1
|
De Jaeger-Braet J, Schnittger A. Heating up meiosis - Chromosome recombination and segregation under high temperatures. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102548. [PMID: 38749207 DOI: 10.1016/j.pbi.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Heat stress is one of the major constraints to plant growth and fertility. During the current climate crisis, heat waves have increased dramatically, and even more extreme conditions are predicted for the near future, considerably affecting ecosystems and seriously threatening world food security. Although heat is very well known to affect especially reproductive structures, little is known about how heat interferes with reproduction in comparison to somatic cells and tissues. Recently, the effect of heat on meiosis as a central process in sexual reproduction has been analyzed in molecular and cytological depth. Notably, these studies are not only important for applied research by laying the foundation for breeding heat-resilient crops, but also for fundamental research, revealing general regulatory mechanisms of recombination and chromosome segregation control.
Collapse
Affiliation(s)
- Joke De Jaeger-Braet
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
2
|
Li X, Bruckmann A, Dresselhaus T, Begcy K. Heat stress at the bicellular stage inhibits sperm cell development and transport into pollen tubes. PLANT PHYSIOLOGY 2024; 195:2111-2128. [PMID: 38366643 PMCID: PMC11213256 DOI: 10.1093/plphys/kiae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
For successful double fertilization in flowering plants (angiosperms), pollen tubes deliver 2 nonmotile sperm cells toward female gametes (egg and central cell, respectively). Heatwaves, especially during the reproduction period, threaten male gametophyte (pollen) development, resulting in severe yield losses. Using maize (Zea mays) as a crop and grass model system, we found strong seed set reduction when moderate heat stress was applied for 2 d during the uni- and bicellular stages of pollen development. We show that heat stress accelerates pollen development and impairs pollen germination capabilities when applied at the unicellular stage. Heat stress at the bicellular stage impairs sperm cell development and transport into pollen tubes. To understand the course of the latter defects, we used marker lines and analyzed the transcriptomes of isolated sperm cells. Heat stress affected the expression of genes associated with transcription, RNA processing and translation, DNA replication, and the cell cycle. This included the genes encoding centromeric histone 3 (CENH3) and α-tubulin. Most genes that were misregulated encode proteins involved in the transition from metaphase to anaphase during pollen mitosis II. Heat stress also activated spindle assembly check point and meta- to anaphase transition genes in sperm cells. In summary, misregulation of the identified genes during heat stress at the bicellular stage results in sperm cell development and transport defects ultimately leading to sterility.
Collapse
Affiliation(s)
- Xingli Li
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL32611, USA
| |
Collapse
|
3
|
Ronceret A, Bolaños‐Villegas P. Plant reproduction research in Latin America: Toward sustainable agriculture in a changing environment. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10143. [PMID: 38764600 PMCID: PMC11101159 DOI: 10.1002/pei3.10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024]
Abstract
Food production and food security depend on the ability of crops to cope with anthropogenic climate change and successfully produce seed. To guarantee food production well into the future, contemporary plant scientists in Latin America must carry out research on how plants respond to environmental stressors such as temperature, drought, and salinity. This review shows the opportunities to apply these results locally and abroad and points to the gaps that still exist in terms of reproductive processes with the purpose to better link research with translational work in plant breeding and biotechnology. Suggestions are put forth to address these gaps creatively in the face of chronic low investment in science with a focus on applicability.
Collapse
Affiliation(s)
- Arnaud Ronceret
- Instituto de Biotecnología/Universidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Pablo Bolaños‐Villegas
- Fabio Baudrit Agricultural Research StationUniversity of Costa RicaAlajuelaCosta Rica
- Lankester Botanical GardenUniversity of Costa RicaCartagoCosta Rica
- Faculty of Food and Agricultural Sciences, Rodrigo Facio Campus, School of AgronomyUniversity of Costa RicaSan JoseCosta Rica
| |
Collapse
|
4
|
Hu M, Ren Z, Rong N, Bai M, Wu H, Yang M. A possible pattern in the evolution of male meiotic cytokinesis in angiosperms. AOB PLANTS 2024; 16:plae017. [PMID: 38585158 PMCID: PMC10998459 DOI: 10.1093/aobpla/plae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Evolution of cellular characteristics is a fundamental aspect of evolutionary biology, but knowledge about evolution at the cellular level is very limited. In particular, whether a certain intracellular characteristic evolved in angiosperms, and what significance of such evolution is to angiosperms, if it exists, are important and yet unanswered questions. We have found that bidirectional cytokinesis occurs or likely occurs in male meiosis in extant basal and near-basal angiosperm lineages, which differs from the unidirectional cytokinesis in male meiosis in monocots and eudicots. This pattern of cytokinesis in angiosperms seems to align with the distribution pattern of angiosperms with the lineages basal to monocots and eudicots living in tropical, subtropical or temperate environments and monocots and eudicots in an expanded range of environments including tropical, subtropical, temperate, subarctic and arctic environments. These two cytokinetic modes seem to result from two phragmoplast types, respectively. A phragmoplast in the bidirectional cytokinesis dynamically associates with the leading edge of a growing cell plate whereas a phragmoplast in the unidirectional cytokinesis is localized to an entire division plane. The large assembly of microtubules in the phragmoplast in unidirectional cytokinesis may be indicative of increased microtubule stability compared with that of the small microtubule assembly in the phragmoplast in bidirectional cytokinesis. Microtubules could conceivably increase their stability from evolutionary changes in tubulins and/or microtubule-associated proteins. Microtubules are very sensitive to low temperatures, which should be a reason for plants to be sensitive to low temperatures. If monocots and eudicots have more stable microtubules than other angiosperms, they will be expected to deal with low temperatures better than other angiosperms. Future investigations into the male meiotic cytokinetic directions, microtubule stability at low temperatures, and proteins affecting microtubule stability in more species may shed light on how plants evolved to inhabit cold environments.
Collapse
Affiliation(s)
- Mingli Hu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Ning Rong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Bai
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, 301 Physical Sciences, Stillwater, Oklahoma 74078, USA
| |
Collapse
|
5
|
Sun WT, Cheng SC, Chao YT, Lin SY, Yang TT, Ho YP, Shih MC, Ko SS. Sugars and sucrose transporters in pollinia of Phalaenopsis aphrodite (Orchidaceae). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2556-2571. [PMID: 36656734 DOI: 10.1093/jxb/erad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/19/2023] [Indexed: 06/06/2023]
Abstract
The pollen grains of Phalaenopsis orchids are clumped tightly together, packed in pollen dispersal units called pollinia. In this study, the morphology, cytology, biochemistry, and sucrose transporters in pollinia of Phalaenopsis orchids were investigated. Histochemical detection was used to characterize the distribution of sugars and callose at the different development stages of pollinia. Ultra-performance liquid chromatography-high resolution-tandem mass spectrometry data indicated that P. aphrodite accumulated abundant saccharides such as sucrose, galactinol, myo-inositol, and glucose, and trace amounts of raffinose and trehalose in mature pollinia. We found that galactinol synthase (PAXXG304680) and trehalose-6-phosphate phosphatase (PAXXG016120) genes were preferentially expressed in mature pollinia. The P. aphrodite genome was identified as having 11 sucrose transporters (SUTs). Our qRT-PCR confirmed that two SUTs (PAXXG030250 and PAXXG195390) were preferentially expressed in the pollinia. Pollinia germinated in pollen germination media (PGM) supplemented with 10% sucrose showed increased callose production and enhanced pollinia germination, but there was no callose or germination in PGM without sucrose. We show that P. aphrodite accumulates high levels of sugars in mature pollinia, providing nutrients and enhanced SUT gene expression for pollinia germination and tube growth.
Collapse
Affiliation(s)
- Wan-Ting Sun
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
| | - Sy-Chyi Cheng
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
| | - Ya-Ting Chao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shu-Yao Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
| | - Ting-Ting Yang
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
| | - Yi-Ping Ho
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, 711, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
6
|
Sang Y, Kong B, Do PU, Ma L, Du J, Li L, Cheng X, Zhao Y, Zhou Q, Wu J, Song L, Zhang P. Microsporogenesis in the triploid hybrid 'Beilinxiongzhu 1#' and detection of primary trisomy in 2x × 3 × Populus hybrids. BMC PLANT BIOLOGY 2023; 23:177. [PMID: 37016286 PMCID: PMC10074712 DOI: 10.1186/s12870-023-04189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Primary trisomy is a powerful genetic tool in plants. However, trisomy has not been detected in Populus as a model system for tree and woody perennial plant biology. RESULTS In the present study, a backcross between Populus alba × Populus glandulosa 'YXY 7#' (2n = 2x = 38) and the triploid hybrid 'Beilinxiongzhu 1#' (2n = 3x = 57) based on the observation of microsporogenesis and an evaluation of the variations in pollen was conducted to create primary trisomy. Many abnormalities, such as premature migration of chromosomes, lagging of chromosomes, chromosome bridges, asymmetric separation, micronuclei, and premature cytokinesis, have been detected during meiosis of the triploid hybrid clone 'Beilinxiongzhu 1#'. However, these abnormal behaviors did not result in completely aborted pollen. The pollen diameter of the triploid hybrid clone 'Beilinxiongzhu 1#' is bimodally distributed, which was similar to the chromosomal number of the backcross progeny. A total of 393 progeny were generated. We provide a protocol for determining the number of chromosomes in aneuploid progeny, and 19 distinct simple sequence repeat (SSR) primer pairs covering the entire Populus genome were developed. Primary trisomy 11 and trisomy 17 were detected in the 2x × 3 x hybrid using the SSR molecular markers and counting of somatic chromosomes. CONCLUSIONS Nineteen distinct SSR primer pairs for determining chromosomal number in aneuploid individuals were developed, and two Populus trisomies were detected from 2x × 3 x hybrids by SSR markers and somatic chromosome counting. Our findings provide a powerful genetic tool to reveal the function of genes in Populus.
Collapse
Affiliation(s)
- Yaru Sang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Bo Kong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Phuong Uyen Do
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Lexun Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Jiahua Du
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Liang Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Xuetong Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Yifan Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Qing Zhou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Jian Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Lianjun Song
- Forest Tree Species Breeding Base of Weixian Country, Hebei, 054700, China
| | - Pingdong Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Tanasa S, Shukla N, Cairo A, Ganji RS, Mikulková P, Valuchova S, Raxwal VK, Capitao C, Schnittger A, Zdráhal Z, Riha K. A complex role of Arabidopsis CDKD;3 in meiotic progression and cytokinesis. PLANT DIRECT 2023; 7:e477. [PMID: 36891158 PMCID: PMC9986724 DOI: 10.1002/pld3.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Meiosis is a specialized cell division that halves the number of chromosomes in two consecutive rounds of chromosome segregation. In angiosperm plants is meiosis followed by mitotic divisions to form rudimentary haploid gametophytes. In Arabidopsis, termination of meiosis and transition to gametophytic development are governed by TDM1 and SMG7 that mediate inhibition of translation. Mutants deficient in this mechanism do not form tetrads but instead undergo multiple cycles of aberrant nuclear divisions that are likely caused by the failure to downregulate cyclin dependent kinases during meiotic exit. A suppressor screen to identify genes that contribute to meiotic exit uncovered a mutation in cyclin-dependent kinase D;3 (CDKD;3) that alleviates meiotic defects in smg7 deficient plants. The CDKD;3 deficiency prevents aberrant meiotic divisions observed in smg7 mutants or delays their onset after initiation of cytokinesis, which permits formation of functional microspores. Although CDKD;3 acts as an activator of cyclin-dependent kinase A;1 (CDKA;1), the main cyclin dependent kinase that regulates meiosis, cdkd;3 mutation appears to promote meiotic exit independently of CDKA;1. Furthermore, analysis of CDKD;3 interactome revealed enrichment for proteins implicated in cytokinesis, suggesting a more complex function of CDKD;3 in cell cycle regulation.
Collapse
Affiliation(s)
- Sorin Tanasa
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Neha Shukla
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Albert Cairo
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Ranjani S. Ganji
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Pavlina Mikulková
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Sona Valuchova
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Vivek K. Raxwal
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Claudio Capitao
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesViennaAustria
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Karel Riha
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
8
|
Zhao Y, Kong B, Do PU, Li L, Du J, Ma L, Sang Y, Wu J, Zhou Q, Cheng X, Kang X, Zhang P. Gibberellins as a novel mutagen for inducing 2n gametes in plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1110027. [PMID: 36714757 PMCID: PMC9875036 DOI: 10.3389/fpls.2022.1110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
The plant hormone gibberellin (GA) regulates many physiological processes, such as cell differentiation, cell elongation, seed germination, and the response to abiotic stress. Here, we found that injecting male flower buds with exogenous gibberellic acid (GA3) caused defects in meiotic cytokinesis by interfering with radial microtubule array formation resulting in meiotic restitution and 2n pollen production in Populus. A protocol for inducing 2n pollen in Populus with GA3 was established by investigating the effects of the dominant meiotic stage, GA3 concentration, and injection time. The dominant meiotic stage (F = 41.882, P < 0.001) and GA3 injection time (F = 172.466, P < 0.001) had significant effects on the frequency of induced 2n pollen. However, the GA3 concentration (F = 1.391, P = 0.253) did not have a significant effect on the frequency of induced 2n pollen. The highest frequency of GA3-induced 2n pollen (21.37%) was observed when the dominant meiotic stage of the pollen mother cells was prophase II and seven injections of 10 μM GA3 were given. Eighteen triploids were generated from GA3-induced 2n pollen. Thus, GA3 can be exploited as a novel mutagen to induce flowering plants to generate diploid male gametes. Our findings provide some new insight into the function of GAs in plants.
Collapse
Affiliation(s)
- Yifan Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Bo Kong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Phuong Uyen Do
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiahua Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lexun Ma
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yaru Sang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jian Wu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qing Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuetong Cheng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pingdong Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Tidy AC, Ferjentsikova I, Vizcay-Barrena G, Liu B, Yin W, Higgins JD, Xu J, Zhang D, Geelen D, Wilson ZA. Sporophytic control of pollen meiotic progression is mediated by tapetum expression of ABORTED MICROSPORES. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5543-5558. [PMID: 35617147 PMCID: PMC9467646 DOI: 10.1093/jxb/erac225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Pollen development is dependent on the tapetum, a sporophytic anther cell layer surrounding the microspores that functions in pollen wall formation but is also essential for meiosis-associated development. There is clear evidence of crosstalk and co-regulation between the tapetum and microspores, but how this is achieved is currently not characterized. ABORTED MICROSPORES (AMS), a tapetum transcription factor, is important for pollen wall formation, but also has an undefined role in early pollen development. We conducted a detailed investigation of chromosome behaviour, cytokinesis, radial microtubule array (RMA) organization, and callose formation in the ams mutant. Early meiosis initiates normally in ams, shows delayed progression after the pachytene stage, and then fails during late meiosis, with disorganized RMA, defective cytokinesis, abnormal callose formation, and microspore degeneration, alongside abnormal tapetum development. Here, we show that selected meiosis-associated genes are directly repressed by AMS, and that AMS is essential for late meiosis progression. Our findings indicate that AMS has a dual function in tapetum-meiocyte crosstalk by playing an important regulatory role during late meiosis, in addition to its previously characterized role in pollen wall formation. AMS is critical for RMA organization, callose deposition, and therefore cytokinesis, and is involved in the crosstalk between the gametophyte and sporophytic tissues, which enables synchronous development of tapetum and microspores.
Collapse
Affiliation(s)
| | | | - Gema Vizcay-Barrena
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wenzhe Yin
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jie Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Danny Geelen
- Department of Plant Production, Ghent University, geb. A, Gent, Belgium
| | | |
Collapse
|
10
|
Hormonal Signaling in the Progamic Phase of Fertilization in Plants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pollen–pistil interaction is a basic process in the reproductive biology of flowering plants and has been the subject of intense fundamental research that has a pronounced practical value. The phytohormones ethylene (ET) and cytokinin (CK) together with other hormones such as auxin, gibberellin (GA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroids (BRs) influence different stages of plant development and growth. Here, we mainly focus on the information about the ET and CK signaling in the progamic phase of fertilization. This signaling occurs during male gametophyte development, including tapetum (TAP) cell death, and pollen tube growth, including synergid programmed cell death (PCD) and self-incompatibility (SI)-induced PCD. ET joins the coordination of successive events in the developing anther, including the TAP development and cell death, anther dehiscence, microspore development, pollen grain maturation, and dehydration. Both ET and CK take part in the regulation of E. ET signaling accompanies adhesion, hydration, and germination of pollen grains in the stigma and growth of pollen tubes in style tissues. Thus, ET production may be implicated in the pollination signaling between organs accumulated in the stigma and transmitted to the style and ovary to ensure successful pollination. Some data suggest that ET and CK signaling are involved in S-RNase-based SI.
Collapse
|
11
|
Acar A, Singh D, Srivastava AK. Assessment of the ameliorative effect of curcumin on pendimethalin-induced genetic and biochemical toxicity. Sci Rep 2022; 12:2195. [PMID: 35140281 PMCID: PMC8828890 DOI: 10.1038/s41598-022-06278-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to assess the toxic effects of pendimethalin herbicide and protective role of curcumin using the Allium test on cytological, biochemical and physiological parameters. The effective concentration (EC50) of pendimethalin was determined at 12 mg/L by the root growth inhibition test as the concentration reducing the root length by 50%. The roots of Allium cepa L. was treated with tap water (group I), 5 mg/L curcumin (group II), 10 mg/L curcumin (group III), 12 mg/L pendimethalin (group IV), 12 mg/L pendimethalin + 5 mg/L curcumin (group V) and 12 mg/L pendimethalin + 10 mg/L curcumin (group VI). The cytological (mitotic index, chromosomal abnormalities and DNA damage), physiological (rooting percentage, root length, growth rate and weight gain) and oxidative stress (malondialdehyde level, superoxide dismutase level, catalase level and glutathione reductase level) indicators were determined after 96 h of treatment. The results revealed that pendimethalin treatment reduced rooting percentage, root length, growth rate and weight gain whereas induced chromosomal abnormalities and DNA damage in roots of A. cepa L. Further, pendimethalin exposure elevated malondialdehyde level followed by antioxidant enzymes. The activities of superoxide dismutase and catalase were up-regulated and glutathione reductase was down-regulated. The molecular docking supported the antioxidant enzymes activities result. However, a dose-dependent reduction of pendimethalin toxicity was observed when curcumin was supplied with pendimethalin. The maximum recovery of cytological, physiological and oxidative stress parameters was recorded at 10 mg/L concentration of curcumin. The correlation studies also revealed positive relation of curcumin with rooting percentage, root length, weight gain, mitotic activity and glutathione reductase enzyme level while an inverse correlation was observed with chromosomal abnormalities, DNA damage, superoxide dismutase and catalase enzyme activities, and lipid peroxidation indicating its protective effect.
Collapse
Affiliation(s)
- Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey.
| | - Divya Singh
- Central Sericultural Research and Training Institute, Mysore, India
| | | |
Collapse
|
12
|
Zhou D, Chen C, Jin Z, Chen J, Lin S, Lyu T, Liu D, Xiong X, Cao J, Huang L. Transcript Profiling Analysis and ncRNAs' Identification of Male-Sterile Systems of Brassica campestris Reveal New Insights Into the Mechanism Underlying Anther and Pollen Development. FRONTIERS IN PLANT SCIENCE 2022; 13:806865. [PMID: 35211139 PMCID: PMC8861278 DOI: 10.3389/fpls.2022.806865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Male-sterile mutants are useful materials to study the anther and pollen development. Here, whole transcriptome sequencing was performed for inflorescences in three sterile lines of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis), the genic male-sterile line (A line), the Polima cytoplasmic male-sterile (CMS) line (P line), and the Ogura CMS line (O line) along with their maintainer line (B line). In total, 7,136 differentially expressed genes (DEGs), 361 differentially expressed long non-coding RNAs (lncRNAs) (DELs), 56 differentially expressed microRNAs (miRNAs) (DEMs) were selected out. Specific regulatory networks related to anther cell differentiation, meiosis cytokinesis, pollen wall formation, and tapetum development were constructed based on the abortion characteristics of male-sterile lines. Candidate genes and lncRNAs related to cell differentiation were identified in sporocyteless P line, sixteen of which were common to the DEGs in Arabidopsis spl/nzz mutant. Genes and lncRNAs concerning cell plate formation were selected in A line that is defected in meiosis cytokinesis. Also, the orthologs of pollen wall formation and tapetum development genes in Arabidopsis showed distinct expression patterns in the three different sterile lines. Among 361 DELs, 35 were predicted to interact with miRNAs, including 28 targets, 47 endogenous target mimics, and five precursors for miRNAs. Two lncRNAs were further proved to be functional precursors for bra-miR156 and bra-miR5718, respectively. Overexpression of bra-miR5718HG in B. campestris slowed down the growth of pollen tubes, caused shorter pollen tubes, and ultimately affected the seed set. Our study provides new insights into molecular regulation especially the ncRNA interaction during pollen development in Brassica crops.
Collapse
Affiliation(s)
- Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Caizhi Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zongmin Jin
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Jingwen Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Tao Lyu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Dandan Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Xinpeng Xiong
- College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
13
|
Lin YN, Jiang CK, Cheng ZK, Wang DH, Shen LP, Xu C, Xu ZH, Bai SN. Rice Cell Division Cycle 20s are required for faithful chromosome segregation and cytokinesis during meiosis. PLANT PHYSIOLOGY 2022; 188:1111-1128. [PMID: 34865119 PMCID: PMC8825277 DOI: 10.1093/plphys/kiab543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/25/2021] [Indexed: 05/04/2023]
Abstract
Chromosome segregation must be under strict regulation to maintain chromosome euploidy and stability. Cell Division Cycle 20 (CDC20) is an essential cell cycle regulator that promotes the metaphase-to-anaphase transition and functions in the spindle assembly checkpoint, a surveillance pathway that ensures the fidelity of chromosome segregation. Plant CDC20 genes are present in multiple copies, and whether CDC20s have the same functions in plants as in yeast and animals is unclear, given the potential for divergence or redundancy among the multiple copies. Here, we studied all three CDC20 genes in rice (Oryza sativa) and constructed two triple mutants by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated genome editing to explore their roles in development. Knocking out all three CDC20 genes led to total sterility but did not affect vegetative development. Loss of the three CDC20 proteins did not alter mitotic division but severely disrupted meiosis as a result of asynchronous and unequal chromosome segregation, chromosome lagging, and premature separation of chromatids. Immunofluorescence of tubulin revealed malformed meiotic spindles in microsporocytes of the triple mutants. Furthermore, cytokinesis of meiosis I was absent or abnormal, and cytokinesis II was completely prevented in all mutant microsporocytes; thus, no tetrads or pollen formed in either cdc20 triple mutant. Finally, the subcellular structures and functions of the tapetum were disturbed by the lack of CDC20 proteins. These findings demonstrate that the three rice CDC20s play redundant roles but are indispensable for faithful meiotic chromosome segregation and cytokinesis, which are required for the production of fertile microspores.
Collapse
Affiliation(s)
- Ya-Nan Lin
- State Key Laboratory of Protein and Plant Gene Research, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Chen-Kun Jiang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhu-Kuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong-Hui Wang
- State Key Laboratory of Protein and Plant Gene Research, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- National Teaching Center for Experimental Biology, Peking University, Beijing 100871, China
| | - Li-Ping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cong Xu
- State Key Laboratory of Protein and Plant Gene Research, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu-Nong Bai
- State Key Laboratory of Protein and Plant Gene Research, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Author for communication:
| |
Collapse
|
14
|
Schindfessel C, Drozdowska Z, De Mooij L, Geelen D. Loss of obligate crossovers, defective cytokinesis and male sterility in barley caused by short-term heat stress. PLANT REPRODUCTION 2021; 34:243-253. [PMID: 34021795 DOI: 10.1007/s00497-021-00415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 05/16/2023]
Abstract
Short-term heat stress during male meiosis causes defects in crossover formation, meiotic progression and cell wall formation in the monocot barley, ultimately leading to pollen abortion. High temperature conditions cause a reduction of fertility due to alterations in meiotic processes and gametogenesis. The male gametophyte development has been shown to be particularly sensitive to heat stress, and even short-term and modest temperature shifts cause alterations in crossover formation. In line with previous reports, we observed that male meiosis in the monocot barley exposed for 24-45 h to heat stress (32-42 °C) partially or completely eliminates obligate crossover formation and causes unbalanced chromosome segregation and meiotic abortion. Depending on the severity of heat stress, the structure and organization of the chromosomes were altered. In addition to alterations in chromosome structure and dynamics, heat treatment abolished or reduced the formation of a callose wall surrounding the meiocytes and interrupted the cell cycle progression leading to cytokinesis defects and microspore cell death.
Collapse
Affiliation(s)
- Cédric Schindfessel
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Zofia Drozdowska
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Len De Mooij
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
15
|
Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. THE NEW PHYTOLOGIST 2021; 231:571-585. [PMID: 33818773 PMCID: PMC9292940 DOI: 10.1111/nph.17380] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/03/2023]
Abstract
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Anna J. Wiese
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Lenka Záveská Drábková
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14Vienna1090Austria
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| |
Collapse
|
16
|
Abstract
The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis-a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell-cell communication within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| |
Collapse
|
17
|
Hu M, Bai M, Yang M, Wu H. Cell polarity, asynchronous nuclear divisions, and bidirectional cytokinesis in male meiosis in Magnolia denudata. PROTOPLASMA 2021; 258:621-632. [PMID: 33389128 DOI: 10.1007/s00709-020-01604-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Magnolia, a basal angiosperm genus important for evolutionary and phylogenetic studies, is known to have male meiotic features not seen in the vast majority of angiosperms. However, knowledge about male meiosis in Magnolia is still fragmentary. Here, we report findings from an extensive investigation into male meiosis in Magnolia denudata using a combination of light and electron microscopy methods. Male meiosis in M. denudata was synchronous in prophase I but asynchronous in subsequent nuclear divisions. The polarized microspore mother cells from late prophase I onward had an elongated cell shape and thickened callose wall areas at the two smaller ends of the cell. The first nuclear division occurred along the long axis of the cell and the first callose furrow formed at the equatorial plane of the first nuclear division at the late telophase I stage. The second equatorial callose furrow formed after telophase II in a plane perpendicular to the first callose furrow. While cytokinesis occurred centripetally from the two furrows, a central callose wall island (CWI) appeared in the center of the cell and dense assemblies of vesicles and short tubules decorated the cytoplasmic regions between the furrows and the CWI. This cytokinesis mode differs from either the centripetal or the centrifugal mode of cytokinesis in microsporogenesis in the vast majority of angiosperms. As a result of this unusual cytokinesis, a large central callose mass remains in the mature tetrads. These observations may be useful to studies of cytokinetic mechanisms, evolution of microsporogenesis, and phylogenetics of angiosperms.
Collapse
Affiliation(s)
- Mingli Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Yang
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, 301 Physical Sciences, Stillwater, OK, 74078, USA.
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Zhang X, Tong H, Han Z, Huang L, Tian J, Fu Z, Wu Y, Wang T, Yuan D. Cytological and morphology characteristics of natural microsporogenesis within Camellia oleifera. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:959-968. [PMID: 34092947 PMCID: PMC8140029 DOI: 10.1007/s12298-021-01002-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 06/06/2023]
Abstract
UNLABELLED Camellia oleifera is believed to exhibit a complex intraspecific polyploidy phenomenon. Abnormal microsporogenesis can promote the formation of unreduced gametes in plants and lead to sexual polyploidy, so it is hypothesized that improper meiosis probably results in the formation of natural polyploidy in Camellia oleifera. In this study, based on the cytological observation of meiosis in pollen mother cells (PMCs), we found natural 2n pollen for the first time in Camellia oleifera, which may lead to the formation of natural polyploids by sexual polyploidization. Additionally, abnormal cytological behaviour during meiosis, including univalent chromosomes, extraequatorial chromosomes, early segregation, laggard chromosomes, chromosome stickiness, asynchronous meiosis and deviant cytokinesis (monad, dyads, triads), was observed, which could be the cause of 2n pollen formation. Moreover, we confirmed a relationship among the length-width ratio of flower buds, stylet length and microsporogenesis. This result suggested that we can immediately determine the microsporogenesis stages by phenotypic characteristics, which may be applicable to breeding advanced germplasm in Camellia oleifera. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01002-5.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Hunan, 410004 China
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Hailang Tong
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Hunan, 410004 China
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Zhiqiang Han
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Hunan, 410004 China
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Long Huang
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Jing Tian
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Zhixing Fu
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Yunyi Wu
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Ting Wang
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Deyi Yuan
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| |
Collapse
|
19
|
Sofroni K, Takatsuka H, Yang C, Dissmeyer N, Komaki S, Hamamura Y, Böttger L, Umeda M, Schnittger A. CDKD-dependent activation of CDKA;1 controls microtubule dynamics and cytokinesis during meiosis. J Cell Biol 2021; 219:151917. [PMID: 32609301 PMCID: PMC7401817 DOI: 10.1083/jcb.201907016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Precise control of cytoskeleton dynamics and its tight coordination with chromosomal events are key to cell division. This is exemplified by formation of the spindle and execution of cytokinesis after nuclear division. Here, we reveal that the central cell cycle regulator CYCLIN DEPENDENT KINASE A;1 (CDKA;1), the Arabidopsis homologue of Cdk1 and Cdk2, partially in conjunction with CYCLIN B3;1 (CYCB3;1), is a key regulator of the microtubule cytoskeleton in meiosis. For full CDKA;1 activity, the function of three redundantly acting CDK-activating kinases (CAKs), CDKD;1, CDKD;2, and CDKD;3, is necessary. Progressive loss of these genes in combination with a weak loss-of-function mutant in CDKA;1 allowed a fine-grained dissection of the requirement of cell-cycle kinase activity for meiosis. Notably, a moderate reduction of CDKA;1 activity converts the simultaneous cytokinesis in Arabidopsis, i.e., one cytokinesis separating all four meiotic products concurrently into two successive cytokineses with cell wall formation after the first and second meiotic division, as found in many monocotyledonous species.
Collapse
Affiliation(s)
- Kostika Sofroni
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Hirotomo Takatsuka
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Chao Yang
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology, University of Osnabrück, Osnabrück, Germany
| | - Shinichiro Komaki
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Yuki Hamamura
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Lev Böttger
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Masaaki Umeda
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Arp Schnittger
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| |
Collapse
|
20
|
Li X, Huang F, Chai J, Wang Q, Yu F, Huang Y, Wu J, Wang Q, Xu L, Zhang M, Deng Z. Chromosome behavior during meiosis in pollen mother cells from Saccharum officinarum × Erianthus arundinaceus F 1 hybrids. BMC PLANT BIOLOGY 2021; 21:139. [PMID: 33726673 PMCID: PMC7968283 DOI: 10.1186/s12870-021-02911-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In recent years, sugarcane has attracted increasing attention as an energy crop. Wild resources are widely used to improve the narrow genetic base of sugarcane. However, the infertility of F1 hybrids between Saccharum officinarum (S. officinarum) and Erianthus arundinaceus (E. arundinaceus) has hindered sugarcane breeding efforts. To discover the cause of this infertility, we studied the hybridization process from a cytological perspective. RESULTS We examined the meiotic process of pollen mother cells (PMCs) in three F1 hybrids between S. officinarum and E. arundinaceus. Cytological analysis showed that the male parents, Hainan 92-77 and Hainan 92-105, had normal meiosis. However, the meiosis process in F1 hybrids showed various abnormal phenomena, including lagging chromosomes, micronuclei, uneven segregation, chromosome bridges, and inability to form cell plates. Genomic in situ hybridization (GISH) showed unequal chromatin distribution during cell division. Interestingly, 96.70% of lagging chromosomes were from E. arundinaceus. Furthermore, fluorescence in situ hybridization (FISH) was performed using 45S rDNA and 5S rDNA as probes. Either 45S rDNA or 5S rDNA sites were lost during abnormal meiosis, and results of unequal chromosomal separation were also clearly observed in tetrads. CONCLUSIONS Using cytogenetic analysis, a large number of meiotic abnormalities were observed in F1. GISH further confirmed that 96.70% of the lagging chromosomes were from E. arundinaceus. Chromosome loss was found by further investigation of repeat sequences. Our findings provide insight into sugarcane chromosome inheritance to aid innovation and utilization in sugarcane germplasm resources.
Collapse
Affiliation(s)
- Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Fei Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jin Chai
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qiusong Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiayun Wu
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Provincial Bioengineering Institute, Guangzhou, China
| | - Qinnan Wang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liangnian Xu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Muqing Zhang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
21
|
Rossig C, Le Lievre L, Pilkington SM, Brownfield L. A simple and rapid method for imaging male meiotic cells in anthers of model and non-model plant species. PLANT REPRODUCTION 2021; 34:37-46. [PMID: 33599868 DOI: 10.1007/s00497-021-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
We describe a simple method to view meiotic cells in whole anthers from a range of plants. The method retains spatial organisation and enables simultaneous analysis of many meiotic cells. Understanding the process of male meiosis in flowering plants, and the role of genes involved in this process, offers potential for plant breeding, such as through increasing the level of genetic variation or the manipulation of ploidy levels in the gametes. A key to the characterisation of meiotic gene function and meiosis in non-model crop plants, is the analysis of cells undergoing meiosis, a task made difficult by the inaccessible nature of these cells. Here, we describe a simple and rapid method to analyse plant male meiosis in intact anthers in a range of plant species. This method allows analysis of numerous cells undergoing meiosis and, as meiotic cells stay within the anther, it retains information of the three-dimensional organisation and the location of organelles in meiotic cells. We show that the technique provides information on male meiosis by looking at the synchrony of meiotic progression between and within locules, and comparing wildtype and mutant plants through the chromosome separation stages in Arabidopsis thaliana. Additionally, we demonstrate that the protocol can be adopted to other plants with different floral morphology using Medicago truncatula as an example with small floral buds and the non-model plant kiwifruit (Actinidia chinensis) with larger buds and anthers.
Collapse
Affiliation(s)
- Claudia Rossig
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Liam Le Lievre
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sarah M Pilkington
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | | |
Collapse
|
22
|
Loginova DB, Zhuravleva AA, Silkova OG. Random chromosome distribution in the first meiosis of F1 disomic substitution line 2R(2D) x rye hybrids (ABDR, 4× = 28) occurs without bipolar spindle assembly. COMPARATIVE CYTOGENETICS 2020; 14:453-482. [PMID: 33117496 PMCID: PMC7567738 DOI: 10.3897/compcytogen.v14.i4.55827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The assembly of the microtubule-based spindle structure in plant meiosis remains poorly understood compared with our knowledge of mitotic spindle formation. One of the approaches in our understanding of microtubule dynamics is to study spindle assembly in meiosis of amphyhaploids. Using immunostaining with phH3Ser10, CENH3 and α-tubulin-specific antibodies, we studied the chromosome distribution and spindle organisation in meiosis of F1 2R(2D)xR wheat-rye hybrids (genome structure ABDR, 4× = 28), as well as in wheat and rye mitosis and meiosis. At the prometaphase of mitosis, spindle assembly was asymmetric; one half of the spindle assembled before the other, with simultaneous chromosome alignment in the spindle mid-zone. At diakinesis in wheat and rye, microtubules formed a pro-spindle which was subsequently disassembled followed by a bipolar spindle assembly. In the first meiosis of hybrids 2R(2D)xR, a bipolar spindle was not found and the kinetochore microtubules distributed the chromosomes. Univalent chromosomes are characterised by a monopolar orientation and maintenance of sister chromatid and centromere cohesion. Presence of bivalents did not affect the formation of a bipolar spindle. Since the central spindle was absent, phragmoplast originates from "interpolar" microtubules generated by kinetochores. Cell plate development occurred with a delay. However, meiocytes in meiosis II contained apparently normal bipolar spindles. Thus, we can conclude that: (1) cohesion maintenance in centromeres and between arms of sister chromatids may negatively affect bipolar spindle formation in the first meiosis; (2) 2R/2D rye/wheat chromosome substitution affects the regulation of the random chromosome distribution in the absence of a bipolar spindle.
Collapse
Affiliation(s)
- Dina B. Loginova
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| | - Anastasia A. Zhuravleva
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| | - Olga G. Silkova
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| |
Collapse
|
23
|
Affiliation(s)
- Madeleine Seale
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
| |
Collapse
|
24
|
Lei X, Ning Y, Eid Elesawi I, Yang K, Chen C, Wang C, Liu B. Heat stress interferes with chromosome segregation and cytokinesis during male meiosis in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2020; 15:1746985. [PMID: 32275182 PMCID: PMC7238882 DOI: 10.1080/15592324.2020.1746985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In higher plants, male meiosis is a key process of microsporogenesis and is crucial for plant fertility. Male meiosis programs are prone to be influenced by altered temperature conditions. Studies have reported that an increased temperature (28°C) within a fertile threshold can affect the frequency of meiotic recombination in Arabidopsis. However, not much has been known how male meiosis responses to an extremely high temperature beyond the fertile threshold. To understand the impact of extremely high temperature on male meiosis in Arabidopsis, we treated flowering Arabidopsis plants with 36-38°C and found that the high-temperature condition significantly reduced pollen shed and plant fertility, and led to formation of pollen grains with varied sizes. The heat stress-induced unbalanced tetrads, polyad and meiotic restitution, suggesting that male meiosis was interfered. Fluorescence in situ hybridization (FISH) assay confirmed that both homologous chromosome separation and sister chromatids cohesion were influenced. Aniline blue staining of tetrad-stage pollen mother cells (PMCs) revealed that meiotic cytokinesis was severely disrupted by the heat stress. Supportively, immunolocalization of ɑ-tubulin showed that the construction of spindle and phragmoplast at both meiosis I and II were interfered. Overall, our findings demonstrate that an extremely high-temperature stress over the fertile threshold affects both chromosome segregation and cytokinesis during male meiosis by disturbing microtubular cytoskeleton in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoning Lei
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Yingjie Ning
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Chong Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Science, Shanghai Normal University, Shanghai, China
- Chong Wang Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Science, Shanghai Normal University, Shanghai, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- CONTACT Bing Liu College of Life Sciences, South-Central University for Nationalities, Wuhan China
| |
Collapse
|
25
|
Ren J, A Boerman N, Liu R, Wu P, Trampe B, Vanous K, Frei UK, Chen S, Lübberstedt T. Mapping of QTL and identification of candidate genes conferring spontaneous haploid genome doubling in maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110337. [PMID: 32081276 DOI: 10.1016/j.plantsci.2019.110337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 05/02/2023]
Abstract
In vivo doubled haploid (DH) technology is widely used in commercial maize (Zea mays L.) breeding. Haploid genome doubling is a critical step in DH breeding. In this study, inbred lines GF1 (0.65), GF3(0.29), and GF5 (0) with high, moderate, and poor spontaneous haploid genome doubling (SHGD), respectively, were selected to develop mapping populations for SHGD. Three QTL, qshgd1, qshgd2, and qshgd3, related to SHGD were identified by selective genotyping. With the exception of qshgd3, the source of haploid genome doubling alleles were derived from GF1. Furthermore, RNA-Seq was conducted to identify putative candidate genes between GF1 and GF5 within the qshgd1 region. A differentially expressed formin-like protein 5 transcript was identified within the qshgd1 region.
Collapse
Affiliation(s)
- Jiaojiao Ren
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China
| | | | - Ruixiang Liu
- Institute of Food Crops, Jiangsu Province Academy of Agricultural Sciences, Jiangsu, 210014, China
| | - Penghao Wu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Benjamin Trampe
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Kimberly Vanous
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Shaojiang Chen
- National Maize Improvement Center, China Agricultural University, Beijing, 100193, China
| | | |
Collapse
|
26
|
Marciniec R, Zięba E, Winiarczyk K. Distribution of plastids and mitochondria during male gametophyte formation in Tinantia erecta (Jacq.) Fenzl. PROTOPLASMA 2019; 256:1051-1063. [PMID: 30852672 PMCID: PMC6579867 DOI: 10.1007/s00709-019-01363-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 05/27/2023]
Abstract
During meiosis in microsporogenesis, autonomous cellular organelles, i.e., plastids and mitochondria, move and separate into daughter cells according to a specific pattern. This process called chondriokinesis is characteristic for a given plant species. The key criterion for classification of the chondriokinesis types was the arrangement of cell organelles during two meiosis phases: metaphase I and telophase I. The autonomous organelles participate in cytoplasmic inheritance; therefore, their precise distribution to daughter cells determines formation of identical viable microspores. In this study, the course of chondriokinesis during the development of the male gametophyte in Tinantia erecta was analyzed. The study was conducted using optical and transmission electron microscopes. During microsporogenesis in T. erecta, autonomous cell organelles moved in a manner defined as a neutral-equatorial type of chondriokinesis. Therefore, metaphase I plastids and mitochondria were evenly dispersed around the metaphase plate and formed an equatorial plate between the daughter nuclei in early telophase I. Changes in the ultrastructure of plastids and mitochondria during pollen microsporogenesis were also observed.
Collapse
Affiliation(s)
- Rafał Marciniec
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Emil Zięba
- Confocal and Electron Microscopy Laboratory, Centre for Interdisciplinary Research, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718, Lublin, Poland
| | - Krystyna Winiarczyk
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
27
|
Liu B, Mo WJ, Zhang D, De Storme N, Geelen D. Cold Influences Male Reproductive Development in Plants: A Hazard to Fertility, but a Window for Evolution. PLANT & CELL PHYSIOLOGY 2019; 60:7-18. [PMID: 30602022 DOI: 10.1093/pcp/pcy209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/11/2018] [Indexed: 05/16/2023]
Abstract
Being sessile organisms, plants suffer from various abiotic stresses including low temperature. In particular, male reproductive development of plants is extremely sensitive to cold which may dramatically reduce viable pollen shed and plant fertility. Cold stress disrupts stamen development and prominently interferes with the tapetum, with the stress-responsive hormones ABA and gibberellic acid being greatly involved. In particular, low temperature stress delays and/or inhibits programmed cell death of the tapetal cells which consequently damages pollen development and causes male sterility. On the other hand, studies in Arabidopsis and crops have revealed that ectopically decreased temperature has an impact on recombination and cytokinesis during meiotic cell division, implying a putative role for temperature in manipulating plant genomic diversity and architecture during the evolution of plants. Here, we review the current understanding of the physiological impact of cold stress on the main male reproductive development processes including tapetum development, male meiosis and gametogenesis. Moreover, we provide insights into the genetic factors and signaling pathways that are involved, with putative mechanisms being discussed.
Collapse
Affiliation(s)
- Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Wen-Juan Mo
- Experiment Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nico De Storme
- Department of Plants and Crops, unit HortiCell, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, unit HortiCell, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| |
Collapse
|
28
|
Zhang C, Shen Y, Tang D, Shi W, Zhang D, Du G, Zhou Y, Liang G, Li Y, Cheng Z. The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genet 2018; 14:e1007769. [PMID: 30419020 PMCID: PMC6258382 DOI: 10.1371/journal.pgen.1007769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/26/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
Meiotic cytokinesis influences the fertility and ploidy of gametes. However, limited information is available on the genetic control of meiotic cytokinesis in plants. Here, we identified a rice mutant with low male fertility, defective callose in meiosis 1 (dcm1). The pollen grains of dcm1 are proved to be defective in exine formation. Meiotic cytokinesis is disrupted in dcm1, resulting in disordered spindle orientation during meiosis II and formation of pollen grains with varied size and DNA content. We demonstrated that meiotic cytokinesis defect in dcm1 is caused by prematurely dissolution of callosic plates. Furthermore, peripheral callose surrounding the dcm1 pollen mother cells (PMCs) also disappeared untimely around pachytene. The DCM1 protein contains five tandem CCCH motifs and interacts with nuclear poly (A) binding proteins (PABNs) in nuclear speckles. The expression profiles of genes related to callose synthesis and degradation are significantly modified in dcm1. Together, we propose that DCM1 plays an essential role in male meiotic cytokinesis by preserving callose from prematurely dissolution in rice. Meiosis comprises two successive cell divisions after a single S phase, generating four haploid products. Meiotic caryokinesis (nuclear division) has been extensively studied in many organisms, while mechanisms underlying meiotic cytokinesis remain elusive. Here, we identified a novel CCCH-tandem zinc finger protein DCM1 that prevent the premature dissolution of callose both around the PMCs and at the dividing site (callosic plates). Loss of the callosic plates disrupts the meiotic cytokinesis, leading to the random distribution of spindles during meiosis II and aberrant meiotic products. DCM1 interacts with the two rice poly (A) binding proteins, independently of the conserved CCCH domain. Moreover, DCM1 coordinates the expression profiles of genes related to callose synthesis and degradation. We suspect monocots and dicots may adopt distinct meiotic cytokinesis patterns during male gamete generation.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YL); (ZC)
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YL); (ZC)
| |
Collapse
|
29
|
Menon VV, Soumya SS, Agarwal A, Naganathan SR, Inamdar MM, Sain A. Asymmetric Flows in the Intercellular Membrane during Cytokinesis. Biophys J 2018; 113:2787-2795. [PMID: 29262371 DOI: 10.1016/j.bpj.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 09/06/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022] Open
Abstract
Eukaryotic cells undergo shape changes during their division and growth. This involves flow of material both in the cell membrane and in the cytoskeletal layer beneath the membrane. Such flows result in redistribution of phospholipid at the cell surface and actomyosin in the cortex. Here we focus on the growth of the intercellular surface during cell division in a Caenorhabditis elegans embryo. The growth of this surface leads to the formation of a double-layer of separating membranes between the two daughter cells. The division plane typically has a circular periphery and the growth starts from the periphery as a membrane invagination, which grows radially inward like the shutter of a camera. The growth is typically not concentric, in the sense that the closing internal ring is located off-center. Cytoskeletal proteins anillin and septin have been found to be responsible for initiating and maintaining the asymmetry of ring closure but the role of possible asymmetry in the material flow into the growing membrane has not been investigated yet. Motivated by experimental evidence of such flow asymmetry, here we explore the patterns of internal ring closure in the growing membrane in response to asymmetric boundary fluxes. We highlight the importance of the flow asymmetry by showing that many of the asymmetric growth patterns observed experimentally can be reproduced by our model, which incorporates the viscous nature of the membrane and contractility of the associated cortex.
Collapse
Affiliation(s)
- Vidya V Menon
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - S S Soumya
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Amal Agarwal
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | | | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| | - Anirban Sain
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
30
|
Liu B, De Storme N, Geelen D. Cold-Induced Male Meiotic Restitution in Arabidopsis thaliana Is Not Mediated by GA-DELLA Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:91. [PMID: 29459879 PMCID: PMC5807348 DOI: 10.3389/fpls.2018.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
Short periods of cold stress induce male meiotic restitution and diploid pollen formation in Arabidopsis thaliana by specifically interfering with male meiotic cytokinesis. Similar alterations in male meiotic cell division and gametophytic ploidy stability occur when gibberellic acid (GA) signaling is perturbed in developing anthers. In this study, we found that exogenous application of GA primarily induces second division restitution (SDR)-type pollen in Arabidopsis, similar to what cold does. Driven by the close similarity in cellular defects, we tested the hypothesis that cold-induced meiotic restitution is mediated by GA-DELLA signaling. Using a combination of chemical, genetic and cytological approaches, however, we found that both exogenously and endogenously altered GA signaling do not affect the cold sensitivity of male meiotic cytokinesis. Moreover, in vivo localization study using a GFP-tagged version of RGA protein revealed that cold does not affect the expression pattern and abundance of DELLA in Arabidopsis anthers at tetrad stage. Expression study found that transcript of RGA appears enhanced in cold-stressed young flower buds. Since our previous work demonstrated that loss of function of DELLA causes irregular male meiotic cytokinesis, we here conclude that cold-induced meiotic restitution is not mediated by DELLA-dependent GA signaling.
Collapse
Affiliation(s)
- Bing Liu
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
- *Correspondence: Danny Geelen,
| |
Collapse
|
31
|
Wang J, Li D, Shang F, Kang X. High temperature-induced production of unreduced pollen and its cytological effects in Populus. Sci Rep 2017; 7:5281. [PMID: 28706219 PMCID: PMC5509662 DOI: 10.1038/s41598-017-05661-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/01/2017] [Indexed: 11/18/2022] Open
Abstract
Temperature change is of potential to trigger the formation of unreduced gametes. In this study, we showed that short periods of high temperature treatment can induce the production of 2n pollen in Populus pseudo-simonii Kitag. The meiotic stage, duration of treatment, and temperature have significant effects on the induction of 2n pollen. Heat stress resulted in meiotic abnormalities, including failure of chromosome separation, chromosome stickiness, laggards and micronuclei. Spindle disorientations in the second meiotic division, such as parallel, fused, and tripolar spindles, either increased in frequency or were induced de novo by high temperature treatment. We found that the high temperature treatment induced depolymerisation of meiotic microtubular cytoskeleton, resulting in the failure of chromosome segregation. New microtubular cytoskeletons were able to repolymerise in some heat-treated cells after transferring them to normal conditions. However, aberrant cytokinesis occurred owing to defects of new radial microtubule systems, leading to production of monads, dyads, triads, and polyads. This suggested that depolymerisation and incomplete restoration of microtubules may be important for high temperature-induction of unreduced gametes. These findings might help us understand how polyploidisation is induced by temperature-related stress and support the potential effects of global climate change on reproductive development of plants.
Collapse
Affiliation(s)
- Jun Wang
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Daili Li
- Beijing Huang Fa Nursery, Beijing, 102601, People's Republic of China
| | - Fengnan Shang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiangyang Kang
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, 100083, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| |
Collapse
|
32
|
Sidorchuk YV, Deineko EV. Cytoskeletal mechanisms in positioning of the second-division spindles and meiotic restitution in tobacco (Nicotiana tabacum L.) microsporogenesis. Cell Biol Int 2017; 41:669-679. [PMID: 28387429 DOI: 10.1002/cbin.10772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/05/2017] [Indexed: 11/11/2022]
Abstract
Microsporogenesis patterns of the polyploid (2n = 4x = 96) and diploid (2n = 2x = 48) Nicotiana tabacum L. (cv. Havana Petit line SR1) plants have been analyzed and compared. Four types of abnormal positions of the second-division spindles-tripolar, parallel, proximal, and fused-have been observed. Of these abnormalities, only tripolar (2.4%) and parallel (1.4%) spindles are observable in diploid plants. As for polyploids, the increased ploidy is accompanied by an increase in the incidence of tripolar (22.8%) and parallel (8.1%) spindle orientations and emergence of two remaining abnormalities (proximal and fused spindles, 3.3%). As has been shown, the spindle position abnormalities in diploid plants have no effect on the meiotic products, whereas both dyads and triads are detectable among the tetrads in polyploid plants. Analysis of cytoskeletal remodeling has allowed for the insight into the role of interzonal radial microtubule system in spindle positioning during the second division. The reason underlying the change in spindle positioning is disturbed polymerization-depolymerization processes and interdigitation of microtubule plus ends within the interzonal cytoskeleton system in late telophase I-interkinesis and prophase II. As has been demonstrated, fused second-division spindles are formed as a result of fused cytoskeletal structures in prophase-prometaphase II in the case when the nuclei are drawn abnormally close to one another.
Collapse
Affiliation(s)
- Yuriy Vladimirovich Sidorchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Elena Victorovna Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
33
|
Liu B, De Storme N, Geelen D. Gibberellin Induces Diploid Pollen Formation by Interfering with Meiotic Cytokinesis. PLANT PHYSIOLOGY 2017; 173:338-353. [PMID: 27621423 PMCID: PMC5210705 DOI: 10.1104/pp.16.00480] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/05/2016] [Indexed: 05/06/2023]
Abstract
The plant hormone gibberellic acid (GA) controls many physiological processes, including cell differentiation, cell elongation, seed germination, and response to abiotic stress. In this study, we report that exogenous treatment of flowering Arabidopsis (Arabidopsis thaliana) plants with GA specifically affects the process of male meiotic cytokinesis leading to meiotic restitution and the production of diploid (2n) pollen grains. Similar defects in meiotic cell division and reproductive ploidy stability occur in Arabidopsis plants depleted of RGA and GAI, two members of the DELLA family that function as suppressor of GA signaling. Cytological analysis of the double rga-24 gai-t6 mutant revealed that defects in male meiotic cytokinesis are not caused by alterations in meiosis I (MI or meiosis II (MII) chromosome dynamics, but instead result from aberrations in the spatial organization of the phragmoplast-like radial microtubule arrays (RMAs) at the end of meiosis II. In line with a role for GA in the genetic regulation of the male reproductive system, we additionally show that DELLA downstream targets MYB33 and MYB65 are redundantly required for functional RMA biosynthesis and male meiotic cytokinesis. By analyzing the expression of pRGA::GFP-RGA in the wild-type Landsberg erecta background, we demonstrate that the GFP-RGA protein is specifically expressed in the anther cell layers surrounding the meiocytes and microspores, suggesting that appropriate GA signaling in the somatic anther tissue is critical for male meiotic cell wall formation and thus plays an important role in consolidating the male gametophytic ploidy consistency.
Collapse
Affiliation(s)
- Bing Liu
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000 Ghent, Belgium
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000 Ghent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000 Ghent, Belgium
| |
Collapse
|
34
|
Mirzaghaderi G, Hörandl E. The evolution of meiotic sex and its alternatives. Proc Biol Sci 2016; 283:20161221. [PMID: 27605505 PMCID: PMC5031655 DOI: 10.1098/rspb.2016.1221] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various modifications and alterations of modes of reproduction. Our rationale is that the indispensable steps of meiosis for viability of offspring would be maintained by strong selection, while dispensable steps would be variable. We review evolutionary origin and processes in normal meiosis, restitutional meiosis, polyploidization and the alterations of meiosis in forms of uniparental reproduction (apomixis, apomictic parthenogenesis, automixis, selfing) with a focus on plants and animals. This overview suggests that homologue pairing, double-strand break formation and homologous recombinational repair at prophase I are the least dispensable elements, and they are more likely optimized for repair of oxidative DNA damage rather than for recombination. Segregation, ploidy reduction and also a biparental genome contribution can be skipped for many generations. The evidence supports the theory that the primary function of meiosis is DNA restoration rather than recombination.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Hafidh S, Fíla J, Honys D. Male gametophyte development and function in angiosperms: a general concept. PLANT REPRODUCTION 2016; 29:31-51. [PMID: 26728623 DOI: 10.1007/s00497-015-0272-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/19/2015] [Indexed: 05/23/2023]
Abstract
Overview of pollen development. Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis-developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca(2+) and H(+) ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - Jan Fíla
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - David Honys
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
36
|
Royo C, Carbonell-Bejerano P, Torres-Pérez R, Nebish A, Martínez Ó, Rey M, Aroutiounian R, Ibáñez J, Martínez-Zapater JM. Developmental, transcriptome, and genetic alterations associated with parthenocarpy in the grapevine seedless somatic variant Corinto bianco. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:259-73. [PMID: 26454283 DOI: 10.1093/jxb/erv452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Seedlessness is a relevant trait in grapevine cultivars intended for fresh consumption or raisin production. Previous DNA marker analysis indicated that Corinto bianco (CB) is a parthenocarpic somatic variant of the seeded cultivar Pedro Ximenes (PX). This study compared both variant lines to determine the basis of this parthenocarpic phenotype. At maturity, CB seedless berries were 6-fold smaller than PX berries. The macrogametophyte was absent from CB ovules, and CB was also pollen sterile. Occasionally, one seed developed in 1.6% of CB berries. Microsatellite genotyping and flow cytometry analyses of seedlings generated from these seeds showed that most CB viable seeds were formed by fertilization of unreduced gametes generated by meiotic diplospory, a process that has not been described previously in grapevine. Microarray and RNA-sequencing analyses identified 1958 genes that were differentially expressed between CB and PX developing flowers. Genes downregulated in CB were enriched in gametophyte-preferentially expressed transcripts, indicating the absence of regular post-meiotic germline development in CB. RNA-sequencing was also used for genetic variant calling and 14 single-nucleotide polymorphisms distinguishing the CB and PX variant lines were detected. Among these, CB-specific polymorphisms were considered as candidate parthenocarpy-responsible mutations, including a putative deleterious substitution in a HAL2-like protein. Collectively, these results revealed that the absence of a mature macrogametophyte, probably due to meiosis arrest, coupled with a process of fertilization-independent fruit growth, caused parthenocarpy in CB. This study provides a number of grapevine parthenocarpy-responsible candidate genes and shows how genomic approaches can shed light on the genetic origin of woody crop somatic variants.
Collapse
Affiliation(s)
- Carolina Royo
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Rafael Torres-Pérez
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Anna Nebish
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian str., 0025 Yerevan, Armenia
| | - Óscar Martínez
- Departamento de Biología Vegetal y Ciencia del Suelo. Facultad de Biología. Universidad de Vigo, 36310 Vigo, Spain
| | - Manuel Rey
- Departamento de Biología Vegetal y Ciencia del Suelo. Facultad de Biología. Universidad de Vigo, 36310 Vigo, Spain
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian str., 0025 Yerevan, Armenia
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| |
Collapse
|
37
|
Microtubule networks for plant cell division. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:187-94. [PMID: 25136380 DOI: 10.1007/s11693-014-9142-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants.
Collapse
|
38
|
Oh SA, Bourdon V, Dickinson HG, Twell D, Park SK. Arabidopsis Fused kinase TWO-IN-ONE dominantly inhibits male meiotic cytokinesis. PLANT REPRODUCTION 2014; 27:7-17. [PMID: 24146312 DOI: 10.1007/s00497-013-0235-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/02/2013] [Indexed: 05/20/2023]
Abstract
Arabidopsis Fused kinase TWO-IN-ONE (TIO) controls phragmoplast expansion through its interaction with the Kinesin-12 subfamily proteins that anchor the plus ends of interdigitating microtubules in the phragmoplast midzone. Previous analyses of loss-of-function mutants and RNA interference lines revealed that TIO positively controls both somatic and gametophytic cell cytokinesis; however, knowledge of the full spectrum of TIO functions during plant development remains incomplete. To characterize TIO functions further, we expressed TIO and a range of TIO variants under control of the TIO promoter in wild-type Arabidopsis plants. We discovered that TIO-overexpressing transgenic lines produce enlarged pollen grains, arising from incomplete cytokinesis during male meiosis, and show sporophytic abnormalities indicative of polyploidy. These phenotypes arose independently in TIO variants in which either gametophytic function or the ability of TIO to interact with Kinesin-12 subfamily proteins was abolished. Interaction assays in yeast showed TIO to bind to the AtNACK2/TETRASPORE, and plants doubly homozygous for kinesin-12a and kinesin-12b knockout mutations to produce enlarged pollen grains. Our results show TIO to dominantly inhibit male meiotic cytokinesis in a dosage-dependent manner that may involve direct binding to a component of the canonical NACK-PQR cytokinesis signaling pathway.
Collapse
Affiliation(s)
- Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | | | | | |
Collapse
|
39
|
Zamariola L, De Storme N, Vannerum K, Vandepoele K, Armstrong SJ, Franklin FCH, Geelen D. SHUGOSHINs and PATRONUS protect meiotic centromere cohesion in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:782-94. [PMID: 24506176 DOI: 10.1111/tpj.12432] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 05/23/2023]
Abstract
In meiosis, chromosome cohesion is maintained by the cohesin complex, which is released in a two-step manner. At meiosis I, the meiosis-specific cohesin subunit Rec8 is cleaved by the protease Separase along chromosome arms, allowing homologous chromosome segregation. Next, in meiosis II, cleavage of the remaining centromere cohesin results in separation of the sister chromatids. In eukaryotes, protection of centromeric cohesion in meiosis I is mediated by SHUGOSHINs (SGOs). The Arabidopsis genome contains two SGO homologs. Here we demonstrate that Atsgo1 mutants show a premature loss of cohesion of sister chromatid centromeres at anaphase I and that AtSGO2 partially rescues this loss of cohesion. In addition to SGOs, we characterize PATRONUS which is specifically required for the maintenance of cohesion of sister chromatid centromeres in meiosis II. In contrast to the Atsgo1 Atsgo2 double mutant, patronus T-DNA insertion mutants only display loss of sister chromatid cohesion after meiosis I, and additionally show disorganized spindles, resulting in defects in chromosome segregation in meiosis. This leads to reduced fertility and aneuploid offspring. Furthermore, we detect aneuploidy in sporophytic tissue, indicating a role for PATRONUS in chromosome segregation in somatic cells. Thus, ploidy stability is preserved in Arabidopsis by PATRONUS during both meiosis and mitosis.
Collapse
Affiliation(s)
- Linda Zamariola
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Ghent, 9000, Belgium
| | | | | | | | | | | | | |
Collapse
|
40
|
Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D. Chromosome segregation in plant meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:279. [PMID: 24987397 PMCID: PMC4060054 DOI: 10.3389/fpls.2014.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.
Collapse
Affiliation(s)
- Linda Zamariola
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Choon Lin Tiang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Wojtek Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
- *Correspondence: Danny Geelen, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|