1
|
Lee EJ, Shaikh S, Lee JH, Hur SJ, Choi I. Glycyrrhiza uralensis crude water extract and licochalcone A and B to enhance chicken muscle satellite cell differentiation for cultured meat production. Sci Rep 2025; 15:14350. [PMID: 40274983 PMCID: PMC12022269 DOI: 10.1038/s41598-025-98386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Muscle satellite cells (MSCs) are the most commonly used cells in cultured meat research and development. Enhancing MSC proliferation and differentiation while reducing cell culture costs is requisite to commercializing cultured meat. This study explored the effects of Glycyrrhiza uralensis crude water extract (GU-CWE) and licochalcone A and B (Lic A or B) on the proliferation and differentiation of chicken, bovine, and porcine MSCs. While GU-CWE and Lic A and B had negligible effects on bovine and porcine MSCs, GU-CWE significantly enhanced chicken MSC differentiation, and Lic A and B promoted both the proliferation and differentiation of chicken MSCs. Furthermore, GU-CWE was found to mitigate reactive oxygen species activity during chicken MSC differentiation and promote cell proliferation and adhesion in spheroid culture, thereby maintaining a spherical shape. Collectively, this study suggests that GU-CWE and Lic A and B can significantly reduce costs and safely increase the productivity of chicken MSCs in cultured meat production processes.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jin Hee Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
2
|
Gonçalves S, Fernandes L, Caramelo A, Martins M, Rodrigues T, Matos RS. Soothing the Itch: The Role of Medicinal Plants in Alleviating Pruritus in Palliative Care. PLANTS (BASEL, SWITZERLAND) 2024; 13:3515. [PMID: 39771213 PMCID: PMC11677410 DOI: 10.3390/plants13243515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/05/2025]
Abstract
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (Matricaria chamomilla), aloe vera (Aloe barbadensis), calendula (Calendula officinalis), curcumin (Curcuma longa), lavender (Lavandula angustifolia), licorice (Glycyrrhiza glabra), peppermint (Mentha piperita), and evening primrose (Oenothera biennis). These plants are analyzed for their traditional applications, active bioactive compounds, mechanisms of action, clinical evidence, usage, dosage, and safety profiles. Comprehensive searches were conducted in databases including PubMed, Web of Science, Scopus, and b-on, focusing on in vitro, animal, and clinical studies using keywords like "plant", "extract", and "pruritus". Studies were included regardless of publication date and limited to English-language articles. Findings indicate that active compounds such as polysaccharides in aloe vera, curcuminoids in turmeric, and menthol in peppermint exhibit significant anti-inflammatory, antioxidant, and immune-modulating properties. Chamomile and calendula alleviate itching through anti-inflammatory and skin-soothing effects, while lavender and licorice offer antimicrobial benefits alongside antipruritic relief. Evening primrose, rich in gamma-linolenic acid, is effective in atopic dermatitis-related itching. Despite promising preclinical and clinical results, challenges remain in standardizing dosages and formulations. The review highlights the necessity of further clinical trials to ensure efficacy and safety, advocating for integrating these botanical therapies into complementary palliative care practices. Such approaches emphasize holistic treatment, addressing chronic pruritus's physical and emotional burden, thereby enhancing patient well-being.
Collapse
Affiliation(s)
- Sara Gonçalves
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Lisete Fernandes
- Centro de Química-Vila Real (CQ-VR), UME-CIDE Unidade de Microscopia Eletrónica-Centro de Investigação e Desenvolvimento, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Caramelo
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- RISE-Health Research Network, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Maria Martins
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Palliative Medicine, Local Health Unit of Trás-os-Montes and Alto Douro EPE, 5400-261 Chaves, Portugal
| | - Tânia Rodrigues
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Rita S. Matos
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Local Health Unit of Trás-os-Montes and Alto Douro (ULSTMAD), 5050-275 Peso da Régua, Portugal
- Palliative Medicine, Local Health Unit of Nordeste, 5370-210 Mirandela, Portugal
| |
Collapse
|
3
|
Sanz FJ, Solana-Manrique C, Paricio N. Disease-Modifying Effects of Vincamine Supplementation in Drosophila and Human Cell Models of Parkinson's Disease Based on DJ-1 Deficiency. ACS Chem Neurosci 2023. [PMID: 37289979 DOI: 10.1021/acschemneuro.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disorder caused by the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Current therapies are only symptomatic and are not able to stop or delay its progression. In order to search for new and more effective therapies, our group carried out a high-throughput screening assay, identifying several candidate compounds that are able to improve locomotor ability in DJ-1β mutant flies (a Drosophila model of familial PD) and reduce oxidative stress (OS)-induced lethality in DJ-1-deficient SH-SY5Y human cells. One of them was vincamine (VIN), a natural alkaloid obtained from the leaves of Vinca minor. Our results showed that VIN is able to suppress PD-related phenotypes in both Drosophila and human cell PD models. Specifically, VIN reduced OS levels in PD model flies. Besides, VIN diminished OS-induced lethality by decreasing apoptosis, increased mitochondrial viability, and reduced OS levels in DJ-1-deficient human cells. In addition, our results show that VIN might be exerting its beneficial role, at least partially, by the inhibition of voltage-gated sodium channels. Therefore, we propose that these channels might be a promising target in the search for new compounds to treat PD and that VIN represents a potential therapeutic treatment for the disease.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot 46100, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot 46100, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de La Salud, Universidad Europea de Valencia, Valencia 46010, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot 46100, Spain
| |
Collapse
|
4
|
Katzengruber L, Sander P, Laufer S. MKK4 Inhibitors-Recent Development Status and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24087495. [PMID: 37108658 PMCID: PMC10144091 DOI: 10.3390/ijms24087495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
MKK4 (mitogen-activated protein kinase kinase 4; also referred to as MEK4) is a dual-specificity protein kinase that phosphorylates and regulates both JNK (c-Jun N-terminal kinase) and p38 MAPK (p38 mitogen-activated protein kinase) signaling pathways and therefore has a great impact on cell proliferation, differentiation and apoptosis. Overexpression of MKK4 has been associated with aggressive cancer types, including metastatic prostate and ovarian cancer and triple-negative breast cancer. In addition, MKK4 has been identified as a key regulator in liver regeneration. Therefore, MKK4 is a promising target both for cancer therapeutics and for the treatment of liver-associated diseases, offering an alternative to liver transplantation. The recent reports on new inhibitors, as well as the formation of a startup company investigating an inhibitor in clinical trials, show the importance and interest of MKK4 in drug discovery. In this review, we highlight the significance of MKK4 in cancer development and other diseases, as well as its unique role in liver regeneration. Furthermore, we present the most recent progress in MKK4 drug discovery and future challenges in the development of MKK4-targeting drugs.
Collapse
Affiliation(s)
- Leon Katzengruber
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Pascal Sander
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Tian R, Yuan L, Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Perturbed autophagy intervenes systemic lupus erythematosus by active ingredients of traditional Chinese medicine. Front Pharmacol 2023; 13:1053602. [PMID: 36733375 PMCID: PMC9887156 DOI: 10.3389/fphar.2022.1053602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a common multisystem, multiorgan heterozygous autoimmune disease. The main pathological features of the disease are autoantibody production and immune complex deposition. Autophagy is an important mechanism to maintain cell homeostasis. Autophagy functional abnormalities lead to the accumulation of apoptosis and induce the autoantibodies that result in immune disorders. Therefore, improving autophagy may alleviate the development of SLE. For SLE, glucocorticoids or immunosuppressive agents are commonly used in clinical treatment, but long-term use of these drugs causes serious side effects in humans. Immunosuppressive agents are expensive. Traditional Chinese medicines (TCMs) are widely used for immune diseases due to their low toxicity and few side effects. Many recent studies found that TCM and its active ingredients affected the pathological development of SLE by regulating autophagy. This article explains how autophagy interferes with immune system homeostasis and participates in the occurrence and development of SLE. It also summarizes several studies on TCM-regulated autophagy intervention in SLE to generate new ideas for basic research, the development of novel medications, and the clinical treatment of SLE.
Collapse
Affiliation(s)
- Rui Tian
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- College of Biological Science and Technology, Hubei MinZu University, Enshi, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, China
| | - Yuan Huang
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jingfeng Tang
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Lead Contact, Wuhan, China
| |
Collapse
|
6
|
Abraham J, Florentine S. Licorice ( Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2600. [PMID: 34961070 PMCID: PMC8708549 DOI: 10.3390/plants10122600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/06/2023]
Abstract
Even though vaccination has started against COVID-19, people should continue maintaining personal and social caution as it takes months or years to get everyone vaccinated, and we are not sure how long the vaccine remains efficacious. In order to contribute to the mitigation of COVID-19 symptoms, the pharmaceutical industry aims to develop antiviral drugs to inhibit the SARS-CoV-2 replication and produce anti-inflammatory medications that will inhibit the acute respiratory distress syndrome (ARDS), which is the primary cause of mortality among the COVID-19 patients. In reference to these tasks, this article considers the properties of a medicinal plant named licorice (Glycyrrhiza glabra), whose phytochemicals have shown both antiviral and anti-inflammatory tendencies through previous studies. All the literature was selected through extensive search in various databases such as google scholar, Scopus, the Web of Science, and PubMed. In addition to the antiviral and anti-inflammatory properties, one of the licorice components has an autophagy-enhancing mechanism that studies have suggested to be necessary for COVID-19 treatment. Based on reviewing relevant professional and historical literature regarding the medicinal properties of licorice, it is suggested that it may be worthwhile to conduct in vitro and in vivo studies, including clinical trials with glycyrrhizic and glycyrrhetinic acids together with other flavonoids found in licorice, as there is the potentiality to provide natural interventions against COVID-19 symptoms.
Collapse
Affiliation(s)
- Joji Abraham
- School of Engineering, Information Technology, and Physical Sciences, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Singarayer Florentine
- Centre for Environmental Management, School of Science, Psychology, and Sport, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia;
| |
Collapse
|
7
|
Gomaa AA, Abdel-Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100043. [PMID: 35399823 PMCID: PMC7886629 DOI: 10.1016/j.phyplu.2021.100043] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 04/28/2023]
Abstract
BACKGROUND Several recent studies have stated that glycyrrhizin and licorice extract are present in most traditional Chinese medicine formulas used against SARS-CoV-2 in China. Significant data are showing that glycyrrhizin and licorice extract have multiple beneficial activities in combating most features of SARS-CoV-2. PURPOSE The aim of current review was to highlight recent progresses in research that showed the evidence of the potential use of glycyrrhizin and licorice extract against COVID-19. METHODOLOGY We have reviewed the information published from 1979 to October 2020. These studies demonstrated the effects , use and safety of glycyrrhizin and icorice extract against viral infections,bacterial infections, inflammatory disorders of lung ( in vitro and in vivo). These studies were collated through online electronic databases research (Academic libraries as PubMed, Scopus, Web of Science and Egyptian Knowledge Bank). RESULTS Pooled effect size of articles provides information about the rationale for using glycyrrhizin and licorice extract to treat COVID-19. Fifty studies demonstrate antiviral activity of glycyrrhizin and licorice extract. The most frequent mechanism of the antiviral activity is due to disrupting viral uptake into the host cells and disrupting the interaction between receptor- binding domain (RBD) of SARS-COV2 and ACE2 in recent articles. Fifty studies indicate that glycyrrhizin and licorice extract have significant antioxidant, anti-inflammatory and immunomodulatory effects. Twenty five studies provide evidence for the protective effect of glycyrrhizin and licorice extract against inflammation-induced acute lung injury and cardiovascular disorders. CONCLUSION The current study showed several evidence regarding the beneficial effects of glycyrrhizin and licorice extract in combating COVID-19. More randomized clinical trials are needed to obtain a precise conclusion.
Collapse
Key Words
- 18β-GA, 18β-glycyrrhetinic acid
- : ACE2, angiotensin-converting enzyme 2
- ALI, acute lung injury
- ARDS, acute Respiratory Distress Syndrome
- Acute lung injury protector
- COVID-19
- COVID-19, Coronavirus disease 2019
- COX-2, cyclooxygenase-2
- DCs, dendritic cells
- Gl, glycyrrhizin
- Glycyrrhizin and licorice extract;Antiviral and antimicrobial, Anti-inflammatory and antioxidant
- HBsAg, hepatitis B surface antigen
- HCV, hepatitis C virus
- HMGB1, high-mobility group box 1
- IL, interleukin
- Immunododulator
- MAPKs, mitogen-activated protein kinases
- MERS, Middle East respiratory syndrome
- MR, mineralocorticoid receptor
- MRSA, Methicillin-resistant Staphylococcus aureus
- NO, nitric oxide
- RBD, receptor-binding domain
- ROS, reactive oxygen species
- S, Spike
- SARS, severe acute respiratory syndrome
- TCM, traditional Chinese medicine
- TLR, toll-like receptor
- TMPRSS2, type 2 transmembrane serine protease
- TNF-α, tumor necrosis factor alpha
- h, hour
- iNOS, inducible nitric oxide synthase
- licorice extract, LE
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Medical Pharmacology, Faculty of Medicine, Assiut Universitya, Beni-Suif, Egypt
| | | |
Collapse
|
8
|
Glycyrrhiza Genus: Enlightening Phytochemical Components for Pharmacological and Health-Promoting Abilities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7571132. [PMID: 34349875 PMCID: PMC8328722 DOI: 10.1155/2021/7571132] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
The Glycyrrhiza genus, generally well-known as licorice, is broadly used for food and medicinal purposes around the globe. The genus encompasses a rich pool of bioactive molecules including triterpene saponins (e.g., glycyrrhizin) and flavonoids (e.g., liquiritigenin, liquiritin). This genus is being increasingly exploited for its biological effects such as antioxidant, antibacterial, antifungal, anti-inflammatory, antiproliferative, and cytotoxic activities. The species Glycyrrhiza glabra L. and the compound glycyrrhizin (glycyrrhizic acid) have been studied immensely for their effect on humans. The efficacy of the compound has been reported to be significantly higher on viral hepatitis and immune deficiency syndrome. This review provides up-to-date data on the most widely investigated Glycyrrhiza species for food and medicinal purposes, with special emphasis on secondary metabolites' composition and bioactive effects.
Collapse
|
9
|
Singh TP, Agrawal RK, Mendiratta S, Chauhan G. Preparation and characterization of licorice root extract infused bio-composite film and their application on storage stability of chhana balls-a Sandesh like product. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Hasan MK, Ara I, Mondal MSA, Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Gly cyrrhiza glabra. Heliyon 2021; 7:e07240. [PMID: 34189299 PMCID: PMC8220166 DOI: 10.1016/j.heliyon.2021.e07240] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nature has always been an excellent source for many therapeutic compounds providing us with many medicinal plants and microorganisms producing beneficial chemicals. Therefore, the demand for medicinal plants, cosmetics, and health products is always on the rise. One such plant from the Leguminosae family is licorice and the scientific name is Glycyrrhiza glabra Linn. It is an herb-type plant with medicinal value. In the following article, we shall elaborately look at the plants' phytochemical constituents and the pharmacological impact of those substances. Several compounds such as glycyrrhizin, glycyrrhizinic acid, isoliquiritin, and glycyrrhizic acid have been found in this plant, which can provide pharmacological benefit to us with its anti-cancer, anti-atherogenic, anti-diabetic, anti-asthmatic, anti-inflammatory, anti-microbial, and antispasmodic activity. Alongside, these products have a different role in hepatoprotective, immunologic, memory-enhancing activity. They can stimulate hair growth, control obesity, and have anti-depressants, sedatives, and anticoagulant activity. This review examines recent studies on the phytochemical and pharmacological data and describes some side effects and toxicity of licorice and its bioactive components.
Collapse
Affiliation(s)
- Md. Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Iffat Ara
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | | | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
11
|
Hosseini MS, Ebrahimi M, Samsampour D, Abadía J, Khanahmadi M, Amirian R, Ghafoori IN, Ghaderi-Zefrehei M, Gogorcena Y. Association analysis and molecular tagging of phytochemicals in the endangered medicinal plant licorice (Glycyrrhiza glabra L.). PHYTOCHEMISTRY 2021; 183:112629. [PMID: 33516043 DOI: 10.1016/j.phytochem.2020.112629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 05/12/2023]
Abstract
Licorice (Glycyrrhiza glabra L.) is a medicinal plant species valued in many countries in Asia and Europe for its phytochemical characteristics. Licorice biodiversity is becoming threatened nowadays in Iran due to increasing demand and a drastic decline of its natural habitats. Therefore, licorice domestication would be necessary in the near future, and molecular breeding would help to introduce genotypes suitable for cultivation. The present study was carried out with 170 individual licorice plants sampled in the wild in 59 localizations in 21 provinces of Iran. The association of 436 polymorphic AFLP markers, produced by 15 primer combinations (EcoRI/MseI), with six phenotypic phytochemical traits was studied. The AMOVA analysis show gene diversity among and within localizations. The population structure analysis identified two main sub-populations with significant genetic variation. Significant associations were identified between three markers (E3/M40-4, E34/M4-12 and E12/M31-15) and glycyrrhizin concentration, and between four markers (E11/M34-12, E11/M34-15, E9/M7-29, and E9/M7-30) and phenolic compounds contents. Markers detected can be useful in the domestication of licorice as well as in breeding programs. Licorice sampled in four localizations (KBA1, KBA2, SKh2 and Fa1) were found to be superior in terms of glycyrrhizin and antioxidants content, and therefore they can be considered as elite genotypes which could be included in the domestication process.
Collapse
Affiliation(s)
- Marjan Sadat Hosseini
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 85135-487, Isfahan, Iran; Department of Horticultural Science, Faculty of Agriculture, University of Hormozgan, P.O.Box, 3995, Bandar Abbas, Iran.
| | - Morteza Ebrahimi
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 85135-487, Isfahan, Iran.
| | - Davood Samsampour
- Department of Horticultural Science, Faculty of Agriculture, University of Hormozgan, P.O.Box, 3995, Bandar Abbas, Iran.
| | - Javier Abadía
- Department of Plant Nutrition, Aula Dei Experimental Station (CSIC), P.O. Box 13034, 50059, Zaragoza, Spain.
| | - Morteza Khanahmadi
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 85135-487, Isfahan, Iran.
| | - Rasool Amirian
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 85135-487, Isfahan, Iran.
| | - Iman Naseh Ghafoori
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 85135-487, Isfahan, Iran.
| | - Mostafa Ghaderi-Zefrehei
- Department of Genetic and Animal Breeding, Faculty of Agriculture, Yasouj University, P.O. Box 75918-74831, Yasouj, Iran.
| | - Yolanda Gogorcena
- Department of Pomology, Aula Dei Experimental Station (CSIC), P.O. Box 13034, 50059, Zaragoza, Spain.
| |
Collapse
|
12
|
Yu P, Li Q, Feng Y, Chen Y, Ma S, Ding X. Quantitative Analysis of Flavonoids in Glycyrrhiza uralensis Fisch by 1H-qNMR. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6655572. [PMID: 33532111 PMCID: PMC7834775 DOI: 10.1155/2021/6655572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/19/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To establish a method for simultaneous determination of liquiritin, liquiritigenin, and isoliquiritinin glycyrrhizin using hydrogen nuclear magnetic resonance quantitative technology (1H-qNMR). Methodology. Deuterated dimethyl sulfoxide was used as the solvent, and dichloromethane was used as the internal standard. The probe temperature was 298.0 K, the pulse sequence was Zg30, the number of scans was 16, and relaxation delay (D1) was 10 s. Quantitative characteristic signal peaks were δ 4.891∼4.878 ppm, δ 8.187∼8.172 ppm, and δ 6.790∼6.776 ppm for liquiritin, isoliquiritin, and liquiritigenin, respectively. RESULTS The experimental result showed that the content of flavonoids in Licorice, from Chifeng, Inner Mongolia, was the highest. CONCLUSION In this study, a new method for determination of three flavonoids in Licorice using 1H-qNMR was established. This experimental method has the advantages of accuracy, efficiency, and economy. It lays a foundation for the study on the determination of flavonoids content in licorice by proton nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Ping Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanmei Feng
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuying Chen
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Sinan Ma
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoqin Ding
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
You S, Jang M, Kim GH. Mori Cortex Radicis Attenuates High Fat Diet-Induced Cognitive Impairment via an IRS/Akt Signaling Pathway. Nutrients 2020; 12:nu12061851. [PMID: 32575897 PMCID: PMC7353299 DOI: 10.3390/nu12061851] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Present study was conducted to investigate ameliorating effects of Mori Cortex radicis on cognitive impair and neuronal defects in HFD-induced (High Fat Diet-Induced) obese mice. To induce obesity, C57BL/6 mice were fed an HFD for 8 weeks, and then mice were fed the HFD plus Mori Cortex radicis extract (MCR) (100 or 200 mg/kg/day) for 6 weeks. Prior to sacrifice, body weights were measured, and Y-maze test and oral glucose tolerance test were performed. Serum lipid metabolic biomarkers (TG, LDL, and HDL/total cholesterol ratio) and antioxidant enzymes (glutathione, superoxide dismutase, and catalase), malondialdehyde (MDA), and acetylcholinesterase (AChE) levels were measured in brain tissues. The expressions of proteins related to insulin signaling (p-IRS, PI3K, p-Akt, and GLUT4) and neuronal protection (p-Tau, Bcl-2, and Bax) were examined. MCR suppressed weight gain, improved serum lipid metabolic biomarker and glucose tolerance, inhibited AChE levels and MDA production, and restored antioxidant enzyme levels in brain tissue. In addition, MCR induced neuronal protective effects by inhibiting p-Tau expression and increasing Bcl-2/Bax ratio, which was attributed to insulin-induced increases in the expressions p-IRS, PI3K, p-Akt, and GLUT4. These indicate MCR may reduce HFD-induced insulin dysfunction and neuronal damage and suggest MCR be considered a functional material for the prevention of T2DM-associated neuronal disease.
Collapse
Affiliation(s)
- SoHyeon You
- Department of Health Functional Materials, Duksung Women’s University, Seoul 01369, Korea;
| | - Miran Jang
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA;
| | - Gun-Hee Kim
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01369, Korea
- Correspondence: ; Tel.: +82-2-901-8496; Fax: +82-2-901-8661
| |
Collapse
|
14
|
Kaschubek T, Mayer E, Rzesnik S, Grenier B, Bachinger D, Schieder C, König J, Teichmann K. Effects of phytogenic feed additives on cellular oxidative stress and inflammatory reactions in intestinal porcine epithelial cells1. J Anim Sci 2020; 96:3657-3669. [PMID: 29982751 PMCID: PMC6127757 DOI: 10.1093/jas/sky263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/05/2018] [Indexed: 11/14/2022] Open
Abstract
Due to increasing concerns about the use of antibiotic growth promoters (AGP) in livestock production and their complete ban in the European Union in 2006, suitable alternatives are urgently needed. Among others, anti-inflammatory activities of AGP are discussed as their putative mode of action. As numerous phytochemicals are known to modulate the cellular antioxidant capacity and immune response, we studied the antioxidative and anti-inflammatory properties of a phytogenic (plant-derived) feed additive (PFA) in intestinal porcine epithelial cells (IPEC-J2). The effects of the PFA were compared with those of selected phytogenic ingredients (grape seed extract [GRS], licorice extract [LIC], menthol [MENT], methyl salicylate [MES], oak bark extract [OAK], oregano essential oil [ORE], and a plant powder mix [PLA]), and with the effects of the AGP tylosin (TYL). Oxidative or inflammatory stress was induced by stimulating IPEC-J2 with hydrogen peroxide (H2O2; 0.5 mM) or tumor necrosis factor alpha (TNF-α; 10 ng/mL), respectively. The antioxidative effects of feed additives were assessed with a reactive oxygen species (ROS)-sensitive probe and by measuring the expression of 6 antioxidative target genes via quantitative real-time PCR (RT-qPCR). Anti-inflammatory potential was analyzed using a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) reporter gene assay. Moreover, the expression levels of 6 NF-κB target genes were measured using RT-qPCR analysis, and the release of IL-6 was analyzed via ELISA. Significant decreases in cellular ROS upon H2O2 treatment were observed for the PFA (P < 0.001), LIC (P < 0.001), ORE (P < 0.05), and GRS (P < 0.01). No significant changes in the expression of antioxidative genes were found. NF-κB activation upon TNF-α treatment was significantly inhibited by the PFA (P < 0.05) and by ORE (P < 0.001). Moreover, the PFA and ORE significantly reduced the gene expression of IL-6 (P < 0.001), IL-8 (P < 0.001), and C-C motif chemokine ligand 2 (CCL2; P < 0.05), as well as the release of IL-6 (P < 0.05). The other phytogenic compounds as well as the AGP TYL did not significantly affect any of the inflammatory parameters. In summary, we revealed the antioxidative properties of the PFA, LIC, ORE, and GRS, as well as anti-inflammatory properties of the PFA and ORE in IPEC-J2, providing a better understanding of the mode of action of this PFA under our experimental conditions.
Collapse
Affiliation(s)
- Theresa Kaschubek
- BIOMIN Research Center, Tulln an der Donau, Austria.,Department of Nutritional Science, University of Vienna, Vienna, Austria
| | | | | | | | | | | | - Jürgen König
- Department of Nutritional Science, University of Vienna, Vienna, Austria
| | | |
Collapse
|
15
|
Ameliorative effect of liquorice extract versus silymarin in experimentally induced chronic hepatitis: A biochemical and genetical study. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Lim JW, Ha JH, Jeong YJ, Park SN. Anti-melanogenesis effect of dehydroglyasperin C through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16F1 melanoma cells. Pharmacol Rep 2018; 70:930-935. [PMID: 32002961 DOI: 10.1016/j.pharep.2018.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/08/2018] [Accepted: 02/23/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND In mammals, UV radiation induces melanin synthesis in melanocyte for protecting their skin through the stimulation of α-melanocyte stimulating hormone (α-MSH) from keratinocytes. In this study, the inhibitory effects of dehydroglyasperin C (DGC), an useful component of Glycyrrhiza uralensis (G. uralensis), was investigated on melanogenesis induced by α-melanocyte stimulating hormone (α-MSH) and its mechanisms. METHODS Melanogenesis suppression effect of DGC on α-MSH induced B16F1 melanoma cells. The cell viability was measured by MTT assay. Expression and phosphorylation of melanogeic protein were conducted using western blot. cAMP acceleration was measured by cAMP immunoassay kit. To investigate whitening mechanism, we used ERK inhibitor (PD98059). RESULTS DGC decreased intra cellular tyrosinase (TYR) activity and expression of melanin synthesis related proteins (TYR and TRP-1) in a dose-dependent manner on α-MSH induced melanogenesis. In addition, DGC induced the downregulation of MITF (melanocyte-specific transcription factor) through suppression of cAMP-CREB pathway. Also, phosphorylation of extracellular signal regulated kinase (ERK) decreased MITF by DGC treatment. CONCLUSION Therefore, DGC could be used as a whitening ingredient in skin and clinical usage against hyperpigmentation.
Collapse
Affiliation(s)
- Ji Won Lim
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Republic of Korea
| | - Ji Hoon Ha
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Republic of Korea
| | - Yoon Ju Jeong
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Republic of Korea
| | - Soo Nam Park
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. PHARMACEUTICAL BIOLOGY 2017; 55:5-18. [PMID: 27650551 PMCID: PMC7012004 DOI: 10.1080/13880209.2016.1225775] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 06/13/2016] [Accepted: 08/13/2016] [Indexed: 05/20/2023]
Abstract
CONTEXT Increasing incidence and impact of inflammatory diseases have encouraged the search of new pharmacological strategies to face them. Licorice has been used to treat inflammatory diseases since ancient times in China. OBJECTIVE To summarize the current knowledge on anti-inflammatory properties and mechanisms of compounds isolated from licorice, to introduce the traditional use, modern clinical trials and officially approved drugs, to evaluate the safety and to obtain new insights for further research of licorice. METHODS PubMed, Web of Science, Science Direct and ResearchGate were information sources for the search terms 'licorice', 'licorice metabolites', 'anti-inflammatory', 'triterpenoids', 'flavonoids' and their combinations, mainly from year 2010 to 2016 without language restriction. Studies were selected from Science Citation Index journals, in vitro studies with Jadad score less than 2 points and in vivo and clinical studies with experimental flaws were excluded. RESULTS Two hundred and ninety-five papers were searched and 93 papers were reviewed. Licorice extract, 3 triterpenes and 13 flavonoids exhibit evident anti-inflammatory properties mainly by decreasing TNF, MMPs, PGE2 and free radicals, which also explained its traditional applications in stimulating digestive system functions, eliminating phlegm, relieving coughing, nourishing qi and alleviating pain in TCM. Five hundred and fifty-four drugs containing licorice have been approved by CFDA. The side effect may due to the cortical hormone like action. CONCLUSION Licorice and its natural compounds have demonstrated anti-inflammatory activities. More pharmacokinetic studies using different models with different dosages should be carried out, and the maximum tolerated dose is also critical for clinical use of licorice extract and purified compounds.
Collapse
Affiliation(s)
- Rui Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Chuan Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yong-Sheng Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
The effect of dehydroglyasperin C on UVB–mediated MMPs expression in human HaCaT cells. Pharmacol Rep 2017; 69:1224-1231. [DOI: 10.1016/j.pharep.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 01/06/2023]
|
19
|
Sohail M, Rakha A, Butt MS, Asghar M. Investigating the antioxidant potential of licorice extracts obtained through different extraction modes. J Food Biochem 2017. [DOI: 10.1111/jfbc.12466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muhammad Sohail
- National Institute of Food Science & Technology; University of Agriculture; Faisalabad Pakistan
| | - Allah Rakha
- National Institute of Food Science & Technology; University of Agriculture; Faisalabad Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology; University of Agriculture; Faisalabad Pakistan
| | - Muhammad Asghar
- Department of Biochemistry; University of Agriculture; Faisalabad Pakistan
| |
Collapse
|
20
|
Antioxidant Potential of Selected Korean Edible Plant Extracts. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7695605. [PMID: 29234683 PMCID: PMC5695029 DOI: 10.1155/2017/7695605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 01/09/2023]
Abstract
This study aimed to evaluate the antioxidant activity of various plant extracts. A total of 94 kinds of edible plant extracts obtained from the Korea Plant Extract Bank were screened for cytotoxicity, following which the total phenolic content of 24 shortlisted extracts was determined. Of these, extracts from three plants, namely, Castanea crenata (CC) leaf, Camellia japonica (CJ) fruit, and Viburnum dilatatum (VD) leaf, were examined for antioxidant capabilities by measuring radical scavenging activity, ferric reducing/antioxidant power, and lipid peroxidation inhibitory activity. In addition, cellular antioxidant activities of the three extracts were assessed by a cell-based dichlorofluorescein assay and antioxidant response element (ARE) reporter activity assay. The results demonstrated that all three extracts concentration-dependently scavenged free radicals, inhibited lipid peroxidation, reduced the cellular level of reactive oxygen species, and increased ARE-luciferase activity, indicating antioxidant enzyme-inducing potential. In particular, CJ extract showed significantly greater antioxidative activity and antimigratory effect in a breast cancer cell line compared to CC and VD extracts. Hence, CJ extract deserves further study for its in vivo functionality or biologically active constituents.
Collapse
|
21
|
Pharmacological Activities and Phytochemical Constituents. LIQUORICE 2017. [PMCID: PMC7120246 DOI: 10.1007/978-3-319-74240-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glycyrrhiza glabra is one of the most popular medicinal plants and it has been used in traditional herbal remedy since ancient times (Blumenthal et al. in Herbal medicine: expanded commission E monographs. Integrative Medicine Communications, Newton, 2000; Parvaiz et al. in Global J Pharmocol 8(1):8–13, 2014; Altay et al. in J Plant Res 129(6):1021–1032, 2016). Many experimental, pharmacological and clinical studies show that liquorice has antimicrobial, antibacterial, antiviral, antifungal, antihepatotoxic, antioxidant, antiulcer, anti-hemorrhoid antihyperglycemic, antidiuretic, antinephritic, anticarcinogenic, antimutagenic, anticytotoxic, anti-inflammatory, and blood stopper activity.
Collapse
|
22
|
Hataedock Treatment Has Preventive Therapeutic Effects in Atopic Dermatitis-Induced NC/Nga Mice under High-Fat Diet Conditions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1739760. [PMID: 27313639 PMCID: PMC4894994 DOI: 10.1155/2016/1739760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023]
Abstract
This study investigated the preventive therapeutic effects of Hataedock (HTD) treatment on inflammatory regulation and skin protection in AD-induced NC/Nga mice under high-fat diet conditions. Before inducing AD, the extract of Coptidis Rhizoma and Glycyrrhiza uralensis was administered orally to the 3-week-old mice. After that, AD-like skin lesions were induced by applying DNFB. All groups except the control group were fed a high-fat diet freely. We identified the effects of HTD on morphological changes, cytokine release and the induction of apoptosis through histochemistry, immunohistochemistry, and TUNEL assay. HTD downregulated the levels of IL-4 and PKC but increased the levels of LXR. HTD also suppressed the mast cell degranulation and release of MMP-9, Substance P. The levels of TNF-α, p-IκB, iNOS, and COX-2 were also decreased. The upregulation of inflammatory cell's apoptosis is confirmed by our results as increase of apoptotic body and cleaved caspase-3 and decrease of Bcl-2. HTD also reduced edema, angiogenesis, and skin lesion inflammation. Our results indicate HTD suppresses various inflammatory response on AD-induced mice with obesity through the regulation of Th2 differentiation and the protection of lipid barrier. Therefore, HTD could be used as an alternative and preventive therapeutic approach in the management of AD.
Collapse
|
23
|
Jung SK, Jeong CH. Dehydroglyasperin D Inhibits the Proliferation of HT-29 Human Colorectal Cancer Cells Through Direct Interaction With Phosphatidylinositol 3-kinase. J Cancer Prev 2016; 21:26-31. [PMID: 27051646 PMCID: PMC4819663 DOI: 10.15430/jcp.2016.21.1.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background: Despite recent advances in therapy, colorectal cancer still has a grim prognosis. Although licorice has been used in East Asian traditional medicine, the molecular properties of its constituents including dehydroglyasperin D (DHGA-D) remain unknown. We sought to evaluate the inhibitory effect of DHGA-D on colorectal cancer cell proliferation and identify the primary signaling molecule targeted by DHGA-D. Methods: We evaluated anchorage-dependent and -independent cell growth in HT-29 human colorectal adenocarcinoma cells. The target protein of DHGA-D was identified by Western blot analysis with a specific antibody, and direct interaction between DHGA-D and the target protein was confirmed by kinase and pull-down assays. Cell cycle analysis by flow cytometry and further Western blot analysis was performed to identify the signaling pathway involved. Results: DHGA-D significantly suppressed anchorage-dependent and -independent HT-29 colorectal cancer cell proliferation. DHGA-D directly suppressed phosphatidylinositol 3-kinase (PI3K) activity and subsequent Akt phosphorylation and bound to the p110 subunit of PI3K. DHGA-D also significantly induced G1 cell cycle arrest, together with the suppression of glycogen synthase kinase 3β and retinoblastoma phosphorylation and cyclin D1 expression. Conclusions: DHGA-D has potent anticancer activity and targets PI3K in human colorectal adenocarcinoma HT-29 cells. To our knowledge, this is the first report to detail the molecular basis of DHGA-D in suppressing colorectal cancer cell growth.
Collapse
Affiliation(s)
- Sung Keun Jung
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Seongnam, Keimyung University, Daegu, Korea; Food Biotechnology Program, Korea University of Science and Technology, Daejeon, Keimyung University, Daegu, Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, Korea
| |
Collapse
|
24
|
Hosseinzadeh H, Nassiri-Asl M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytother Res 2015; 29:1868-86. [PMID: 26462981 DOI: 10.1002/ptr.5487] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/25/2015] [Accepted: 09/15/2015] [Indexed: 01/26/2023]
Abstract
The roots and rhizomes of various species of the perennial herb licorice (Glycyrrhiza) are used in traditional medicine for the treatment of several diseases. In experimental and clinical studies, licorice has been shown to have several pharmacological properties including antiinflammatory, antiviral, antimicrobial, antioxidative, antidiabetic, antiasthma, and anticancer activities as well as immunomodulatory, gastroprotective, hepatoprotective, neuroprotective, and cardioprotective effects. In recent years, several of the biochemical, molecular, and cellular mechanisms of licorice and its active components have also been demonstrated in experimental studies. In this review, we summarized the new phytochemical, pharmacological, and toxicological data from recent experimental and clinical studies of licorice and its bioactive constituents after our previous published review.
Collapse
Affiliation(s)
- Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, P.O. Box: 341197-5981, Qazvin, Iran
| |
Collapse
|
25
|
Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 2015; 5:310-5. [PMID: 26579460 PMCID: PMC4629407 DOI: 10.1016/j.apsb.2015.05.005] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 12/17/2022] Open
Abstract
Licorice is a common herb which has been used in traditional Chinese medicine for centuries. More than 20 triterpenoids and nearly 300 flavonoids have been isolated from licorice. Recent studies have shown that these metabolites possess many pharmacological activities, such as antiviral, antimicrobial, anti-inflammatory, antitumor and other activities. This paper provides a summary of the antiviral and antimicrobial activities of licorice. The active components and the possible mechanisms for these activities are summarized in detail. This review will be helpful for the further studies of licorice for its potential therapeutic effects as an antiviral or an antimicrobial agent.
Collapse
Key Words
- Antimicrobial
- Antiviral
- CCEC, cerebral capillary vessel endothelial
- CCL5, chemokine (C-C motif) ligand 5
- CVA16, coxsackievirus A16
- CVB3, coxsackievirus B3
- CXCL10, chemokine, (C-X-C motif) ligand 10
- Chalcone
- DGC, dehydroglyasperin C
- DHV, duck hepatitis virus
- EV71, enterovirus 71
- GA, 18β-glycyrrhetinic acid
- GATS, glycyrrhizic acid trisodium salt
- GL, glycyrrhizin
- GLD, glabridin
- Glycyrrhetinic acid
- Glycyrrhizin
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HIV, human immunodeficiency virus
- HMGB1, high-mobility-group box1
- HRSV, human respiratory syncytial virus
- HSV, herpes simplex virus
- HSV1, herpes simplex virus type 1
- IFN, interferon
- IL-6, interleukin-6
- ISL, isoliquiritigenin
- LCA, licochalcone A
- LCE, licochalcone E
- LTG, liquiritigenin
- Licorice
- MRSA, methicillin-resistant Staphylococcus aureus
- MSSA, methicillin-sensitive Staphylococcus aureus
- MgIG, magnesium isoglycyrrhizinate
- PMN, polymorph nuclear
- PrV, pseudorabies virus
- TCM, traditional Chinese medicine
Collapse
|
26
|
Lee JH, Kim JE, Jang YJ, Lee CC, Lim TG, Jung SK, Lee E, Lim SS, Heo YS, Seo SG, Son JE, Kim JR, Lee CY, Lee HJ, Lee KW. Dehydroglyasperin C suppresses TPA-induced cell transformation through direct inhibition of MKK4 and PI3K. Mol Carcinog 2015; 55:552-62. [DOI: 10.1002/mc.22302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/26/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Ji Hoon Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Jong-Eun Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology; Seoul National University; Pyeongchang Republic of Korea
| | - Young Jin Jang
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Division of Creative Food Science for Health; Korea Food Research Institute; Seongnam Republic of Korea
| | - Charles C. Lee
- Department of Food Science and Technology; Cornell University; Ithaca NY 14456 USA
| | - Tae-Gyu Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Sung Keun Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Division of Creative Food Science for Health; Korea Food Research Institute; Seongnam Republic of Korea
| | - Eunjung Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Traditional Alcoholic Beverage Research Team; Korea Food Research Institute; Seongnam Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition; Hallym University; Chuncheon Republic of Korea
| | - Yong Seok Heo
- Department of Chemistry; Konkuk University; Seoul Republic of Korea
| | - Sang Gwon Seo
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Joe Eun Son
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Jong Rhan Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Chang Yong Lee
- Department of Food Science and Technology; Cornell University; Ithaca NY 14456 USA
- Department of Biochemistry; King Abdulaziz University; Jeddah SA
| | - Hyong Joo Lee
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology; Seoul National University; Pyeongchang Republic of Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology; Seoul National University; Pyeongchang Republic of Korea
- Institute on Aging; Seoul National University; Seoul Republic of Korea
| |
Collapse
|
27
|
Jung SK, Ha SJ, Kim YA, Lee J, Lim TG, Kim YT, Lee NH, Park JS, Yeom MH, Lee HJ, Lee KW. MLK3 is a novel target of dehydroglyasperin D for the reduction in UVB-induced COX-2 expression in vitro and in vivo. J Cell Mol Med 2015; 19:135-42. [PMID: 25176057 PMCID: PMC4288357 DOI: 10.1111/jcmm.12311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/31/2014] [Indexed: 12/03/2022] Open
Abstract
Dehydroglyasperin D (DHGA-D), a compound present in licorice, has been found to exhibit anti-obesity, antioxidant and anti-aldose reductase effects. However, the direct molecular mechanism and molecular targets of DHGA-D during skin inflammation remain unknown. In the present study, we investigated the effect of DHGA-D on inflammation and its mechanism of action on UVB-induced skin inflammation in HaCaT human keratinocytes and SKH-1 hairless mice. DHGA-D treatment strongly suppressed UVB-induced COX-2 expression, PGE2 generation and AP-1 transactivity in HaCaT cells without affecting cell viability. DHGA-D also inhibited phosphorylation of the mitogen-activated protein kinase kinase (MKK) 3/6/p38, MAPK/Elk-1, MKK4/c-Jun N-terminal kinase (JNK) 1/2/c-Jun/mitogen, and stress-activated protein kinase (MSK), whereas phosphorylation of the mixed-lineage kinase (MLK) 3 remained unaffected. Kinase and co-precipitation assays with DHGA-D Sepharose 4B beads showed that DHGA-D significantly suppressed MLK3 activity through direct binding to MLK3. Knockdown of MLK3 suppressed COX-2 expression as well as phosphorylation of MKK4/p38 and MKK3/6/JNK1/2 in HaCaT cells. Furthermore, Western blot assay and immunohistochemistry results showed that DHGA-D pre-treatment significantly inhibits UVB-induced COX-2 expression in vivo. Taken together, these results indicate that DHGA-D may be a promising anti-inflammatory agent that mediates suppression of both COX-2 expression and the MLK3 signalling pathway through direct binding and inhibition of MLK3.
Collapse
Affiliation(s)
- Sung Keun Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National UniversitySeoul, Korea
- Division of Metabolism and Functionality Research, Korea Food Research InstituteSeongnam, Korea
| | - Su Jeong Ha
- Division of Metabolism and Functionality Research, Korea Food Research InstituteSeongnam, Korea
| | - Yeong A Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National UniversitySeoul, Korea
| | - Jihoon Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National UniversitySeoul, Korea
| | - Tae-Gyu Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National UniversitySeoul, Korea
| | - Yun Tai Kim
- Division of Metabolism and Functionality Research, Korea Food Research InstituteSeongnam, Korea
| | - Nam Hyouck Lee
- Division of Metabolism and Functionality Research, Korea Food Research InstituteSeongnam, Korea
| | - Jun Seong Park
- Skin Research Institute, Amorepacific R&D CenterYongin, Korea
| | - Myeong-Hun Yeom
- Skin Research Institute, Amorepacific R&D CenterYongin, Korea
| | - Hyong Joo Lee
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology, Seoul National UniversityPyeongchang, Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National UniversitySeoul, Korea
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology, Seoul National UniversityPyeongchang, Korea
- Advanced Institutes of Convergence Technology, Seoul National UniversitySuwon, Korea
| |
Collapse
|
28
|
HPLC–DAD–MS/MS identification and HPLC–ABTS·+ on-line antioxidant activity evaluation of bioactive compounds in liquorice (Glycyrrhiza uralensis Fisch.) extract. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2407-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Ouyang M, Liu Y, Tan W, Xiao Y, Yu K, Sun X, Huang Y, Cheng J, Luo R, Zhao X. Bu-zhong-yi-qi pill alleviate the chemotherapy-related fatigue in 4 T1 murine breast cancer model. Altern Ther Health Med 2014; 14:497. [PMID: 25511260 PMCID: PMC4300826 DOI: 10.1186/1472-6882-14-497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 12/10/2014] [Indexed: 11/21/2022]
Abstract
Background Paclitaxel induced fatigue still remains underrecognized and undertreated, partly because of limited understanding of its pathophysiology and lack of effective treatments. This study is aim to evaluate the anti-fatigue effects and mechanism of Bu-Zhong-Yi-Qi pill in murine 4 T1 breast cancer mice were treated with paclitaxel. Methods Breast cancer mice established with murine 4 T1 cells were randomly and repectively divided into five groups: negative control group (NC), tumor control group (TC), paclitaxel group (PTX), Bu-Zhong-Yi-Qi pill group (BZYQ) and Bu-Zhong-Yi-Qi pill plus paclitaxel group (BZYQ + PTX). The mice were administered for 21 days. During this period, the tumor volume, body weight and the weight-loaded swimming time were measured. After the last administration, all mice were sacrificed, weighted the tumor, measured immune cell cytokines and oxidative stress indicator. The remaining 10 mice in each group were observed for survival analysis. Results Treatments with BZYQ + PTX and PTX significantly reduced the rates of tumor volume in comparison with TC starting on the 9th day and the 18th day respectively (P < 0.05-0.01), and presented decreased tumor weight compared to TC (P < 0.05-0.01). Compared with mice in TC group, the median survival time and the average survival time in BZYQ + PTX group, BZYQ group and PTX group were significantly prolonged (P < 0.05-0.01). The swimming time of the BZYQ + PTX group gradually increased, which is longer than the PTX group on Day 14 and Day 21 (P < 0.01). The level of TNF-α was lower in BZYQ + PTX group than PTX group (P < 0.01). The level of SOD activity in BZYQ + PTX group was lower than the NC group (P <0.01), but much higher than the PTX group (P < 0.01). The level of MDA of BZYQ + PTX group was higher than the NC group (P < 0.01), but significant lower than the PTX group (P < 0.01). Conclusions BZYQ has the potential of alleviating paclitaxel chemotherapy-related fatigue in 4 T1 breast cancer mice by reducing the serum levels of TNF-α and modulating the level of MDA and the SOD activity.
Collapse
|
30
|
Yang R, Wang LQ, Liu Y. Antitumor Activities of Widely-used Chinese Herb—Licorice. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
31
|
Protective effects of dehydroglyasperin c against carbon tetrachloride-induced liver damage in mice. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0075-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
32
|
Kao TC, Wu CH, Yen GC. Bioactivity and potential health benefits of licorice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:542-53. [PMID: 24377378 DOI: 10.1021/jf404939f] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Licorice is an herbal plant named for its unique sweet flavor. It is widely used in the food and tobacco industries as a sweetener. Licorice is also used in traditional Chinese medicine (TCM) and complementary medicine. Because the use of licorice has long been a part of TCM, the details of its therapeutic applications have been thoroughly established. In modern science, licorice is of interest because of its broad range of applications. Extracts of and compounds isolated from licorice have been well studied and biologically characterized. In this review, we discuss the nutraceutical and functional activities of licorice as well as those of the extracts of and the isolated compounds from licorice, including agents with anti-inflammatory activity, cell-protective abilities, and chemopreventive effects. The side effects of licorice are also enumerated. A comparison of the activities of licorice described by modern science and TCM is also presented, revealing the correspondence of certain characteristics.
Collapse
Affiliation(s)
- Tzu-Chien Kao
- Department of Food Science and Biotechnology, National Chung Hsing University , 250 Kuokuang Road, Taichung 402, Taiwan
| | | | | |
Collapse
|