1
|
Tibbo AJ, Mika D, Dobi S, Ling J, McFall A, Tejeda GS, Blair C, MacLeod R, MacQuaide N, Gök C, Fuller W, Smith BO, Smith GL, Vandecasteele G, Brand T, Baillie GS. Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins. J Mol Cell Cardiol 2022; 165:86-102. [PMID: 34999055 PMCID: PMC8986152 DOI: 10.1016/j.yjmcc.2022.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 12/04/2022]
Abstract
Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes. POPDC1 forms a complex with type 4 phosphodiesterases (PDE4s) in cardiac myocytes. POPDC1 binds PDE4 enzymes in the Upstream Conserved Region 1 (UCR1) domain. The PDE4 binding motif within the Popeye domain lies in a region that harbours a mutation, which underpins human disease. Disruption of the POPDC1-PDE4 complex modulates the cycle length of spontaneous Ca2+ transients in the sinoatrial node. Disruption of the POPDC1-PDE4 complex causes a significant prolongation of the action potential repolarization phase.
Collapse
Affiliation(s)
- Amy J Tibbo
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Delphine Mika
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France
| | - Sara Dobi
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Jiayue Ling
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Aisling McFall
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Gonzalo S Tejeda
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Connor Blair
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Ruth MacLeod
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Niall MacQuaide
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Caglar Gök
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - William Fuller
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Brian O Smith
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Godfrey L Smith
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Grégoire Vandecasteele
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College, W12 0NN, London
| | - George S Baillie
- College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow G128QQ, UK.
| |
Collapse
|
2
|
Buoso E, Masi M, Long A, Chiappini C, Travelli C, Govoni S, Racchi M. Ribosomes as a nexus between translation and cancer progression: Focus on ribosomal Receptor for Activated C Kinase 1 (RACK1) in breast cancer. Br J Pharmacol 2020; 179:2813-2828. [PMID: 32726469 DOI: 10.1111/bph.15218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Fructuoso M, Legrand M, Mousson A, Steffan T, Vauchelles R, De Mey J, Sick E, Rondé P, Dujardin D. FAK regulates dynein localisation and cell polarity in migrating mouse fibroblasts. Biol Cell 2020; 112:53-72. [PMID: 31859373 DOI: 10.1111/boc.201900041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibroblasts executing directional migration position their centrosome, and their Golgi apparatus, in front of the nucleus towards the cell leading edge. Centrosome positioning relative to the nucleus has been associated to mechanical forces exerted on the centrosome by the microtubule-dependent molecular motor cytoplasmic dynein 1, and to nuclear movements such as rearward displacement and rotation events. Dynein has been proposed to regulate the position of the centrosome by exerting pulling forces on microtubules from the cell leading edge, where the motor is enriched during migration. However, the mechanism explaining how dynein acts at the front of the cells has not been elucidated. RESULTS We present here results showing that the protein Focal Adhesion Kinase (FAK) interacts with dynein and regulates the enrichment of the dynein/dynactin complex at focal adhesions at the cell the leading edge of migrating fibroblasts. This suggests that focal adhesions provide anchoring sites for dynein during the polarisation process. In support of this, we present evidence indicating that the interaction between FAK and dynein, which is regulated by the phosphorylation of FAK on its Ser732 residue, is required for proper centrosome positioning. Our results further show that the polarisation of the centrosome can occur independently of nuclear movements. Although FAK regulates both nuclear and centrosome motilities, downregulating the interaction between FAK and dynein affects only the nuclear independent polarisation of the centrosome. CONCLUSIONS Our work highlights the role of FAK as a key player in the regulation of several aspects of cell polarity. We thus propose a model in which the transient localisation of dynein with focal adhesions provides a tuneable mechanism to bias dynein traction forces on microtubules allowing proper centrosome positioning in front of the nucleus. SIGNIFICANCE We unravel here a new role for the cancer therapeutic target FAK in the regulation of cell morphogenesis.
Collapse
Affiliation(s)
- Marta Fructuoso
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France.,ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marlène Legrand
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Antoine Mousson
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Tania Steffan
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Romain Vauchelles
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Jan De Mey
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Emilie Sick
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Philippe Rondé
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Denis Dujardin
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| |
Collapse
|
4
|
Mittal R, Karhu E, Wang JS, Delgado S, Zukerman R, Mittal J, Jhaveri VM. Cell communication by tunneling nanotubes: Implications in disease and therapeutic applications. J Cell Physiol 2018; 234:1130-1146. [PMID: 30206931 DOI: 10.1002/jcp.27072] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Intercellular communication is essential for the development and maintenance of multicellular organisms. Tunneling nanotubes (TNTs) are a recently recognized means of long and short distance communication between a wide variety of cell types. TNTs are transient filamentous membrane protrusions that connect cytoplasm of neighboring or distant cells. Cytoskeleton fiber-mediated transport of various cargoes occurs through these tubules. These cargoes range from small ions to whole organelles. TNTs have been shown to contribute not only to embryonic development and maintenance of homeostasis, but also to the spread of infectious particles and resistance to therapies. These functions in the development and progression of cancer and infectious disease have sparked increasing scrutiny of TNTs, as their contribution to disease progression lends them a promising therapeutic target. Herein, we summarize the current knowledge of TNT structure and formation as well as the role of TNTs in pathology, focusing on viral, prion, and malignant disease. We then discuss the therapeutic possibilities of TNTs in light of their varied functions. Despite recent progress in the growing field of TNT research, more studies are needed to precisely understand the role of TNTs in pathological conditions and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Elisa Karhu
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jay-Shing Wang
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Stefanie Delgado
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Ryan Zukerman
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Vasanti M Jhaveri
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| |
Collapse
|
5
|
Peng T, Gong J, Jin Y, Zhou Y, Tong R, Wei X, Bai L, Shi J. Inhibitors of phosphodiesterase as cancer therapeutics. Eur J Med Chem 2018; 150:742-756. [PMID: 29574203 DOI: 10.1016/j.ejmech.2018.03.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/26/2018] [Accepted: 03/16/2018] [Indexed: 01/05/2023]
Abstract
Phosphodiesterases (PDEs) are a class of enzymes that hydrolyze cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which is involved in many physiological processes including visual transduction, cell proliferation and differentiation, cell-cycle regulation, gene expression, inflammation, apoptosis, and metabolic function. PDEs are composed of 11 different families and each family contains different subtypes. The distribution, expression, regulation mode and sensitivity to inhibitors of each subtype are different, and they are involved in cancer, inflammation, asthma, depression, erectile dysfunction and other pathological processes of development. A large number of studies have shown that PDEs play an important role in the development of tumors by affecting the intracellular level of cAMP and/or cGMP and PDEs could become diagnostic markers or therapeutic targets. This review will give a brief overview of the expression and regulation of PDE families in the process of tumorigenesis and their anti-tumor inhibitors, which may guide the design of novel therapeutic drugs targeting PDEs for anticancer agent.
Collapse
Affiliation(s)
- Ting Peng
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun Gong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yongzhe Jin
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanping Zhou
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xin Wei
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
6
|
Duff D, Long A. Roles for RACK1 in cancer cell migration and invasion. Cell Signal 2017; 35:250-255. [PMID: 28336233 DOI: 10.1016/j.cellsig.2017.03.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/16/2023]
Abstract
Migration and invasion of cancer cells into surrounding tissue and vasculature is an important initial step in cancer metastasis. Metastasis is the leading cause of cancer related death and thus it is crucial that we improve our understanding of the mechanisms that promote this life-threatening phenomenon. Cell migration involves a complex, multistep process that leads to the actin-driven movement of cells on or through the tissues of the body. The multifunctional scaffolding protein RACK1 plays important roles in nucleating cell signalling hubs, anchoring proteins at specific subcellular locations and regulating protein activity. It is essential for cell migration and accumulating evidence now demonstrates multiple roles for RACK1 in regulating migration and invasion of tumour cells. The possibility of designing drugs that block the migratory and invasive capabilities of cancer cells represents an attractive therapeutic strategy for treating malignant disease with RACK1 being a potential target. In this review we summarize this evidence and examine the mechanisms that underlie the contribution of RACK1 to the various stages of cell migration and invasion.
Collapse
Affiliation(s)
- Deirdre Duff
- Trinity Translational Medicine Institute, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
7
|
Dissecting Pistil Responses to Incompatible and Compatible Pollen in Self-Incompatibility Brassica oleracea Using Comparative Proteomics. Protein J 2017; 36:123-137. [PMID: 28299594 DOI: 10.1007/s10930-017-9697-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Angiosperms have developed self-incompatibility (SI) systems to reject self-pollen, thereby promoting outcrossing. The Brassicaceae belongs to typical sporophytic system, having a single S-locus controlled SI response, and was chosen as a model system to study SI-related intercellular signal transduction. In this regard, the downstream factor of EXO70A1 was unknown. Here, protein two-dimensional electrophoresis (2-DE) method and coupled with matrix-assisted laser desorption ionization/time of flight of flight mass spectrometry (MALDI-TOF -MS) and peptide mass fingerprinting (PMF) was used to further explore the mechanism of SI responses in Brassica oleracea L. var. capitata L. at protein level. To further confirm the time point of protein profile change, total proteins were collected from B. oleracea pistils at 0 min, 1 h, and 2 h after self-pollination. In total 902, 1088 and 1023 protein spots were separated in 0 min, 1 h and 2 h 2-DE maps, respectively. Our analyses of self-pollination profiles indicated that proteins mainly changed at 1 h post-pollination in B. oleracea. Moreover, 1077 protein spots were separated in cross-pollinated 1 h (CP) pistil 2-DE map. MALDI-TOF-MS and PMF successfully identified 34 differentially-expressed proteins (DEPs) in SP and CP 1 h 2-DE maps. Gene ontology and KEGG analysis revealed an array of proteins grouped in the following categories: stress and defense response (35%), protein metabolism (18%), carbohydrate and energy metabolism (12%), regulation of translation (9%), pollen tube development (12%), transport (9%) and cytoskeletal (6%). Sets of DEPs identified specifically in SP or only up-regulated expressed in CP pistils were chosen for funther investigating in floral organs and during the process of self- and cross-pollination. The function of these DEPs in terms of their potential involvement in SI in B. oleracea is discussed.
Collapse
|
8
|
The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment. Cell Signal 2017; 35:282-289. [PMID: 28069443 DOI: 10.1016/j.cellsig.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023]
Abstract
The cyclic AMP and protein kinase C (PKC) signalling pathways regulate a wide range of cellular processes that require tight control, including cell proliferation and differentiation, metabolism and inflammation. The identification of a protein complex formed by receptor for activated C kinase 1 (RACK1), a scaffold protein for protein kinase C (PKC), and the cyclic AMP-specific phosphodiesterase, PDE4D5, demonstrates a potential mechanism for crosstalk between these two signalling routes. Indeed, RACK1-bound PDE4D5 is activated by PKCα, providing a route through which the PKC pathway can control cellular cyclic AMP levels. Although RACK1 does not appear to affect the intracellular localisation of PDE4D5, it does afford structural stability, providing protection against denaturation, and increases the susceptibility of PDE4D5 to inhibition by cyclic AMP-elevating pharmaceuticals, such as rolipram. In addition, RACK1 can recruit PDE4D5 and PKC to intracellular protein complexes that control diverse cellular functions, including activated G protein-coupled receptors (GPCRs) and integrins clustered at focal adhesions. Through its ability to regulate local cyclic AMP levels in the vicinity of these multimeric receptor complexes, the RACK1/PDE4D5 signalling unit therefore has the potential to modify the quality of incoming signals from diverse extracellular cues, ranging from neurotransmitters and hormones to nanometric topology. Indeed, PDE4D5 and RACK1 have been found to form a tertiary complex with integrin-activated focal adhesion kinase (FAK), which localises to cellular focal adhesion sites. This supports PDE4D5 and RACK1 as potential regulators of cell adhesion, spreading and migration through the non-classical exchange protein activated by cyclic AMP (EPAC1)/Rap1 signalling route.
Collapse
|
9
|
Kiely M, Adams DR, Hayes SL, O'Connor R, Baillie GS, Kiely PA. RACK1 stabilises the activity of PP2A to regulate the transformed phenotype in mammary epithelial cells. Cell Signal 2016; 35:290-300. [PMID: 27600565 DOI: 10.1016/j.cellsig.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Conflicting reports implicate the scaffolding protein RACK1 in the progression of breast cancer. RACK1 has been identified as a key regulator downstream of growth factor and adhesion signalling and as a direct binding partner of PP2A. Our objective was to further characterise the interaction between PP2A and RACK1 and to advance our understanding of this complex in breast cancer cells. We examined how the PP2A holoenzyme is assembled on the RACK1 scaffold in MCF-7 cells. We used immobilized peptide arrays representing the entire PP2A-catalytic subunit to identify candidate amino acids on the C subunit of PP2A that might be involved in binding of RACK1. We identified the RACK1 interaction sites on PP2A. Stable cell lines expressing PP2A with FR69/70AA, R214A and Y218F substitutions were generated and it was confirmed that the RACK1/PP2A interaction is essential to stabilise PP2A activity. We used Real-Time Cell Analysis and a series of assays to demonstrate that disruption of the RACK1/PP2A complex also reduces the adhesion, proliferation, migration and invasion of breast cancer cells and plays a role in maintenance of the cancer phenotype. This work has significantly advanced our understanding of the RACK1/PP2A complex and suggests a pro-carcinogenic role for the RACK1/PP2A interaction. This work suggests that approaches to target the RACK1/PP2A complex are a viable option to regulate PP2A activity and identifies a novel potential therapeutic target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Maeve Kiely
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14AS, UK
| | - Sheri L Hayes
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland
| | - Rosemary O'Connor
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - George S Baillie
- Institute of Cardiovascular & Medical Science, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrick A Kiely
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland.
| |
Collapse
|
10
|
Peng H, Gong PG, Li JB, Cai LM, Yang L, Liu YY, Yao KT, Li X. The important role of the receptor for activated C kinase 1 (RACK1) in nasopharyngeal carcinoma progression. J Transl Med 2016; 14:131. [PMID: 27170279 PMCID: PMC4864934 DOI: 10.1186/s12967-016-0885-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023] Open
Abstract
Background The receptor for activated C kinase 1 (RACK1) is involved in various cancers, but its roles in nasopharyngeal carcinoma (NPC) have not yet been fully elucidated. Methods Initially, RACK1 expression was analyzed by immunohistochemistry in NPC and normal nasopharyngeal (NP) tissues. It was also detected by qPCR and Western blot in NPC cells. Confocal microscope and immunofluorescence were performed to detect the subcellular compartmentalization of RACK1. Subsequently, after up- or down-regulating RACK1 in NPC cells, cell proliferation and migration/invasion were tested using in vitro assays including MTT, EdU, colony formation, Transwell and Boyden assays. Furthermore, several key molecules were detected by Western blot to explore underlying mechanism. Finally, clinical samples were analyzed to confirm the relationship between RACK1 expression and clinical features. Results Receptor for activated C kinase 1 expression was much higher in NPC than NP tissues. And RACK1 was mainly located in the cytoplasm. Overexpression of RACK1 promoted NPC cell proliferation and metastasis/invasion, whereas depletion of this protein suppressed NPC cell proliferation and metastasis/invasion. Mechanistically, RACK1 deprivation obviously suppressed the activation of Akt and FAK, suggesting the PI3K/Akt/FAK pathway as one of functional mechanisms of RACK1 in NPC. Furthermore, clinical sample analysis indicated a positive correlation between in vivo expression of RACK1 with lymph node invasion and clinical stage of NPC. Conclusion Our results demonstrate that RACK1 protein plays an important role in NPC development and progression. The upregulation of RACK1 can promote the proliferation and invasion of NPC by regulating the PI3K/Akt/FAK signal pathway. Thus, this study contributes to the discovery of a potential therapeutic target for NPC. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0885-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, 510317, China.
| | - Ping-Gui Gong
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jin-Bang Li
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China
| | - Long-Mei Cai
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Le Yang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yun-Yi Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai-Tai Yao
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xin Li
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
11
|
Jean-Charles PY, Freedman NJ, Shenoy SK. Chapter Nine - Cellular Roles of Beta-Arrestins as Substrates and Adaptors of Ubiquitination and Deubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:339-69. [PMID: 27378762 DOI: 10.1016/bs.pmbts.2016.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Arrestin1 and β-arrestin2 are homologous adaptor proteins that are ubiquitously expressed in mammalian cells. They belong to a four-member family of arrestins that regulate the vast family of seven-transmembrane receptors that couple to heterotrimeric G proteins (7TMRs or GPCRs), and that modulate 7TMR signal transduction. β-Arrestins were originally identified in the context of signal inhibition via the 7TMRs because they competed with and thereby blocked G protein coupling to 7TMRs. Currently, in addition to their role as desensitizers of signaling, β-arrestins are appreciated as multifunctional adaptors that mediate trafficking and signal transduction of not only 7TMRs, but a growing list of additional receptors, ion channels, and nonreceptor proteins. β-Arrestins' interactions with their multifarious partners are based on their dynamic conformational states rather than particular domain-domain interactions. β-Arrestins adopt activated conformations upon 7TMR association. In addition, β-arrestins undergo various posttranslational modifications that are choreographed by activated 7TMRs, including phosphorylation, ubiquitination, acetylation, nitrosylation, and SUMOylation. Ubiquitination of β-arrestins is critical for their high-affinity interaction with 7TMRs as well as with endocytic adaptor proteins and signaling kinases. β-Arrestins also function as critical adaptors for ubiquitination and deubiquitination of various cellular proteins, and thereby affect the longevity of signal transducers and the intensity of signal transmission.
Collapse
Affiliation(s)
- P-Y Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States
| | - N J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - S K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States.
| |
Collapse
|
12
|
Marubashi S, Ohbayashi N, Fukuda M. A Varp-Binding Protein, RACK1, Regulates Dendrite Outgrowth through Stabilization of Varp Protein in Mouse Melanocytes. J Invest Dermatol 2016; 136:1672-1680. [PMID: 27066885 DOI: 10.1016/j.jid.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/29/2023]
Abstract
Varp (VPS9-ankyrin repeat protein) in melanocytes is thought to function as a key player in the pigmentation of mammals. Varp regulates two different melanocyte functions: (i) transport of melanogenic enzymes to melanosomes by functioning as a Rab32/38 effector and (ii) promotion of dendrite outgrowth by functioning as a Rab21-guanine nucleotide exchange factor. The Varp protein level has recently been shown to be negatively regulated by proteasomal degradation through interaction of the ankyrin repeat 2 (ANKR2) domain of Varp with Rab40C. However, the molecular mechanisms by which Varp escapes from Rab40C and retains its own expression level remain completely unknown. Here, we identified RACK1 (receptor of activated protein kinase C 1) as a Varp-ANKR2 binding partner and investigated its involvement in Varp stabilization in mouse melanocytes. The results showed that knockdown of endogenous RACK1 in melanocytes caused dramatic reduction of the Varp protein level and inhibition of dendrite outgrowth, and intriguingly, overexpression of RACK1 inhibited the interaction between Varp and Rab40C and counteracted the negative effect of Rab40C on dendrite outgrowth. These findings indicated that RACK1 competes with Rab40C for binding to the ANKR2 domain of Varp and regulates dendrite outgrowth through stabilization of Varp in mouse melanocytes.
Collapse
Affiliation(s)
- Soujiro Marubashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
13
|
Location, location, location: PDE4D5 function is directed by its unique N-terminal region. Cell Signal 2016; 28:701-5. [PMID: 26808969 DOI: 10.1016/j.cellsig.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Qu J, Ero R, Feng C, Ong LT, Tan HF, Lee HS, Ismail MHB, Bu WT, Nama S, Sampath P, Gao YG, Tan SM. Kindlin-3 interacts with the ribosome and regulates c-Myc expression required for proliferation of chronic myeloid leukemia cells. Sci Rep 2015; 5:18491. [PMID: 26677948 PMCID: PMC4683439 DOI: 10.1038/srep18491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/19/2015] [Indexed: 12/22/2022] Open
Abstract
Kindlins are FERM-containing cytoplasmic proteins that regulate integrin-mediated cell-cell and cell-extracellular matrix (ECM) attachments. Kindlin-3 is expressed in hematopoietic cells, platelets, and endothelial cells. Studies have shown that kindlin-3 stabilizes cell adhesion mediated by ß1, ß2, and ß3 integrins. Apart from integrin cytoplasmic tails, kindlins are known to interact with other cytoplasmic proteins. Here we demonstrate that kindlin-3 can associate with ribosome via the receptor for activated-C kinase 1 (RACK1) scaffold protein based on immunoprecipitation, ribosome binding, and proximity ligation assays. We show that kindlin-3 regulates c-Myc protein expression in the human chronic myeloid leukemia cell line K562. Cell proliferation was reduced following siRNA reduction of kindlin-3 expression and a significant reduction in tumor mass was observed in xenograft experiments. Mechanistically, kindlin-3 is involved in integrin α5ß1-Akt-mTOR-p70S6K signaling; however, its regulation of c-Myc protein expression could be independent of this signaling axis.
Collapse
Affiliation(s)
- Jing Qu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chen Feng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Li-Teng Ong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hui-Foon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hui-Shan Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Muhammad H B Ismail
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Wen-Ting Bu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Srikanth Nama
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore 117597,Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
15
|
Alenkvist I, Dyachok O, Tian G, Li J, Mehrabanfar S, Jin Y, Birnir B, Tengholm A, Welsh M. Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets. J Endocrinol 2014; 223:267-75. [PMID: 25274988 DOI: 10.1530/joe-14-0531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Src homology-2 domain containing protein B (SHB) has previously been shown to function as a pleiotropic adapter protein, conveying signals from receptor tyrosine kinases to intracellular signaling intermediates. The overexpression of Shb in β-cells promotes β-cell proliferation by increased insulin receptor substrate (IRS) and focal adhesion kinase (FAK) activity, whereas Shb deficiency causes moderate glucose intolerance and impaired first-peak insulin secretion. Using an array of techniques, including live-cell imaging, patch-clamping, immunoblotting, and semi-quantitative PCR, we presently investigated the causes of the abnormal insulin secretory characteristics in Shb-knockout mice. Shb-knockout islets displayed an abnormal signaling signature with increased activities of FAK, IRS, and AKT. β-catenin protein expression was elevated and it showed increased nuclear localization. However, there were no major alterations in the gene expression of various proteins involved in the β-cell secretory machinery. Nor was Shb deficiency associated with changes in glucose-induced ATP generation or cytoplasmic Ca(2+) handling. In contrast, the glucose-induced rise in cAMP, known to be important for the insulin secretory response, was delayed in the Shb-knockout compared with WT control. Inhibition of FAK increased the submembrane cAMP concentration, implicating FAK activity in the regulation of insulin exocytosis. In conclusion, Shb deficiency causes a chronic increase in β-cell FAK activity that perturbs the normal insulin secretory characteristics of β-cells, suggesting multi-faceted effects of FAK on insulin secretion depending on the mechanism of FAK activation.
Collapse
Affiliation(s)
- Ida Alenkvist
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Oleg Dyachok
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Geng Tian
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Jia Li
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Saba Mehrabanfar
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Yang Jin
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| | - Michael Welsh
- Department of Medical Cell BiologyUppsala University, Box 571, Husargatan 3, 75123 Uppsala, SwedenDepartment of NeuroscienceUppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2014; 146:132-49. [PMID: 25316657 DOI: 10.1016/j.pharmthera.2014.10.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.
Collapse
|
17
|
Wang HL, Pang M, Yin LT, Zhang JH, Meng XL, Yu BF, Guo R, Bai JZ, Zheng GP, Yin GR. Intranasal immunisation of the recombinant Toxoplasma gondii receptor for activated C kinase 1 partly protects mice against T. gondii infection. Acta Trop 2014; 137:58-66. [PMID: 24813415 DOI: 10.1016/j.actatropica.2014.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/27/2022]
Abstract
Nasal vaccination is an effective therapeutic regimen for preventing certain infectious diseases. The mucosal immune response is important for resistance to Toxoplasma gondii infection. In this study, we evaluated the immune responses elicited in BALB/c mice by nasal immunisation with recombinant T. gondii receptor for activated C kinase 1 (rTgRACK1) and their protective efficacy against T. gondii RH strain during both chronic and lethal infections. Nasal vaccination with rTgRACK1 increased the level of secretory IgA in nasal, intestinal and vesical washes, and the level of IFN-γ and IL-2 in intestinal washes, indicating that rTgRACK1 vaccination promotes mucosal immune responses. The mice immunised with rTgRACK1 also displayed increased levels of rTgRACK1-specific IgA, total IgG, IgG1 and in particular IgG2a in their blood sera, increased production of IFN-γ, IL-2 and IL-4 but not IL-10 from their isolated spleen cells, and enhanced splenocyte proliferation in vitro. rTgRACK1-vaccinated mice were effectively protected against infection with T. gondii RH strain, showing over 50% reduction of tachyzoite burdens in their liver and brain tissues during a chronic infection, and also a 45% increase in their survivals during a lethal challenge. These results indicate that rTgRACK1 might represent an intriguing immunogen for developing a mucosal vaccine against toxoplasmosis.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Cell Proliferation
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Immunity, Mucosal
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin G/blood
- Leukocytes, Mononuclear/immunology
- Mice, Inbred BALB C
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Receptors for Activated C Kinase
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Spleen/immunology
- Survival Analysis
- Toxoplasma/immunology
- Toxoplasmosis/immunology
- Toxoplasmosis/prevention & control
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Min Pang
- Department of Respiratory, The First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Li-Tian Yin
- Department of Physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jian-Hong Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bao-Feng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92-019, Auckland 1142, New Zealand
| | - Guo-Ping Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Centre for Transplantation and Renal Research, the University of Sydney at Westmead Millennium Institute, Sydney, NSW 2145 Australia
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
18
|
Gandin V, Senft D, Topisirovic I, Ronai ZA. RACK1 Function in Cell Motility and Protein Synthesis. Genes Cancer 2014; 4:369-77. [PMID: 24349634 DOI: 10.1177/1947601913486348] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The receptor for activated C kinase 1 (RACK1) serves as an adaptor for a number of proteins along the MAPK, protein kinase C, and Src signaling pathways. The abundance and near ubiquitous expression of RACK1 reflect its role in coordinating signaling molecules for many critical biological processes, from mRNA translation to cell motility to cell survival and death. Complete deficiency of Rack1 is embryonic lethal, but the recent development of genetic Rack1 hypomorphic mice has highlighted the central role that RACK1 plays in cell movement and protein synthesis. This review focuses on the importance of RACK1 in these processes and places the recent work in the larger context of understanding RACK1 function.
Collapse
Affiliation(s)
- Valentina Gandin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC, Canada ; Department of Oncology, McGill University, Montréal, QC, Canada
| | - Daniela Senft
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC, Canada ; Department of Oncology, McGill University, Montréal, QC, Canada
| | - Ze'ev A Ronai
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|
19
|
Abstract
Many G-protein-coupled receptors trigger the synthesis of cAMP in order to transduce signals from the membrane into the cell cytoplasm. As stimulation of each receptor type results in a specific physiological outcome, compartmentalization of proteins that make, break, and are activated by cAMP underpin receptor-specific responses. Until 2002, it was thought that static compartmentalization of phosphodiesterase 4 (PDE4), conferred by N-terminal targeting sequences, was one way to shape intricate cAMP gradients that formed after receptor activation. Discovery of the PDE4-β-arrestin complex represented a major breakthrough in cAMP signaling, as it spurred the initial realization that PDE4s could be transported to sites of high cAMP to orchestrate destruction of the second messenger at the same time as the receptor's signal to the G-protein is silenced. This chapter charts the scientific process that led to the discovery and characterization of the PDE4-β-arrestin interaction and discusses the known functions of this signaling complex.
Collapse
|
20
|
Takahashi M, Dillon TJ, Liu C, Kariya Y, Wang Z, Stork PJS. Protein kinase A-dependent phosphorylation of Rap1 regulates its membrane localization and cell migration. J Biol Chem 2013; 288:27712-23. [PMID: 23946483 PMCID: PMC3784689 DOI: 10.1074/jbc.m113.466904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 08/13/2013] [Indexed: 11/06/2022] Open
Abstract
The small G protein Rap1 can mediate "inside-out signaling" by recruiting effectors to the plasma membrane that signal to pathways involved in cell adhesion and cell migration. This action relies on the membrane association of Rap1, which is dictated by post-translational prenylation as well as by a stretch of basic residues within its carboxyl terminus. One feature of this stretch of acidic residues is that it lies adjacent to a functional phosphorylation site for the cAMP-dependent protein kinase PKA. This phosphorylation has two effects on Rap1 action. One, it decreases the level of Rap1 activity as measured by GTP loading and the coupling of Rap1 to RapL, a Rap1 effector that couples Rap1 GTP loading to integrin activation. Two, it destabilizes the membrane localization of Rap1, promoting its translocation into the cytoplasm. These two actions, decreased GTP loading and decreased membrane localization, are related, as the translocation of Rap1-GTP into the cytoplasm is associated with its increased GTP hydrolysis and inactivation. The consequences of this phosphorylation in Rap1-dependent cell adhesion and cell migration were also examined. Active Rap1 mutants that lack this phosphorylation site had a minimal effect on cell adhesion but strongly reduced cell migration, when compared with an active Rap1 mutant that retained the phosphorylation site. This suggests that optimal cell migration is associated with cycles of Rap1 activation, membrane egress, and inactivation, and requires the regulated phosphorylation of Rap1 by PKA.
Collapse
Affiliation(s)
| | | | | | - Yumi Kariya
- From the Vollum Institute, and
- the Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Zhiping Wang
- From the Vollum Institute, and
- Department of Surgery, Oregon Health and Science University, Portland, Oregon 97239 and
| | | |
Collapse
|
21
|
Dwane S, Durack E, O'Connor R, Kiely PA. RACK1 promotes neurite outgrowth by scaffolding AGAP2 to FAK. Cell Signal 2013; 26:9-18. [PMID: 24056044 DOI: 10.1016/j.cellsig.2013.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/31/2013] [Indexed: 11/29/2022]
Abstract
RACK1 binds proteins in a constitutive or transient manner and supports signal transmission by engaging in diverse and distinct signalling pathways. The emerging theme is that RACK1 functions as a signalling switch, recruiting proteins to form distinct molecular complexes. In focal adhesions, RACK1 is required for the regulation of FAK activity and for integrating a wide array of cellular signalling events including the integration of growth factor and adhesion signalling pathways. FAK is required for cell adhesion and migration and has a well-established role in neurite outgrowth and in the developing nervous system. However, the mechanism by which FAK activity is regulated in neurons remains unknown. Using neuronal cell lines, we determined that differentiation of these cells promotes an interaction between the scaffolding protein RACK1 and FAK. Disruption of the RACK1/FAK interaction leads to decreased neurite outgrowth suggesting a role for the interaction in neurite extension. We hypothesised that RACK1 recruits proteins to FAK, to regulate FAK activity in neuronal cells. To address this, we immunoprecipitated RACK1 from rat hippocampus and searched for interacting proteins by mass spectrometry. We identified AGAP2 as a novel RACK1-interacting protein. Having confirmed the RACK1-AGAP2 interaction biochemically, we show RACK1-AGAP2 to localise together in the growth cone of differentiated cells, and confirm that these proteins are in complex with FAK. This complex is disrupted when RACK1 expression is suppressed using siRNA or when mutants of RACK1 that do not interact with FAK are expressed in cells. Similarly, suppression of AGAP2 using siRNA leads to increased phosphorylation of FAK and increased cell adhesion resulting in decreased neurite outgrowth. Our results suggest that RACK1 scaffolds AGAP2 to FAK to regulate FAK activity and cell adhesion during the differentiation process.
Collapse
Affiliation(s)
- Susan Dwane
- Department of Life Sciences and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | | | | | | |
Collapse
|
22
|
Targeting protein-protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease. Future Med Chem 2013; 5:451-64. [PMID: 23495691 DOI: 10.4155/fmc.12.216] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cAMP signaling system can trigger precise physiological cellular responses that depend on the fidelity of many protein-protein interactions, which act to bring together signaling intermediates at defined locations within cells. In the heart, cAMP participates in the fine control of excitation-contraction coupling, hence, any disregulation of this signaling cascade can lead to cardiac disease. Due to the ubiquitous nature of the cAMP pathway, general inhibitors of cAMP signaling proteins such as PKA, EPAC and PDEs would act non-specifically and universally, increasing the likelihood of serious 'off target' effects. Recent advances in the discovery of peptides and small molecules that disrupt the protein-protein interactions that underpin cellular targeting of cAMP signaling proteins are described and discussed.
Collapse
|
23
|
RACK1 to the future--a historical perspective. Cell Commun Signal 2013; 11:53. [PMID: 23915285 PMCID: PMC3750812 DOI: 10.1186/1478-811x-11-53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 12/18/2022] Open
Abstract
This perspective summarises the first and long overdue RACK1 meeting held at the University of Limerick, Ireland, May 2013, in which RACK1's role in the immune system, the heart and the brain were discussed and its contribution to disease states such as cancer, cardiac hypertrophy and addiction were described. RACK1 is a scaffolding protein and a member of the WD repeat family of proteins. These proteins have a unique architectural assembly that facilitates protein anchoring and the stabilisation of protein activity. A large body of evidence is accumulating which is helping to define the versatile role of RACK1 in assembling and dismantling complex signaling pathways from the cell membrane to the nucleus in health and disease. In this commentary, we first provide a historical perspective on RACK1. We also address many of the pertinent and topical questions about this protein such as its role in transcription, epigenetics and translation, its cytoskeletal contribution and the merits of targeting RACK1 in disease.
Collapse
|
24
|
Volta V, Beugnet A, Gallo S, Magri L, Brina D, Pesce E, Calamita P, Sanvito F, Biffo S. RACK1 depletion in a mouse model causes lethality, pigmentation deficits and reduction in protein synthesis efficiency. Cell Mol Life Sci 2013; 70:1439-50. [PMID: 23212600 PMCID: PMC11113757 DOI: 10.1007/s00018-012-1215-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/02/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
The receptor for activated C-kinase 1 (RACK1) is a conserved structural protein of 40S ribosomes. Strikingly, deletion of RACK1 in yeast homolog Asc1 is not lethal. Mammalian RACK1 also interacts with many nonribosomal proteins, hinting at several extraribosomal functions. A knockout mouse for RACK1 has not previously been described. We produced the first RACK1 mutant mouse, in which both alleles of RACK1 gene are defective in RACK1 expression (ΔF/ΔF), in a pure C57 Black/6 background. In a sample of 287 pups, we observed no ΔF/ΔF mice (72 expected). Dissection and genotyping of embryos at various stages showed that lethality occurs at gastrulation. Heterozygotes (ΔF/+) have skin pigmentation defects with a white belly spot and hypopigmented tail and paws. ΔF/+ have a transient growth deficit (shown by measuring pup size at P11). The pigmentation deficit is partly reverted by p53 deletion, whereas the lethality is not. ΔF/+ livers have mild accumulation of inactive 80S ribosomal subunits by polysomal profile analysis. In ΔF/+ fibroblasts, protein synthesis response to extracellular and pharmacological stimuli is reduced. These results highlight the role of RACK1 as a ribosomal protein converging signaling to the translational apparatus.
Collapse
Affiliation(s)
- Viviana Volta
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Anne Beugnet
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Simone Gallo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Laura Magri
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Daniela Brina
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Elisa Pesce
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Alessandria, Italy
| | - Piera Calamita
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Francesca Sanvito
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Biffo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Alessandria, Italy
| |
Collapse
|
25
|
Peters KN, Anderson DM. Modulation of host cell death pathways by Yersinia species and the type III effector YopK. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:229-36. [PMID: 22782768 DOI: 10.1007/978-1-4614-3561-7_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kristen N Peters
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
26
|
Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal 2011; 9:22. [PMID: 21978545 PMCID: PMC3195729 DOI: 10.1186/1478-811x-9-22] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022] Open
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.
Collapse
Affiliation(s)
- David R Adams
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|