1
|
Aviñó-Esteban L, Cardona-Blaya H, Sharpe J. Spatio-temporal reconstruction of gene expression patterns in developing mice. Development 2025; 152:DEV204313. [PMID: 39982400 PMCID: PMC11883288 DOI: 10.1242/dev.204313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
Understanding gene regulation in organism development is crucial in biology. Techniques like whole-mount in situ hybridization can reveal spatial gene expression in organs and tissues. However, capturing time-lapse movies of gene expression dynamics in embryos developing in utero, such as mice, remains technically challenging beyond the early stages. To address this, we present a method to integrate static snapshots of gene expression patterns across limb developmental stages, creating a continuous 2D reconstruction of gene expression patterns over time. This method interpolates small tissue regions over time to create smooth temporal trajectories of gene expression. We successfully applied it to a number of key genes in limb development, including Sox9, Hand2, and Bmp2. This approach enables a detailed spatio-temporal mapping of gene expression, providing insights into developmental mechanisms. By estimating gene expression patterns at previously unobserved time points, it facilitates the comparison of these patterns across samples. The reconstructed trajectories offer high-quality data that will be useful to guide computational modeling and machine learning, advancing the study of developmental biology in systems where real-time imaging is technically difficult or impossible.
Collapse
Affiliation(s)
- Laura Aviñó-Esteban
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
- Barcelona Collaboratorium for Modelling and Predictive Biology, Barcelona 08005, Spain
| | - Heura Cardona-Blaya
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
| | - James Sharpe
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
- Barcelona Collaboratorium for Modelling and Predictive Biology, Barcelona 08005, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
2
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
3
|
Darling C, Kumar S, Alexandrov Y, de Faye J, Almagro Santiago J, Rýdlová A, Bugeon L, Dallman MJ, Behrens AJ, French PMW, McGinty J. Optical projection tomography implemented for accessibility and low cost ( OPTImAL). PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230101. [PMID: 38826047 PMCID: PMC11448604 DOI: 10.1098/rsta.2023.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 06/04/2024]
Abstract
Optical projection tomography (OPT) is a three-dimensional mesoscopic imaging modality that can use absorption or fluorescence contrast, and is widely applied to fixed and live samples in the mm-cm scale. For fluorescence OPT, we present OPT implemented for accessibility and low cost, an open-source research-grade implementation of modular OPT hardware and software that has been designed to be widely accessible by using low-cost components, including light-emitting diode (LED) excitation and cooled complementary metal-oxide-semiconductor (CMOS) cameras. Both the hardware and software are modular and flexible in their implementation, enabling rapid switching between sample size scales and supporting compressive sensing to reconstruct images from undersampled sparse OPT data, e.g. to facilitate rapid imaging with low photobleaching/phototoxicity. We also explore a simple implementation of focal scanning OPT to achieve higher resolution, which entails the use of a fan-beam geometry reconstruction method to account for variation in magnification. This article is part of the Theo Murphy meeting issue 'Open, reproducible hardware for microscopy'.
Collapse
Affiliation(s)
- C Darling
- Physics Department, Imperial College London , London SW7 2AZ, UK
| | - S Kumar
- Physics Department, Imperial College London , London SW7 2AZ, UK
- Francis Crick Institute , London NW1 1AT, UK
| | - Y Alexandrov
- Physics Department, Imperial College London , London SW7 2AZ, UK
- Francis Crick Institute , London NW1 1AT, UK
| | - J de Faye
- Cancer Stem Cell Laboratory, Institute of Cancer Research , London SW7 3RP, UK
| | - J Almagro Santiago
- Cancer Stem Cell Laboratory, Institute of Cancer Research , London SW7 3RP, UK
| | - A Rýdlová
- Department of Life Sciences, Imperial College London , London SW7 2AZ, UK
| | - L Bugeon
- Department of Life Sciences, Imperial College London , London SW7 2AZ, UK
| | - M J Dallman
- Department of Life Sciences, Imperial College London , London SW7 2AZ, UK
| | - A J Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research , London SW7 3RP, UK
- CRUK Convergence Science Centre & Division of Cancer, Department of Surgery and Cancer, Imperial College , London, UK
| | - P M W French
- Physics Department, Imperial College London , London SW7 2AZ, UK
- Francis Crick Institute , London NW1 1AT, UK
| | - J McGinty
- Physics Department, Imperial College London , London SW7 2AZ, UK
- Francis Crick Institute , London NW1 1AT, UK
| |
Collapse
|
4
|
Papaioannou VE, Behringer RR. Analysis of Mid- to Late-Gestation Phenotypes in Mice. Cold Spring Harb Protoc 2024; 2024:107973. [PMID: 37932082 DOI: 10.1101/pdb.over107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Mid- to late gestation is characterized by tissue differentiation, maturation, organogenesis, and growth, and many mutant genes have detrimental effects during this phase of development. The outcome may be lethal before birth or may be compatible with life but result in birth defects. Some of the common causes of death during late gestation are hematopoietic defects, cardiovascular problems, and placental insufficiency. Many morphological abnormalities, lethal or not, can be investigated with gross and histological analyses or by visualization of the developing skeleton. Molecular characterization of mutant phenotypes, guided by the expression pattern of the mutant gene, can reveal disruptions in gene expression patterns of known developmental genes. Cell proliferation and cell death assays will reveal disruptions in cellular dynamics. Various modalities of 3D imaging of intact embryos can provide volumetric information about mutant phenotypes.
Collapse
Affiliation(s)
- Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Handschuh S, Glösmann M. Mouse embryo phenotyping using X-ray microCT. Front Cell Dev Biol 2022; 10:949184. [PMID: 36187491 PMCID: PMC9523164 DOI: 10.3389/fcell.2022.949184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Microscopic X-ray computed tomography (microCT) is a structural ex vivo imaging technique providing genuine isotropic 3D images from biological samples at micron resolution. MicroCT imaging is non-destructive and combines well with other modalities such as light and electron microscopy in correlative imaging workflows. Protocols for staining embryos with X-ray dense contrast agents enable the acquisition of high-contrast and high-resolution datasets of whole embryos and specific organ systems. High sample throughput is achieved with dedicated setups. Consequently, microCT has gained enormous importance for both qualitative and quantitative phenotyping of mouse development. We here summarize state-of-the-art protocols of sample preparation and imaging procedures, showcase contemporary applications, and discuss possible pitfalls and sources for artefacts. In addition, we give an outlook on phenotyping workflows using microscopic dual energy CT (microDECT) and tissue-specific contrast agents.
Collapse
|
6
|
Iyer S, Mukherjee S, Kumar M. Watching the embryo: Evolution of the microscope for the study of embryogenesis. Bioessays 2021; 43:e2000238. [PMID: 33837551 DOI: 10.1002/bies.202000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/08/2022]
Abstract
Embryos and microscopes share a long, remarkable history and biologists have always been intrigued to watch how embryos develop under the microscope. Here we discuss the advances in microscopy which have greatly influenced our current understanding of embryogenesis. We highlight the evolution of microscopes and the optical technologies that have been instrumental in studying various developmental processes. These imaging modalities provide mechanistic insights into the dynamic cellular and molecular events which drive lineage commitment and morphogenetic changes in the developing embryo. We begin the journey with a brief history of microscopy to study embryos. First, we review the principles and optics of light, fluorescence, confocal, and electron microscopy which have been key techniques for imaging cellular and molecular events during embryonic development. Next, we discuss recent key imaging modalities such as light-sheet microscopy, which are suitable for whole embryo imaging. Further, we highlight imaging techniques like multiphoton and super resolution microscopy for beyond light diffraction limit, high resolution imaging. Lastly, we review some of the scattering-based imaging methods and techniques used for imaging human embryos.
Collapse
Affiliation(s)
- Sharada Iyer
- Academy of Scientific and Innovative Research (AcCSIR), CSIR-CCMB campus, Uppal road, Hyderabad, 500007, India.,CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Megha Kumar
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
7
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
8
|
Vallejo Ramirez PP, Zammit J, Vanderpoorten O, Riche F, Blé FX, Zhou XH, Spiridon B, Valentine C, Spasov SE, Oluwasanya PW, Goodfellow G, Fantham MJ, Siddiqui O, Alimagham F, Robbins M, Stretton A, Simatos D, Hadeler O, Rees EJ, Ströhl F, Laine RF, Kaminski CF. OptiJ: Open-source optical projection tomography of large organ samples. Sci Rep 2019; 9:15693. [PMID: 31666606 PMCID: PMC6821862 DOI: 10.1038/s41598-019-52065-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 µm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples.
Collapse
Affiliation(s)
- Pedro P Vallejo Ramirez
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Joseph Zammit
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Oliver Vanderpoorten
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Fergus Riche
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Francois-Xavier Blé
- Clinical Discovery Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Xiao-Hong Zhou
- Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bogdan Spiridon
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | | | - Simeon E Spasov
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | | | - Gemma Goodfellow
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Marcus J Fantham
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Omid Siddiqui
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Farah Alimagham
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Miranda Robbins
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Andrew Stretton
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Dimitrios Simatos
- Sensor CDT 2015-2016 student cohort, University of Cambridge, Cambridge, UK
| | - Oliver Hadeler
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Eric J Rees
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Florian Ströhl
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Physics and Technology, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Romain F Laine
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Medical Research Council Laboratory for Molecular Cell Biology (LMCB), University College London, Gower Street, London, WC1E 6BT, UK
| | - Clemens F Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Visualising the Cardiovascular System of Embryos of Biomedical Model Organisms with High Resolution Episcopic Microscopy (HREM). J Cardiovasc Dev Dis 2018; 5:jcdd5040058. [PMID: 30558275 PMCID: PMC6306920 DOI: 10.3390/jcdd5040058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
The article will briefly introduce the high-resolution episcopic microscopy (HREM) technique and will focus on its potential for researching cardiovascular development and remodelling in embryos of biomedical model organisms. It will demonstrate the capacity of HREM for analysing the cardiovascular system of normally developed and genetically or experimentally malformed zebrafish, frog, chick and mouse embryos in the context of the whole specimen and will exemplarily show the possibilities HREM offers for comprehensive visualisation of the vasculature of adult human skin. Finally, it will provide examples of the successful application of HREM for identifying cardiovascular malformations in genetically altered mouse embryos produced in the deciphering the mechanisms of developmental disorders (DMDD) program.
Collapse
|
10
|
Cao B, Shetty R, Smith D, Kelbauskas L, Meldrum DR. Integrating fluorescence computed tomography with optical sheet illumination for imaging of live single cells. OPTICS EXPRESS 2018; 26:24020-24030. [PMID: 30184895 DOI: 10.1364/oe.26.024020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/12/2018] [Indexed: 05/24/2023]
Abstract
We present a new approach for three-dimensional (3D) live single-cell imaging with isotropic sub-micron spatial resolution using fluorescence computed tomography (fCT). A thin, highly inclined and laminated optical (HILO) sheet of light is used for fluorescence excitation in live single cells that are rotated around an axis perpendicular to the optical axis. During a full rotation, 400-500 two-dimensional (2D) projection images of the cell are acquired from multiple viewing perspectives by rapidly scanning the HILO light sheet along the optical axis. We report technical characteristics of the HILO approach and the results of a quantitative comparison with conventional epi fCT, demonstrating that HILO fCT offers significantly (about 17 times) reduced photobleaching and a two-fold improvement in 3D imaging contrast. We discuss potential application areas of the method for cell structure studies in live single cells with isotropic 3D spatial resolution.
Collapse
|
11
|
Wu C, Le H, Ran S, Singh M, Larina IV, Mayerich D, Dickinson ME, Larin KV. Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. BIOMEDICAL OPTICS EXPRESS 2017; 8:4629-4639. [PMID: 29082090 PMCID: PMC5654805 DOI: 10.1364/boe.8.004629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 05/04/2023]
Abstract
Several optical imaging techniques have been applied for high-resolution embryonic imaging using different contrast mechanisms, each with their own benefits and limitations. In this study, we imaged the same E9.5 mouse embryo with rotational imaging optical coherence tomography (RI-OCT) and selective plane illumination microscopy (SPIM). RI-OCT overcomes optical penetration limits of traditional OCT imaging that prohibit full-body imaging of mouse embryos at later stages by imaging the samples from multiple angles. SPIM enables high-resolution, 3D imaging with less phototoxicity and photobleaching than laser scanning confocal microscopy (LSCM) by illuminating the sample with a focused sheet of light. Side by side comparisons are supplemented with co-registered images. The results demonstrate that SPIM and RI-OCT are highly complementary and could provide more comprehensive tissue characterization for mouse embryonic research.
Collapse
Affiliation(s)
- Chen Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Henry Le
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
| | - Shihao Ran
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
- Equal contribution
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia
- Equal contribution
| |
Collapse
|
12
|
Coquoz S, Marchand PJ, Bouwens A, Mouchiroud L, Sorrentino V, Szlag D, Auwerx J, Lasser T. Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy. PLoS One 2017; 12:e0181676. [PMID: 28727813 PMCID: PMC5519216 DOI: 10.1371/journal.pone.0181676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/05/2017] [Indexed: 12/26/2022] Open
Abstract
Fast, label-free, high-resolution, three-dimensional imaging platforms are crucial for high-throughput in vivo time-lapse studies of the anatomy of Caenorhabditis elegans, one of the most commonly used model organisms in biomedical research. Despite the needs, methods combining all these characteristics have been lacking. Here, we present label-free imaging of live Caenorhabditis elegans with three-dimensional sub-micrometer resolution using visible optical coherence microscopy (visOCM). visOCM is a versatile optical imaging method which we introduced recently for tomography of cell cultures and tissue samples. Our method is based on Fourier domain optical coherence tomography, an interferometric technique that provides three-dimensional images with high sensitivity, high acquisition rate and micrometer-scale resolution. By operating in the visible wavelength range and using a high NA objective, visOCM attains lateral and axial resolutions below 1 μm. Additionally, we use a Bessel illumination offering an extended depth of field of approximately 40 μm. We demonstrate that visOCM’s imaging properties allow rapid imaging of full sized living Caenorhabditis elegans down to the sub-cellular level. Our system opens the door to many applications such as the study of phenotypic changes related to developmental or ageing processes.
Collapse
Affiliation(s)
- Séverine Coquoz
- Laboratoire d’Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Paul J. Marchand
- Laboratoire d’Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arno Bouwens
- Laboratoire d’Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vincenzo Sorrentino
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Szlag
- Laboratoire d’Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Theo Lasser
- Laboratoire d’Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Lee KJI, Calder GM, Hindle CR, Newman JL, Robinson SN, Avondo JJHY, Coen ES. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:527-538. [PMID: 28025317 PMCID: PMC5441912 DOI: 10.1093/jxb/erw452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale.
Collapse
Affiliation(s)
- Karen J I Lee
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - Grant M Calder
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | | | - Jacob L Newman
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - Simon N Robinson
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | | | - Enrico S Coen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| |
Collapse
|
14
|
Kumar S, Lockwood N, Ramel MC, Correia T, Ellis M, Alexandrov Y, Andrews N, Patel R, Bugeon L, Dallman MJ, Brandner S, Arridge S, Katan M, McGinty J, Frankel P, French PM. Quantitative in vivo optical tomography of cancer progression & vasculature development in adult zebrafish. Oncotarget 2016; 7:43939-43948. [PMID: 27259259 PMCID: PMC5190069 DOI: 10.18632/oncotarget.9756] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
We describe a novel approach to study tumour progression and vasculature development in vivo via global 3-D fluorescence imaging of live non-pigmented adult zebrafish utilising angularly multiplexed optical projection tomography with compressive sensing (CS-OPT). This "mesoscopic" imaging method bridges a gap between established ~μm resolution 3-D fluorescence microscopy techniques and ~mm-resolved whole body planar imaging and diffuse tomography. Implementing angular multiplexing with CS-OPT, we demonstrate the in vivo global imaging of an inducible fluorescently labelled genetic model of liver cancer in adult non-pigmented zebrafish that also present fluorescently labelled vasculature. In this disease model, addition of a chemical inducer (doxycycline) drives expression of eGFP tagged oncogenic K-RASV12 in the liver of immune competent animals. We show that our novel in vivo global imaging methodology enables non-invasive quantitative imaging of the development of tumour and vasculature throughout the progression of the disease, which we have validated against established methods of pathology including immunohistochemistry. We have also demonstrated its potential for longitudinal imaging through a study of vascular development in the same zebrafish from early embryo to adulthood. We believe that this instrument, together with its associated analysis and data management tools, constitute a new platform for in vivo cancer studies and drug discovery in zebrafish disease models.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Nicola Lockwood
- Department of Physics, Imperial College London, London SW7 2AZ, UK
- Division of Medicine, University College London, London WC1E 6JF, UK
- CoMPLEX, University College London, London WC1E 6BT, UK
| | - Marie-Christine Ramel
- Division of Medicine, University College London, London WC1E 6JF, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Teresa Correia
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | - Matthew Ellis
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Yuriy Alexandrov
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Natalie Andrews
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Department of Chemistry, Imperial College, London SW7 2AZ, UK
| | - Rachel Patel
- Division of Medicine, University College London, London WC1E 6JF, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, UK
| | - Simon Arridge
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | - Matilda Katan
- Division of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - James McGinty
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Paul Frankel
- Division of Medicine, University College London, London WC1E 6JF, UK
| | - Paul M.W. French
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
15
|
Singh M, Raghunathan R, Piazza V, Davis-Loiacono AM, Cable A, Vedakkan TJ, Janecek T, Frazier MV, Nair A, Wu C, Larina IV, Dickinson ME, Larin KV. Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:2295-310. [PMID: 27375945 PMCID: PMC4918583 DOI: 10.1364/boe.7.002295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 05/17/2023]
Abstract
We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.5) by optical coherence tomography (OCT) and optical projection tomography (OPT). We demonstrate that while OCT was capable of rapid high-resolution live 3D imaging, its limited penetration depth prevented visualization of deeper structures, particularly in later stage embryos. In contrast, OPT was able to image the whole embryos, but could not be used in vivo because the embryos must be fixed and cleared. Moreover, the fixation process significantly altered the embryo morphology, which was quantified by the volume of the eye-globes before and after fixation. All of these factors should be weighed when determining which imaging modality one should use to achieve particular goals of a study.
Collapse
Affiliation(s)
- Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Victor Piazza
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | | | - Alex Cable
- Thorlabs, Inc., 56 Sparta Ave., Newton, 07860, USA
| | - Tegy J. Vedakkan
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Trevor Janecek
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Michael V. Frazier
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Achuth Nair
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Chen Wu
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, 77584, USA
- Department of Electrical Engineering, Samara National Research University, Samara, 34 Moskovskoye sh., 443086, Russia
| |
Collapse
|
16
|
Raghunathan R, Singh M, Dickinson ME, Larin KV. Optical coherence tomography for embryonic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:50902. [PMID: 27228503 PMCID: PMC4881290 DOI: 10.1117/1.jbo.21.5.050902] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development.
Collapse
Affiliation(s)
- Raksha Raghunathan
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| |
Collapse
|
17
|
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging and brief overviews of other imaging modalities. We also briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking.
Collapse
Affiliation(s)
- Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, New York
| | - Daniel H Turnbull
- Departments of Radiology and Pathology, New York University School of Medicine, New York, New York.,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
18
|
Wu C, Sudheendran N, Singh M, Larina IV, Dickinson ME, Larin KV. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:26002. [PMID: 26848543 PMCID: PMC4748608 DOI: 10.1117/1.jbo.21.2.026002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT.
Collapse
Affiliation(s)
- Chen Wu
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Narendran Sudheendran
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, 36 Lenin Avenue, Tomsk 634050, Russia
- Address all correspondence to: Kirill V. Larin, E-mail:
| |
Collapse
|
19
|
Unleashing Optics and Optoacoustics for Developmental Biology. Trends Biotechnol 2015; 33:679-691. [PMID: 26435161 DOI: 10.1016/j.tibtech.2015.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
The past decade marked an optical revolution in biology: an unprecedented number of optical techniques were developed and adopted for biological exploration, demonstrating increasing interest in optical imaging and in vivo interrogations. Optical methods have become faster and have reached nanoscale resolution, and are now complemented by optoacoustic (photoacoustic) methods capable of imaging whole specimens in vivo. Never before were so many optical imaging barriers broken in such a short time-frame: with new approaches to optical microscopy and mesoscopy came an increased ability to image biology at unprecedented speed, resolution, and depth. This review covers the most relevant techniques for imaging in developmental biology, and offers an outlook on the next steps for these technologies and their applications.
Collapse
|
20
|
Bassi A, Schmid B, Huisken J. Optical tomography complements light sheet microscopy for in toto imaging of zebrafish development. Development 2015; 142:1016-20. [PMID: 25655702 PMCID: PMC4352980 DOI: 10.1242/dev.116970] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescently labeled structures can be spectrally isolated and imaged at high resolution in living embryos by light sheet microscopy. Multimodal imaging techniques are now needed to put these distinct structures back into the context of the surrounding tissue. We found that the bright-field contrast of unstained specimens in a selective plane illumination microscopy (SPIM) setup can be exploited for in vivo tomographic reconstructions of the three-dimensional anatomy of zebrafish, without causing phototoxicity. We report multimodal imaging of entire zebrafish embryos over several hours of development, as well as segmentation, tracking and automatic registration of individual organs. Summary: Bright-field imaging of unstained specimens during selective plane illumination microscopy can provide in vivo tomographic reconstruction of zebrafish anatomy.
Collapse
Affiliation(s)
- Andrea Bassi
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany Politecnico di Milano, Dipartimento di Fisica, Milano 20133, Italy
| | - Benjamin Schmid
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| |
Collapse
|
21
|
In-vivo optical tomography of small scattering specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster. Sci Rep 2014; 4:7325. [PMID: 25471694 PMCID: PMC4255187 DOI: 10.1038/srep07325] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/18/2014] [Indexed: 02/02/2023] Open
Abstract
Even though in vivo imaging approaches have witnessed several new and important developments, specimens that exhibit high light scattering properties such as Drosophila melanogaster pupae are still not easily accessible with current optical imaging techniques, obtaining images only from subsurface features. This means that in order to obtain 3D volumetric information these specimens need to be studied either after fixation and a chemical clearing process, through an imaging window - thus perturbing physiological development -, or during early stages of development when the scattering contribution is negligible. In this paper we showcase how Optical Projection Tomography may be used to obtain volumetric images of the head eversion process in vivo in Drosophila melanogaster pupae, both in control and headless mutant specimens. Additionally, we demonstrate the use of Helical Optical Projection Tomography (hOPT) as a tool for high throughput 4D-imaging of several specimens simultaneously.
Collapse
|
22
|
Zeng Y, Xiong K, Lu X, Feng G, Han D, Wu J. Laser Doppler projection tomography. OPTICS LETTERS 2014; 39:904-6. [PMID: 24562237 DOI: 10.1364/ol.39.000904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We propose a laser Doppler projection tomography (LDPT) method to obtain visualization of three-dimensional (3D) flowing structures. With LDPT, the flowing signal is extracted by a modified laser Doppler method, and the 3D flowing image is reconstructed by the filtered backprojection algorithm. Phantom experiments are performed to demonstrate that LDPT is able to obtain 3D flowing structure with higher signal-to-noise ratio and spatial resolution. Our experiment results display its potentially useful application to develop 3D label-free optical angiography for the circulation system of live small animal models or microfluidic experiments.
Collapse
|
23
|
Arranz A, Dong D, Zhu S, Rudin M, Tsatsanis C, Tian J, Ripoll J. Helical optical projection tomography. OPTICS EXPRESS 2013; 21:25912-25. [PMID: 24216818 DOI: 10.1364/oe.21.025912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A new technique termed Helical Optical Projection Tomography (hOPT) has been developed with the aim to overcome some of the limitations of current 3D optical imaging techniques. hOPT is based on Optical Projection Tomography (OPT) with the major difference that there is a translation of the sample in the vertical direction during the image acquisition process, requiring a new approach to image reconstruction. Contrary to OPT, hOPT makes possible to obtain 3D-optical images of intact long samples without imposing limits on the sample length. This has been tested using hOPT to image long murine tissue samples such as spinal cords and large intestines. Moreover, 3D-reconstructed images of the colon of DSS-treated mice, a model for Inflammatory Bowel Disease, allowed the identification of the structural alterations. Finally, the geometry of the hOPT device facilitates the addition of a Selective Plane Illumination Microscopy (SPIM) arm, providing the possibility of delivering high resolution images of selected areas together with complete volumetric information.
Collapse
|
24
|
Norris FC, Wong MD, Greene NDE, Scambler PJ, Weaver T, Weninger WJ, Mohun TJ, Henkelman RM, Lythgoe MF. A coming of age: advanced imaging technologies for characterising the developing mouse. Trends Genet 2013; 29:700-11. [PMID: 24035368 DOI: 10.1016/j.tig.2013.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/17/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022]
Abstract
The immense challenge of annotating the entire mouse genome has stimulated the development of cutting-edge imaging technologies in a drive for novel information. These techniques promise to improve understanding of the genes involved in embryo development, at least one third of which have been shown to be essential. Aligning advanced imaging technologies with biological needs will be fundamental to maximising the number of phenotypes discovered in the coming years. International efforts are underway to meet this challenge through an integrated and sophisticated approach to embryo phenotyping. We review rapid advances made in the imaging field over the past decade and provide a comprehensive examination of the relative merits of current and emerging techniques. The aim of this review is to provide a guide to state-of-the-art embryo imaging that will enable informed decisions as to which technology to use and fuel conversations between expert imaging laboratories, researchers, and core mouse production facilities.
Collapse
Affiliation(s)
- Francesca C Norris
- University College London (UCL) Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), UCL, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wong MD, Dazai J, Walls JR, Gale NW, Henkelman RM. Design and implementation of a custom built optical projection tomography system. PLoS One 2013; 8:e73491. [PMID: 24023880 PMCID: PMC3762719 DOI: 10.1371/journal.pone.0073491] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Optical projection tomography (OPT) is an imaging modality that has, in the last decade, answered numerous biological questions owing to its ability to view gene expression in 3 dimensions (3D) at high resolution for samples up to several cm3. This has increased demand for a cabinet OPT system, especially for mouse embryo phenotyping, for which OPT was primarily designed for. The Medical Research Council (MRC) Technology group (UK) released a commercial OPT system, constructed by Skyscan, called the Bioptonics OPT 3001 scanner that was installed in a limited number of locations. The Bioptonics system has been discontinued and currently there is no commercial OPT system available. Therefore, a few research institutions have built their own OPT system, choosing parts and a design specific to their biological applications. Some of these custom built OPT systems are preferred over the commercial Bioptonics system, as they provide improved performance based on stable translation and rotation stages and up to date CCD cameras coupled with objective lenses of high numerical aperture, increasing the resolution of the images. Here, we present a detailed description of a custom built OPT system that is robust and easy to build and install. Included is a hardware parts list, instructions for assembly, a description of the acquisition software and a free download site, and methods for calibration. The described OPT system can acquire a full 3D data set in 10 minutes at 6.7 micron isotropic resolution. The presented guide will hopefully increase adoption of OPT throughout the research community, for the OPT system described can be implemented by personnel with minimal expertise in optics or engineering who have access to a machine shop.
Collapse
Affiliation(s)
- Michael D. Wong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail:
| | - Jun Dazai
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johnathon R. Walls
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Nicholas W. Gale
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - R. Mark Henkelman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Feng G, Chen J, Lu X, Han D, Zeng Y. Laser speckle projection tomography. OPTICS LETTERS 2013; 38:2654-6. [PMID: 23903102 DOI: 10.1364/ol.38.002654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We propose a laser speckle projection tomography (LSPT) method to obtain a three-dimensional (3D) flowing image. The method combines the advantages of optical projection tomography and laser speckle imaging to reconstruct the visualization of 3D flowing structure. With LSPT, the flowing signal is extracted by laser speckle contrast method and the 3D flowing image is reconstructed by the filtered back-projection algorithm. A phantom experiment is performed to demonstrate that LSPT is able to obtain 3D flowing structure, influenced by concentration and the flow speed.
Collapse
Affiliation(s)
- Guanping Feng
- Department of Photoelectric Technology, Foshan University, Guangdong, China
| | | | | | | | | |
Collapse
|
27
|
Dong D, Zhu S, Qin C, Kumar V, Stein JV, Oehler S, Savakis C, Tian J, Ripoll J. Automated recovery of the center of rotation in optical projection tomography in the presence of scattering. IEEE J Biomed Health Inform 2012; 17:198-204. [PMID: 23008264 DOI: 10.1109/titb.2012.2219588] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Finding the center of rotation is an essential step for accurate three-dimensional reconstruction in optical projection tomography (OPT). Unfortunately current methods are not convenient since they require either prior scanning of a reference phantom, small structures of high intensity existing in the specimen, or active participation during the centering procedure. To solve these problems this paper proposes a fast and automatic center of rotation search method making use of parallel programming in graphics processing units (GPUs). Our method is based on a two step search approach making use only of those sections of the image with high signal to noise ratio. We have tested this method both in non-scattering ex vivo samples and in in vivo specimens with a considerable contribution of scattering such as Drosophila melanogaster pupae, recovering in all cases the center of rotation with a precision 1/4 pixel or less.
Collapse
|
28
|
Zhu S, Dong D, Birk UJ, Rieckher M, Tavernarakis N, Qu X, Liang J, Tian J, Ripoll J. Automated motion correction for in vivo optical projection tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:1358-1371. [PMID: 22374352 DOI: 10.1109/tmi.2012.2188836] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In in vivo optical projection tomography (OPT), object motion will significantly reduce the quality and resolution of the reconstructed image. Based on the well-known Helgason-Ludwig consistency condition (HLCC), we propose a novel method for motion correction in OPT under parallel beam illumination. The method estimates object motion from projection data directly and does not require any other additional information, which results in a straightforward implementation. We decompose object movement into translation and rotation, and discuss how to correct for both translation and general motion simultaneously. Since finding the center of rotation accurately is critical in OPT, we also point out that the system's geometrical offset can be considered as object translation and therefore also calibrated through the translation estimation method. In order to verify the algorithm effectiveness, both simulated and in vivo OPT experiments are performed. Our results demonstrate that the proposed approach is capable of decreasing movement artifacts significantly thus providing high quality reconstructed images in the presence of object motion.
Collapse
Affiliation(s)
- Shouping Zhu
- School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Partridge R, Conlisk N, Davies JA. In-lab three-dimensional printing: an inexpensive tool for experimentation and visualization for the field of organogenesis. Organogenesis 2012; 8:22-7. [PMID: 22652907 PMCID: PMC3399707 DOI: 10.4161/org.20173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue's three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer.
Collapse
Affiliation(s)
- Roland Partridge
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
30
|
Two ways to use imaging: focusing directly on mechanism, or indirectly via behaviour? Curr Opin Genet Dev 2011; 21:523-9. [DOI: 10.1016/j.gde.2011.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 01/26/2023]
|
31
|
Bassi A, Fieramonti L, D'Andrea C, Mione M, Valentini G. In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:100502. [PMID: 22029341 DOI: 10.1117/1.3640808] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduce flow optical projection tomography, an imaging technique capable of visualizing the vasculature of living specimens in 3-D. The method detects the movement of cells in the bloodstream and creates flow maps using a motion-analysis procedure. Then, flow maps obtained from projection taken at several angles are used to reconstruct sections of the circulatory system of the specimen. We therefore demonstrate an in vivo, 3-D optical imaging technique that, without the use of any labeling, is able to reconstruct and visualize the vascular network of transparent and weakly scattering living specimens.
Collapse
Affiliation(s)
- Andrea Bassi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milan, 20133, Italy.
| | | | | | | | | |
Collapse
|
32
|
Larina IV, Larin KV, Justice MJ, Dickinson ME. Optical Coherence Tomography for live imaging of mammalian development. Curr Opin Genet Dev 2011; 21:579-84. [PMID: 21962442 DOI: 10.1016/j.gde.2011.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/24/2011] [Accepted: 09/06/2011] [Indexed: 02/08/2023]
Abstract
Understanding the nature and mechanism of congenital defects of the different organ systems in humans has heavily relied on the analysis of the corresponding mutant phenotypes in rodent models. Optical Coherence Tomography (OCT) has recently emerged as a powerful tool to study early embryonic development. This non-invasive optical methodology does not require labeling and allows visualization of embryonic tissues with single cell resolution. Here, we will discuss how OCT can be applied for structural imaging of early mouse and rat embryos in static culture, cardiodynamic and blood flow analysis, and in utero embryonic imaging at later stages of gestation, demonstrating how OCT can be used to assess structural and functional birth defects in mammalian models.
Collapse
Affiliation(s)
- Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| | | | | | | |
Collapse
|
33
|
Rieckher M, Birk UJ, Meyer H, Ripoll J, Tavernarakis N. Microscopic optical projection tomography in vivo. PLoS One 2011; 6:e18963. [PMID: 21559481 PMCID: PMC3084718 DOI: 10.1371/journal.pone.0018963] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/14/2011] [Indexed: 11/18/2022] Open
Abstract
We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms.
Collapse
Affiliation(s)
- Matthias Rieckher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Udo Jochen Birk
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Heiko Meyer
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Jorge Ripoll
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Crete, Greece
- * E-mail: (JR); (NT)
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
- * E-mail: (JR); (NT)
| |
Collapse
|
34
|
Hopyan S, Sharpe J, Yang Y. Budding behaviors: Growth of the limb as a model of morphogenesis. Dev Dyn 2011; 240:1054-62. [PMID: 21384474 DOI: 10.1002/dvdy.22601] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2010] [Indexed: 11/11/2022] Open
Abstract
Questions regarding morphogenesis have played second fiddle to those pertaining to pattern formation among the limb development set for some time. A recent series of publications has reinvigorated the search for mechanisms by which the limb bud arises, elongates and acquires its peculiar shape. While there are stage-specific variations, the theme that resonates across these studies is that mesoderm and cartilage cells in the limb bud exhibit polarity that drives directional movement and oriented division. Noncanonical Wnt signalling is important for these cell behaviors at all stages of limb development. While the emerging morphogenetic mechanisms underlying limb bud outgrowth are partly analogous to those of other developing structures, insights from the limb have the potential to reveal intriguing new mechanisms by which three dimensional mesoderm changes shape.
Collapse
Affiliation(s)
- Sevan Hopyan
- Developmental and Stem Cell Biology Program and Division of Orthopaedics, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
35
|
Marcon L, Arqués CG, Torres MS, Sharpe J. A computational clonal analysis of the developing mouse limb bud. PLoS Comput Biol 2011; 7:e1001071. [PMID: 21347315 PMCID: PMC3037386 DOI: 10.1371/journal.pcbi.1001071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/29/2010] [Indexed: 01/29/2023] Open
Abstract
A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal data we are able to choose and characterize the tissue movement map that better matches experimental data. Our computational analysis produces for the first time a two dimensional model of limb growth based on experimental data that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning hypothesis. A comprehensive mathematical description of the growth of an organ can be given by the velocity vectors defining the displacement of each tissue point in a fixed coordinate system plus a description of the degree of mixing between the cells. As an alternative to live imaging, a way to estimate the collection of such velocity vectors, known as velocity vector field, is to use cell-labeling experiments. However, this approach can be applied only when the labeled populations have been grown for small periods of time and the tensors of the velocity vector field can be estimated directly from the shape of the labeled population. Unfortunately, most of the available cell-labeling experiments of developmental systems have been generated considering a long clone expansion time that is more suitable for lineaging studies than for estimating velocity vector fields. In this study we present a new computational method that allows us to estimate the velocity vector field of limb tissue movement by using clonal data with long harvesting time and a sequence of experimental limb morphologies. The method results in the first realistic 2D model of limb outgrowth and establishes a powerful framework for numerical simulations of limb development.
Collapse
Affiliation(s)
- Luciano Marcon
- EMBL-CRG Systems Biology Research Unit, Center for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (LM); (JS)
| | - Carlos G. Arqués
- Departamento de Biología del Desarrollo Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel S. Torres
- Departamento de Biología del Desarrollo Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
| | - James Sharpe
- EMBL-CRG Systems Biology Research Unit, Center for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
- ICREA Professor, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (LM); (JS)
| |
Collapse
|
36
|
|