. J Exp Med 2021; 218:e20210108. [PMID: 34297038 PMCID: PMC8313406 DOI: 10.1084/jem.20210108] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) contain abundant CD8+ tumor-infiltrating lymphocytes (TILs) responding to the abundant neoantigens from their unstable genomes. Priming of such tumor-targeted TILs first requires recruitment of CD8+ T cells into the tumors, implying that this is an essential prerequisite of successful dMMR anti-tumor immunity. We have discovered that selective recruitment and activation of systemic CD8+ T cells into dMMR CRCs strictly depend on overexpression of CCL5 and CXCL10 due to endogenous activation of cGAS/STING and type I IFN signaling by damaged DNA. TIL infiltration into orthotopic dMMR CRCs is neoantigen-independent and followed by induction of a resident memory-like phenotype key to the anti-tumor response. CCL5 and CXCL10 could be up-regulated by common chemotherapies in all CRCs, indicating that facilitating CD8+ T cell recruitment underlies their efficacy. Induction of CCL5 and CXCL10 thus represents a tractable therapeutic strategy to induce TIL recruitment into CRCs, where local priming can be maximized even in neoantigen-poor CRCs.
Collapse
Affiliation(s)
- Courtney Mowat
- Department of Oncology, University of Alberta, Edmonton, Canada
| | | | - Afshin Namdar
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Daniel Schiller
- Department of Surgery, Royal Alexandra Hospital, Edmonton, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| |
Collapse
|
18
|
Wallace K, El Nahas GJ, Bookhout C, Thaxton JE, Lewin DN, Nikolaishvili-Feinberg N, Cohen SM, Brazeal JG, Hill EG, Wu JD, Baron JA, Alekseyenko AV. Immune Responses Vary in Preinvasive Colorectal Lesions by Tumor Location and Histology. Cancer Prev Res (Phila) 2021; 14:885-892. [PMID: 34341013 PMCID: PMC8811707 DOI: 10.1158/1940-6207.capr-20-0592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Immune responses vary in colorectal cancers, which strongly influence prognosis. However, little is known about the variance in immune response within preinvasive lesions. The study aims to investigate how the immune contexture differs by clinicopathologic features (location, histology, dysplasia) associated with progression and recurrence in early carcinogenesis. We performed a cross-sectional study using preinvasive lesions from the surgical pathology laboratory at the Medical University of South Carolina. We stained the tissues with immunofluorescence antibodies, then scanned and analyzed expression using automated image analysis software. We stained CD117 as a marker of mast cells, CD4/RORC to indicate Th17 cells, MICA/B as a marker of NK-cell ligands, and also used antibodies directed against cytokines IL6, IL17A, and IFNγ. We used negative binomial regression analysis to compare analyte density counts by location, histology, degree of dysplasia adjusted for age, sex, race, and batch. All immune markers studied (except IL17a) had significantly higher density counts in the proximal colon than distal colon and rectum. Increases in villous histology were associated with significant decreases in immune responses for IL6, IL17a, NK ligand, and mast cells. No differences were observed in lesions with low- and high-grade dysplasia, except in mast cells. The lesions of the proximal colon were rich in immune infiltrate, paralleling the responses observed in normal mucosa and invasive disease. The diminishing immune response with increasing villous histology suggests an immunologically suppressive tumor environment. Our findings highlight the heterogeneity of the immune responses in preinvasive lesions, which may have implications for prevention strategies. PREVENTION RELEVANCE: Our study is focused on immune infiltrate expression in preinvasive colorectal lesions; our results suggest important differences by clinicopathologic features that have implications for immune prevention research.
Collapse
Affiliation(s)
- Kristin Wallace
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina.
- Department of Public Health Sciences, MUSC, Charleston, South Carolina
| | - Georges J El Nahas
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, South Carolina
| | - Christine Bookhout
- Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jessica E Thaxton
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Department of Microbiology and Immunology, MUSC, Charleston, South Carolina
- Department of Orthopedics and Physical Medicine, MUSC, Charleston, South Carolina
| | - David N Lewin
- Department of Pathology and Laboratory Medicine, MUSC, Charleston, South Carolina
| | | | - Stephanie M Cohen
- Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - J Grant Brazeal
- Department of Public Health Sciences, MUSC, Charleston, South Carolina
| | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Department of Public Health Sciences, MUSC, Charleston, South Carolina
| | - Jennifer D Wu
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Alexander V Alekseyenko
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Department of Public Health Sciences, MUSC, Charleston, South Carolina
- Department of Oral Health Sciences, The Biomedical Informatics Center, MUSC, Charleston, South Carolina
- Department of Healthcare Leadership and Management, MUSC, Charleston, South Carolina
| |
Collapse
|
19
|
Abstract
The immune tumor microenvironment (TME) of colorectal cancer (CRC) is a crucial contributor to disease biology, making it an important target for therapeutic intervention. The diversity of immune cell populations within various subsets of CRC has led to the discovery that immune characterization of the TME has both prognostic and predictive value for patients. The convergence of improved molecular and cellular characterization of CRC along with the widespread use of immunotherapy in solid tumors has led to a revolution in the approach to clinical care. Monoclonal antibodies (mAbs) which target key immune checkpoints, such as programmed death-1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4), have demonstrated remarkable clinical activity in microsatellite instability-high (MSI-H) CRCs and are now used in routine practice. The observation that MSI-H cancers are highly infiltrated with immune cells and carry a high neoantigen load led to the successful targeting of these cancers with immunotherapy. More recently, the Food and Drug Administration (FDA) approved a PD-1 inhibitor for microsatellite stable (MSS) cancers with high tumor mutation burden. However, the anti-tumor activity of immunotherapy is rare in the majority of CRC. While immune cell characterization does provide prognostic value in these patients, these observations have not yet led to therapeutic interventions. By delineating factors that predict efficacy, resistance, and therapeutic targets, ongoing research will inform the development of effective combination strategies for the vast majority of MSS CRC and immunotherapy-resistant MSI-H cancers.
Collapse
Affiliation(s)
- Parul Agarwal
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Dung T Le
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, United States.
| | - Patrick M Boland
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
20
|
Mechanisms of Immune Escape and Resistance to Checkpoint Inhibitor Therapies in Mismatch Repair Deficient Metastatic Colorectal Cancers. Cancers (Basel) 2021; 13:cancers13112638. [PMID: 34072037 PMCID: PMC8199207 DOI: 10.3390/cancers13112638] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary A subset of colorectal cancers (CRCs) is characterized by a mismatch repair deficiency that is frequently associated with microsatellite instability (MSI). The compromised DNA repair machinery leads to the accumulation of tumor neoantigens affecting the sensitivity of MSI metastatic CRC to immune checkpoint inhibitors (CPIs), both upfront and in later lines of treatment. However, up to 30% of MSI CRCs exhibit primary resistance to frontline immune based therapy, and an additional subset develops acquired resistance. Here, we first discuss the clinical and molecular features of MSI CRCs and then we review how the loss of antigenicity, immunogenicity, and a hostile tumor microenvironment could influence primary and acquired resistance to CPIs. Finally, we describe strategies to improve the outcome of MSI CRC patients upon CPI treatment. Abstract Immune checkpoint inhibitors (CPIs) represent an effective therapeutic strategy for several different types of solid tumors and are remarkably effective in mismatch repair deficient (MMRd) tumors, including colorectal cancer (CRC). The prevalent view is that the elevated and dynamic neoantigen burden associated with the mutator phenotype of MMRd fosters enhanced immune surveillance of these cancers. In addition, recent findings suggest that MMRd tumors have increased cytosolic DNA, which triggers the cGAS STING pathway, leading to interferon-mediated immune response. Unfortunately, approximately 30% of MMRd CRC exhibit primary resistance to CPIs, while a substantial fraction of tumors acquires resistance after an initial benefit. Profiling of clinical samples and preclinical studies suggests that alterations in the Wnt and the JAK-STAT signaling pathways are associated with refractoriness to CPIs. Intriguingly, mutations in the antigen presentation machinery, such as loss of MHC or Beta-2 microglobulin (B2M), are implicated in initial immune evasion but do not impair response to CPIs. In this review, we outline how understanding the mechanistic basis of immune evasion and CPI resistance in MMRd CRC provides the rationale for innovative strategies to increase the subset of patients benefiting from CPIs.
Collapse
|
21
|
Timaxian C, Vogel CFA, Orcel C, Vetter D, Durochat C, Chinal C, NGuyen P, Aknin ML, Mercier-Nomé F, Davy M, Raymond-Letron I, Van TNN, Diermeier SD, Godefroy A, Gary-Bobo M, Molina F, Balabanian K, Lazennec G. Pivotal Role for Cxcr2 in Regulating Tumor-Associated Neutrophil in Breast Cancer. Cancers (Basel) 2021; 13:cancers13112584. [PMID: 34070438 PMCID: PMC8197482 DOI: 10.3390/cancers13112584] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Chemokines present in the tumor microenvironment are essential for the control of tumor progression. We show here that several ligands of the chemokine receptor Cxcr2 were up-regulated in the PyMT (polyoma middle T oncogene) model of breast cancer. Interestingly, the knock-down of Cxcr2 in PyMT animals led to an increased growth of the primary tumor and lung metastasis. The analysis of tumor content of PyMT-Cxcr2-/- animals highlighted an increased infiltration of tumor associated neutrophils (TANs), mirrored by a decreased recruitment of tumor associated macrophages (TAMs) compared to PyMT animals. Analysis of PyMT-Cxcr2-/- TANs revealed that they lost their killing ability compared to PyMT-Cxcr2+/+ TANs. The transcriptomic analysis of PyMT-Cxcr2-/- TANs showed that they had a more pronounced pro-tumor TAN2 profile compared to PyMT TANs. In particular, PyMT-Cxcr2-/- TANs displayed an up-regulation of the pathways involved in reactive oxygen species (ROS) production and angiogenesis and factors favoring metastasis, but reduced apoptosis. In summary, our data reveal that a lack of Cxcr2 provides TANs with pro-tumor effects.
Collapse
Affiliation(s)
- Colin Timaxian
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Charlotte Orcel
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Diana Vetter
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Camille Durochat
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Clarisse Chinal
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Phuong NGuyen
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Marie-Laure Aknin
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Françoise Mercier-Nomé
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Martin Davy
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Isabelle Raymond-Letron
- Department of Histopathology, National Veterinary School of Toulouse, 31076 Toulouse, France;
- Platform of Experimental and Compared Histopathology, STROMALab, UMR UPS/CNRS 5223, EFS, Inserm U1031, 31076 Toulouse, France
| | - Thi-Nhu-Ngoc Van
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Anastasia Godefroy
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Franck Molina
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Karl Balabanian
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Institut de Recherche Saint-Louis, Université de Paris, EMiLy, Inserm U1160, 75010 Paris, France
| | - Gwendal Lazennec
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Correspondence:
| |
Collapse
|
22
|
Boissière-Michot F, Jacot W, Massol O, Mollevi C, Lazennec G. CXCR2 Levels Correlate with Immune Infiltration and a Better Prognosis of Triple-Negative Breast Cancers. Cancers (Basel) 2021; 13:cancers13102328. [PMID: 34066060 PMCID: PMC8151934 DOI: 10.3390/cancers13102328] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tumor microenvironment is critical for cancer progression. The role of the chemokine receptors in breast cancers is still under investigation. The aim of this study was to focus on a retrospective cohort of triple-negative breast cancers (TNBCs) and analyze the involvement of CXCR2 and its link with immune infiltration and immune checkpoint markers. High densities of CXCR2-positive cells were associated with high-grade tumors. Higher quantities of CXCR2-positive cells were correlated with elevated density of tumor-infiltrating lymphocytes (TILs), CD8+ cytotoxic lymphocytes, expression of PD-L1 by tumor and stromal cells and of PD-1 by stromal cells. In univariate analysis, low levels of CXCR2 were correlated with poor OS and RFS. In multivariate analysis, low levels of CXCR2 were associated with poor OS. Overall, our data highlight the potential beneficial association of high levels of CXCR2 with a subgroup of TNBC patients characterized by a better prognosis. Abstract Chemokines and their receptors are key players in breast cancer progression and outcome. Previous studies have shown that the chemokine receptor CXCR2 was expressed at higher levels by cells of the tumor microenvironment in triple-negative breast cancers (TNBCs). The aim of this study was to focus our attention on a retrospective cohort of 290 TNBC cases and analyze the involvement of CXCR2, CD11b (a marker of granulocytes) and CD66b (a marker of neutrophils) and their link with immune infiltration and immune checkpoint markers. We report that high densities of CXCR2-, CD11b- and CD66b-positive cells were associated with high-grade tumors. Moreover, molecular apocrine TNBCs, defined here as tumors that express both AR and FOXA1 biomarkers, exhibited low levels of CXCR2 and CD11b. High CXCR2 and CD11b levels were correlated with elevated density of tumor-infiltrating lymphocytes (TILs), CD8+ cytotoxic lymphocytes, expression of PD-L1 by tumor and stromal cells and of PD-1 by stromal cells. On the other hand, CD66b levels were associated only with CD8+, stromal PD-L1 and PD-1 expression. In univariate analysis, low levels of CXCR2 were correlated with poor OS and RFS. In multivariate analysis, low levels of CXCR2 were associated with poor OS. Finally, in TNBC treated with adjuvant chemotherapy, CXCR2 density was associated with longer RFS. Overall, our data highlight the potential beneficial association of high levels of CXCR2 with a subgroup of TNBC patients characterized by a better prognosis.
Collapse
Affiliation(s)
- Florence Boissière-Michot
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
| | - William Jacot
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
- Montpellier University, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, 34298 Montpellier, France
| | - Océane Massol
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
| | - Caroline Mollevi
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
- Institut Desbrest d’Epidémiologie et de Santé Publique, UMR Inserm—Université de Montpellier, 34090 Montpellier, France
| | - Gwendal Lazennec
- CNRS, SYS2DIAG, ALCEDIAG, Cap Delta, 1682 Rue de la Valsière, 34184 Montpellier, France
- CNRS, GDR 3697 “Microenvironment of Tumor Niches”, Micronit, France
- Correspondence:
| |
Collapse
|
23
|
Feng M, Zhao Z, Yang M, Ji J, Zhu D. T-cell-based immunotherapy in colorectal cancer. Cancer Lett 2020; 498:201-209. [PMID: 33129958 DOI: 10.1016/j.canlet.2020.10.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/08/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death worldwide. CRC therapeutic strategies include surgical resection, chemotherapy, radiotherapy, and other approaches. However, patients with metastatic CRC have worse prognoses. In recent years, T-cell-based immunotherapy has elicited promising responses in B-cell malignancies, melanoma, and lung cancer, but most CRC patients are resistant to immunotherapy, chemotherapy, and targeted therapy. Immune checkpoint inhibitors have shown encouraging results in non-small cell lung cancer, melanoma, and other cancers, but immune checkpoint blockade is only effective for CRC subset with microsatellite instability. Other immunotherapies, such as cytokines, cancer vaccines, small molecules, oncolytic viruses, and chimeric antigen-receptor therapy, are currently in use against CRC. This review analyzes recent developments in immunotherapy for CRC treatment as well as the challenges in overcoming resistance.
Collapse
Affiliation(s)
- Mei Feng
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Mengxuan Yang
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Di Zhu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai, 201203, China; Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, 201203, China.
| |
Collapse
|
24
|
Boissière-Michot F, Jacot W, Fraisse J, Gourgou S, Timaxian C, Lazennec G. Prognostic Value of CXCR2 in Breast Cancer. Cancers (Basel) 2020; 12:cancers12082076. [PMID: 32727083 PMCID: PMC7465124 DOI: 10.3390/cancers12082076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 01/19/2023] Open
Abstract
The tumor microenvironment appears essential in cancer progression and chemokines are mediators of the communication between cancer cells and stromal cells. We have previously shown that the ligands of the chemokine receptor CXCR2 were expressed at higher levels in triple-negative breast cancers (TNBC). Our hypothesis was that CXCR2 expression could also be altered in breast cancer. Here, we have analyzed the potential role of CXCR2 in breast cancer in a retrospective cohort of 105 breast cancer patients. Expression of CXCR2, CD11b (a marker of granulocytes) and CD66b (a marker of neutrophils) was analyzed by immunohistochemistry on tumor samples. We demonstrated that CXCR2 stained mainly stromal cells and in particular neutrophils. CXCR2, CD11b and CD66b expression were correlated with high grade breast cancers. Moreover, TNBC displayed a higher expression of CXCR2, CD11b and CD66b than hormone receptor positive or Her2 positive tumors. High levels of CXCR2 and CD11b, but not CD66b, were associated with a higher infiltration of T lymphocytes and B lymphocytes. We also observed a correlation between CXCR2 and AP-1 activity. In univariate analyses, CXCR2, but not CD11b or CD66b, was associated with a lower risk of relapse; CXCR2 remained significant in multivariate analysis. Our data suggest that CXCR2 is a stromal marker of TNBC. However, higher levels of CXCR2 predicted a lower risk of relapse.
Collapse
Affiliation(s)
- Florence Boissière-Michot
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (J.F.); (S.G.)
| | - William Jacot
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (J.F.); (S.G.)
- Faculty of Medicine, Montpellier University, INSERM U1194, 34090 Montpellier, France
| | - Julien Fraisse
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (J.F.); (S.G.)
| | - Sophie Gourgou
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (J.F.); (S.G.)
| | - Colin Timaxian
- Centre National de la Recherche Scientifique (CNRS), SYS2DIAG-ALCEDIAG, Cap delta, 1682 Rue de la Valsière, 34184 Montpellier, France;
- Centre National de la Recherche Scientifique (CNRS), Groupement de Recherche (GDR) 3697 “Microenvironment of Tumor Niches”, Micronit, France
| | - Gwendal Lazennec
- Centre National de la Recherche Scientifique (CNRS), SYS2DIAG-ALCEDIAG, Cap delta, 1682 Rue de la Valsière, 34184 Montpellier, France;
- Centre National de la Recherche Scientifique (CNRS), Groupement de Recherche (GDR) 3697 “Microenvironment of Tumor Niches”, Micronit, France
- Correspondence: ; Tel.: +33-467-047-473; Fax: +33-467-047-475
| |
Collapse
|
25
|
Vymetalkova V, Rosa F, Susova S, Bendova P, Levy M, Buchler T, Kral J, Bartu L, Vodickova L, Hughes DJ, Soucek P, Naccarati A, Kumar R, Vodicka P, Pardini B. Expression quantitative trait loci in ABC transporters are associated with survival in 5-FU treated colorectal cancer patients. Mutagenesis 2020; 35:273-281. [DOI: 10.1093/mutage/gez050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
The chemotherapeutic efficacy in colorectal cancer (CRC) is limited due to the inter-individual variability in drug response and the development of tumour resistance. ATP-binding cassette (ABC) transporters are crucial in the development of resistance by the efflux of anticancer agents from cancer cells. In this study, we identified 14 single nucleotide polymorphisms (SNPs) in 11 ABC transporter genes acting as an expression of quantitative trait loci (eQTLs), i.e. whose variation influence the expression of many downstream genes. These SNPs were genotyped in a case–control study comprising 1098 cases and 1442 healthy controls and analysed in relation to CRC development risk and patient survival. Considering a strict correction for multiple tests, we did not observe any significant association between SNPs and CRC risk. The rs3819720 polymorphism in the ABCB3/TAP2 gene was statistically significantly associated with shorter overall survival (OS) in the codominant, and dominant models [GA vs. GG, hazard ratio (HR) = 1.48; P = 0.002; AA vs. GG, HR = 1.70; P = 0.004 and GA + AA vs. GG, HR = 1.52; P = 0.0006]. Additionally, GA carriers of the same SNP displayed worse OS after receiving 5-FU based chemotherapy. The variant allele of rs3819720 polymorphism statistically significantly affected the expression of 36 downstream genes. Screening for eQTL polymorphisms in relevant genes such as ABC transporters that can regulate the expression of several other genes may help to identify the genetic background involved in the individual response to the treatment of CRC patients.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Fabio Rosa
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
| | - Simona Susova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Petra Bendova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Jan Kral
- Institute for Clinical and Experimental Medicine, IKEM, Prague, Czech Republic
| | - Linda Bartu
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology
- Division of Functional Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Barbara Pardini
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
26
|
Giannini R, Zucchelli G, Giordano M, Ugolini C, Moretto R, Ambryszewska K, Leonardi M, Sensi E, Morano F, Pietrantonio F, Cremolini C, Falcone A, Fontanini G. Immune Profiling of Deficient Mismatch Repair Colorectal Cancer Tumor Microenvironment Reveals Different Levels of Immune System Activation. J Mol Diagn 2020; 22:685-698. [PMID: 32173570 DOI: 10.1016/j.jmoldx.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/20/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
To understand the immune landscape of deficient mismatch repair colorectal cancer (dMMR CRC) tumor microenvironment, gene expression profiling was performed by the nCounter PanCancer Immune Profiling Panel. This study was conducted retrospectively on 89 dMMR-CRC samples. The expression of CD3, CD8, programmed death-1, and programmed death ligand-1 protein was evaluated on a subset of samples by immunohistochemistry, and lymphocyte density was calculated. A subset of deregulated genes was identified. Functional clustering analysis performed on these genes generated four main factors: antigen processing and presentation, with its major histocompatibility complex-II-related genes; genes correlated with the cytotoxic activity of immune system; T-cell chemotaxis/cell adhesion genes; and T-CD4+ regulator cell-related genes. A deregulation score (DS) was calculated for each sample. On the basis of their DS, tumors were then classified as COLD (DS ≤ -3) to select the samples with a strong down-regulation of the immune system and NOT COLD (DS ≥ -2). The COLD group of patients showed a worse prognosis in terms of survival considering all patients (P = 0.0172) and patients with metastatic disease (P = 0.0031). These results confirm that dMMR-CRCs do not constitute a homogeneous group as concerns the immune system activity of tumor microenvironment. In particular, the distinction between COLD and NOT COLD tumors may improve the management of these two subsets of patients.
Collapse
Affiliation(s)
- Riccardo Giannini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Gemma Zucchelli
- Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Mirella Giordano
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Clara Ugolini
- Unit of Anatomic Pathology 3, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Roberto Moretto
- Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | | | | | - Elisa Sensi
- Unit of Anatomic Pathology 3, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori di Milano, Milan, Italy; Oncology and Hemato-Oncology Department, University of Milan, Milan, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
27
|
Ren Y, Lv Q, Yue W, Liu B, Zou Z. The programmed cell death protein-1/programmed cell death ligand 1 expression, CD3+ T cell infiltration, NY-ESO-1 expression, and microsatellite instability phenotype in primary cutaneous melanoma and mucosal melanoma and their clinical significance and prognostic value: a study of 89 consecutive cases. Melanoma Res 2020; 30:85-101. [PMID: 31095042 DOI: 10.1097/cmr.0000000000000620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We evaluated the expression of programmed cell death protein-1 (PD-1), programmed cell death ligand 1 (PD-L1), and NY-ESO-1 antigen; the infiltration of CD3+ T cells; and the microsatellite instability (MSI) phenotype, as well as the relationship of each factor to survival in malignant melanoma patients. Malignant melanoma samples from 89 patients were stained by immunohistochemistry to evaluate PD-1, PD-L1, CD3+ tumor-infiltrating lymphocytes (TILs), NY-ESO-1, and MSI. PD-1 and PD-L1 were expressed in 19.1 and 32.6% of the 89 samples, respectively. There was a significant correlation between PD-1 and PD-L1 expression (r = 0.207, P = 0.046). High infiltration of CD3+ T cells was observed in 41.6% of the samples, and increased cell infiltration was associated with increased PD-1 expression (P = 0.001). NY-ESO-1 antigen was detected in 13.5% of all samples, and the expression of NY-ESO-1 was positively correlated with the expression of PD-1 (P < 0.001). In our research, MSI was detected in 18 samples (20.2%). Survival analysis showed that a high infiltration of CD3+ T cells was related to longer progression-free survival (PFS) [24.0 months, 95% confidence interval (CI): 7.4-40.6 vs. 11.0 months, 95% CI: 7.1-12.9, P = 0.031], similarly, the median overall survival (OS) of the CD3+ T cell high-infiltration patients was also longer (53.0 vs. 38.0 months), but with no statistical significance (P = 0.200). The results for the immune markers mentioned above provide a theoretical basis for the prognosis and immunotherapy selection of malignant melanoma patients.
Collapse
Affiliation(s)
- Yu Ren
- Department of the Comprehensive Cancer Center, Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School
| | - Qing Lv
- Yi Xing Tumor Hospital, Yixing, China
| | - Wuheng Yue
- Department of the Comprehensive Cancer Center, Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing
| | - Baorui Liu
- Department of the Comprehensive Cancer Center, Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School
| | - Zhengyun Zou
- Department of the Comprehensive Cancer Center, Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School
| |
Collapse
|
28
|
Fan S, Li X, Cui X, Zheng L, Ren X, Ma W, Ye Z. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Acad Radiol 2019; 26:1633-1640. [PMID: 30929999 DOI: 10.1016/j.acra.2019.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate whether quantitative radiomics features extracted from computed tomography (CT) can predict microsatellite instability (MSI) status in an Asian cohort of patients with stage Ⅱ colorectal cancer (CRC). MATERIALS AND METHODS This retrospective study was approved by our institutional review board, and the informed consent requirement was waived. From March 2016 to March 2018, 119 Chinese patients with pathologically confirmed stage Ⅱ CRC, available MSI status, and preoperative contrast-enhanced CT images were included in this study. Clinical and pathological information was obtained from the institutional database. The radiomics features were extracted from portal venous-phase CT images of segmented volumes of each entire primary tumor by using Matrix Laboratory (MATLAB), and radiomics signatures were generated using the least absolute shrinkage and selection operator logistic regression model. The minority group was balanced via synthetic minority over-sampling technique method. The association between the clinicopathologic characteristics and MSI status was assessed using Student's t test, Chi-square, or Fisher's exact test. The predictive efficacy of MSI status using radiomics features, clinical factors (including age, gender, CT-reported tumor location, differentiation degree of tumor, smoking history, hypertension history, family history of cancer, diabetes history, level of the Ki-67 expression, and laboratory analysis) and the combined models were evaluated, respectively. Predictive performance was evaluated by the area under receiver operating characteristic curve, accuracy, sensitivity, and specificity. RESULTS MSI status was significantly associated with tumor location (p = 0.043); differentiation degree of tumor (p < 0.0001), hypertension history (p = 0.012), and the level of the Ki-67 expression (p = 0.015). Six radiomics features and 11 clinical characteristics were selected for predicting MSI status. The model that used the combination of clinical factors and radiomics features achieved the overall best performance than using either of the two features alone, yielding the area under the curve, sensitivity, and specificity of 0.752, 0.663, 0.841 for the combined model, 0.598, 0.371, 0.825 for clinical factors alone, and 0.688, 0.517, 0.858 for radiomics features alone, respectively. CONCLUSION CT-based radiomic features of stage Ⅱ CRC are associated with MSI status. Combining analysis of clinical features and CT features could improve predictive efficacy and could potentially select the patients for individualized therapy noninvasively.
Collapse
Affiliation(s)
- Shuxuan Fan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Xubin Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Xiaonan Cui
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Lei Zheng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Xiaoyi Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Wenjuan Ma
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China.
| | - Zhaoxiang Ye
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China.
| |
Collapse
|
29
|
Cui G. T H9, T H17, and T H22 Cell Subsets and Their Main Cytokine Products in the Pathogenesis of Colorectal Cancer. Front Oncol 2019; 9:1002. [PMID: 31637216 PMCID: PMC6787935 DOI: 10.3389/fonc.2019.01002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
In recent years, several newly identified T helper (TH) cell subsets, such as TH9, TH17, and TH22 cells, and their respective cytokine products, IL-9, IL-17, and IL-22, have been reported to play critical roles in the development of chronic inflammation in the colorectum. Since chronic inflammation is a potent driving force for the development of human colorectal cancer (CRC), the contributions of TH9/IL-9, TH17/IL-17, and TH22/IL-22 in the pathogenesis of CRC have recently become an increasingly popular area of scientific investigation. Extensive laboratory and clinical evidence suggests a positive relationship between these new TH subsets and the growth and formation of CRC, whereas, administration of IL-9, IL-17, and IL-22 signaling inhibitors can significantly alter the formation of colorectal chronic inflammation or CRC lesions in animal models, suggesting that blocking these cytokine signals might represent promising immunotherapeutic strategies. This review summarizes recent findings and currently available data for understanding the vital role and therapeutic significance of TH9/IL-9, TH17/IL-17, and TH22/IL-22 in the development of colorectal tumorigenesis.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Faculty of Health Science, Nord University, Levanger, Norway
| |
Collapse
|
30
|
Kikuchi T, Mimura K, Okayama H, Nakayama Y, Saito K, Yamada L, Endo E, Sakamoto W, Fujita S, Endo H, Saito M, Momma T, Saze Z, Ohki S, Kono K. A subset of patients with MSS/MSI-low-colorectal cancer showed increased CD8(+) TILs together with up-regulated IFN-γ. Oncol Lett 2019; 18:5977-5985. [PMID: 31788072 PMCID: PMC6865144 DOI: 10.3892/ol.2019.10953] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
A small subset of patients with proficient mismatch repair (pMMR)/microsatellite stable (MSS)-colorectal cancer (CRC) benefit from immunotherapy with anti-programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade. Therefore, the aim of the current study was to evaluate the immune status of patients with pMMR/microsatellite instability-low (MSI-L)/MSS-CRC and deficient MMR (dMMR)/MSI-high (MSI-H)-CRC in order to identify responders to anti-PD-1/PD-L1 inhibitors. The current study used a dataset downloaded from The Cancer Genome Atlas (TCGA) as well as 219 clinical tissue samples to investigate the infiltrating grade of cluster of differentiation (CD) 4 and CD8 tumor infiltrating lymphocytes (TILs), the expression levels of PD-L1 and PD-L2, the interferon-γ (IFN-γ) and CD8 T effector gene signatures, and the phosphorylated signal transducer and activator of transcription 1 (p-STAT1) status in patients with pMMR/MSI-L/MSS-CRC and dMMR/MSI-H-CRC. Analysis of TCGA dataset revealed that the mRNA expression levels of PD-L1 and PD-L2, the IFN-γ gene signature and the CD8 T effector gene signature were significantly upregulated in MSI-H tumors compared with MSI-L/MSS tumors. Additionally, a subpopulation of patients with upregulation of the IFN-γ and CD8 T effector gene signatures was observed in those with MSI-L/MSS-CRC. Immunohistochemical staining of the clinical samples revealed a subpopulation of patients with pMMR-CRC that were positive for PD-L1 and p-STAT1, and whom had levels of elevated CD8(+) and CD4(+) TILs infiltration similar to those observed in patients with dMMR-CRC. The results obtained in the current study suggested that a subpopulation of patients with MSI-L/MSS-CRC and pMMR-CRC with upregulated IFN-γ and CD8 T effector gene signatures may benefit from immunotherapy with antibodies against PD-1 and PD-L1.
Collapse
Affiliation(s)
- Tomohiro Kikuchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.,Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.,Department of Advanced Cancer Immunotherapy, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.,Department of Progressive DOHaD Research, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yuko Nakayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Leo Yamada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Eisei Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shotaro Fujita
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hisahito Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
31
|
Christofi T, Baritaki S, Falzone L, Libra M, Zaravinos A. Current Perspectives in Cancer Immunotherapy. Cancers (Basel) 2019; 11:1472. [PMID: 31575023 PMCID: PMC6826426 DOI: 10.3390/cancers11101472] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Different immunotherapeutic approaches have proved to be of significant clinical value to many patients with different types of advanced cancer. However, we need more precise immunotherapies and predictive biomarkers to increase the successful response rates. The advent of next generation sequencing technologies and their applications in immuno-oncology has helped us tremendously towards this aim. We are now moving towards the realization of personalized medicine, thus, significantly increasing our expectations for a more successful management of the disease. Here, we discuss the current immunotherapeutic approaches against cancer, including immune checkpoint blockade with an emphasis on anti-PD-L1 and anti-CTLA-4 monoclonal antibodies. We also analyze a growing list of other co-inhibitory and co-stimulatory markers and emphasize the mechanism of action of the principal pathway for each of these, as well as on drugs that either have been FDA-approved or are under clinical investigation. We further discuss recent advances in other immunotherapies, including cytokine therapy, adoptive cell transfer therapy and therapeutic vaccines. We finally discuss the modulation of gut microbiota composition and response to immunotherapy, as well as how tumor-intrinsic factors and immunological processes influence the mutational and epigenetic landscape of progressing tumors and response to immunotherapy but also how immunotherapeutic intervention influences the landscape of cancer neoepitopes and tumor immunoediting.
Collapse
Affiliation(s)
- Theodoulakis Christofi
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus.
| | - Stavroula Baritaki
- Division of Surgery, School of Medicine, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete, Greece.
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
32
|
Seliger B. The Role of the Lymphocyte Functional Crosstalk and Regulation in the Context of Checkpoint Inhibitor Treatment-Review. Front Immunol 2019; 10:2043. [PMID: 31555274 PMCID: PMC6743269 DOI: 10.3389/fimmu.2019.02043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
During the last decade, the dynamics of the cellular crosstalk have highlighted the significance of the host vs. tumor interaction. This resulted in the development of novel immunotherapeutic strategies in order to modulate/inhibit the mechanisms leading to escape of tumor cells from immune surveillance. Different monoclonal antibodies directed against immune checkpoints, e.g., the T lymphocyte antigen 4 and the programmed cell death protein 1/ programmed cell death ligand 1 have been successfully implemented for the treatment of cancer. Despite their broad activity in many solid and hematologic tumor types, only 20–40% of patients demonstrated a durable treatment response. This might be due to an impaired T cell tumor interaction mediated by immune escape mechanisms of tumor and immune cells as well as alterations in the composition of the tumor microenvironment, peripheral blood, and microbiome. These different factors dynamically regulate different steps of the cancer immune process thereby negatively interfering with the T cell –mediated anti-tumoral immune responses. Therefore, this review will summarize the current knowledge of the different players involved in inhibiting tumor immunogenicity and mounting resistance to checkpoint inhibitors with focus on the role of tumor T cell interaction. A better insight of this process might lead to the development of strategies to revert these inhibitory processes and represent the rational for the design of novel immunotherapies and combinations in order to improve their efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
33
|
Zhang Y, Xu J, Zhang N, Chen M, Wang H, Zhu D. Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett 2019; 458:123-135. [DOI: 10.1016/j.canlet.2019.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
|
34
|
Circulating T cell subsets are associated with clinical outcome of anti-VEGF-based 1st-line treatment of metastatic colorectal cancer patients: a prospective study with focus on primary tumor sidedness. BMC Cancer 2019; 19:687. [PMID: 31307428 PMCID: PMC6631500 DOI: 10.1186/s12885-019-5909-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In a prospective study with long-term follow-up, we analyzed circulating T cell subsets in patients with metastatic colorectal cancer (mCRC) in the context of primary tumor sidedness, KRAS status, and clinical outcome. Our primary goal was to investigate whether baseline levels of circulating T cell subsets serve as a potential biomarker of clinical outcome of mCRC patients treated with an anti-VEGF-based regimen. METHODS The study group consisted of 36 patients with colorectal adenocarcinoma who started first-line chemotherapy with bevacizumab for metastatic disease. We quantified T cell subsets including Tregs and CD8+ T cells in the peripheral blood prior to therapy initiation. Clinical outcome was evaluated as progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). RESULTS 1) mCRC patients with KRAS wt tumors had higher proportions of circulating CD8+ cytotoxic T cells among all T cells but also higher measures of T regulatory (Treg) cells such as absolute count and a higher proportion of Tregs in the CD4+ subset. 2) A low proportion of circulating Tregs among CD4+ cells, and a high CD8:Treg ratio at initiation of VEGF-targeting therapy, were associated with favorable clinical outcome. 3) In a subset of patients with primarily right-sided mCRC, superior PFS and OS were observed when the CD8:Treg ratio was high. CONCLUSIONS The baseline level of circulating immune cells predicts clinical outcome of 1st-line treatment with the anti-VEGF angio/immunomodulatory agent bevacizumab. Circulating immune biomarkers, namely the CD8:Treg ratio, identified patients in the right-sided mCRC subgroup with favorable outcome following treatment with 1st-line anti-VEGF treatment.
Collapse
|
35
|
Ko YS, Pyo JS. Clinicopathological significance and prognostic role of tumor-infiltrating lymphocytes in colorectal cancer. Int J Biol Markers 2019; 34:132-138. [PMID: 30852949 DOI: 10.1177/1724600818817320] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE This study aimed to elucidate the clinicopathological significance and prognostic role of tumor-infiltrating lymphocytes in colorectal cancer. METHODS The immunohistochemistry of CD3 and CD8 was performed on 265 human colorectal cancer tissues to investigate the tumor-infiltrating lymphocytes using Immunoscore. The correlation between Immunoscore and clinicopathological characteristics, including survival rates, was elucidated. In addition, the impact of tumor-infiltrating lymphocytes on programmed death-ligand 1 (PD-L1) protein expression was evaluated through immunohistochemistry. RESULTS Of the 265 colorectal cancer tissues, 40.8% had high Immunoscore, while 59.2% had low Immunoscore. A high Immunoscore was significantly correlated with favorable tumor behaviors, including lower rates of vascular, lymphatic, and perineural invasion; lymph node metastasis; and distant metastasis. PD-L1 expressions of tumor and immune cells were significantly higher in patients with high Immunoscore than in those with low Immunoscore. In addition, colorectal cancer tissues with high CD8-positive lymphocytes showed higher PD-L1 expressions of tumor and immune cells than colorectal cancer tissues with low CD8-positive lymphocytes. There was a significant correlation between high Immunoscore and better overall survival. However, there was no significant difference in survival rate according to PD-L1 expressions of tumor and immune cells in high and low Immunoscore subgroups. CONCLUSIONS Taken together, our results showed that high tumor-infiltrating lymphocytes were significantly correlated with favorable tumor behaviors and better survival. In addition, there was a significant correlation between PD-L1 expression and tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Young San Ko
- 1 Department of Forensic Medicine, National Forensic Service Busan Institute, Yangsan, Republic of Korea
| | - Jung-Soo Pyo
- 2 Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
36
|
Programmed Death Ligand-1 expression in stage II colon cancer - experiences from a nationwide populationbased cohort. BMC Cancer 2019; 19:142. [PMID: 30755167 PMCID: PMC6373021 DOI: 10.1186/s12885-019-5345-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background Patients suffering from high risk stage II colon cancer (CC) may benefit from adjuvant onco-therapy, but additional prognostic markers are needed for better treatment stratification. We investigated the prognostic value of Programmed Death Ligand-1 (PD-L1) in a true population-based cohort of patients with stage II CC. Methods PD-L1 expression on tumour cells was evaluated by immunohistochemistry in 572 colon cancers. Whole sections from tumour blocks representing the deepest invasive front of the primary tumour were used for analysis. A cut-off of 5% positivity was used for dichotomizing the data. The prognostic value was investigated in Cox proportional hazard models for recurrence-free survival (RFS) and overall survival (OS). Results Overall, 6% of the tumours were classified as high PD-L1. High PD-L1 was related to female gender (p = 0.028), high malignancy grade (< 0.001), right side localization (p < 0.001) and microsatellite instability (MSI) (p < 0.001). Thirty-one (18%) of the MSI and 4 (1%) of the microsatellite stable tumours were classified as high PD-L1, respectively. PD-L1 expression provided no prognostic value as a single marker. In patients with MSI tumours, high PD-L1 expression had no significant impact regarding OS or RFS. Conclusions PD-L1 expression in tumour cells of stage II CC did not provide any prognostic impact, neither in the entire population-based cohort nor in the group of MSI patients. Additional investigations of the immunogenic microenvironment are needed for evaluating the prognostic information in CC.
Collapse
|
37
|
Mutational and Antigenic Landscape in Tumor Progression and Cancer Immunotherapy. Trends Cell Biol 2019; 29:396-416. [PMID: 30765144 DOI: 10.1016/j.tcb.2019.01.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
Evolving neoplasms accumulate non-synonymous mutations at a high rate, potentially enabling the expression of antigenic epitopes that can be recognized by the immune system. Since they are not covered by central tolerance, such tumor neoantigens (TNAs) should be under robust immune control as they surge. However, genetic defects that impair cancer cell eradication by the immune system coupled with the establishment of local immunosuppression can enable TNA accumulation, which is generally associated with improved clinical sensitivity to various immunotherapies. Here, we explore how tumor-intrinsic factors and immunological processes shape the mutational and antigenic landscape of evolving neoplasms to influence clinical responses to immunotherapy, and propose strategies to achieve robust immunological control of the disease despite disabled immunosurveillance.
Collapse
|
38
|
Ott E, Bilonda L, Dansette D, Deleine C, Duchalais E, Podevin J, Volteau C, Bennouna J, Touchefeu Y, Fourquier P, El Alami Thomas W, Chetritt J, Bezieau S, Denis M, Toquet C, Mosnier JF, Jarry A, Bossard C. The density of Tbet+ tumor-infiltrating T lymphocytes reflects an effective and druggable preexisting adaptive antitumor immune response in colorectal cancer, irrespective of the microsatellite status. Oncoimmunology 2019; 8:e1562834. [PMID: 30906656 PMCID: PMC6422378 DOI: 10.1080/2162402x.2018.1562834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023] Open
Abstract
Purpose: The recent success of anti-PD1 antibody in metastatic colorectal cancer (CRC) patients with microsatellite instability (MSI), known to be associated with an upregulated Th1/Tc1 gene signature, provides new promising therapeutic strategies. However, the partial objective response highlights a crucial need for relevant, easily evaluable, predictive biomarkers. Here we explore whether in situ assessment of Tbet+ tumor infiltrating lymphocytes (TILs) reflects a pre-existing functional antitumor Th1/Tc1/IFNγ response, in relation with clinicopathological features, microsatellite status and expression of immunoregulatory molecules (PD1, PDL1, IDO-1). Methodology: In two independent cohorts of CRC (retrospective n = 80; prospective n = 27) we assessed TILs density (CD3, Tbet, PD1) and expression profile of PDL1 and IDO-1 by immunohistochemistry/image analysis. Furthermore, the prospective cohort allowed to perform ex vivo CRC explant cultures and measure by Elisa the IFNγ response, at baseline and upon anti-PD1 treatment. Results: The density of Tbet+ TILs was significantly higher in MSI CRC, especially in the medullary subtype but also in a subgroup of MSS (microsatellite stable), and positively correlated with PD1 and PDL1 expression, but not with IDO-1. Finally, a high number of Tbet+ TILs was associated with a favorable overall survival. These Tbet+ TILs were functional as their density positively correlated with basal IFNγ levels. In addition, the combined score of Tbet+ PD1+ TILs coupled with IDO-1 expression predicted the magnitude of the IFNγ response upon anti-PD1. Conclusion: Altogether, immunohistochemical quantification of Tbet+ TILs is a reliable and accurate tool to recapitulate a preexisting Th1/Tc1/IFNγ antitumor response that can be reinvigorated by anti-PD1 treatment.
Collapse
Affiliation(s)
- Eva Ott
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Linda Bilonda
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Institut Roche, Boulogne-Billancourt, France
| | - Delphine Dansette
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Cécile Deleine
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Emilie Duchalais
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Service de Chirurgie digestive et endocrinienne, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Juliette Podevin
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Service de Chirurgie digestive et endocrinienne, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Christelle Volteau
- Plateforme de Biométrie, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Jaafar Bennouna
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Yann Touchefeu
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Service d'Hépato-Gastroentérologie, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Pierre Fourquier
- Service de Chirurgie Viscérale et Digestive, Hôpital privé du Confluent, Nantes, France
| | | | | | - Stéphane Bezieau
- Faculté de Médecine, Université de Nantes, Nantes, France.,Plateforme de Génétique moléculaire des cancers, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Marc Denis
- Faculté de Médecine, Université de Nantes, Nantes, France.,Plateforme de Génétique moléculaire des cancers, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Claire Toquet
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Jean-François Mosnier
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Anne Jarry
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Céline Bossard
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| |
Collapse
|
39
|
From Tumor Immunology to Immunotherapy in Gastric and Esophageal Cancer. Int J Mol Sci 2018; 20:ijms20010013. [PMID: 30577521 PMCID: PMC6337592 DOI: 10.3390/ijms20010013] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022] Open
Abstract
Esophageal and gastric cancers represent tumors with poor prognosis. Unfortunately, radiotherapy, chemotherapy, and targeted therapy have made only limited progress in recent years in improving the generally disappointing outcome. Immunotherapy with checkpoint inhibitors is a novel treatment approach that quickly entered clinical practice in malignant melanoma and renal cell cancer, but the role in esophageal and gastric cancer is still poorly defined. The principal prognostic/predictive biomarkers for immunotherapy efficacy currently considered are PD-L1 expression along with defects in mismatch repair genes resulting in microsatellite instability (MSI-H) phenotype. The new molecular classification of gastric cancer also takes these factors into consideration. Available reports regarding PD-1, PD-L1, PD-L2 expression and MSI status in gastric and esophageal cancer are reviewed to summarize the clinical prognostic and predictive role together with potential clinical implications. The most important recently published clinical trials evaluating checkpoint inhibitor efficacy in these tumors are also summarized.
Collapse
|
40
|
Germano G, Amirouchene-Angelozzi N, Rospo G, Bardelli A. The Clinical Impact of the Genomic Landscape of Mismatch Repair-Deficient Cancers. Cancer Discov 2018; 8:1518-1528. [PMID: 30442708 DOI: 10.1158/2159-8290.cd-18-0150] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/06/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022]
Abstract
The mismatch repair (MMR) system which detects and corrects base mismatches and insertions and deletions that occur during DNA synthesis is deregulated in approximately 20% of human cancers. MMR-deficient tumors have peculiar properties, including early-onset metastatic potential but generally favorable prognosis, and remarkable response to immune therapy. The functional basis of these atypical clinical features has recently started to be elucidated. Here, we discuss how the biological and clinical features of MMR-deficient tumors might be traced back to their ability to continuously produce new somatic mutations, leading to increased levels of neoantigens, which in turn stimulate immune surveillance. SIGNIFICANCE: Tumors carrying defects in DNA MMR accumulate high levels of mutations, a feature linked to rapid tumor progression and acquisition of drug resistance but also favorable prognosis and response to immune-checkpoint blockade. We discuss how the genomic landscape of MMR-deficient tumors affects their biological and clinical behaviors.
Collapse
Affiliation(s)
- Giovanni Germano
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | | | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy. .,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| |
Collapse
|
41
|
Wang J, Li J, Wang Q, Kong Y, Zhou F, Li Q, Li W, Sun Y, Wang Y, Guan Y, Wu M, Wen T. Dcf1 Deficiency Attenuates the Role of Activated Microglia During Neuroinflammation. Front Mol Neurosci 2018; 11:256. [PMID: 30104955 PMCID: PMC6077288 DOI: 10.3389/fnmol.2018.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Microglia serve as the principal immune cells and play crucial roles in the central nervous system, responding to neuroinflammation via migration and the execution of phagocytosis. Dendritic cell-derived factor 1 (Dcf1) is known to play an important role in neural stem cell differentiation, glioma apoptosis, dendritic spine formation, and Alzheimer’s disease (AD), nevertheless, the involvement of the Dcf1 gene in the brain immune response has not yet been reported. In the present paper, the RNA-sequencing and function enrichment analysis suggested that the majority of the down-regulated genes in Dcf1-/- (Dcf1-KO) mice are immune-related. In vivo experiments showed that Dcf1 deletion produced profound effects on microglial function, increased the expression of microglial activation markers, such as ionized calcium binding adaptor molecule 1 (Iba1), Cluster of Differentiation 68 (CD68) and translocator protein (TSPO), as well as certain proinflammatory cytokines (Cxcl1, Ccl7, and IL17D), but decreased the migratory and phagocytic abilities of microglial cells, and reduced the expression levels of some other proinflammatory cytokines (Cox-2, IL-1β, IL-6, TNF-α, and Csf1) in the mouse hippocampus. Furthermore, in vitro experiments revealed that in the absence of lipopolysaccharide (LPS), the majority of microglia were ramified and existed in a resting state, with only approximately 10% of cells exhibiting an amoeboid-like morphology, indicative of an activated state. LPS treatment dramatically increased the ratio of activated to resting cells, and Dcf1 downregulation further increased this ratio. These data indicated that Dcf1 deletion mediates neuroinflammation and induces dysfunction of activated microglia, preventing migration and the execution of phagocytosis. These findings support further investigation into the biological mechanisms underlying microglia-related neuroinflammatory diseases, and the role of Dcf1 in the immune response.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangfang Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yangyang Sun
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanli Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Yihui Guan
- Positron Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Minghong Wu
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
42
|
Wallace K, Lewin DN, Sun S, Spiceland CM, Rockey DC, Alekseyenko AV, Wu JD, Baron JA, Alberg AJ, Hill EG. Tumor-Infiltrating Lymphocytes and Colorectal Cancer Survival in African American and Caucasian Patients. Cancer Epidemiol Biomarkers Prev 2018; 27:755-761. [PMID: 29769214 PMCID: PMC6449046 DOI: 10.1158/1055-9965.epi-17-0870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/08/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Compared with Caucasian Americans (CAs), African Americans (AAs) with colorectal cancer have poorer survival, especially younger-age patients. A robust lymphocytic reaction within colorectal cancers is strongly associated with better survival, but whether immune response impacts the disparity in colorectal cancer survival is unknown.Methods: The study population was comprised of 211 histologically confirmed colorectal cancers at the Medical University of South Carolina (Charleston, SC; 159 CAs and 52 AAs) diagnosed between Jan 01, 2000, and June 30, 2013. We constructed a lymphocyte score based on blinded pathologic assessment of the four different types of lymphocytic reactions. Cox proportional hazards regression was used to evaluate the association between the lymphocyte score and risk of death by race.Results: Colorectal cancers in AAs (vs. CAs) had a stronger lymphocytic reaction at diagnosis. A high lymphocyte score (vs. the lowest) was associated with better survival in AAs [HR 0.19; 95% confidence interval (CI), 0.04-0.99] and CAs (HR 0.47; 95% CI, 0.15-1.45). AAs with no lymphocytic reaction (vs. other categories) had poor survival HR 4.48 (1.58-12.7) whereas no difference was observed in CAs. The risk of death in AAs (vs. CA) was more pronounced in younger patients (HR 2.92; 95% CI, 1.18-7.22) compared with older (HR 1.20; 95% CI, 0.54-2.67), especially those with lymphocytic poor colorectal cancers.Conclusions: The lymphocytic reaction in tumor impacted the racial disparity in survival.Impact: Our results confirm the importance of the lymphocytic score on survival and highlight the need to fully characterize the immune environment of colorectal cancers by race. Cancer Epidemiol Biomarkers Prev; 27(7); 755-61. ©2018 AACR.
Collapse
Affiliation(s)
- Kristin Wallace
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - David N Lewin
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Shaoli Sun
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Clayton M Spiceland
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Don C Rockey
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alexander V Alekseyenko
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Jennifer D Wu
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Anthony J Alberg
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
43
|
Chen L, Pan X, Hu X, Zhang YH, Wang S, Huang T, Cai YD. Gene expression differences among different MSI statuses in colorectal cancer. Int J Cancer 2018; 143:1731-1740. [PMID: 29696646 DOI: 10.1002/ijc.31554] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/30/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022]
Abstract
Colorectal cancer is the third most common cancer in males and second in females. This disease can be caused by genetic and acquired/environmental factors. Microsatellite instability (MSI) is one of the major mechanisms in colorectal cancer. This mechanism is a specific condition of genetic hyper mutability that results from incompetent DNA mismatch repair. MSI has been applied to classify different colorectal cancer subtypes. However, the effects of MSI status on gene expression are largely unknown. In our study, we integrated the gene expression profile and MSI status of all CRC samples from the TCGA database, and then categorized the CRC samples into three subgroups, namely, MSI-stable, MSI-low, and MSI-high, according to the MSI status. We applied a novel computational method based on machine learning and screened the genes specifically expressed for the different colorectal cancer subtypes. The results showed the distinct mechanisms of the different colorectal cancer subtypes with MSI status and provided the genes that may be the optimal standards to further classify the various molecular subtypes of colorectal cancer with distinct MSI status.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Science, Shanghai University, Shanghai, 200444, People' Republic of China.,College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam, Netherlands
| | - XiaoHua Hu
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - ShaoPeng Wang
- College of Life Science, Shanghai University, Shanghai, 200444, People' Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, 200444, People' Republic of China
| |
Collapse
|
44
|
Emambux S, Tachon G, Junca A, Tougeron D. Results and challenges of immune checkpoint inhibitors in colorectal cancer. Expert Opin Biol Ther 2018; 18:561-573. [PMID: 29471676 DOI: 10.1080/14712598.2018.1445222] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide and clinical outcome has improved substantially during the last two decades with targeted therapies. The immune system has a major role in cancers, especially the CD8 + T cells specific to tumor antigens. However, tumors can escape immune response by different mechanisms including upregulation of inhibitory immune checkpoint receptors, such as well-known Programmed cell Death protein-1 (PD-1)/Programmed cell Death Ligand 1 (PD-L1) interaction, leading CD8 + T cells to a state of anergy. Immunotherapy, with the so-called immune checkpoint inhibitors (CPIs), has recently been approved in treatment of multiple cancers due to its prolonged disease control and acceptable toxicities. The recent groundbreaking success involving anti-PD-1 CPIs in metastatic CRC with deficient mismatch repair system (dMMR) is promising, with several trials ongoing. Major challenges are ahead in order to determine how, when and for which patients we should use these CPIs in CRC. AREAS COVERED This review highlights some promises and challenges concerning personalized immunotherapy in CRC. First results and ongoing breakthrough trials are presented. The crucial role of biomarkers in selecting patient is also discussed. EXPERT OPINION As of now, dMMR and POLE mutations (DNA polymerase ε) with ultramutator phenotype are the most powerful predictive biomarkers of CPI efficacy. The most challenging issue is pMMR mCRC and determination of how to convert a 'nonimmunogenic' neoplasm into an 'immunogenic' neoplasm, a combination of CPIs with radiation or MEK inhibitor probably being the most relevant strategy. Next-generation sequencing (NGS) assays to quantify mutational load could be more reliable predictive biomarkers of CPIs efficacy than PD-L1 expression or immune scores.
Collapse
Affiliation(s)
- Sheik Emambux
- a Department of Medical Oncology , Poitiers University Hospital , Poitiers , France
| | - Gaelle Tachon
- b Department of Cancer biology , Poitiers University Hospital , Poitiers , France
- c INSERM U-1084, Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases group , University of Poitiers , Poitiers , France
- d University of Poitiers , Faculty of medicine , Poitiers France
| | - Audelaure Junca
- d University of Poitiers , Faculty of medicine , Poitiers France
- e Department of Pathology , Poitiers University Hospital , Poitiers , France
| | - David Tougeron
- a Department of Medical Oncology , Poitiers University Hospital , Poitiers , France
- d University of Poitiers , Faculty of medicine , Poitiers France
- f Department of Gastroenterology , Poitiers University Hospital , Poitiers , France
| |
Collapse
|
45
|
|
46
|
Immunogenomic Classification of Colorectal Cancer and Therapeutic Implications. Int J Mol Sci 2017; 18:ijms18102229. [PMID: 29064420 PMCID: PMC5666908 DOI: 10.3390/ijms18102229] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022] Open
Abstract
The immune system has a substantial effect on colorectal cancer (CRC) progression. Additionally, the response to immunotherapeutics and conventional treatment options (e.g., chemotherapy, radiotherapy and targeted therapies) is influenced by the immune system. The molecular characterization of colorectal cancer (CRC) has led to the identification of favorable and unfavorable immunological attributes linked to clinical outcome. With the definition of consensus molecular subtypes (CMSs) based on transcriptomic profiles, multiple characteristics have been proposed to be responsible for the development of the tumor immune microenvironment and corresponding mechanisms of immune escape. In this review, a detailed description of proposed immune phenotypes as well as their interaction with different therapeutic modalities will be provided. Finally, possible strategies to shift the CRC immune phenotype towards a reactive, anti-tumor orientation are proposed per CMS.
Collapse
|
47
|
Hill BS, Pelagalli A, Passaro N, Zannetti A. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget 2017; 8:73296-73311. [PMID: 29069870 PMCID: PMC5641213 DOI: 10.18632/oncotarget.20265] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) are recruited into tumor microenvironment in response to multiple signals produced by cancer cells. Molecules involved in their homing to tumors are the same inflammatory mediators produced by injured tissues: chemokines, cytokines and growth factors. When MSCs arrive into the tumor microenvironment these are "educated" to have pro-metastatic behaviour. Firstly, they promote cancer immunosuppression modulating both innate and adaptive immune systems. Moreover, tumor associated-MSCs trans-differentiating into cancer-associated fibroblasts can induce epithelial-mesenchymal-transition program in tumor cells. This process determinates a more aggressive phenotype of cancer cells by increasing their motility and invasiveness and favoring their dissemination to distant sites. In addition, MSCs are involved in the formation and modelling of pre-metastatic niches creating a supportive environment for colonization of circulating tumor cells. The development of novel therapeutic approaches targeting the different functions of MSCs in promoting tumor progression as well as the mechanisms underlying their activities could enhance the efficacy of conventional and immune anti-cancer therapies. Furthermore, many studies report the use of MSCs engineered to express different genes or as vehicle to specifically deliver novel drugs to tumors exploiting their strong tropism. Importantly, this approach can enhance local therapeutic efficacy and reduce the risk of systemic side effects.
Collapse
Affiliation(s)
- Billy Samuel Hill
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| | - Alessandra Pelagalli
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Nunzia Passaro
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| |
Collapse
|
48
|
Viale G, Trapani D, Curigliano G. Mismatch Repair Deficiency as a Predictive Biomarker for Immunotherapy Efficacy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4719194. [PMID: 28770222 PMCID: PMC5523547 DOI: 10.1155/2017/4719194] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Immunotherapy has revolutionized cancer treatment. Immune-checkpoint inhibitors, on balance, showed a favorable efficacy/toxicity profile with durable response in different cancer types. No predictive biomarker has been validated thus far to select patients who would benefit from therapy. Among the candidate predictive biomarkers, mismatch repair status of the tumor is currently one of the most promising. Indeed, tumors displaying mismatch repair deficiency or microsatellite instability showed remarkable response to immunotherapy in clinical trials. This correlation has been first reported in colorectal cancers, but similar results have been observed also in other cancer types. The possible mechanism behind this correlation may be the higher mutational load observed in mismatch repair deficient tumors, leading to neoantigens formation, recruitment of immune cells, and release of proinflammatory factors in the microenvironment. These results support an approach to treatment based on assessment of the genomic stability of the tumor besides its biologic characteristics and may change our therapeutic decision making process. However, due to the small percentage of patients with tumors displaying mismatch repair deficiency, data from clinical trials should not be considered definitive and need further confirmation.
Collapse
Affiliation(s)
- Giulia Viale
- Division of Early Drug Development, European Institute of Oncology, Via Ripamonti 435, Milan, Italy
| | - Dario Trapani
- Division of Early Drug Development, European Institute of Oncology, Via Ripamonti 435, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, Via Ripamonti 435, Milan, Italy
| |
Collapse
|
49
|
Lee KS, Kwak Y, Ahn S, Shin E, Oh HK, Kim DW, Kang SB, Choe G, Kim WH, Lee HS. Prognostic implication of CD274 (PD-L1) protein expression in tumor-infiltrating immune cells for microsatellite unstable and stable colorectal cancer. Cancer Immunol Immunother 2017; 66:927-939. [PMID: 28405764 PMCID: PMC11028600 DOI: 10.1007/s00262-017-1999-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/08/2017] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the clinical relevance of CD274 (PD-L1) protein expression by tumor cells and tumor-infiltrating immune cells in colorectal cancer (CRC). To this end, 186 microsatellite instability-high (MSI-H) and 153 microsatellite stable (MSS) CRCs were subjected to immunohistochemistry (IHC) analysis for the expression of CD274 and mismatch repair proteins. CD274 expression was evaluated in tumor cells at the center (TC) and periphery (TP), and immune cells at the center (IC) and periphery (IP) of CRC. IHC slides stained for CD3 and CD8 were scanned using an Aperio ScanScope for precise calculation of tumor-infiltrating T cell density. Additionally, samples were screened for the B-Raf (BRAF)-V600E mutation using a Cobas 4800 System and IHC. In total, CD274TC, CD274TP, CD274IC, and CD274IP were observed in 43 (23.1%), 47 (25.3%), 107 (57.5%), and 102 (54.8%) of the MSI-H CRCs examined, and in three (2.0%), four (2.6%), 47 (30.7%), and 56 (36.6%) of the 153 MSS CRCs tested. Meanwhile, intratumoral heterogeneity of CD274 expression in tumor cells and immune cells was detected in 24 (12.9%) and 47 (25.3%) MSI-H CRCs, respectively. Notably, in both MSI-H and MSS CRC, CD274IC and CD274IP were independently associated with improved prognosis (P < 0.05), while BRAF mutation was associated with CD274TP, poor differentiation, sporadic type, and hMLH1(-)/hMSH2(+)/hMSH6(+)/PMS2(-) in MSI-H CRC (P < 0.006). In conclusion, CD274 expression in tumor-infiltrating immune cells was an independent factor for improved prognosis in CRC patients. A deeper understanding of CD274 status may yield improved responses to future CRC immunotherapies.
Collapse
Affiliation(s)
- Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Soyeon Ahn
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Eun Shin
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Heung-Kwon Oh
- Department of Surgery, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro (Yongon-dong), Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro (Yongon-dong), Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea.
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro (Yongon-dong), Jongno-gu, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
50
|
Mutanome and expression of immune response genes in microsatellite stable colon cancer. Oncotarget 2017; 7:17711-25. [PMID: 26871478 PMCID: PMC4951244 DOI: 10.18632/oncotarget.7293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the impact of the mutanome in the prognosis of microsatellite stable stage II CRC tumors. The exome of 42 stage II, microsatellite stable, colon tumors (21 of them relapse) and their paired mucosa were sequenced and analyzed. Although some pathways accumulated more mutations in patients exhibiting good or poor prognosis, no single somatic mutation was associated with prognosis. Exome sequencing data is also valuable to infer tumor neoantigens able to elicit a host immune response. Hence, putative neoantigens were identified by combining information about missense mutations in each tumor and HLAs genotypes of the patients. Under the hypothesis that neoantigens should be correctly presented in order to activate the immune response, expression levels of genes involved in the antigen presentation machinery were also assessed. In addition, CD8A level (as a marker of T-cell infiltration) was measured. We found that tumors with better prognosis showed a tendency to generate a higher number of immunogenic epitopes, and up-regulated genes involved in the antigen processing machinery. Moreover, tumors with higher T-cell infiltration also showed better prognosis. Stratifying by consensus molecular subtype, CMS4 tumors showed the highest association of expression levels of genes involved in the antigen presentation machinery with prognosis. Thus, we hypothesize that a subset of stage II microsatellite stable CRC tumors are able to generate an immune response in the host via MHC class I antigen presentation, directly related with a better prognosis.
Collapse
|