1
|
Hamzeh M, Movahedin M, Ganji F, Ghiaseddin A. Structural, mechanical, and cytocompatibility characteristics of hybrid scaffolds from chitosan/decellularized testicular ECM. Int J Biol Macromol 2025; 284:137908. [PMID: 39571864 DOI: 10.1016/j.ijbiomac.2024.137908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Tissue engineering has facilitated the development of novel therapeutic strategies for male reproductive disorders. Decellularized extracellular matrix (ECM) scaffolds provide a wide range of functional components that promote cellular behavior. This research aimed to develop reinforced scaffolds for testicular tissue engineering by combining testicular ECM (TE) derived pre-gel with chitosan (CS) solution at varying ratios (TE25/CS75, TE50/CS50, and TE75/CS25). To determine the optimum ratio of TE to CS solution, final scaffold properties were investigated including pore size, porosity, mechanical strength, swelling ratio, degradation rate followed by in-vitro biological evaluations. All groups revealed an interconnected porous structure with high porosity (from 76.6 % to 90.9 %) and adequate pore sizes (between 50 and 226 μm), while the pores of TE50/CS50 scaffold were distributed more uniformly. The mechanical properties of scaffolds were enhanced by combining CS with TE, whereas their swelling ratio decreased. It was observed that the scaffolds' degradation rate rose substantially as the ratio of TE to CS increased. The MTT assay revealed that none of the scaffolds exhibited cytotoxic properties. The results of this study demonstrated that all fabricated hybrid scaffolds, especially the TE50/CS50, have potential for testicular tissue engineering applications.
Collapse
Affiliation(s)
- Maedeh Hamzeh
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fariba Ganji
- Biomedical Engineering Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Ali Ghiaseddin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Chemistry, Michigan State University, East Lansing, MI, USA; Institute for Stem Cell Research and Regenerative Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Keshtmand Z, Eftekhari S, Khodadadi B, Farzollahi B, Khosravimelal S, Shandiz SA, Tavakkoli Yaraki M. Engineering of gelatin scaffold by extracellular matrix of Sertoli cells for embryonic stem cell proliferation. Toxicol In Vitro 2024; 100:105900. [PMID: 39029600 DOI: 10.1016/j.tiv.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Mimicking the microenvironment of seminiferous tubules plays an indispensable role in directing differentiation of stem cells toward germ cells in vitro. In this work, we fabricated electrospun gelatin (EG) mats (i.e., with diameter <500 nm) conditioned with Sertoli cells' extracellular matrix (ECM) to simulate both 3D structures and composition of normal testis tissue. Sertoli cells were isolated from mice testis and represented through immunocytochemistry (ICC) staining for expression of vimentin, a specific marker of Sertoli cells. The morphological characteristics of ECM-coated scaffold were investigated under scanning electron microscope (SEM). The efficient elimination of cells was confirmed by MTT assay. Furthermore, the cyto/biocompatibility of ECM-conditioned EG scaffold was determined for Sertoli cells and embryonic stem cells (ESCs), alone and as in co-culture. According to the results, the designed scaffold provided a mat for cell proliferation with negligible toxicity (almost 100% cell viability). SEM micrographs displayed cells with elongated shape and complete stretching morphology when compared with those cultured on scaffold without ECM. Moreover, an enhanced differentiation of ESCs toward sperm-generating cells was obtained through co-culturing of Sertoli cells and ESCs, where cell viability was found almost 100%. Our findings introduce the ECM-conditioned EG scaffold as a potentially influential engineered substrate for in vitro guidance of stem cells differentiation by mimicking the native microenvironment.
Collapse
Affiliation(s)
- Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behnoosh Khodadadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Bahare Farzollahi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
3
|
Bashiri Z, Moghaddaszadeh A, Falak R, Khadivi F, Afzali A, Abbasi M, Sharifi AM, Asgari HR, Ghanbari F, Koruji M. Generation of Haploid Spermatids on Silk Fibroin-Alginate-Laminin-Based Porous 3D Scaffolds. Macromol Biosci 2023; 23:e2200574. [PMID: 37116215 DOI: 10.1002/mabi.202200574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Indexed: 04/30/2023]
Abstract
In vitro production of sperm is a desirable idea for fertility preservation in azoospermic men and prepubertal boys suffering from cancer. In this study, a biocompatible porous scaffold based on a triad mixture of silk fibroin (SF), alginate (Alg), and laminin (LM) is developed to facilitate the differentiation of mouse spermatogonia stem cells (SSCs). Following SF extraction, the content is analyzed by SDS-PAGE and stable porous 3D scaffolds are successfully prepared by merely Alg, SF, and a combination of Alg-SF, or Alg-SF-LM through freeze-drying. Then, the biomimetic scaffolds are characterized regarding the structural and biological properties, water absorption capacity, biocompatibility, biodegradability, and mechanical behavior. Neonatal mice testicular cells are seeded on three-dimensional scaffolds and their differentiation efficiency is evaluated using real-time PCR, flow cytometry, immunohistochemistry. Blend matrices showed uniform porous microstructures with interconnected networks, which maintained long-term stability and mechanical properties better than homogenous structures. Molecular analysis of the cells after 21 days of culture showed that the expression of differentiation-related proteins in cells that are developed in composite scaffolds is significantly higher than in other groups. The application of a composite system can lead to the differentiation of SSCs, paving the way for a novel infertility treatment landscape in the future.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Omid Fertility & Infertility Clinic, Hamedan, 6516796198, Iran
| | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Reza Falak
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Azita Afzali
- Hajar hospital, Shahrekord University of Medical Sciences, Shahrekord, 8816854633, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Ali Mohammad Sharifi
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Hamid Reza Asgari
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Farid Ghanbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Morteza Koruji
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
4
|
Gholami K, Solhjoo S, Aghamir SMK. Application of Tissue-Specific Extracellular Matrix in Tissue Engineering: Focus on Male Fertility Preservation. Reprod Sci 2022; 29:3091-3099. [PMID: 35028926 DOI: 10.1007/s43032-021-00823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
In vitro spermatogenesis and xenotransplantation of the immature testicular tissues (ITT) are the experimental approaches that have been developed for creating seminiferous tubules-like functional structures in vitro and keeping the integrity of the ITTs in vivo, respectively. These strategies are rapidly developing in response to the growing prevalence of infertility in adolescent boys undergoing cancer treatment, by the logic that there is no sperm cryopreservation option for them. Recently, with the advances made in the field of tissue engineering and biomaterials, these methods have achieved promising results for fertility preservation. Due to the importance of extracellular matrix for the formation of vascular bed around the grafted ITTs and also the creation of spatial arrangements between Sertoli cells and germ cells, today it is clear that the scaffold plays a very important role in the success of these methods. Decellularized extracellular matrix (dECM) as a biocompatible, functionally graded, and biodegradable scaffold with having tissue-specific components and growth factors can support reorganization and physiologic processes of originated cells. This review discusses the common protocols for the tissue decellularization, sterilization, and hydrogel formation of the decellularized and lyophilized tissues as well as in vitro and in vivo studies on the use of the testis-derived dECM for testicular organoids.
Collapse
Affiliation(s)
- Keykavos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Solhjoo
- Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
5
|
Sharma S, Klaverkamp RS, Wistuba J, Schlatt S. Limited spermatogenic differentiation of testicular tissue from prepubertal marmosets (Callithrix jacchus) in an in vitro organ culture system. Mol Cell Endocrinol 2022; 539:111488. [PMID: 34637880 DOI: 10.1016/j.mce.2021.111488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE of the research: To achieve male fertility preservation and restoration, experimental strategies for in vitro germ cell differentiation are required. The effects of two different culture conditions on in vitro maintenance and differentiation of non-human primate germ cells was studied. Three testes from three 6-month-old marmosets were cultured using a gas-liquid interphase system for 12 days. Testicular maturation in pre-culture control and samples cultured in gonadotropin and serum supplemented and non-supplemented culture samples was evaluated using Periodic Acid-Schiff (PAS) and immunohistochemical stainings. PRINCIPLE RESULTS Gonadotropins and serum-supplemented tissues demonstrate up to meiotic differentiation (BOULE + Pachytene spermatocyte) and advanced localization of germ cells (MAGEA4+). Moreover, complex (with gonadotropin and marmoset monkey serum) conditions induced progression in somatic cell maturation with advanced seminiferous epithelial organization, maintenance of encapsulation of cultured fragments with peritubular-myoid cells, preservation of tubular structural integrity and architecture. MAJOR CONCLUSIONS We report stimulation-dependent in vitro meiotic transition in non-human primate testes. This model represents a novel ex vivo approach to obtain crucial developmental progression.
Collapse
Affiliation(s)
- Swati Sharma
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, 48149, Münster, Germany
| | - Reinhild-Sandhowe Klaverkamp
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, 48149, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, 48149, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, 48149, Münster, Germany.
| |
Collapse
|
6
|
Aydos K, Aydos OS. Sperm Selection Procedures for Optimizing the Outcome of ICSI in Patients with NOA. J Clin Med 2021; 10:jcm10122687. [PMID: 34207121 PMCID: PMC8234729 DOI: 10.3390/jcm10122687] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Retrieving spermatozoa from the testicles has been a great hope for patients with non-obstructive azoospermia (NOA), but relevant methods have not yet been developed to the level necessary to provide resolutions for all cases of NOA. Although performing testicular sperm extraction under microscopic magnification has increased sperm retrieval rates, in vitro selection and processing of quality sperm plays an essential role in the success of in vitro fertilization. Moreover, sperm cryopreservation is widely used in assisted reproductive technologies, whether for therapeutic purposes or for future fertility preservation. In recent years, there have been new developments using advanced technologies to freeze and preserve even very small numbers of sperm for which conventional techniques are inadequate. The present review provides an up-to-date summary of current strategies for maximizing sperm recovery from surgically obtained testicular samples and, as an extension, optimization of in vitro sperm processing techniques in the management of NOA.
Collapse
Affiliation(s)
- Kaan Aydos
- Department of Urology, Reproductive Health Research Center, School of Medicine, University of Ankara, 06230 Ankara, Turkey
- Correspondence: ; Tel.: +90-533-748-8995
| | - Oya Sena Aydos
- Department of Medical Biology, School of Medicine, University of Ankara, 06230 Ankara, Turkey;
| |
Collapse
|
7
|
Lopes F, Tholeti P, Adiga SK, Anderson RA, Mitchell RT, Spears N. Chemotherapy induced damage to spermatogonial stem cells in prepubertal mouse in vitro impairs long-term spermatogenesis. Toxicol Rep 2020; 8:114-123. [PMID: 33425685 PMCID: PMC7782321 DOI: 10.1016/j.toxrep.2020.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022] Open
Abstract
Chemotherapy can affect testis development of young boys with cancer, reducing the chances of fatherhood in adulthood. Studies using experimental models are needed to determine the damage caused by individual chemotherapy drugs in order to predict the risk of infertility and direct patients towards appropriate fertility preservation options. Here, we investigated the individual role of two drugs, cisplatin and doxorubicin, using an in vitro culture model of prepubertal (postnatal day 5) mouse testis that supports induction and maintenance of full spermatogenesis. Twenty-four hour exposure with either drug at clinically-relevant doses (0.25, 0.5 or 0.75 μg/mL for cisplatin, or 0.01, 0.03 or 0.05 μg/mL for doxorubicin), induced an acute significant loss of spermatogonial stem cells (SSCs; PLZF+), proliferating SSCs (PLZF+BrdU+), total germ cells (MVH+), and spermatocytes (SCP3+) one week after chemotherapy exposure. By the time of the first (Week 4) and second (Week 8) waves of spermatogenesis, there was no longer any effect on SSC or proliferating SSC numbers in drug-exposed testis compared to untreated tissue: however, the populations of total germ cells and spermatocytes were still lower in the higher-dose cisplatin treated groups, along with a reduced frequency of round and elongated spermatids in both cisplatin- and doxorubicin-treated testis fragments. Overall, this study details a direct impairment of germ cell development following acute chemotherapy-induced damage during the prepubertal phase, most likely due to an effect on SSCs, using an in vitro culture system that successfully recapitulates key events of mouse spermatogenesis.
Collapse
Affiliation(s)
- Federica Lopes
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Prathima Tholeti
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Satish K. Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Rod T. Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Norah Spears
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Sharma S, Wistuba J, Pock T, Schlatt S, Neuhaus N. Spermatogonial stem cells: updates from specification to clinical relevance. Hum Reprod Update 2019; 25:275-297. [DOI: 10.1093/humupd/dmz006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/23/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Swati Sharma
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Tim Pock
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, Münster, Germany
| |
Collapse
|
9
|
Singh RP, Escobar E, Wildt D, Patel S, Costa GMJ, Pukazhenthi B. Effect of sphingosine-1-phosphate on cryopreserved sheep testicular explants cultured in vitro. Theriogenology 2019; 128:184-192. [PMID: 30772662 DOI: 10.1016/j.theriogenology.2019.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/29/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
Complete spermatogenesis has been achieved in vitro in mouse testicular explants with resulting sperm used to produce pups after Intra Cytoplasm Sperm Injection and Embryo Transfer. In the present study, we evaluated the influence of sphingosine-1-phosphate (S1P) on spermatogenesis of frozen-thawed lamb testis explants in vitro. Thawed testicular pieces were cultured for 12 d on agarose blocks in serum-free growth medium containing 0, 2, 5 or 10 μM S1P. At the end of D6 and D12, some pieces were fixed and processed for histology. Other pieces were processed for RNA isolation and quantitation of proliferation (PCNA, Ki67) and differentiation (PLZF) markers and genes involved in S1P signaling (S1PR1, SGPL1, SGPP1, AKT1 and NFKBIA) by qPCR. Histology revealed an increase (P < 0.05) in seminiferous cord (SC) diameter under all culture conditions, except 5 and 10 μM S1P by D6. In the presence of 5 μM S1P, percentage of gonocytes decreased (P < 0.05) by D6 (control, 24.9% vs. S1P, 10.3%) with a concomitant increase (P < 0.05) in spermatogonia formation (control, 74.4% vs. S1P, 88.1%). S1P induced PCNA or Ki67 expression by D6, whereas PLZF was up-regulated (P < 0.05) by D6 in 2 μM S1P and D12 in 5 & 10 μM S1P. Expression of SGPL1 and SGPP1 increased 4-12-fold in tissues cultured in 10 μM S1P by D12 compared to D12 control. AKT1 and NFKBIA mRNA expression was low (P < 0.05) in 5 and or 10 μM S1P treatments on D6. These results demonstrate that S1P promotes germ cell proliferation during first week of culture and may exert an anti-apoptotic influence on the seminiferous cord in sheep testicular explants in vitro.
Collapse
Affiliation(s)
- Ram Pratap Singh
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA; Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, India.
| | - Enrique Escobar
- Department of Agriculture, Food and Resource Sciences, School of Agriculture and Natural Sciences, University of Maryland-Eastern Shore, Princess Anne, MD, USA
| | - David Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA
| | - Seema Patel
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA
| | - Guilherme M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Budhan Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA
| |
Collapse
|
10
|
Rezaei Topraggaleh T, Rezazadeh Valojerdi M, Montazeri L, Baharvand H. A testis-derived macroporous 3D scaffold as a platform for the generation of mouse testicular organoids. Biomater Sci 2019; 7:1422-1436. [DOI: 10.1039/c8bm01001c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Extracellular matrix-derived scaffolds provide an efficient platform for the generation of organ-like structures.
Collapse
Affiliation(s)
| | | | - Leila Montazeri
- Department of Cell Engineering
- Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
- Iran
| |
Collapse
|
11
|
Gaur M, Ramathal C, Reijo Pera RA, Turek PJ, John CM. Isolation of human testicular cells and co-culture with embryonic stem cells. Reproduction 2018; 155:153-166. [PMID: 29326135 DOI: 10.1530/rep-17-0346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023]
Abstract
Our overall goal is to create a three-dimensional human cell-based testicular model for toxicological and spermatogenesis studies. Methods to purify the major somatic testicular cells, namely Leydig cells (LCs), peritubular myoid cells (PCs) and Sertoli cells (SCs), from rats, mice and guinea pigs have been reported. In humans, the isolation of populations enriched for primary LCs, PCs or SCs also have described. One objective of this study was to determine if populations of cells enriched for all three of these cell types can be isolated from testes of single human donors, and we were successful in doing so from testes of three donors. Testes tissues were enzymatically digested, gravity sedimented and Percoll filtered to isolate populations enriched for LCs, PCs and SCs. LCs and PCs were identified by colorimetric detection of the expression of prototypical enzymes. Division of PCs and SCs in culture has been reported. We observed that primary human LCs could divide in culture by incorporation of 5-ethynyl-2'-deoxyuridine. SCs were identified and their functionality was demonstrated by the formation of tight junctions as shown by the expression of tight junction proteins, increased transepithelial electrical resistance, polarized secretion of biomolecules and inhibition of lucifer yellow penetration. Furthermore, we found that human SC feeder layers could facilitate germ cell progression of human embryonic stem cells (hESCs) by microarray analysis of gene expression.
Collapse
Affiliation(s)
| | - Cyril Ramathal
- Institute for Stem Cell BiologyStanford University, Stanford, California, USA
| | - Renee A Reijo Pera
- Institute for Stem Cell BiologyStanford University, Stanford, California, USA.,Stanford University School of MedicineStanford, California, USA
| | - Paul J Turek
- MandalMedInc., San Francisco, California, USA.,The Turek ClinicSan Francisco, California, USA
| | | |
Collapse
|
12
|
Yadav SK, Pandey A, Kumar L, Devi A, Kushwaha B, Vishvkarma R, Maikhuri JP, Rajender S, Gupta G. The thermo-sensitive gene expression signatures of spermatogenesis. Reprod Biol Endocrinol 2018; 16:56. [PMID: 29859541 PMCID: PMC5985054 DOI: 10.1186/s12958-018-0372-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Spermatogenesis in most mammals (including human and rat) occurs at ~ 3 °C lower than body temperature in a scrotum and fails rapidly at 37 °C inside the abdomen. The present study investigates the heat-sensitive transcriptome and miRNAs in the most vulnerable germ cells (spermatocytes and round spermatids) that are primarily targeted at elevated temperature in a bid to identify novel targets for contraception and/or infertility treatment. METHODS Testes of adult male rats subjected to surgical cryptorchidism were obtained at 0, 24, 72 and 120 h post-surgery, followed by isolation of primary spermatocytes and round spermatids and purification to > 90% purity using a combination of trypsin digestion, centrifugal elutriation and density gradient centrifugation techniques. RNA isolated from these cells was sequenced by massive parallel sequencing technique to identify the most-heat sensitive mRNAs and miRNAs. RESULTS Heat stress altered the expression of a large number of genes by ≥2.0 fold, out of which 594 genes (286↑; 308↓) showed alterations in spermatocytes and 154 genes (105↑; 49↓) showed alterations in spermatids throughout the duration of experiment. 62 heat-sensitive genes were common to both cell types. Similarly, 66 and 60 heat-sensitive miRNAs in spermatocytes and spermatids, respectively, were affected by ≥1.5 fold, out of which 6 were common to both the cell types. CONCLUSION The study has identified Acly, selV, SLC16A7(MCT-2), Txnrd1 and Prkar2B as potential heat sensitive targets in germ cells, which may be tightly regulated by heat sensitive miRNAs rno-miR-22-3P, rno-miR-22-5P, rno-miR-129-5P, rno-miR-3560, rno-miR-3560 and rno-miR-466c-5P.
Collapse
Affiliation(s)
- Santosh K. Yadav
- 0000 0004 0506 6543grid.418363.bDivision of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031 India
| | - Aastha Pandey
- 0000 0004 0506 6543grid.418363.bDivision of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031 India
| | - Lokesh Kumar
- 0000 0004 0506 6543grid.418363.bDivision of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031 India
| | - Archana Devi
- 0000 0004 0506 6543grid.418363.bDivision of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031 India
- grid.469887.cAcademy of Scientific and Innovative Research (AcSIR), New Delhi, 110001 India
| | - Bhavana Kushwaha
- 0000 0004 0506 6543grid.418363.bDivision of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031 India
- grid.469887.cAcademy of Scientific and Innovative Research (AcSIR), New Delhi, 110001 India
| | - Rahul Vishvkarma
- 0000 0004 0506 6543grid.418363.bDivision of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031 India
| | - Jagdamba P. Maikhuri
- 0000 0004 0506 6543grid.418363.bDivision of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031 India
| | - Singh Rajender
- 0000 0004 0506 6543grid.418363.bDivision of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031 India
- grid.469887.cAcademy of Scientific and Innovative Research (AcSIR), New Delhi, 110001 India
| | - Gopal Gupta
- 0000 0004 0506 6543grid.418363.bDivision of Endocrinology, CSIR-Central Drug Research Institute, BS-10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031 India
- grid.469887.cAcademy of Scientific and Innovative Research (AcSIR), New Delhi, 110001 India
| |
Collapse
|
13
|
Silva AF, Escada-Rebelo S, Amaral S, Tavares RS, Schlatt S, Ramalho-Santos J, Mota PC. Can we induce spermatogenesis in the domestic cat using an in vitro tissue culture approach? PLoS One 2018; 13:e0191912. [PMID: 29414992 PMCID: PMC5802888 DOI: 10.1371/journal.pone.0191912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/12/2018] [Indexed: 11/18/2022] Open
Abstract
The reduced number of animals in most wild felid populations implies a loss of genetic diversity. The death of juveniles, prior to the production of mature sperm, represents a loss of potential genetic contribution to future populations. Since 2011 mouse testicular organ culture has introduced an alternative mechanism to produce sperm in vitro from immature tissue. However, extension of this technology to other species has remained limited. We have used the domestic cat (Felis catus) as a model for wild felids to investigate spermatogenesis initiation and regulation, with the mouse serving as a control species. Testicular tissue fragments were cultured in control medium or medium supplemented with knockout serum replacement (KSR), AlbuMax, beta-estradiol or AlbuMax plus beta-estradiol. Contrary to expectations, and unlike results obtained in mouse controls, no germ cell differentiation could be detected. The only germ cells observed after six weeks of culture were spermatogonia regardless of the initial stage of tubule development in the donor tissue. Moreover, the number of spermatogonia decreased with time in culture in all media tested, especially in the medium supplemented with KSR, while AlbuMax had a slight protective effect. The combination of AlbuMax and beta-estradiol led to an increase in the area occupied by seminiferous tubules, and thus to an increase in total number of spermatogonial cells. Considering all the media combinations tested the stimulus for felid germ cell differentiation in this type of system seems to be different from the mouse. Studies using other triggers of differentiation and tissue survival factors should be performed to pursue this technology for the genetic diversity preservation in wild felids.
Collapse
Affiliation(s)
- Andreia F. Silva
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sara Escada-Rebelo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Renata S. Tavares
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paula C. Mota
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
14
|
Mincheva M, Sandhowe-Klaverkamp R, Wistuba J, Redmann K, Stukenborg JB, Kliesch S, Schlatt S. Reassembly of adult human testicular cells: can testis cord-like structures be created in vitro? Mol Hum Reprod 2017; 24:55-63. [DOI: 10.1093/molehr/gax063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- M Mincheva
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - R Sandhowe-Klaverkamp
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - K Redmann
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - J -B Stukenborg
- Department of Women’s and Children’s Health, NORDFERTIL research lab Stockholm, Pediatric Endocrinology Unit, Q2:08, Karolinska Institutet and University Hospital, SE-17176 Stockholm, Sweden
| | - S Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| |
Collapse
|
15
|
Bhartiya D, Anand S, Patel H, Parte S. Making gametes from alternate sources of stem cells: past, present and future. Reprod Biol Endocrinol 2017; 15:89. [PMID: 29145898 PMCID: PMC5691385 DOI: 10.1186/s12958-017-0308-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Infertile couples including cancer survivors stand to benefit from gametes differentiated from embryonic or induced pluripotent stem (ES/iPS) cells. It remains challenging to convert human ES/iPS cells into primordial germ-like cells (PGCLCs) en route to obtaining gametes. Considerable success was achieved in 2016 to obtain fertile offspring starting with mouse ES/iPS cells, however the specification of human ES/iPS cells into PGCLCs in vitro is still not achieved. Human ES cells will not yield patient-specific gametes unless and until hES cells are derived by somatic cell nuclear transfer (therapeutic cloning) whereas iPS cells retain the residual epigenetic memory of the somatic cells from which they are derived and also harbor genomic and mitochondrial DNA mutations. Thus, they may not be ideal starting material to produce autologus gametes, especially for aged couples. Pluripotent, very small embryonic-like stem cells (VSELs) have been reported in adult tissues including gonads, are relatively quiescent in nature, survive oncotherapy and can be detected in aged, non-functional gonads. Being developmentally equivalent to PGCs (natural precursors to gametes), VSELs spontaneously differentiate into gametes in vitro. It is also being understood that gonadal stem cells niche is compromised by oncotherapy and with age. Improving the gonadal somatic niche could regenerate non-functional gonads from endogenous VSELs to restore fertility. Niche cells (Sertoli/mesenchymal cells) can be directly transplanted and restore gonadal function by providing paracrine support to endogenous VSELs. This strategy has been successful in several mice studies already and resulted in live birth in a woman with pre-mature ovarian failure.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Sandhya Anand
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
16
|
Verheyen G, Popovic-Todorovic B, Tournaye H. Processing and selection of surgically-retrieved sperm for ICSI: a review. Basic Clin Androl 2017; 27:6. [PMID: 28331619 PMCID: PMC5360083 DOI: 10.1186/s12610-017-0050-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/01/2017] [Indexed: 12/30/2022] Open
Abstract
Although the technique of intracytoplasmic sperm injection (ICSI) has been a revolution in the alleviation of male infertility, the use of testicular sperm for ICSI was a formerly unseen breakthrough in the treatment of the azoospermic man with primary testicular failure. At the clinical level, different procedures of testicular sperm retrieval (conventional TESE, micro-TESE, FNA/TESA, MESA, PESA) are being performed, the choice is mainly based on the cause of azoospermia (obstructive versus non-obstructive) and the surgeon's skills. At the level of the IVF laboratory, mechanical procedures to harvest the sperm from the tissue may be combined with enzymatic treatment in order to increase the sperm recovery rates. A number of techniques have been developed for viable sperm selection in males with only immotile testicular sperm available. However, large, well-designed studies on the benefit and safety of one over the other technique are lacking. Despite all the available methods and combinations of laboratory procedures which have a common goal to maximize sperm recovery from testicular samples, a large proportion of NOA patients fail to father a genetically own child. Advanced technology application may improve recovery rates by detection of the testicular foci with active spermatogenesis and/or identification of the rare individual sperm in the testicular suspensions. On the other hand, in vitro spermatogenesis or sperm production from embryonic stem cells or induced pluripotent stem cells might be future options. The present review summarizes the available strategies which aim to maximize sperm recovery from surgically retrieved samples.
Collapse
Affiliation(s)
- Greta Verheyen
- Centre for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | | | - Herman Tournaye
- Centre for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| |
Collapse
|
17
|
da Cruz I, Rodríguez-Casuriaga R, Santiñaque FF, Farías J, Curti G, Capoano CA, Folle GA, Benavente R, Sotelo-Silveira JR, Geisinger A. Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage. BMC Genomics 2016; 17:294. [PMID: 27094866 PMCID: PMC4837615 DOI: 10.1186/s12864-016-2618-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 04/13/2016] [Indexed: 12/03/2022] Open
Abstract
Background Spermatogenesis is a complex differentiation process that involves the successive and simultaneous execution of three different gene expression programs: mitotic proliferation of spermatogonia, meiosis, and spermiogenesis. Testicular cell heterogeneity has hindered its molecular analyses. Moreover, the characterization of short, poorly represented cell stages such as initial meiotic prophase ones (leptotene and zygotene) has remained elusive, despite their crucial importance for understanding the fundamentals of meiosis. Results We have developed a flow cytometry-based approach for obtaining highly pure stage-specific spermatogenic cell populations, including early meiotic prophase. Here we combined this methodology with next generation sequencing, which enabled the analysis of meiotic and postmeiotic gene expression signatures in mouse with unprecedented reliability. Interestingly, we found that a considerable number of genes involved in early as well as late meiotic processes are already on at early meiotic prophase, with a high proportion of them being expressed only for the short time lapse of lepto-zygotene stages. Besides, we observed a massive change in gene expression patterns during medium meiotic prophase (pachytene) when mostly genes related to spermiogenesis and sperm function are already turned on. This indicates that the transcriptional switch from meiosis to post-meiosis takes place very early, during meiotic prophase, thus disclosing a higher incidence of post-transcriptional regulation in spermatogenesis than previously reported. Moreover, we found that a good proportion of the differential gene expression in spermiogenesis corresponds to up-regulation of genes whose expression starts earlier, at pachytene stage; this includes transition protein-and protamine-coding genes, which have long been claimed to switch on during spermiogenesis. In addition, our results afford new insights concerning X chromosome meiotic inactivation and reactivation. Conclusions This work provides for the first time an overview of the time course for the massive onset and turning off of the meiotic and spermiogenic genetic programs. Importantly, our data represent a highly reliable information set about gene expression in pure testicular cell populations including early meiotic prophase, for further data mining towards the elucidation of the molecular bases of male reproduction in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2618-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene da Cruz
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay.,Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | | | - Joaquina Farías
- Department of Proteins and Nucleic Acids, IIBCE, Montevideo, Uruguay
| | - Gianni Curti
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | - Carlos A Capoano
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | - Gustavo A Folle
- Flow Cytometry and Cell Sorting Core, IIBCE, Montevideo, Uruguay.,Department of Genetics, IIBCE, Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - José Roberto Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay. .,Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de la República (UDELAR), 11,400, Montevideo, Uruguay.
| | - Adriana Geisinger
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay. .,Biochemistry-Molecular Biology, Facultad de Ciencias, UDELAR, Montevideo, Uruguay.
| |
Collapse
|
18
|
Does soaking temperature during controlled slow freezing of pre-pubertal mouse testes influence course of in vitro spermatogenesis? Cell Tissue Res 2015; 364:661-674. [DOI: 10.1007/s00441-015-2341-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 12/03/2015] [Indexed: 01/08/2023]
|
19
|
Huleihel M, Nourashrafeddin S, Plant TM. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian J Androl 2015; 17:972-80. [PMID: 26067870 PMCID: PMC4814948 DOI: 10.4103/1008-682x.154994] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/26/2014] [Accepted: 03/04/2015] [Indexed: 12/19/2022] Open
Abstract
In vitro culture of spermatogonial stem cells (SSCs) has generally been performed using two-dimensional (2D) culture systems; however, such cultures have not led to the development of complete spermatogenesis. It seems that 2D systems do not replicate optimal conditions of the seminiferous tubules (including those generated by the SSC niche) and necessary for spermatogenesis. Recently, one of our laboratories has been able to induce proliferation and differentiation of mouse testicular germ cells to meiotic and postmeiotic stages including generation of sperm in a 3D soft agar culture system (SACS) and a 3D methylcellulose culture system (MCS). It was suggested that SACS and MCS form a special 3D microenvironment that mimics germ cell niche formation in the seminiferous tubules, and thus permits mouse spermatogenesis in vitro. In this review, we (1) provide a brief overview of the differences in spermatogenesis in rodents and primates, (2) summarize data related to attempts to generate sperm in vitro, (3) report for the first time formation of colonies/clusters of cells and differentiation of meiotic (expression of CREM-1) and postmeiotic (expression of acrosin) germ cells from undifferentiated spermatogonia isolated from the testis of prepubertal rhesus monkeys and cultured in SACS and MCS, and (4) indicate research needed to optimize 3D systems for in vitro primate spermatogenesis and for possible future application to man.
Collapse
Affiliation(s)
- Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Seyedmehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Sato T, Katagiri K, Kojima K, Komeya M, Yao M, Ogawa T. In Vitro Spermatogenesis in Explanted Adult Mouse Testis Tissues. PLoS One 2015; 10:e0130171. [PMID: 26065832 PMCID: PMC4467084 DOI: 10.1371/journal.pone.0130171] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
Research on in vitro spermatogenesis is important for elucidating the spermatogenic mechanism. We previously developed an organ culture method which can support spermatogenesis from spermatogonial stem cells up to sperm formation using immature mouse testis tissues. In this study, we examined whether it is also applicable to mature testis tissues of adult mice. We used two lines of transgenic mice, Acrosin-GFP and Gsg2-GFP, which carry the marker GFP gene specific for meiotic and haploid cells, respectively. Testis tissue fragments of adult GFP mice, aged from 4 to 29 weeks old, which express GFP at full extension, were cultured in medium supplemented with 10% KSR or AlbuMAX. GFP expression decreased rapidly and became the lowest at 7 to 14 days of culture, but then slightly increased during the following culture period. This increase reflected de novo spermatogenesis, confirmed by BrdU labeling in spermatocytes and spermatids. We also used vitamin A-deficient mice, whose testes contain only spermatogonia. The testes of those mice at 13-21 weeks old, showing no GFP expression at explantation, gained GFP expression during culturing, and spermatogenesis was confirmed histologically. In addition, the adult testis tissues of Sl/Sld mutant mice, which lack spermatogenesis due to Kit ligand mutation, were cultured with recombinant Kit ligand to induce spermatogenesis up to haploid formation. Although the efficiency of spermatogenesis was lower than that of pup, present results showed that the organ culture method is effective for the culturing of mature adult mouse testis tissue, demonstrated by the induction of spermatogenesis from spermatogonia to haploid cells.
Collapse
Affiliation(s)
- Takuya Sato
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Japan
| | - Kumiko Katagiri
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Japan
| | - Kazuaki Kojima
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Japan
| | - Mitsuru Komeya
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masahiro Yao
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takehiko Ogawa
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Japan; Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
21
|
Dumont L, Arkoun B, Jumeau F, Milazzo JP, Bironneau A, Liot D, Wils J, Rondanino C, Rives N. Assessment of the optimal vitrification protocol for pre-pubertal mice testes leading to successful in vitro production of flagellated spermatozoa. Andrology 2015; 3:611-25. [DOI: 10.1111/andr.12042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
Affiliation(s)
- L. Dumont
- EA 4308 “Gametogenesis and Gamete Quality”; Reproductive Biology Laboratory-CECOS; Institute for Biomedical Research; Rouen University Hospital; Rouen France
- Ed 497 Normande de Biologie Intégrative, Santé et Environnement (EdNBISE); Normandy University; Rouen France
- Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
| | - B. Arkoun
- EA 4308 “Gametogenesis and Gamete Quality”; Reproductive Biology Laboratory-CECOS; Institute for Biomedical Research; Rouen University Hospital; Rouen France
- Ed 497 Normande de Biologie Intégrative, Santé et Environnement (EdNBISE); Normandy University; Rouen France
- Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
| | - F. Jumeau
- EA 4308 “Gametogenesis and Gamete Quality”; Reproductive Biology Laboratory-CECOS; Institute for Biomedical Research; Rouen University Hospital; Rouen France
- Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
| | - J.-P. Milazzo
- EA 4308 “Gametogenesis and Gamete Quality”; Reproductive Biology Laboratory-CECOS; Institute for Biomedical Research; Rouen University Hospital; Rouen France
- Ed 497 Normande de Biologie Intégrative, Santé et Environnement (EdNBISE); Normandy University; Rouen France
| | - A. Bironneau
- EA 4308 “Gametogenesis and Gamete Quality”; Reproductive Biology Laboratory-CECOS; Institute for Biomedical Research; Rouen University Hospital; Rouen France
| | - D. Liot
- EA 4308 “Gametogenesis and Gamete Quality”; Reproductive Biology Laboratory-CECOS; Institute for Biomedical Research; Rouen University Hospital; Rouen France
| | - J. Wils
- Biochemistry Laboratory; Institute for Biomedical Research; Rouen University Hospital; Rouen France
| | - C. Rondanino
- EA 4308 “Gametogenesis and Gamete Quality”; Reproductive Biology Laboratory-CECOS; Institute for Biomedical Research; Rouen University Hospital; Rouen France
- Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
| | - N. Rives
- EA 4308 “Gametogenesis and Gamete Quality”; Reproductive Biology Laboratory-CECOS; Institute for Biomedical Research; Rouen University Hospital; Rouen France
- Institute for Research and Innovation in Biomedicine (IRIB); Rouen France
| |
Collapse
|
22
|
Michaelis M, Sobczak A, Weitzel JM. In vivo microinjection and electroporation of mouse testis. J Vis Exp 2014. [PMID: 25177859 DOI: 10.3791/51802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This video and article contribution gives a comprehensive description of microinjection and electroporation of mouse testis in vivo. This particular transfection technique for testicular mouse cells allows the study of unique processes in spermatogenesis. The following protocol focuses on transfection of testicular mouse cells with plasmid constructs. Specifically, we used the reporter vector pEGFP-C1, which expresses enhanced green fluorescent protein (eGFP) and also the pDsRed2-N1 vector expressing red fluorescent protein (DsRed2). Both encoded reporter genes were under the control of the human cytomegalovirus immediate-early promoter (CMV). For performing gene transfer into mouse testes, the reporter plasmid constructs are injected into testes of living mice. To that end, the testis of an anaesthetized animal is exposed and the site of microinjection is prepared. Our preferred place of injection is the efferent duct, with the ultimately connected rete testis as the anatomical transport route of the spermatozoa between the testis and the epididymis. In this way, the filling of the seminiferous tubules after microinjection is excellently managed and controlled due to the use of stained DNA solutions. After observing a sufficient filling of the testis by its colored tubule structure, the organ is electroporated. This enables the transfer of the DNA solution into the testicular cells. Following 3 days of incubation, the testis is removed and investigated under the microscope for green or red fluorescence, illustrating transfection success. Generally, this protocol can be employed for delivering DNA- or RNA- constructs into living mouse testis in order to (over)express or knock down genes, facilitating in vivo gene function analysis. Furthermore, it is suitable for studying reporter constructs or putative gene regulatory elements. Thus, the main advantages of the electroporation technique are fast performance in combination with low effort as well as the moderate technical equipment and skills required compared to alternative techniques.
Collapse
Affiliation(s)
- Marten Michaelis
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN)
| | - Alexander Sobczak
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN)
| | - Joachim M Weitzel
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN);
| |
Collapse
|
23
|
Langenstroth D, Kossack N, Westernströer B, Wistuba J, Behr R, Gromoll J, Schlatt S. Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Hum Reprod 2014; 29:2018-31. [PMID: 24963164 DOI: 10.1093/humrep/deu157] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Can primate spermatogonial cultures be optimized by application of separation steps and well defined culture conditions? SUMMARY ANSWER We identified the cell fraction which provides the best source for primate spermatogonia when prolonged culture is desired. WHAT IS KNOWN ALREADY Man and marmoset show similar characteristics in regard to germ cell development and function. Several protocols for isolation and culture of human testis-derived germline stem cells have been described. Subsequent analysis revealed doubts on the germline origin of these cells and characterized them as mesenchymal stem cells or fibroblasts. Studies using marmosets as preclinical model confirmed that the published isolation protocols did not lead to propagation of germline cells. STUDY DESIGN, SIZE, DURATION Testicular cells derived from nine adult marmoset monkeys (Callithrix jacchus) were cultured for 1, 3, 6 and 11 days and consecutively analyzed for the presence of spermatogonia, differentiating germ cells and testicular somatic cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Testicular tissue of nine adult marmoset monkeys was enzymatically dissociated and subjected to two different cell culture approaches. In the first approach all cells were kept in the same dish (non-separate culture, n = 5). In the second approach the supernatant cells were transferred into a new dish 24 h after seeding and subsequently supernatant and attached cells were cultured separately (separate culture, n = 4). Real-time quantitative PCR and immunofluorescence were used to analyze the expression of reliable germ cell and somatic markers throughout the culture period. Germ cell transplantation assays and subsequent wholemount analyses were performed to functionally evaluate the colonization of spermatogonial cells. MAIN RESULTS AND THE ROLE OF CHANCE This is the first report revealing an efficient isolation and culture of putative marmoset spermatogonial stem cells with colonization ability. Our results indicate that a separation of spermatogonia from testicular somatic cells is a crucial step during cell preparation. We identified the overgrowth of more rapidly expanding somatic cells to be a major problem when establishing spermatogonial cultures. Initiating germ cell cultures from the supernatant and maintaining germ cells in suspension cultures minimized the somatic cell contamination and provided enriched germ cell fractions which displayed after 11 days of culture a significantly higher expression of germ cell markers genes (DDX-4, MAGE A-4; P < 0.05) compared with separately cultured attached cells. Additionally, germ cell transplantation experiments demonstrated a significantly higher absolute number of cells with colonization ability (P < 0.001) in supernatant cells after 11 days of separate culture. LIMITATIONS, REASONS FOR CAUTION This study presents a relevant aspect for the successful setup of spermatogonial cultures but provides limited data regarding the question of whether the long-term maintenance of spermatogonia can be achieved. Transfer of these preclinical data to man may require modifications of the protocol. WIDER IMPLICATIONS OF THE FINDINGS Spermatogonial cultures from rodents have become important and innovative tools for basic and applied research in reproductive biology and veterinary medicine. It is expected that spermatogonia-based strategies will be transformed into clinical applications for the treatment of male infertility. Our data in the marmoset monkey may be highly relevant to establish spermatogonial cultures of human testes. STUDY FUNDING/COMPETING INTERESTS Funding was provided by the DFG-Research Unit FOR 1041 Germ Cell Potential (SCHL394/11-2) and by the Graduate Program Cell Dynamics and Disease (CEDAD) together with the International Max Planck Research School - Molecular Biomedicine (IMPRS-MBM). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Daniel Langenstroth
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Nina Kossack
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Birgit Westernströer
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Joachim Wistuba
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Rüdiger Behr
- Stem Cell Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jörg Gromoll
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Stefan Schlatt
- Institute of Reproduction and Regenerative Biology, Centre of Reproductive Medicine and Andrology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| |
Collapse
|
24
|
Regulation of spermatogenesis: An evolutionary biologist's perspective. Semin Cell Dev Biol 2014; 29:2-16. [DOI: 10.1016/j.semcdb.2014.03.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 02/03/2023]
|
25
|
Development of an in vitro test system for assessment of male, reproductive toxicity. Toxicol Lett 2014; 225:86-91. [DOI: 10.1016/j.toxlet.2013.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 01/15/2023]
|
26
|
Reda A, Hou M, Landreh L, Kjartansdóttir KR, Svechnikov K, Söder O, Stukenborg JB. In vitro Spermatogenesis - Optimal Culture Conditions for Testicular Cell Survival, Germ Cell Differentiation, and Steroidogenesis in Rats. Front Endocrinol (Lausanne) 2014; 5:21. [PMID: 24616715 PMCID: PMC3935156 DOI: 10.3389/fendo.2014.00021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/13/2014] [Indexed: 11/16/2022] Open
Abstract
Although three-dimensional testicular cell cultures have been demonstrated to mimic the organization of the testis in vivo and support spermatogenesis, the optimal culture conditions and requirements remain unknown. Therefore, utilizing an established three-dimensional cell culture system that promotes differentiation of pre-meiotic murine male germ cells as far as elongated spermatids, the present study was designed to test the influence of different culture media on germ cell differentiation, Leydig cell functionality, and overall cell survival. Single-cell suspensions prepared from 7-day-old rat testes and containing all the different types of testicular cells were cultured for as long as 31 days, with or without stimulation by gonadotropins. Leydig cell functionality was assessed on the basis of testosterone production and the expression of steroidogenic genes. Gonadotropins promoted overall cell survival regardless of the culture medium employed. Of the various media examined, the most pronounced expression of Star and Tspo, genes related to steroidogenesis, as well as the greatest production of testosterone was attained with Dulbecco's modified eagle medium + glutamine. Although direct promotion of germ cell maturation by the cell culture medium could not be observed, morphological evaluation in combination with immunohistochemical staining revealed unfavorable organization of tubules formed de novo in the three-dimensional culture, allowing differentiation to the stage of pachytene spermatocytes. Further differentiation could not be observed, probably due to migration of germ cells out of the cell colonies and the consequent lack of support from Sertoli cells. In conclusion, the observations reported here show that in three-dimensional cultures, containing all types of rat testicular cells, the nature of the medium per se exerts a direct influence on the functionality of the rat Leydig cells, but not on germ cell differentiation, due to the lack of proper organization of the Sertoli cells.
Collapse
Affiliation(s)
- Ahmed Reda
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Mi Hou
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Luise Landreh
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Kristín Rós Kjartansdóttir
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Konstantin Svechnikov
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Olle Söder
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
- *Correspondence: Jan-Bernd Stukenborg, Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm SE-17176, Sweden e-mail:
| |
Collapse
|
27
|
Reuter K, Ehmcke J, Stukenborg JB, Simoni M, Damm OS, Redmann K, Schlatt S, Wistuba J. Reassembly of somatic cells and testicular organogenesis in vitro. Tissue Cell 2013; 46:86-96. [PMID: 24411714 DOI: 10.1016/j.tice.2013.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/30/2013] [Accepted: 12/03/2013] [Indexed: 02/07/2023]
Abstract
Testicular organogenesis in vitro requires an environment allowing a reassembly of testicular cell types. Previous in vitro studies using male murine germ cells cultured in a defined three-dimensional environment demonstrated tubulogenesis and differentiation into spermatozoa. Combining scaffolds as artificial culture substrates with testicular cell culture, we analysed the colonization of collagen sponges by rat testicular cells focusing on cell survival and reassembly of tubule-like-structures in vitro. Isolated testicular cells obtained from juvenile Sprague Dawley and eGFP transgenic rats were cultured on collagen sponges (DMEM high glucose+Glutamax, 35°C, 5% CO2 with or without gonadotropins). Live cell imaging revealed the colonization of cells across the entire scaffold for up to 35 days. After two days, histology showed cell clusters attached to the collagen fibres and displaying signs of tubulogenesis. Clusters consisted mainly of Sertoli and peritubular cells which surrounded some undifferentiated spermatogonia. Flow cytometry confirmed lack of differentiation as no haploid cells were detected. Leydig cell activity was detected by a rise of testosterone after gonadotropin stimulation. Our approach provides a novel method which is in particular suitable to follow the somatic testicular cells in vitro an issue of growing importance for the analysis of germ line independent failure of spermatogenesis.
Collapse
Affiliation(s)
- Karin Reuter
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Jens Ehmcke
- Central Animal Facility of the Faculty of Medicine, University of Münster, Albert-Schweitzer-Campus 1 Building A8, 48149 Münster, Germany
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health, Pediatric Endocrinology Unit, Q2:08, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden
| | - Manuela Simoni
- University of Modena and Reggio Emilia, Department of Medicine, Metabolism and Neural Sciences, NOCSAE, Via Giardini 1355, I-41126 Modena, Italy
| | - Oliver S Damm
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Klaus Redmann
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Stefan Schlatt
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - Joachim Wistuba
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany.
| |
Collapse
|
28
|
Kossack N, Terwort N, Wistuba J, Ehmcke J, Schlatt S, Schöler H, Kliesch S, Gromoll J. A combined approach facilitates the reliable detection of human spermatogonia in vitro. Hum Reprod 2013; 28:3012-25. [PMID: 24001715 DOI: 10.1093/humrep/det336] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does a combined approach allow for the unequivocal detection of human germ cells and particularly of spermatogonia in vitro? SUMMARY ANSWER Based on our findings, we conclude that an approach comprising: (i) the detailed characterization of patients and tissue samples prior to the selection of biopsies, (ii) the use of unambiguous markers for the characterization of cultures and (iii) the use of biopsies lacking the germ cell population as a negative control is the prerequisite for the establishment of human germ cell cultures. WHAT IS KNOWN ALREADY The use of non-specific marker genes and the failure to assess the presence of testicular somatic cell types in germ cell cultures may have led to a misinterpretation of results and the erroneous description of germ cells in previous studies. STUDY DESIGN, SIZE, DURATION Testicular biopsies were selected from a pool of 264 consecutively obtained biopsies. Based on the histological diagnosis, biopsies with distinct histological phenotypes were selected (n = 35) to analyze the expression of germ cell and somatic cell markers. For germ cell culture experiments, gonadotrophin levels and clinical data were used as selection criteria resulting in the following two groups: (i) biopsies with qualitatively intact spermatogenesis (n = 4) and (ii) biopsies from Klinefelter syndrome Klinefelter patients lacking the germ cell population (n = 3). PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative real-time PCR analyses were performed to evaluate the specificity of 18 selected germ cell and 3 somatic marker genes. Cell specificity of individual markers was subsequently validated using immunohistochemistry. Finally, testicular cell cultures were established and were analyzed after 10 days for the expression of germ cell- (UTF1, FGFR3, MAGE A4, DDX4) and somatic cell-specific markers (SMA, VIM, LHCGR) at the RNA and the protein levels. MAIN RESULTS AND THE ROLE OF CHANCE Interestingly, only 9 out of 18 marker genes reflected the presence of germ cells and cell specificity could be validated using immunohistochemistry. Furthermore, VIM, SMA and LHCGR were found to reflect the presence of testicular somatic cells at the RNA and the protein levels. Using this validated marker panel and biopsies lacking the germ cell population (n = 3) as a negative control, we demonstrated that germ cell cultures containing spermatogonia can be established from biopsies with normal spermatogenesis (n = 4) and that these cultures can be maintained for the period of 10 days. However, marker profiling has to be performed at regular time points as the composition of testicular cell types may continuously change under longer term culture conditions. LIMITATIONS, REASONS FOR CAUTION There are significant differences regarding the spermatogonial stem cell (SSC) system and spermatogenesis between rodents and primates. It is therefore possible that marker genes that do not reflect the presence of spermatogonia in the human are specific for spermatogonia in other animal models. WIDER IMPLICATIONS OF THE FINDINGS While some studies have reported that human SSCs can be maintained in vitro and show characteristics of pluripotency, the germ cell origin and the differentiation potential of these cells were subsequently called into question. This study provides critical insights into possible sources for the misinterpretation of results regarding the presence of germ cells in human testicular cell cultures and our findings can therefore help to avoid conflicting reports in the future. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by the Stem Cell Network North Rhine-Westphalia and the Innovative Medical Research of the University of Münster Medical School (Grant KO111014). In addition, it was funded by the DFG-Research Unit FOR 1041 Germ Cell Potential (GR 1547/11-1 and SCHL 394/11-2), the BMBF (01GN0809/10) and the IZKF (CRA 03/09). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- N Kossack
- Institute for Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Albert-Schweitzer-Campus 1 (D11), Münster 48149, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Arkoun B, Dumont L, Milazzo JP, Bironneau A, Way A, Macé B, Rives N. [In vitro spermatogenesis… new horizon to restore fertility?]. ACTA ACUST UNITED AC 2013; 41:548-50. [PMID: 23972917 DOI: 10.1016/j.gyobfe.2013.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
The survival of the young boy after cancer has considerably progressed in recent years due to the efficiency of chemo/radiotherapy against the tumor cells. However, this treatment causes adverse effects on healthy tissues, including fertility. Freezing testicular tissue before highly gonadotoxic treatment is a prerequisite for preserving fertility in prepubertal boys that do not produce sperm yet. But which strategy proposes to restore fertility from frozen-thawed testicular tissue? One potential solution would be to consider an in vitro maturation of spermatogonial stem cells. In this article we trace the chronological development of in vitro spermatogenesis that resulted in mouse sperm production in vitro and give an overview of new challenges for the future.
Collapse
Affiliation(s)
- B Arkoun
- CECOS, EA4308 « gamétogenèse et qualité du gamète », IRIB, laboratoire de biologie de la reproduction, université de Rouen, hôpitaux de Rouen, CHU Charles-Nicolle, 1, rue de Germont, 76031 Rouen cedex, France.
| | | | | | | | | | | | | |
Collapse
|