1
|
Aizaz M, Lubna, Hashmi SS, Khan MA, Jan R, Bilal S, Kim KM, Al-Harrasi A, Asaf S. Unraveling the Complexities of Flowering in Ornamental Plants: The Interplay of Genetics, Hormonal Networks, and Microbiome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1131. [PMID: 40219203 PMCID: PMC11991662 DOI: 10.3390/plants14071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
In ornamental plants, one of the most complex life processes, i.e., flowering, is regulated by interaction between the microbiota, hormones, and genes. Flowering plays an integral role in overall development and is quintessential for reproduction. Considering its importance, this review explores the complex mechanisms that determine the induction of flowering, highlighting the relationship between hormonal and genetic networks as well as the growing significance of the microbiome. Important genes involved in genetic control include FT, SOC1, and LFY. These genes react to environmental stimuli like photoperiod and vernalization. Auxins, cytokinin, and gibberellins are only a few hormone pathways important for floral growth and timing. The importance of plant-microbe interactions has been emphasized by current research, which shows that the microbiome affects flowering through processes like hormone production and availability of food. A comprehensive understanding of flowering induction is possible by integrating results from microbiota, hormones, and genetics studies, which may improve the breeding and culture of ornamental plants. For researchers to understand the complexity of flowering in ornamental plants and develop unique breeding strategies and improved floral qualities, it is critical to use interdisciplinary approaches, as this comprehensive investigation demonstrates.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Salman Hashmi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Technology, Peshawar 25000, Pakistan;
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
2
|
Wu C, Fan J, Hu D, Sun H, Lu G, Wang Y, Yang Y. The Three-Dimensional Structure of the Genome of the Dark Septate Endophyte Exophiala tremulae and Its Symbiosis Effect on Alpine Meadow Plant Growth. J Fungi (Basel) 2025; 11:246. [PMID: 40278067 PMCID: PMC12028334 DOI: 10.3390/jof11040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 04/26/2025] Open
Abstract
The establishment of artificial grassland is a good pathway for resolving serious social and economic problems in the Qinghai-Tibet Plateau. Some beneficial indigenous microbes may be used to improve productivity in artificial grassland. The genome of the indigenous dark septate fungus, Exophiala tremulae CICC2537, was sequenced and assembled at the chromosome level using the PacBio sequencing platform, with the assistance of the Hi-C technique for scaffolding, and its 3D genome structures were investigated. The genome size of E. tremulae is 51.903848 Mb, and it contains eight chromosomes. A total of 12,277 protein-coding genes were predicted, and 11,932 genes (97.19%) were annotated. As for the distribution of exon and intron number and the distribution of gene GC and CDS GC, E. tremulae showed similar distribution patterns to the other investigated members of the genus Exophiala. The analysis of carbohydrate-active enzymes showed that E. tremulae possesses the greatest number of enzymes with auxiliary activities and the lowest number of enzymes with carbohydrate-binding modules among the investigated fungi. The total number of candidate effector proteins was 3337, out of which cytoplasmic and apoplastic effector proteins made up 3100 and 163, respectively. The whole genome of E. tremulae contained 40 compartment As and 76 compartment Bs, and there was no significant difference in GC content in its compartment As and Bs. The whole genome of E. tremulae was predicted to contain 155 topologically associating domains (TADs), and their average length was 250,000 bp, but there were no significant differences in the numbers of genes and the GC content per bin localized within the boundaries and interiors of TADs. Comparative genome analysis showed that E. tremulae diverged from Exophiala mesophila about 34.1 (30.0-39.1) Myr ago, and from Exophiala calicioides about 85.6 (76.1-90.6) Myr ago. Compared with all the investigated fungi, the numbers of contraction and expansion gene families in the E. tremulae genome were 13 and 89, respectively, and the numbers of contraction and expansion genes were 14 and 670, respectively. Our work provides a basis for the use of the dark septate fungus in alpine artificial grassland and further research into its symbiosis mechanisms, which may improve the growth of plant species used in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China; (C.W.); (Y.Y.)
| | - Junjie Fan
- College of Life Science, Yangtze University, Jingzhou 434025, China; (J.F.); (Y.W.)
| | - Die Hu
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China; (C.W.); (Y.Y.)
| | - Honggang Sun
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China;
| | - Guangxin Lu
- College of Agriculture & Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Yun Wang
- College of Life Science, Yangtze University, Jingzhou 434025, China; (J.F.); (Y.W.)
| | - Yujie Yang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China; (C.W.); (Y.Y.)
| |
Collapse
|
3
|
Hosseini F, Mosaddeghi MR. Chemical and physical characteristics of wheat root mucilage influenced by Serendipita indica symbiosis: a comparison among four cultivars. PHYSIOLOGIA PLANTARUM 2024; 176:e14470. [PMID: 39221496 DOI: 10.1111/ppl.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Although there is evidence to suggest that the endophytic fungus Serendipita indica plays a crucial role in enhancing plant tolerance against biotic/abiotic stressors, less is known about the impacts of this symbiosis association on root mucilage chemical composition and its physical functions. The mucilage of inoculated and non-inoculated seedlings of four wheat cultivars (i.e., Roshan, Ghods, Kavir and Pishtaz) were extracted using an aeroponic method. Total solute concentration (TCm), carbon content (Cmucilage), electrical conductivity (EC), pH, fatty acids, surface tension (σm), and viscosity (ηm) of mucilage were measured. Ghods and Kavir had the highest and lowest root colonization percents, respectively. Saturated fatty acids, including palmitic and stearic acids, were dominant over unsaturated fatty acids in wheat root mucilage. However, their compositions were significantly different among wheat cultivars. S. indica colonization, especially for Ghods, increased the TCm, Cmucilage, and palmitic acid. Moreover, root mucilage of S. indica-inoculated Ghods had lower σm and greater ηm. An increased amount of powerful surfactants like palmitic acid in the mucilage of S. indica inoculated treatments led to lower σm and greater ηm. Such studies provide further support for the idea that plant-released mucilage plays a major role in modifying the physical environment of the rhizosphere. This knowledge toward truly understanding the rhizosphere can be potentially used for improving the rhizosphere soil quality and increasing crop growth and yield.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Reza Mosaddeghi
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
4
|
Sehar S, Adil MF, Askri SMH, Dennis E, Faizan M, Zhao P, Zhou F, Shamsi IH. Nutrient and mycoremediation of a global menace 'arsenic': exploring the prospects of phosphorus and Serendipita indica-based mitigation strategies in rice and other crops. PLANT CELL REPORTS 2024; 43:90. [PMID: 38466444 DOI: 10.1007/s00299-024-03165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Elvis Dennis
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- School of Natural Resources, Department of Agriculture, Papua New Guinea University of Natural Resources and Environment, Kokopo, ENBP 613, Papua New Guinea
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Fanrui Zhou
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Roshni PT, Rekha PD. Biotechnological interventions for the production of forskolin, an active compound from the medicinal plant, Coleus forskohlii. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:213-226. [PMID: 38623169 PMCID: PMC11016037 DOI: 10.1007/s12298-024-01426-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024]
Abstract
Coleus forskohlii, an Indian-origin medicinal plant is the sole natural source of the labdane terpenoid forskolin (C22H34O7), with growing demand. Forskolin emerged as an industrially important bioactive compound, with many therapeutic applications in human health. It has established potential effects in the treatment of various diseases and conditions such as glaucoma, asthma, obesity, allergies, skin conditions and cardiovascular diseases. Moreover, clinical trials against different types of cancers are progressing. The mechanism of action of forskolin mainly involves activating adenylyl cyclase and elevating cAMP, thereby regulating different cellular processes. For the extraction of forskolin, tuberous roots of C. forskohlii are used as they contain the highest concentration of this metabolite. Approximately 2500 tonnes of the plant are cultivated annually to produce a yield of 2000-2200 kg ha-1 of dry tubers. The forskolin content of the root is distributed in the range of 0.01-1%, which cannot meet the increasing commercial demands from industries such as pharmaceuticals, cosmetics, dietary supplements, food and beverages. Hence, various aspects of micropropagation with different culture methods that employ precursors or elicitors to improve the forskolin content have been explored. Different extraction and analytical methods are also introduced to examine the yield and purity of forskolin. This review discusses the significance, clinical importance, mechanism of action and different approaches used for mass production including tissue culture for the lead compound forskolin to meet market needs.
Collapse
Affiliation(s)
- Pulukkunadu Thekkeveedu Roshni
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018 India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018 India
| |
Collapse
|
6
|
Kumari P, Deepa N, Trivedi PK, Singh BK, Srivastava V, Singh A. Plants and endophytes interaction: a "secret wedlock" for sustainable biosynthesis of pharmaceutically important secondary metabolites. Microb Cell Fact 2023; 22:226. [PMID: 37925404 PMCID: PMC10625306 DOI: 10.1186/s12934-023-02234-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.
Collapse
Affiliation(s)
- Poonam Kumari
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Nikky Deepa
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh Kumar Trivedi
- Division of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden.
| | - Akanksha Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
7
|
Amini R, Zafarani-Moattar P, Shakiba MR, Hasanfard A. Inoculating moldavian balm (Dracocephalum moldavica L.) with mycorrhizal fungi and bacteria may mitigate the adverse effects of water stress. Sci Rep 2023; 13:16176. [PMID: 37759070 PMCID: PMC10533844 DOI: 10.1038/s41598-023-43539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Plant growth-promoting bacteria (PGPBs) play a crucial role in mitigating the oxidative damage caused by water stress in different plant species. The aim of this study was to determine the effects of PGPBs and mycorrhiza-like fungi (Piriformospora indica) on improving drought tolerance in moldavian balm (Dracocephalum moldavica L.), a medicinal and aromatic plant. For this purpose, a greenhouse study was conducted in a factorial experiment based on a randomized complete design with three replications. Results indicate that water stress reduces the membrane stability index (MSI), total chlorophyll content (Chlt), carotenoids, and maximum photochemical efficiency of photosystem II (Fv'/Fm') in moldavian balm plants, while increasing superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) content compared to the control (no water stress). Inoculation with PGPBs and Piriformospora indica helped alleviate the negative effects of water stress. The highest MSI (48%) and Fv'/Fm' value (0.82) were observed when inoculated with Enterobacter and Piriformospora, respectively, under non-water-stressed conditions. Inoculation with Agrobacterium, Piriformospora, and Enterobacter improved the Chlt and leaf proline contents, as well as the SOD activity under high water stress, compared to the non-inoculated control values. Furthermore, inoculation with Pseudomonas under high water deficit stress levels increased the MDA content (0.51 mmol g-1 FW) and H2O2 levels (0.40 mmol g-1 FW). The highest yield of flowering branches (2.414 g pot-1) in moldavian balm was obtained with Enterobacter. Based on the enhanced physiological and biochemical responses, as well as increased antioxidant enzyme activity that improve water tolerance in this plant, it is recommended to use PGPBs and Piriformospora indica fertilization.
Collapse
Affiliation(s)
- Rouhollah Amini
- Department of Plant Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Parisa Zafarani-Moattar
- Department of Plant Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Shakiba
- Department of Plant Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Alireza Hasanfard
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Li L, Feng Y, Qi F, Hao R. Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant. J Fungi (Basel) 2023; 9:965. [PMID: 37888222 PMCID: PMC10607969 DOI: 10.3390/jof9100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Piriformospora indica (Serendipita indica), a mycorrhizal fungus, has garnered significant attention in recent decades owing to its distinctive capacity to stimulate plant growth and augment plant resilience against environmental stressors. As an axenically cultivable fungus, P. indica exhibits a remarkable ability to colonize varieties of plants and promote symbiotic processes by directly influencing nutrient acquisition and hormone metabolism. The interaction of plant and P. indica raises hormone production including ethylene (ET), jasmonic acid (JA), gibberellin (GA), salicylic acid (SA), and abscisic acid (ABA), which also promotes root proliferation, facilitating improved nutrient acquisition, and subsequently leading to enhanced plant growth and productivity. Additionally, the plant defense system was employed by P. indica colonization and the defense genes associated with oxidation resistance were activated subsequently. This fungus-mediated defense response elicits an elevation in the enzyme activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and, finally, bolsters plant tolerance. Furthermore, P. indica colonization can initiate local and systemic immune responses against fungal and viral plant diseases through signal transduction mechanisms and RNA interference by regulating defense gene expression and sRNA secretion. Consequently, P. indica can serve diverse roles such as plant promoter, biofertilizer, bioprotectant, bioregulator, and bioactivator. A comprehensive review of recent literature will facilitate the elucidation of the mechanistic foundations underlying P. indica-crop interactions. Such discussions will significantly contribute to an in-depth comprehension of the interaction mechanisms, potential applications, and the consequential effects of P. indica on crop protection, enhancement, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.F.); (F.Q.); (R.H.)
| | | | | | | |
Collapse
|
9
|
Kaval A, Yılmaz H, Tunca Gedik S, Yıldız Kutman B, Kutman ÜB. The Fungal Root Endophyte Serendipita indica ( Piriformospora indica) Enhances Bread and Durum Wheat Performance under Boron Toxicity at Both Vegetative and Generative Stages of Development through Mechanisms Unrelated to Mineral Homeostasis. BIOLOGY 2023; 12:1098. [PMID: 37626984 PMCID: PMC10452518 DOI: 10.3390/biology12081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
While the importance of beneficial soil microorganisms for soil health and crop performance has been receiving ever-increasing attention, Serendipita indica has been widely studied as a fungal root endophyte with significant potential for increasing the stress tolerance of host plants. Boron (B) toxicity as an adverse soil condition is particularly prevalent in arid and semi-arid regions and threatens crop production. Studies on S. indica-wheat symbiosis are limited, and effects of S. indica on crops have never been reported in the context of B toxicity. Here, two pot experiments were conducted under greenhouse conditions to investigate the effects of S. indica on the growth and yield parameters of bread (Triticum aestivum) and durum wheat (Triticum durum) grown at different levels of B toxicity in native vs. sterilized soil, and parameters related to root colonization, membrane damage, oxidative stress, chlorophyll, and mineral nutrition were measured to elucidate the physiological mechanisms of damage and benefit. Boron toxicity decreased early vegetative growth and grain yield, but it did not affect the straw dry weight of mature plants, whereas S. indica significantly enhanced the vegetative growth, straw dry weight, and the grain number of both wheat species. Membrane damage as demonstrated by increased lipid peroxidation and relative electrolyte leakage was caused by B toxicity and alleviated by S. indica. The benefits provided by S. indica could not be attributed to any significant changes in tissue concentrations of B or other minerals such as phosphorus. Soil sterilization generally improved plant performance but it did not consistently strengthen or weaken the effects of S. indica. The presented results suggest that S. indica may be used as an effective microbial inoculant to enhance wheat growth under adverse soil conditions such as B toxicity through mechanisms that are possibly unrelated to mineral homeostasis.
Collapse
Affiliation(s)
- Ali Kaval
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye (B.Y.K.)
| | - Halil Yılmaz
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye; (H.Y.); (S.T.G.)
| | - Sedef Tunca Gedik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye; (H.Y.); (S.T.G.)
| | - Bahar Yıldız Kutman
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye (B.Y.K.)
| | - Ümit Barış Kutman
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Türkiye (B.Y.K.)
| |
Collapse
|
10
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 PMCID: PMC10183385 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
11
|
Sharma N, Dabral S, Tyagi J, Yadav G, Aggarwal H, Joshi NC, Varma A, Koul M, Choudhary DK, Mishra A. Interaction studies of Serendipita indica and Zhihengliuella sp. ISTPL4 and their synergistic role in growth promotion in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1155715. [PMID: 37293679 PMCID: PMC10244739 DOI: 10.3389/fpls.2023.1155715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023]
Abstract
Rapid urbanization and globalization demand increasing agricultural productivity. Soil nutrient supply capacity is continuously decreasing due to soil erosion, degradation, salt deposition, undesired element, metal deposition, water scarcity, and an uneven nutrient delivery system. Rice cultivation requires a large amount of water which is becoming detrimental due to these activities. There is a need to increase its productivity. Microbial inoculants are becoming increasingly important in achieving sustainable agricultural production systems. The current study was conducted to investigate the interaction between the root endophytic fungus Serendipita indica (S. indica) and the actinobacterium Zhihengliuella sp. ISTPL4 (Z. sp. ISTPL4) and their synergistic effects on the growth of rice (Oryza sativa L). Both S. indica and Z. sp. ISTPL4 showed positive interactions. Growth of S. indica was observed at different days after Z. sp. ISTPL4 inoculation, and stimulated growth of S. indica was observed when Z. sp. ISTPL4 was inoculated at 5 dafi (days after fungal inoculation). Z. sp. ISTPL4 promoted the growth of S. indica as it increased spore germination. Furthermore, confocal and scanning electron microscopy (SEM) analyses showed a 27% increase in the spore size of S. indica in the presence of Z. sp. ISTPL4. In a liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis increased production of alanine and glutamic acid was observed in their sequential co-culture as compared with individual cultures. Sequential inoculation of S. indica and Z. sp. ISTPL4 significantly increased the biochemical and physical characteristics of rice as compared with their individual inoculum. Biochemical parameters such as chlorophyll content, total soluble sugar, and flavonoid content in the rice increased by up to 57%, 47%, and 39%, respectively, in the presence of the combined inoculum of S. indica and Z. sp. ISTPL4. This will be the first study, to the best of our knowledge, which shows the fungus and actinobacterium interaction and their synergistic roles in the growth promotion of rice. Furthermore, this novel combination can also be used to boost the growth of other crops to increase the agricultural yield.
Collapse
Affiliation(s)
- Neha Sharma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Surbhi Dabral
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Jaagriti Tyagi
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Gaurav Yadav
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Himanshi Aggarwal
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | | | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Monika Koul
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | | | - Arti Mishra
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| |
Collapse
|
12
|
Sehar S, Adil MF, Ma Z, Karim MF, Faizan M, Zaidi SSA, Siddiqui MH, Alamri S, Zhou F, Shamsi IH. Phosphorus and Serendipita indica synergism augments arsenic stress tolerance in rice by regulating secondary metabolism related enzymatic activity and root metabolic patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114866. [PMID: 37023649 DOI: 10.1016/j.ecoenv.2023.114866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengxin Ma
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Fazal Karim
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Syed Shujaat Ali Zaidi
- Center for Innovation in Brain Science, Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fanrui Zhou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Saleem S, Sekara A, Pokluda R. Serendipita indica-A Review from Agricultural Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:3417. [PMID: 36559533 PMCID: PMC9787873 DOI: 10.3390/plants11243417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fulfilling the food demand of a fast-growing population is a global concern, resulting in increased dependence of the agricultural sector on various chemical formulations for enhancing crop production. This leads to an overuse of chemicals, which is not only harmful to human and animal health, but also to the environment and the global economy. Environmental safety and sustainable production are major responsibilities of the agricultural sector, which is inherently linked to the conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore, across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate various plant stresses, as well as protect the environment. The major points in this review are as follows: (1) Although various plant growth promoting microorganisms are available, the distinguishing character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the environment. (3) S. indica's modes of action are due to interactions with phytohormones, metabolites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption. (4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth, but the beneficial effects of these interactions require further investigation. This review concluded that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring sustainable crop production and a healthy environment.
Collapse
Affiliation(s)
- Sana Saleem
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| |
Collapse
|
14
|
Lekshmi RS, Sora S, Anith KN, Soniya EV. Root colonization by the endophytic fungus Piriformospora indica shortens the juvenile phase of Piper nigrum L. by fine tuning the floral promotion pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:954693. [PMID: 36479508 PMCID: PMC9720737 DOI: 10.3389/fpls.2022.954693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Piriformospora indica, the mutualistic biotrophic root colonizing endosymbiotic fungus belonging to the order Sebacinales, offers host plants various benefits and enhances its growth and performance. The effect of colonization of P. indica in Piper nigrum L. cv. Panniyur1 on growth advantages, floral induction and evocation was investigated. Growth and yield benefits are credited to the alteration in the phytohormone levels fine-tuned by plants in response to the fungal colonization and perpetuation. The remarkable upregulation in the phytohormone levels, as estimated by LC- MS/MS and quantified by qRT-PCR, revealed the effectual contribution by the endophyte. qRT-PCR results revealed a significant shift in the expression of putative flowering regulatory genes in the photoperiod induction pathway (FLOWERING LOCUS T, LEAFY, APETALA1, AGAMOUS, SUPPRESSOR OF CONSTANS 1, GIGANTEA, PHYTOCHROMEA, and CRYPTOCHROME1) gibberellin biosynthetic pathway genes (GIBBERELLIN 20-OXIDASE2, GIBBERELLIN 2-OXIDASE, DELLA PROTEIN REPRESSOR OF GA1-3 1) autonomous (FLOWERING LOCUS C, FLOWERING LOCUS VE, FLOWERING LOCUS CA), and age pathway (SQUAMOSA PROMOTER LIKE9, APETALA2). The endophytic colonization had no effect on vernalization (FLOWERING LOCUS C) or biotic stress pathways (SALICYLIC ACID INDUCTION DEFICIENT 2, WRKY family transcription factor 22). The data suggest that P. nigrum responds positively to P. indica colonization, affecting preponement in floral induction as well as evocation, and thereby shortening the juvenile phase of the crop.
Collapse
Affiliation(s)
- R. S. Lekshmi
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S. Sora
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - K. N. Anith
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - E. V. Soniya
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
15
|
The Role of Serendipita indica (Piriformospora indica) in Improving Plant Resistance to Drought and Salinity Stresses. BIOLOGY 2022; 11:biology11070952. [PMID: 36101333 PMCID: PMC9312039 DOI: 10.3390/biology11070952] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Environmental stresses are one of the biggest threats to modern agriculture, and climate change has heightened the risks of these stresses in different parts of the world. Among all the environmental stresses, salinity and drought are a severe threat to arid and semi-arid regions of the world, and for a long time, scientists have been searching for ways to reduce the risk of these stresses. In recent decades, solutions have been developed to reduce the risk of environmental stress on plants by identifying beneficial soil microorganisms. This study was conducted to identify morphophysiological and molecular changes of plants in coexistence with Serendipita indica and their impact on drought and salinity stress reduction. The study also has investigated the stressors’ impact on plants and the plants’ mechanisms to cope with them; Furthermore, sharing results with researchers provides a clear path for future research. Abstract Plant stress is one of the biggest threats to crops, causing irreparable damage to farmers’ incomes; Therefore, finding suitable, affordable, and practical solutions will help the agricultural economy and prevent the loss of millions of tons of agricultural products. Scientists have taken significant steps toward improving farm productivity in the last few decades by discovering how beneficial soil microorganisms enhance plant resistance to environmental stresses. Among these microorganisms is Serendipita indica, which the benefits of coexisting this fungus with plant roots have been extensively explored in recent years. By investigating fungus specification and its effects on plants’ morphological, physiological, and molecular traits, the present study seeks to understand how Serendipita indica affects plant resistance to salinity and drought conditions. Furthermore, this study attempts to identify the unknown mechanisms of action of the coexistence of Serendipita indica with plants in the face of stress using information from previous studies. Thus, it provides a way for future research to assess the impact of this fungus on tackling environmental stresses and enhancing agricultural productivity.
Collapse
|
16
|
Ntana F, Johnson SR, Hamberger B, Jensen B, Jørgensen HJL, Collinge DB. Regulation of Tomato Specialised Metabolism after Establishment of Symbiosis with the Endophytic Fungus Serendipita indica. Microorganisms 2022; 10:microorganisms10010194. [PMID: 35056642 PMCID: PMC8778627 DOI: 10.3390/microorganisms10010194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 12/17/2022] Open
Abstract
Specialised metabolites produced during plant-fungal associations often define how symbiosis between the plant and the fungus proceeds. They also play a role in the establishment of additional interactions between the symbionts and other organisms present in the niche. However, specialised metabolism and its products are sometimes overlooked when studying plant-microbe interactions. This limits our understanding of the specific symbiotic associations and potentially future perspectives of their application in agriculture. In this study, we used the interaction between the root endophyte Serendipita indica and tomato (Solanum lycopersicum) plants to explore how specialised metabolism of the host plant is regulated upon a mutualistic symbiotic association. To do so, tomato seedlings were inoculated with S. indica chlamydospores and subjected to RNAseq analysis. Gene expression of the main tomato specialised metabolism pathways was compared between roots and leaves of endophyte-colonised plants and tissues of endophyte-free plants. S. indica colonisation resulted in a strong transcriptional response in the leaves of colonised plants. Furthermore, the presence of the fungus in plant roots appears to induce expression of genes involved in the biosynthesis of lignin-derived compounds, polyacetylenes, and specific terpenes in both roots and leaves, whereas pathways producing glycoalkaloids and flavonoids were expressed in lower or basal levels.
Collapse
Affiliation(s)
- Fani Ntana
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - Sean R. Johnson
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA;
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - Hans J. L. Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
- Correspondence: ; Tel.: +45-35333356
| |
Collapse
|
17
|
Baghaie AH, Aghili F. Contribution of Piriformospora indica on improving the nutritional quality of greenhouse tomato and its resistance against cu toxicity after humic acid addition to soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64572-64585. [PMID: 34308521 DOI: 10.1007/s11356-021-15599-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Protected cultivation has a significant contribution in vegetable production. We investigated whether humic acid addition to soil and Piriformospora indica can improve the nutritional quality of greenhouse tomato. We conducted a pot experiment, in which the effects of P. indica inoculation, humic acid addition, and Cu spiking to soil (0, 120, 240, and 500 ppm Cu) were tested. Humic acid addition to soil spiked with 500 ppm Cu decreased the Cu concentration in the fruits of plants inoculated with P. indica from 0.65 to 0.40 mg 100 g Fw-1, which is still above the maximum allowed limits of Cu in tomato by World Health Organization (WHO). The lycopene and ascorbic acid content of tomato fruits were consistently improved by humic acid addition and P. indica inoculation. The antioxidant enzymes' activity changed in response to humic acid addition, Cu spiking to soil, and P. indica inoculation. With increasing Cu level up to 240 ppm, the activity of superoxide dismutase (SOD) and peroxidase (POD) increased significantly. However, with spiking more Cu to soil, the activity of antioxidant enzymes reduced and the MDA content increased significantly. Addition of humic acid to soil and/or presence of P. indica increased the activity of antioxidant enzymes when the soil spiked with 500 ppm Cu. This study indicated that addition of P. indica and humic acid to the soil can enhance the nutritional quality of greenhouse tomato by reduction of Cu toxicity as a common pollutant in the greenhouse media and increasing the antioxidant content of fruits.
Collapse
Affiliation(s)
| | - Forough Aghili
- Department of Agriculture, Mohajer Technical University of Isfahan, Isfahan, Iran
| |
Collapse
|
18
|
Verma N, Narayan OP, Prasad D, Jogawat A, Panwar SL, Dua M, Johri AK. Functional characterization of a high-affinity iron transporter (PiFTR) from the endophytic fungus Piriformospora indica and its role in plant growth and development. Environ Microbiol 2021; 24:689-706. [PMID: 34227231 DOI: 10.1111/1462-2920.15659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/27/2022]
Abstract
Iron (Fe) is a micronutrient required for plant growth and development; however, most Fe forms in soil are not readily available to plants, resulting in low Fe contents in plants and, thereby, causing Fe deficiency in humans. Biofortification through plant-fungal co-cultivation might be a sustainable approach to increase crop Fe contents. Therefore, we aimed to examine the role of a Piriformospora indica Fe transporter on rice Fe uptake under low Fe conditions. A high-affinity Fe transporter (PiFTR) from P. indica was identified and functionally characterized. PiFTR fulfilled all criteria expected of a functional Fe transporter under Fe-limited conditions. Additionally, PiFTR expression was induced when P. indica was grown under low Fe conditions, and PiFTR complemented a yeast mutant lacking Fe transport. A knockdown (KD) P. indica strain was created via RNA interference to understand the physiological role of PiFTR. We observed that the KD-PiFTR-P. indica strain transported a significantly lower amount of Fe to colonized rice (Oryza sativa) than the wild type (WT) P. indica. WT P. indica-colonized rice plants were healthier and performed significantly better than KD-PiFTR-P. indica-colonized rice plants. Our study offers potential avenues for an agronomically sound amelioration of plant growth in low Fe environments.
Collapse
Affiliation(s)
- Nidhi Verma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Om Prakash Narayan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Durga Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhimanyu Jogawat
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Panwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
19
|
Ntana F, Bhat WW, Johnson SR, Jørgensen HJL, Collinge DB, Jensen B, Hamberger B. A Sesquiterpene Synthase from the Endophytic Fungus Serendipita indica Catalyzes Formation of Viridiflorol. Biomolecules 2021; 11:biom11060898. [PMID: 34208762 PMCID: PMC8234273 DOI: 10.3390/biom11060898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022] Open
Abstract
Interactions between plant-associated fungi and their hosts are characterized by a continuous crosstalk of chemical molecules. Specialized metabolites are often produced during these associations and play important roles in the symbiosis between the plant and the fungus, as well as in the establishment of additional interactions between the symbionts and other organisms present in the niche. Serendipita indica, a root endophytic fungus from the phylum Basidiomycota, is able to colonize a wide range of plant species, conferring many benefits to its hosts. The genome of S. indica possesses only few genes predicted to be involved in specialized metabolite biosynthesis, including a putative terpenoid synthase gene (SiTPS). In our experimental setup, SiTPS expression was upregulated when the fungus colonized tomato roots compared to its expression in fungal biomass growing on synthetic medium. Heterologous expression of SiTPS in Escherichia coli showed that the produced protein catalyzes the synthesis of a few sesquiterpenoids, with the alcohol viridiflorol being the main product. To investigate the role of SiTPS in the plant-endophyte interaction, an SiTPS-over-expressing mutant line was created and assessed for its ability to colonize tomato roots. Although overexpression of SiTPS did not lead to improved fungal colonization ability, an in vitro growth-inhibition assay showed that viridiflorol has antifungal properties. Addition of viridiflorol to the culture medium inhibited the germination of spores from a phytopathogenic fungus, indicating that SiTPS and its products could provide S. indica with a competitive advantage over other plant-associated fungi during root colonization.
Collapse
Affiliation(s)
- Fani Ntana
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark;
| | - Wajid W. Bhat
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
| | - Sean R. Johnson
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA;
| | - Hans J. L. Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
- Correspondence:
| |
Collapse
|
20
|
Haruma T, Yamaji K, Masuya H. Phialocephala fortinii increases aluminum tolerance in Miscanthus sinensis growing in acidic mine soil. Lett Appl Microbiol 2021; 73:300-307. [PMID: 34042204 DOI: 10.1111/lam.13514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
Miscanthus sinensis growing in our study mine site contained a high concentration of Al in the adventitious roots. It has a root endophyte, Phialocephala fortinii, in its adventitious roots at a high frequency. The purpose of this study was to elucidate the effects of P. fortinii on Al tolerance mechanisms of M. sinensis and reveal potential underlying mechanisms. In the absence of P. fortinii, M. sinensis produced chlorogenic, citric, and malic acids that could act to alleviate Al toxicity in acidic mine soil. Up on fungal inoculation, the levels of these compounds were reduced, although the growth of seedlings and Mg concentration in the roots were increased. IAA production by the fungus may contribute to enhanced plant growth whereas an increase of Mg uptake could reduce toxicity of reactive oxygen species under Al stress. These actions of P. fortinii could promote growth and survival of M. sinensis in mine sites.
Collapse
Affiliation(s)
- T Haruma
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - K Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - H Masuya
- Department of Mushroom Science and Forest Microbiology Forestry and Forest Products Research Institute, Tsukuba, Japan
| |
Collapse
|
21
|
Mastan A, Rane D, Dastager SG, Vivek Babu CS. Molecular insights of fungal endophyte co-inoculation with Trichoderma viride for the augmentation of forskolin biosynthesis in Coleus forskohlii. PHYTOCHEMISTRY 2021; 184:112654. [PMID: 33461046 DOI: 10.1016/j.phytochem.2021.112654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
To understand the compatibility of three native endophytic fungi Phialemoniopsis cornearis (SF1), Macrophomina pseudophaseolina (SF2) and Fusarium redolens (RF1) with Trichoderma viride (TV1) on Coleus forskohlii in enhancing plant growth and forskolin content, field experiments were conducted. Co-inoculation of RF1+TV1 showed significant improvement in plant growth (52%), root biomass (67%), and in-planta forskolin content (94%), followed by treatment with SF2+TV1 and SF1+TV1. qRT-PCR was carried out to quantify expression of five key forskolin biosynthetic pathway genes (CfTPS2, CfTPS3, CfTPS4, CfCYP76AH15, and CfACT1-8) in RF1+TV1 treated C. forskohlii plants. Elevated expression of CfTPS2, CfTPS4, CfCYP76AH15 and CfACT1-8 genes was observed with RF1+TV1 combination as compared to uninoculated C. forskohlii plants. Besides, RF1+TV1 treatment considerably reduced the severity of nematode infection of C. forskohlii plants under field conditions. Thus, congruent properties of F. redolens (RF1) were witnessed with co-inoculation of T. viride (TV1) under field conditions which resulted in enhanced forskolin content, root biomass, and reduced nematode infections in C. forskohlii. Overall, this approach could be an economical and sustainable step towards cultivation of commercially important medicinal plants.
Collapse
Affiliation(s)
- Anthati Mastan
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India; Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India
| | - Digeshwar Rane
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Syed G Dastager
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - C S Vivek Babu
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India; Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India; Present address: Food Protectants & Infestation Control (FPIC) Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India.
| |
Collapse
|
22
|
Piriformospora indica: Biodiversity, Ecological Significances, and Biotechnological Applications for Agriculture and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Krishnamoorthy A, Agarwal T, Kotamreddy JNR, Bhattacharya R, Mitra A, Maiti TK, Maiti MK. Impact of seed-transmitted endophytic bacteria on intra- and inter-cultivar plant growth promotion modulated by certain sets of metabolites in rice crop. Microbiol Res 2020; 241:126582. [PMID: 32882536 DOI: 10.1016/j.micres.2020.126582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/19/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Exploring the beneficial interactions between plant and endophytes could be an effective strategy in the implementation of sustainable agricultural practices to enhance crop productivity. In this study, we aimed to evaluate holistically the plant growth promoting (PGP) abilities rendered by seed-transmitted endophytic bacteria isolated from in vitro grown calli of two rice cultivars. Nine bacterial endophytes, designated as PB001-PB009, were isolated and identified at the genus level through 16S rRNA gene sequence analysis. Biochemical investigations disclosed that they possess several PGP traits, such as phosphate solubilization, indole acetic acid biosynthesis, ammonia production, nitrogen fixation, amylase production and siderophore production. Results in gnotobiotic conditions revealed an increase in fresh weight, dry weight, root length and shoot length of seedlings germinated from endophyte-primed seeds than the control (uninoculated) set in a non-host and two host rice cultivars. In net house experiments, plants germinated from Micrococcus sp. PB001, Pseudomonas sp. PB002, Methylobacterium sp. PB005 and Methylorubrum sp. PB009 primed seeds showed an increase of upto 34.06 %, 38.77 %, 182.87 %, 16.59 % and 33.52 % in chlorophyll content, number of tillers/plant, number of grains/plant, grain size and grain weight, respectively than control plant sets in the non-host rice cultivar, further validating inter-cultivar PGP abilities of these endophytes. Metabolite profiling unfolded the abundance of few metabolites that are involved in pathways associated with PGP traits, in seedlings germinated from the endophyte-primed seeds. Together, the study documents the effect of seed-transmitted endophytic bacteria on intra- and inter-cultivar PGP by modulating certain sets of metabolites in rice plant, and is promising in developing bioinoculant formulations employing these selected endophytes for enhancement of rice productivity.
Collapse
Affiliation(s)
- Anagha Krishnamoorthy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Jhansi Narmada Reddy Kotamreddy
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Raktim Bhattacharya
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
24
|
Functional Annotation of Agriculturally Important Fungi for Crop Protection: Current Research and Future Challenges. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Mastan A, Rane D, Dastager SG, Vivek Babu CS. Plant Probiotic Bacterial Endophyte, Alcaligenes faecalis, Modulates Plant Growth and Forskolin Biosynthesis in Coleus forskohlii. Probiotics Antimicrob Proteins 2020; 12:481-493. [PMID: 31407234 DOI: 10.1007/s12602-019-09582-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Coleus forskohlii is an herb, well-known for its medicinal compound forskolin present in its roots, with wide range of pharmaceutical applications. Here, we report, for the first time, the role of plant-probiotic bacterial endophytes of C. forskohlii, CFLB1 and CFRB1, isolated from leaf and root, which regulate plant growth and in plant forskolin content. Native bacterial endophyte, CFRB1 (Alcaligenes faecalis), significantly modulates primary plant productivity and forskolin content under pot and field conditions. Under field conditions, CFRB1 endophyte application significantly enhanced photosynthetic pigments and reduced the severity of root-knot and root rot diseases. Expression analyses of functional genes involved in the forskolin biosynthesis in C. forskohlii plants treated with CFRB1 endophyte under field conditions revealed differential upregulation of four C. forskohlii diterpene synthases (CfTPSs), CfTPS1, CfTPS2, CfTPS3 and CfTPS4, along with cytochrome P450 (CfCYP76AH15) and acyltransferase (CfACT1-8) genes. CFRB1 treatment reduced the severity of nematode infection and root rot in C. forskohlii plants by 81 and 78%, respectively. Overall, we demonstrate that cross-talk of plant-endophyte interaction in C. forskohlii is beneficial, leading to enhanced forskolin content through modulation of forskolin biosynthetic pathway genes along with increased plant yield and reduced disease incidence. Thus, endophytic isolate, A. faecalis (CFRB1), could be deployed as a novel bio-stimulant for enhancing in planta forskolin content during cultivation of C. forskohlii.
Collapse
Affiliation(s)
- Anthati Mastan
- Microbial Technology Laboratory, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Digeshwar Rane
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Syed G Dastager
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Chikkarasanahalli Shivegowda Vivek Babu
- Microbial Technology Laboratory, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
26
|
Mastan A, Vivek Babu CS, Hiremath C, Srinivas KVNS, Kumar AN, Kumar JK. Treatments with native Coleus forskohlii endophytes improve fitness and secondary metabolite production of some medicinal and aromatic plants. Int Microbiol 2020; 23:345-354. [PMID: 31823202 DOI: 10.1007/s10123-019-00108-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/25/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023]
Abstract
Endophytes have been shown to play a crucial role in determining the fitness of host plant during their association, yet the cross-functional effect of endophytes of one plant on another plant remains largely uncharacterized. In this study, we attempt to analyze the effect of native endophytes of Coleus forskohlii (Phialemoniopsis cornearis (SF1), Macrophomina pseudophaseolina (SF2), and Fusarium redolens (RF1), isolated from stem and root parts) on plant growth and secondary metabolite enhancement in medicinal plant Andrographis paniculata, and aromatic plants Pelargonium graveolens and Artemisia pallens. Here, we report, endophytic treatments with SF2 (21%) and RF1 (9%) in A. paniculata resulted in significant enhancement of andrographolide along with plant primary productivity. Correspondingly, application of fungal endophytes RF1, SF1, and SF2 significantly improved the plant growth (11 to 40%), shoot weight (28 to 34%), oil content (44 to 58%), and oil yield (72 to 122%) in P. graveolens. Interestingly, treatment of A. pallens with three fungal endophytes resulted in significant enhancement of plant productivity and oil content (12 to 80%) and oil yield (32 to 139%). Subsequently, the endophyte treatments RF1 and SF1 enhanced davanone (13 to 22%) and ethyl cinnamate (11 to 22%) content. However, SF2 endophyte-treated plants did not show any improvement in ethyl cinnamate content but enhanced the content of davanone (10%), a signature component of davana essential oil. Overall, results depict cross-functional role of native endophytes of C. forskohlii and repurposing of functional endophytes for sustainable cultivation of economically important medicinal and aromatic crops.
Collapse
Affiliation(s)
- Anthati Mastan
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India
- Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India
| | - Chikkarasanahalli Shivegowda Vivek Babu
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India.
- Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India.
| | - Channayya Hiremath
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India
- Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India
| | - Kalavagunta Venkata Naga Satya Srinivas
- Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India
- Analytical Chemistry Laboratory, CSIR- Central Institute of Medicinal and Aromatic plants, Research Centre, Hyderabad, 500039, India
| | - Arigari Niranjan Kumar
- Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India
- Analytical Chemistry Laboratory, CSIR- Central Institute of Medicinal and Aromatic plants, Research Centre, Hyderabad, 500039, India
| | - Jonnala Kotesh Kumar
- Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India
- Analytical Chemistry Laboratory, CSIR- Central Institute of Medicinal and Aromatic plants, Research Centre, Hyderabad, 500039, India
| |
Collapse
|
27
|
Li L, Zhu P, Wang X, Zhang Z. Phytoremediation effect of Medicago sativa colonized by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil. BMC Biotechnol 2020; 20:20. [PMID: 32345267 PMCID: PMC7187505 DOI: 10.1186/s12896-020-00613-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The coexistence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals has deleterious effects on environmental quality. Few reports have studied the mechanisms of plant inoculation with Piriformospora indica to remediate PAH-metal co-contaminated soil by analyzing the chemical speciation of the contaminants. This study investigated the influence of the inoculation of Medicago sativa with P. indica to remediate soil co-contaminated with phenanthrene (a kind of PAH) and cadmium (a heavy metal) by analyzing plant growth, physiological parameters and chemical speciation in rhizosphere and nonrhizosphere soils. RESULTS The presence of P. indica significantly increased plant tolerance, chlorophyll a, chlorophyll b, maximum quantum efficiency of PSII photochemistry and electron transport rate values in phenanthrene- and/or cadmium-contaminated soil. P. indica inoculation in M. sativa roots increased fluorescein diacetate activities in soils contaminated with phenanthrene, cadmium or both, especially in the nonrhizosphere. The presence of phenanthrene prevented the inoculated plant from accumulating cadmium to some extent, whereas the presence of cadmium did not prevent the degradation of phenanthrene in either the rhizosphere or the nonrhizosphere after P. indica colonization. Although the low bioavailability of cadmium in the rhizosphere restricted its transportation into the stem, P. indica colonization in plants effectively increased cadmium accumulation in roots in soil co-contaminated with cadmium and phenanthrene. CONCLUSIONS In conclusion, this work provides a theoretical basis for the use of P. indica combined with M. sativa for the remediation of PAH-metal co-contaminated soil.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China. .,National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Tianjin, China.
| | - Pengyue Zhu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.,School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoyang Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhenhua Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
28
|
Endophytic Beauveria bassiana promotes drought tolerance and early flowering in corn. World J Microbiol Biotechnol 2020; 36:47. [PMID: 32144505 DOI: 10.1007/s11274-020-02823-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Beauveria bassiana (Bals.) Vuillemin (B. bassiana) is an entomopathogenic fungus that establishes endophytic symbiosis with plants. In the present study, the effects of B. bassiana strains colonization in growing Zea mays L. (Z. mays), crop production, and drought tolerance were evaluated. Z. mays seeds were inoculated with B. bassiana strains (GHA, PTG4, and PTG6), using 1 × 106 blastospores/mL and methyl cellulose (MC) or cornstarch (CS) as adherents. Colonization was determined by B. bassiana recovery from plant tissues plated on PDA medium. Plant height, fresh and dry weight, and flowering time were analyzed to assess plant performance. Drought tolerance was evaluated by stopping watering for 10 days, watering again, and determining vigor recovery after 24 h. Results showed 100% endophytic roots colonization, regardless of adherent type or strain tested. Colonization was variable in shoots and leaves, but GHA strain achieved the highest inoculation rates, including 88% in stems and 50% in leaves, which did not depend on adherent type used; for PTG4 strain, adherent type had an important effect (MC = 100% stems and leaves; CS = 63% stems and 25% leaves). For PTG6 strain, the best adherent type was CS (71% stems and 75% leaves), whereas MC showed variable inoculation percentage (25% stems and 75% leaves). Interestingly, only MCPTG4 treatment showed consistent positive effects on germination percentage (day 5 = 46 ± 2%; day 14 = 87 ± 7%) compared with controls (CC = 63 ± 4%, CMC = 50 ± 3%, CCS = 47 ± 0%). In addition, the other treatments showed low germination percentages at day 5 (7 ± 7% to 46 ± 2%), which recovered at day 14 (53 ± 0% to 73 ± 8%), except for MCPTG6 treatment with 23 ± 10% germination. About plant performance, not significant effects on plant height and fresh/dry weight in all the treatments were observed. However, B. bassiana-treated plants, using either GHA, PTG4 or PTG6 strains, and MC as adherent, showed tolerance to drought and flowered one to two weeks earlier, providing evidence supporting further applications of these seed treatments in agricultural systems, for abiotic stress sustainable management practices.
Collapse
|
29
|
Baghaie A, Daliri A. Effect of salicylic acid and root inoculation with P. indica on cd phytoremediation efficiency and degradation of soil fuel oil in the salinity stress. INTERNATIONAL ARCHIVES OF HEALTH SCIENCES 2020. [DOI: 10.4103/iahs.iahs_64_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Tsai HJ, Shao KH, Chan MT, Cheng CP, Yeh KW, Oelmüller R, Wang SJ. Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. PLANT SIGNALING & BEHAVIOR 2020; 15:1722447. [PMID: 32024420 PMCID: PMC7053885 DOI: 10.1080/15592324.2020.1722447] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Global water shortage seriously threatens rice growth especially in irrigated production areas. Association of plants with beneficial soil microbes is one strategy for plant adaption to environmental stresses. In this study, rice (Oryza sativa L.) plants were colonized by the beneficial root-colonizing endophytic fungus Piriformospora indica (P. indica). We demonstrate that grain yield were higher in P. indica-colonized rice plants compared to the uncolonized plants grown in soil. Moreover, P. indica effect on improving water stress tolerance in rice and its physiological mechanism were investigated in a hydroponic culture system. Polyethylene glycol (PEG) was applied to the culture solution to conduct the water stress condition. Water stress-induced leaf wilting and impairments in photosynthetic efficiency were diminished in P. indica-colonized plants. Furthermore, P. indica colonization promotes stomata closure and increases the leaf surface temperature under water stress. The malondialdehyde level (as an indicator for oxidative stress) was lower and the reduced to oxidized glutathione ratio was higher in P. indica-colonized and PEG-exposed rice plants compared to the uncolonized plants. Furthermore, the activities of the antioxidant enzymes catalase and glutathione reductase were up-regulated in inoculated rice seedlings under water stress. In conclusion, P. indica promotes rice performance under water stress by stomata closure and lower oxidative stress.
Collapse
Affiliation(s)
- Hsuan-Ju Tsai
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ko-Hsuan Shao
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsair Chan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chiu-Ping Cheng
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ralf Oelmüller
- Matthias-Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Shu-Jen Wang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
- CONTACT Shu-Jen Wang Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Mondal S, Halder SK, Yadav AN, Mondal KC. Microbial Consortium with Multifunctional Plant Growth-Promoting Attributes: Future Perspective in Agriculture. ADVANCES IN PLANT MICROBIOME AND SUSTAINABLE AGRICULTURE 2020. [DOI: 10.1007/978-981-15-3204-7_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Zhang W, Yuan J, Cheng T, Tang MJ, Sun K, Song SL, Xu FJ, Dai CC. Flowering-mediated root-fungus symbiosis loss is related to jasmonate-dependent root soluble sugar deprivation. PLANT, CELL & ENVIRONMENT 2019; 42:3208-3226. [PMID: 31373013 DOI: 10.1111/pce.13636] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
The role of flowering in root-fungal symbiosis is not well understood. Because flowering and fungal symbionts are supported by carbohydrates, we hypothesized that flowering modulates root-beneficial fungal associations through alterations in carbohydrate metabolism and transport. We monitored fungal colonization and soluble sugars in the roots of Arabidopsis thaliana following inoculation with a mutualistic fungus Phomopsis liquidambari across different plant developmental stages. Jasmonate signalling of wild-type plants, sugar transport, and root invertase of wild-type and jasmonate-insensitive plants were exploited to assess whether and how jasmonate-dependent sugar dynamics are involved in flowering-mediated fungal colonization alterations. We found that flowering restricts root-fungal colonization and activates root jasmonate signalling upon fungal inoculation. Jasmonates reduce the constitutive and fungus-induced accumulation of root glucose and fructose at the flowering stage. Further experiments with sugar transport and metabolism mutant lines revealed that root glucose and fructose positively influence fungal colonization. Diurnal, jasmonate-dependent inhibitions of sugar transport and soluble invertase activity were identified as likely mechanisms for flowering-mediated root sugar depletion upon fungal inoculation. Collectively, our results reveal that flowering drives root-fungus cooperation loss, which is related to jasmonate-dependent root soluble sugar depletion. Limiting the spread of root-fungal colonization may direct more resources to flower development.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ting Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shi-Li Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fang-Ji Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
33
|
Mastan A, Bharadwaj R, Kushwaha RK, Vivek Babu CS. Functional Fungal Endophytes in Coleus forskohlii Regulate Labdane Diterpene Biosynthesis for Elevated Forskolin Accumulation in Roots. MICROBIAL ECOLOGY 2019; 78:914-926. [PMID: 31001657 DOI: 10.1007/s00248-019-01376-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/03/2019] [Indexed: 05/05/2023]
Abstract
Coleus forskohlii is a perennial medicinal shrub cultivated mainly for its forskolin content. The plant has been used since ancient times in ayurvedic traditional medicines for the treatment of hypertension, glaucoma, asthma, congestive heart failures, obesity, and cancer. Use of endophytic microorganisms presents a special interest for the development of value-added bioactive compounds through agriculture. Limited investigations have been undertaken on in planta enhancement of forskolin content using endophytic fungus in sustainable agriculture. Here we report specific roles of three fungal endophytes, Fusarium redolens (RF1), Phialemoniopsis cornearis (SF1), and Macrophomina pseudophaseolina (SF2), functionally acting as plant probiotic fungus, regulating secondary metabolite (forskolin) biosynthesis in C. forskohlii. The root endophyte, RF1, and shoot endophytes, SF1 and SF2, were found to enhance forskolin content by 52 to 88% in pot and 60 to 84% in field experiments as compared to uninoculated control plants. The three endophytes also enhanced total biomass owing to plant growth promoting properties. The expression of diterpene synthases (CfTPSs) like CfTPS1, CfTPS2, CfTPS3, and CfTPS4 were significantly upregulated in endophyte-treated C. forskohlii plants. Elevated expression of key diterpene synthases (CfTPS2) in the forskolin biosynthesis pathway, exclusively present in the root cork of C. forskohlii, was observed following SF2 endophyte treatment. Furthermore, endophyte treatments conferred a variety of antagonistic activity against nematode galls (80%) and plant pathogens like Fusarium oxysporum, Colletotricum gloeosporioides, and Sclerotium rolfsii. RF1 and SF1 fungal endophytes showed positive for IAA production; however, SF1 also indicated phosphate solubilization activity. Overall, the qualitative and quantitative improvement of in planta forskolin enhancement represents an area of high commercial interest, and hence, our work focused on novel insights for the application of three fungal endophytes for in planta enhancement of forskolin content for C. forskohlii cultivation by a sustainable approach.
Collapse
Affiliation(s)
- Anthati Mastan
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Rkb Bharadwaj
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Ramesh Kumar Kushwaha
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Chikkarasanahalli Shivegowda Vivek Babu
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
34
|
Andhale NB, Shahnawaz M, Ade AB. Fungal endophytes of Plumbago zeylanica L. enhances plumbagin content. BOTANICAL STUDIES 2019; 60:21. [PMID: 31494810 PMCID: PMC6732136 DOI: 10.1186/s40529-019-0270-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/22/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plumbagin is one of the pharmaceutically important biomolecule with anticancer potential. Among the plants reported to produce plumbagin, P. zeylanica topped the list. The plumbagin production is very slow with low yield and maximum 0.5% (of dry weight) was reported in P. zeylanica. To meet the increasing demand of the plumbagin at global level, the P. zeylanica are exploited at commercial level, which may pose serious threat on the germplasm of the plant populations. So, it is needed to enhance the contents of plumbagin in P. zeylanica using biotechnological approaches. Among the various methods used to enhance the contents of plumbagin in P. zeylanica, utilization of fungal endophytes to enhance the plumbagin contents is a widely accepted approach. As fungal endophytes have the potential to synthesize various secondary metabolites and also reported to influence the synthesis of the secondary metabolites in plants. In the present study, an attempt was made to assess the effect of fungal endophytes of the Plumbago zeylanica L. on enhancement of plumbagin contents at in vivo level. RESULTS Total 3 fungal endophytes were recorded from the roots of P. zeylanica collected from Khadki, Pune. The fungal endophytes were identified at morphological and molecular level. After 1 year of the treatment with fungal endophytes, significant enhancement of plumbagin was recorded in the roots of the P. zeylanica. Plumbagin contents in each were quantified against the standard plumbagin by employing LCMS-MS technique. Among the three fungal endophytes, the maximum enhancement of plumbagin content (122.67%) was reported with the treatment of Alternaria sp. (Isolate-3) in the roots of the P. zeylanica compared to control. CONCLUSION Among the three fungal endophytes, the maximum enhancement of plumbagin content (122.67%) was reported with Alternaria sp. (Isolate 3) in the roots of the pot-grown plants of P. zeylanica at in vivo level.
Collapse
Affiliation(s)
- Namdeo B Andhale
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
- Department of Biology, Fergusson College, FC Road, Shivajinagar, Pune, MS, 411004, India
| | - Mohd Shahnawaz
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India.
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, Jammu, J&K, 180001, India.
| | - Avinash B Ade
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
35
|
Liu H, Senthilkumar R, Ma G, Zou Q, Zhu K, Shen X, Tian D, Hua MS, Oelmüller R, Yeh KW. Piriformospora indica-induced phytohormone changes and root colonization strategies are highly host-specific. PLANT SIGNALING & BEHAVIOR 2019; 14:1632688. [PMID: 31230564 PMCID: PMC6768275 DOI: 10.1080/15592324.2019.1632688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 05/19/2023]
Abstract
Piriformospora indica, an endophytic fungus of Sebacinales, has a wide host range and promotes the performance of mono- and eudicot plants. Here, we compare the interaction of P. indica with the roots of seven host plants (Anthurium andraeanum, Arabidopsis thaliana, Brassica campestris, Lycopersicon esculentum, Oncidium orchid, Oryza sativa, and Zea mays). Microscopical analyses showed that the colonization time and the mode of hyphal invasion into the roots differ in the symbiotic interactions. Substantial differences between the species were also observed for the levels and accumulation of jasmonate (JA) and gibberellin (GA) and the transcript levels for genes involved in their syntheses. No obvious correlation could be detected between the endogenous JA and/or GA levels and the time point of root colonization in a given plant species. Our results suggest that root colonization strategies and changes in the two phytohormone levels are highly host-specific.
Collapse
Affiliation(s)
- Huichun Liu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rajendran Senthilkumar
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Academia Sinica-Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Guangying Ma
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingcheng Zou
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyuan Zhu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaolan Shen
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Danqing Tian
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Moda Sang Hua
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ralf Oelmüller
- Matthias-Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kai Wun Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Bertolazi AA, de Souza SB, Ruas KF, Campostrini E, de Rezende CE, Cruz C, Melo J, Colodete CM, Varma A, Ramos AC. Inoculation With Piriformospora indica Is More Efficient in Wild-Type Rice Than in Transgenic Rice Over-Expressing the Vacuolar H +-PPase. Front Microbiol 2019; 10:1087. [PMID: 31156595 PMCID: PMC6530341 DOI: 10.3389/fmicb.2019.01087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
Achieving food security in a context of environmental sustainability is one of the main challenges of the XXI century. Two competing strategies to achieve this goal are the use of genetically modified plants and the use of plant growth promoting microorganisms (PGPMs). However, few studies assess the response of genetically modified plants to PGPMs. The aim of this study was to compare the response of over-expressing the vacuolar H+-PPase (AVP) and wild-type rice types to the endophytic fungus; Piriformospora indica. Oryza sativa plants (WT and AVP) were inoculated with P. indica and 30 days later, morphological, ecophysiological and bioenergetic parameters, and nutrient content were assessed. AVP and WT plant heights were strongly influenced by inoculation with P. indica, which also promoted increases in fresh and dry matter of shoot in both genotypes. This may be related with the stimulatory effect of P. indica on ecophysiological parameters, especially photosynthetic rate, stomatal conductance, intrinsic water use efficiency and carboxylation efficiency. However, there were differences between the genotypes concerning the physiological mechanisms leading to biomass increment. In WT plants, inoculation with P. indica stimulated all H+ pumps. However, in inoculated AVP plants, H+-PPase was stimulated, but P- and V-ATPases were inhibited. Fungal inoculation enhanced nutrient uptake in both shoots and roots of WT and AVP plants, compared to uninoculated plants; but among inoculated genotypes, the nutrient uptake was lower in AVP than in WT plants. These results clearly demonstrate that the symbiosis between P. indica and AVP plants did not benefit those plants, which may be related to the inefficient colonization of this fungus on the transgenic plants, demonstrating an incompatibility of this symbiosis, which needs to be further studied.
Collapse
Affiliation(s)
- Amanda Azevedo Bertolazi
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, Brazil
| | - Sávio Bastos de Souza
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Katherine Fraga Ruas
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Eliemar Campostrini
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Carlos Eduardo de Rezende
- Laboratory of Environmental Sciences, CBB, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes (Ce3C), Faculty of Sciences, Universidade de Lisboa, Campo Grande, Portugal
| | - Juliana Melo
- Centre for Ecology, Evolution and Environmental Changes (Ce3C), Faculty of Sciences, Universidade de Lisboa, Campo Grande, Portugal
| | - Carlos Moacir Colodete
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, Brazil
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Alessandro Coutinho Ramos
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, Brazil
| |
Collapse
|
37
|
Meents AK, Furch ACU, Almeida-Trapp M, Özyürek S, Scholz SS, Kirbis A, Lenser T, Theißen G, Grabe V, Hansson B, Mithöfer A, Oelmüller R. Beneficial and Pathogenic Arabidopsis Root-Interacting Fungi Differently Affect Auxin Levels and Responsive Genes During Early Infection. Front Microbiol 2019; 10:380. [PMID: 30915043 PMCID: PMC6422953 DOI: 10.3389/fmicb.2019.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 01/08/2023] Open
Abstract
Auxin (indole-3-acetic acid, IAA) is an important phytohormone involved in root growth and development. Root-interacting beneficial and pathogenic fungi utilize auxin and its target genes to manipulate the performance of their hosts for their own needs. In order to follow and visualize auxin effects in fungi-colonized Arabidopsis roots, we used the dual auxin reporter construct DR5::EGFP-DR5v2::tdTomato and fluorescence microscopy as well as LC-MS-based phytohormone analyses. We demonstrate that the beneficial endophytic fungi Piriformospora indica and Mortierella hyalina produce and accumulate IAA in their mycelia, in contrast to the phytopathogenic biotrophic fungus Verticillium dahliae and the necrotrophic fungus Alternaria brassicicola. Within 3 h after exposure of Arabidopsis roots to the pathogens, the signals of the auxin-responsive reporter genes disappeared. When exposed to P. indica, significantly higher auxin levels and stimulated expression of auxin-responsive reporter genes were detected both in lateral root primordia and the root elongation zone within 1 day. Elevated auxin levels were also present in the M. hyalina/Arabidopsis root interaction, but no downstream effects on auxin-responsive reporter genes were observed. However, the jasmonate level was strongly increased in the colonized roots. We propose that the lack of stimulated root growth upon infection with M. hyalina is not caused by the absence of auxin, but an inhibitory effect mediated by high jasmonate content.
Collapse
Affiliation(s)
- Anja K Meents
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.,Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany.,Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Alexandra C U Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Marília Almeida-Trapp
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sedef Özyürek
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexander Kirbis
- Department of Genetics, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Teresa Lenser
- Department of Genetics, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Günter Theißen
- Department of Genetics, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.,Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
38
|
Hassani D, Khalid M, Huang D, Zhang YD. Morphophysiological and molecular evidence supporting the augmentative role of Piriformospora indica in mitigation of salinity in Cucumis melo L. Acta Biochim Biophys Sin (Shanghai) 2019; 51:301-312. [PMID: 30883647 DOI: 10.1093/abbs/gmz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/27/2023] Open
Abstract
Salinity is one of the major limiting factors in plant growth and productivity. Cucumis melo L. is a widely cultivated plant, but its productivity is significantly influenced by the level of salinity in soil. Symbiotic colonization of plants with Piriformospora indica has shown a promotion in plants growth and tolerance against biotic stress. In this study, physiological markers such as ion analysis, antioxidant determination, proline content, electrolyte leakage and chlorophyll measurement were assessed in melon cultivar under two concentrations (100 and 200 mM) of NaCl with and without P. indica inoculation. Results showed that the endophytic inoculation consistently upregulated the level of antioxidants, enhanced plants to antagonize salinity stress. The expression level of an RNA editing factor (SLO2) which is known to participate in mitochondria electron transport chain was analyzed, and its full mRNA sequence was obtained by rapid amplification of cDNA ends (RACE). Under salinity stress, the expression level of SLO2 was increased, enhancing the plant's capability to adapt to the stress. However, P. indica inoculation further elevated the expression level of SLO2. These findings suggested that the symbiotic association of fungi could help the plants to tolerate the salinity stress.
Collapse
Affiliation(s)
- Danial Hassani
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Dong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Khalid M, Rahman SU, Huang D. Molecular mechanism underlying Piriformospora indica-mediated plant improvement/protection for sustainable agriculture. Acta Biochim Biophys Sin (Shanghai) 2019; 51:229-242. [PMID: 30883651 DOI: 10.1093/abbs/gmz004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
The beneficial endophytic microorganisms have received significant attention in agriculture because of their exceptional capabilities to facilitate functions like nutrient enrichment, water status, and stress tolerance (biotic and abiotic). This review signifies the molecular mechanisms to better understand the Piriformospora indica-mediated plants improvement or protection for sustainable agriculture. P. indica, an endophytic fungus, belonging to the order Sebacinales (Basidiomycota), is versatile in building mutualistic associations with a variety of plants including pteridophytes, bryophytes, gymnosperms, and angiosperms. P. indica has enormous potential to manipulate the hormonal pathway such as the production of indole-3-acetic acid which in turn increases root proliferation and subsequently improves plant nutrient acquisition. P. indica also enhances components of the antioxidant system and expression of stress-related genes which induce plant stress tolerance under adverse environmental conditions. P. indica has tremendous potential for crop improvement because of its multi-dimensional functions such as plant growth promotion, immunomodulatory effect, biofertilizer, obviates biotic (pathogens) and abiotic (metal toxicity, water stress, soil structure, salt, and pH) stresses, phytoremediator, and bio-herbicide. Considering the above points, herein, we reviewed the physiological and molecular mechanisms underlying P. indica-mediated plants improvement or protection under diverse agricultural environment. The first part of the review focuses on the symbiotic association of P. indica with special reference to biotic and abiotic stress tolerance and host plant root colonization mechanisms, respectively. Emphasis is given to the expression level of essential genes involved in the processes that induce changes at the cellular level. The last half emphasizes critical aspects related to the seed germination, plant yield, and nutrients acquisition.
Collapse
Affiliation(s)
- Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-ur- Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Finley J. Cellular stress and AMPK links metformin and diverse compounds with accelerated emergence from anesthesia and potential recovery from disorders of consciousness. Med Hypotheses 2019; 124:42-52. [PMID: 30798915 DOI: 10.1016/j.mehy.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
The neural correlates of consciousness and the mechanisms by which general anesthesia (GA) modulate such correlates to induce loss of consciousness (LOC) has been described as one of the biggest mysteries of modern medicine. Several cellular targets and neural circuits have been identified that play a critical role in LOC induced by GA, including the GABAA receptor and ascending arousal nuclei located in the basal forebrain, hypothalamus, and brain stem. General anesthetics (GAs) including propofol and inhalational agents induce LOC in part by potentiating chloride influx through the GABAA receptor, leading to neural inhibition and LOC. Interestingly, nearly all GAs used clinically may also induce paradoxical excitation, a phenomenon in which GAs promote neuronal excitation at low doses before inducing unconsciousness. Additionally, emergence from GA, a passive process that occurs after anesthetic removal, is associated with lower anesthetic concentrations in the brain compared to doses associated with induction of GA. AMPK, an evolutionarily conserved kinase activated by cellular stress (e.g. increases in calcium [Ca2+] and/or reactive oxygen species [ROS], etc.) increases lifespan and healthspan in several model organisms. AMPK is located throughout the mammalian brain, including in neurons of the thalamus, hypothalamus, and striatum as well as in pyramidal neurons in the hippocampus and cortex. Increases in ROS and Ca2+ play critical roles in neuronal excitation and glutamate, the primary excitatory neurotransmitter in the human brain, activates AMPK in cortical neurons. Nearly every neurotransmitter released from ascending arousal circuits that promote wakefulness, arousal, and consciousness activates AMPK, including acetylcholine, histamine, orexin-A, dopamine, and norepinephrine. Several GAs that are commonly used to induce LOC in human patients also activate AMPK (e.g. propofol, sevoflurane, isoflurane, dexmedetomidine, ketamine, midazolam). Various compounds that accelerate emergence from anesthesia, thus mitigating problematic effects associated with delayed emergence such as delirium, also activate AMPK (e.g. nicotine, caffeine, forskolin, carbachol). GAs and neurotransmitters also act as preconditioning agents and the GABAA receptor inhibitor bicuculline, which reverses propofol anesthesia, also activates AMPK in cortical neurons. We propose the novel hypothesis that cellular stress-induced AMPK activation links wakefulness, arousal, and consciousness with paradoxical excitation and accelerated emergence from anesthesia. Because AMPK activators including metformin and nicotine promote proliferation and differentiation of neural stem cells located in the subventricular zone and the dentate gyrus, AMPK activation may also enhance brain repair and promote potential recovery from disorders of consciousness (i.e. minimally conscious state, vegetative state, coma).
Collapse
|
41
|
Haruma T, Yamaji K, Ogawa K, Masuya H, Sekine Y, Kozai N. Root-endophytic Chaetomium cupreum chemically enhances aluminium tolerance in Miscanthus sinensis via increasing the aluminium detoxicants, chlorogenic acid and oosporein. PLoS One 2019; 14:e0212644. [PMID: 30794662 PMCID: PMC6386393 DOI: 10.1371/journal.pone.0212644] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/06/2019] [Indexed: 01/15/2023] Open
Abstract
Miscanthus sinensis Andersson is a pioneer plant species that grows naturally at mining sites. Miscanthus sinensis can detoxify aluminium (Al) by producing phytosiderophores, such as chlorogenic acid, citric acid, and malic acid, and localizing Al in cell walls. Root-endophytic Chaetomium cupreum, which produces microbial siderophores, enhances Al tolerance in M. sinensis. However, we could not determine whether the siderophores produced by C. cupreum actually enhance Al tolerance in M. sinensis, because the microbial siderophores have not yet been identified in previous research. The purpose of this study was to clarify how C. cupreum chemically increases Al tolerance in M. sinensis under acidic mining site conditions, especially considering siderophores. Using instrumental analyses, the siderophore produced by C. cupreum was identified as oosporein. Comparison of the stability constant between Al and phytosiderophores and oosporein indicated that oosporein could detoxify Al similarly to chlorogenic acid, which shows higher stability constant than citric acid and malic acid. Inoculation test of C. cupreum onto M. sinensis in acidic mine soil showed that C. cupreum promoted seedling growth, and enhanced Al tolerance via inducing chlorogenic-acid production and producing oosporein. These results suggested that C. cupreum could chemically enhance Al tolerance and might promote growth via reducing excessive Al in cell walls, the main site of Al accumulation. In addition, the chemical enhancement of Al tolerance by C. cupreum might be important for M. sinensis to adapt to acidic mining sites.
Collapse
Affiliation(s)
- Toshikatsu Haruma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiko Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyoshi Ogawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hayato Masuya
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Yurina Sekine
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokaimura, Ibaraki, Japan
| | - Naofumi Kozai
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokaimura, Ibaraki, Japan
| |
Collapse
|
42
|
Endophytic fungus Serendipita indica increased nutrition absorption and biomass accumulation in Cunninghamia lanceolata seedlings under low phosphate. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.chnaes.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Bajaj R, Huang Y, Gebrechristos S, Mikolajczyk B, Brown H, Prasad R, Varma A, Bushley KE. Transcriptional responses of soybean roots to colonization with the root endophytic fungus Piriformospora indica reveals altered phenylpropanoid and secondary metabolism. Sci Rep 2018; 8:10227. [PMID: 29980739 PMCID: PMC6035220 DOI: 10.1038/s41598-018-26809-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Piriformospora indica, a root endophytic fungus, has been shown to enhance biomass production and confer tolerance to various abiotic and biotic stresses in many plant hosts. A growth chamber experiment of soybean (Glycine max) colonized by P. indica compared to uninoculated control plants showed that the fungus significantly increased shoot dry weight, nutrient content, and rhizobial biomass. RNA-Seq analyses of root tissue showed upregulation of 61 genes and downregulation of 238 genes in colonized plants. Gene Ontology (GO) enrichment analyses demonstrated that upregulated genes were most significantly enriched in GO categories related to lignin biosynthesis and regulation of iron transport and metabolism but also mapped to categories of nutrient acquisition, hormone signaling, and response to drought stress. Metabolic pathway analysis revealed upregulation of genes within the phenylpropanoid and derivative pathways such as biosynthesis of monolignol subunits, flavonoids and flavonols (luteolin and quercetin), and iron scavenging siderophores. Highly enriched downregulated GO categories included heat shock proteins involved in response to heat, high-light intensity, hydrogen peroxide, and several related to plant defense. Overall, these results suggest that soybean maintains an association with this root endosymbiotic fungus that improves plant growth and nutrient acquisition, modulates abiotic stress, and promotes synergistic interactions with rhizobia.
Collapse
Affiliation(s)
- Ruchika Bajaj
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, India
| | - Yinyin Huang
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
| | - Sebhat Gebrechristos
- Master of Biological Sciences Program, University of Minnesota, Saint Paul, MN, USA
| | - Brian Mikolajczyk
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Heather Brown
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, India
| | - Kathryn E Bushley
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
44
|
Root colonization by the endophytic fungus Piriformospora indica improves growth, yield and piperine content in black pepper ( Piper nigurm L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Johnson JM, Thürich J, Petutschnig EK, Altschmied L, Meichsner D, Sherameti I, Dindas J, Mrozinska A, Paetz C, Scholz SS, Furch ACU, Lipka V, Hedrich R, Schneider B, Svatoš A, Oelmüller R. A Poly(A) Ribonuclease Controls the Cellotriose-Based Interaction between Piriformospora indica and Its Host Arabidopsis. PLANT PHYSIOLOGY 2018; 176:2496-2514. [PMID: 29371249 PMCID: PMC5841714 DOI: 10.1104/pp.17.01423] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Piriformospora indica, an endophytic root-colonizing fungus, efficiently promotes plant growth and induces resistance to abiotic stress and biotic diseases. P. indica fungal cell wall extract induces cytoplasmic calcium elevation in host plant roots. Here, we show that cellotriose (CT) is an elicitor-active cell wall moiety released by P. indica into the medium. CT induces a mild defense-like response, including the production of reactive oxygen species, changes in membrane potential, and the expression of genes involved in growth regulation and root development. CT-based cytoplasmic calcium elevation in Arabidopsis (Arabidopsis thaliana) roots does not require the BAK1 coreceptor or the putative Ca2+ channels TPC1, GLR3.3, GLR2.4, and GLR2.5 and operates synergistically with the elicitor chitin. We identified an ethyl methanesulfonate-induced mutant (cytoplasmiccalcium elevation mutant) impaired in the response to CT and various other cellooligomers (n = 2-7), but not to chitooligomers (n = 4-8), in roots. The mutant contains a single nucleotide exchange in the gene encoding a poly(A) ribonuclease (AtPARN; At1g55870) that degrades the poly(A) tails of specific mRNAs. The wild-type PARN cDNA, expressed under the control of a 35S promoter, complements the mutant phenotype. Our identification of cellotriose as a novel chemical mediator casts light on the complex P. indica-plant mutualistic relationship.
Collapse
Affiliation(s)
- Joy M Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Johannes Thürich
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Elena K Petutschnig
- Department of Plant Cell Biology, Albrecht von Haller Institute, Georg August University, 37077 Goettingen, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany
| | - Doreen Meichsner
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Julian Dindas
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, D-97082 Wuerzburg, Germany
| | - Anna Mrozinska
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Alexandra C U Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht von Haller Institute, Georg August University, 37077 Goettingen, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, D-97082 Wuerzburg, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| |
Collapse
|
46
|
Pan R, Xu L, Wei Q, Wu C, Tang W, Oelmüller R, Zhang W. Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways. PLoS One 2017; 12:e0189791. [PMID: 29261746 PMCID: PMC5736186 DOI: 10.1371/journal.pone.0189791] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/03/2017] [Indexed: 11/19/2022] Open
Abstract
Flowering in plants is synchronized by both environmental cues and internal regulatory factors. Previous studies have shown that the endophytic fungus Piriformospora indica promotes the growth and early flowering in Coleus forskohlii (a medicinal plant) and Arabidopsis. To further dissect the impact of P. indica on pathways responsible for flowering time in Arabidopsis, we co-cultivated Arabidopsis with P. indica and used RT-qPCR to analyze the main gene regulation networks involved in flowering. Our results revealed that the symbiotic interaction of Arabidopsis with P. indica promotes early flower development and the number of siliques. In addition, expression of the core flowering regulatory gene FLOWERING LOCUS T (FT), of genes controlling the photoperiod [CRYPTOCHROMES (CRY1, CRY2) and PHYTOCHROME B (PHYB)] and those related to gibberellin (GA) functions (RGA1, AGL24, GA3, and MYB5) were induced by the fungus, while key genes controlling the age and autonomous pathways remained unchanged. Moreover, early flowering promotion conferred by P. indica was promoted by exogenous GA and inhabited by GA inhibitor, and this effect could be observed under long day and neutral day photoperiod. Therefore, our data suggested that P. indica promotes early flowering in Arabidopsis likely through photoperiod and GA rather than age or the autonomous pathway.
Collapse
Affiliation(s)
- Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Qiao Wei
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Wenlin Tang
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Friedrich-Schiller-University Jena, Institute of General Botany and Plant Physiology, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| |
Collapse
|
47
|
Arora M, Saxena P, Abdin MZ, Varma A. Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua L. plants grown under in vitro conditions. Symbiosis 2017. [DOI: 10.1007/s13199-017-0519-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Narayan OP, Verma N, Singh AK, Oelmüller R, Kumar M, Prasad D, Kapoor R, Dua M, Johri AK. Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea. Sci Rep 2017; 7:13553. [PMID: 29051515 PMCID: PMC5648792 DOI: 10.1038/s41598-017-12944-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Piriformospora indica, a root endophytic fungus, promotes growth of the economically important chickpea plant (Cicer arietinum Linn.) and protects it against the pathogenic fungus Botrytis cinerea. Biomass and root development were found to be significantly improved in chickpea plants colonized with P. indica as compared to the plants grown without P. indica as well as from the plants infected with the B. cinerea. Our PCR analyses showed that gradual increase in the colonization of P. indica in the plants result in the inhibition of the colonization of B. cinerea. P. indica colonized plants showed increased antioxidant enzyme activities. Interestingly, there were pronounced decrease in the antioxidant enzyme activities in shoots infected with B. cinerea and colonized with P. indica in alternate and simultaneous mode as compared to plants infected with B. cinerea alone. We conclude that P. indica helps plants to overcome the disease load by enhancing antioxidant enzyme defense system. Our data suggest that, bio-protective action of P. indica might be mediated via systemic induction of antioxidant defense in the host plants.
Collapse
Affiliation(s)
- Om Prakash Narayan
- School of Life Sciences Jawaharlal Nehru University, New Meharuli Road, New Delhi, 110067, India
| | - Nidhi Verma
- School of Life Sciences Jawaharlal Nehru University, New Meharuli Road, New Delhi, 110067, India
| | - Alok Kumar Singh
- School of Life Sciences Jawaharlal Nehru University, New Meharuli Road, New Delhi, 110067, India
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Manoj Kumar
- School of Life Sciences Jawaharlal Nehru University, New Meharuli Road, New Delhi, 110067, India
| | - Durga Prasad
- School of Life Sciences Jawaharlal Nehru University, New Meharuli Road, New Delhi, 110067, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Meharuli Road, New Delhi, 110067, India.
| | - Atul Kumar Johri
- School of Life Sciences Jawaharlal Nehru University, New Meharuli Road, New Delhi, 110067, India.
| |
Collapse
|
49
|
Li L, Li L, Wang X, Zhu P, Wu H, Qi S. Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:211-223. [PMID: 28898746 DOI: 10.1016/j.plaphy.2017.08.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 05/24/2023]
Abstract
Piriformospora indica, a cultivable root endophytic fungus, induces growth promotion as well as biotic stress resistance and tolerance to abiotic stress in a broad range of host plants. In this study, the potential protection for M Medicago truncatula plants from salinity stress by P. indica was explored. The improved plant growth under severe saline condition was exhibited in P. indica-colonized lines. Moreover, the antioxidant enzymes activities and hyphae density in roots were increased by the endophyte under high salt concentration. Conversely, reduced malondialdehyde (MDA) activity, Na+ content and relative electrolyte conductivity (REC) were observed in P. indica colonized plants. Especially, osmoprotectant proline accumulated and the expression of Delta 1-Pyrroline-5-carboxylate synthetase gene (P5CS2) was induced. The defense related genes PR1 and PR10 and the transcription factors MtAlfin1-like and C2H2-type zinc finger protein MtZfp-c2h2 were induced by P. indica colonization as well. Further work indicated that salinity resistance was increased in overexpressing P5CS2, MtAlfin1-like and MtZfp-c2h2 transgenic M. truncatula plants. Interestingly, our data showed that the transcription factors MtAlfin1-like and MtZfp-c2h2 were positively contributed to P. indica colonization. These results demonstrate that tolerance to salinity stress was conferred by P. indica in M. truncatula via accumulation of osmoprotectant, stimulating antioxidant enzymes and the expression of defense-related genes. This work revealed the potential application of P. indica's as a plant growth-promoting fungus for the target improvement either in crop protection or in the salinized soil improvement indirectly.
Collapse
Affiliation(s)
- Liang Li
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China.
| | - Lei Li
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China
| | - Xiaoyang Wang
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China
| | - Pengyue Zhu
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China
| | - Hongqing Wu
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China
| | - Shuting Qi
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China.
| |
Collapse
|
50
|
Bakshi M, Sherameti I, Meichsner D, Thürich J, Varma A, Johri AK, Yeh KW, Oelmüller R. Piriformospora indica Reprograms Gene Expression in Arabidopsis Phosphate Metabolism Mutants But Does Not Compensate for Phosphate Limitation. Front Microbiol 2017; 8:1262. [PMID: 28747898 PMCID: PMC5506084 DOI: 10.3389/fmicb.2017.01262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/23/2017] [Indexed: 01/12/2023] Open
Abstract
Piriformospora indica is an endophytic fungus of Sebacinaceae which colonizes the roots of many plant species and confers benefits to the hosts. We demonstrate that approximately 75% of the genes, which respond to P. indica in Arabidopsis roots, differ among seedlings grown on normal phosphate (Pi) or Pi limitation conditions, and among wild-type and the wrky6 mutant impaired in the regulation of the Pi metabolism. Mapman analyses suggest that the fungus activates different signaling, transport, metabolic and developmental programs in the roots of wild-type and wrky6 seedlings under normal and low Pi conditions. Under low Pi, P. indica promotes growth and Pi uptake of wild-type seedlings, and the stimulatory effects are identical for mutants impaired in the PHOSPHATE TRANSPORTERS1;1, -1;2 and -1;4. The data suggest that the fungus does not stimulate Pi uptake, but adapts the expression profiles to Pi limitation in Pi metabolism mutants.
Collapse
Affiliation(s)
- Madhunita Bakshi
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Irena Sherameti
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Doreen Meichsner
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Johannes Thürich
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity UniversityNoida, India
| | - Atul K Johri
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Kai-Wun Yeh
- Institute of Plant Biology, Taiwan National UniversityTaipei, Taiwan
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| |
Collapse
|