1
|
Hazrati A, Mirarefin SMJ, Malekpour K, Rahimi A, Khosrojerdi A, Rasouli A, Akrami S, Soudi S. Mesenchymal stem cell application in pulmonary disease treatment with emphasis on their interaction with lung-resident immune cells. Front Immunol 2024; 15:1469696. [PMID: 39582867 PMCID: PMC11581898 DOI: 10.3389/fimmu.2024.1469696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Due to the vital importance of the lungs, lung-related diseases and their control are very important. Severe inflammatory responses mediated by immune cells were among the leading causes of lung tissue pathology and damage during the COVID-19 pandemic. In addition, uncontrolled immune cell responses can lead to lung tissue damage in other infectious and non-infectious diseases. It is essential to control immune responses in a way that leads to homeostasis. Immunosuppressive drugs only suppress inflammatory responses and do not affect the homeostasis of reactions. The therapeutic application of mesenchymal stem cells (MSCs), in addition to restoring immune homeostasis, can promote the regeneration of lung tissue through the production of growth factors and differentiation into lung-related cells. However, the communication between MSCs and immune cells after treatment of pulmonary diseases is essential, and investigating this can help develop a clinical perspective. Different studies in the clinical phase showed that MSCs can reverse fibrosis, increase regeneration, promote airway remodeling, and reduce damage to lung tissue. The proliferation and differentiation potential of MSCs is one of the mechanisms of their therapeutic effects. Furthermore, they can secrete exosomes that affect the function of lung cells and immune cells and change their function. Another important mechanism is that MSCs reduce harmful inflammatory responses through communication with innate and adaptive immune cells, which leads to a shift of the immune system toward regulatory and hemostatic responses.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ashkan Rasouli
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Peng YQ, Deng XH, Xu ZB, Wu ZC, Fu QL. Mesenchymal stromal cells and their small extracellular vesicles in allergic diseases: From immunomodulation to therapy. Eur J Immunol 2023; 53:e2149510. [PMID: 37572379 DOI: 10.1002/eji.202149510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Mesenchymal stromal cells (MSCs) have long been considered a potential tool for treatment of allergic inflammatory diseases, owing to their immunomodulatory characteristics. In recent decades, the medical utility of MSCs has been evaluated both in vitro and in vivo, providing a foundation for therapeutic applications. However, the existing limitations of MSC therapy indicate the necessity for novel therapies. Notably, small extracellular vesicles (sEV) derived from MSCs have emerged rapidly as candidates instead of their parental cells. The acquisition of abundant and scalable MSC-sEV is an obstacle for clinical applications. The potential application of MSC-sEV in allergic diseases has attracted increasing attention from researchers. By carrying biological microRNAs or active proteins, MSC-sEV can modulate the function of various innate and adaptive immune cells. In this review, we summarise the recent advances in the immunomodulatory properties of MSCs in allergic diseases, the cellular sources of MSC-sEV, and the methods for obtaining high-quality human MSC-sEV. In addition, we discuss the immunoregulatory capacity of MSCs and MSC-sEV for the treatment of asthma, atopic dermatitis, and allergic rhinitis, with a special emphasis on their immunoregulatory effects and the underlying mechanisms of immune cell modulation.
Collapse
Affiliation(s)
- Ya-Qi Peng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Adamič N, Vengust M. Regenerative medicine in lung diseases: A systematic review. Front Vet Sci 2023; 10:1115708. [PMID: 36733636 PMCID: PMC9887049 DOI: 10.3389/fvets.2023.1115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Regenerative medicine has opened the door to the exploration of new therapeutic methods for the treatment of various diseases, especially those associated with local or general disregulation of the immune system. In pulmonary diseases, new therapeutic strategies have emerged that are aimed at restoring functional lung tissue rather than alleviating symptoms. These strategies focus on tissue regeneration using stem cells and/or their derivatives or replacement of dysfunctional tissue using biomedical engineering. Animal health can directly benefit from regenerative therapy strategies and also serve as a translational experimental model for human disease. Several clinical trials have been conducted to evaluate the effects of cellular treatment on inflammatory lung disease in animals. Data reported to date show several beneficial effects in ex vivo and in vivo models; however, our understanding of the mechanisms that regenerative therapies exert on diseased tissues remains incomplete.
Collapse
|
4
|
Effects of human adipose tissue- and bone marrow-derived mesenchymal stem cells on airway inflammation and remodeling in a murine model of chronic asthma. Sci Rep 2022; 12:12032. [PMID: 35835804 PMCID: PMC9283392 DOI: 10.1038/s41598-022-16165-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022] Open
Abstract
It is challenging to overcome difficult-to-treat asthma, and cell-based therapies are attracting increasing interest. We assessed the effects of mesenchymal stem cell (MSC) treatments using a murine model of chronic ovalbumin (OVA)-challenged asthma. We developed a murine model of chronic allergic asthma using OVA sensitization and challenge. Human adipose-derived MSCs (hADSCs) or human bone marrow-derived MSCs (hBMSCs) were administered. We measured the levels of resistin-like molecule-β (RELM-β). We also measured RELM-β in asthma patients and normal controls. OVA-challenged mice exhibited increased airway hyper-responsiveness, inflammation, and remodeling. hBMSC treatment remarkably decreased airway hyper-responsiveness but hADSC treatment did not. Both MSCs alleviated airway inflammation, but hBMSCs tended to have a more significant effect. hBMSC treatment reduced Th2-cytokine levels but hADSC treatment did not. Both treatments reduced airway remodeling. The RELM-β level decreased in the OVA-challenged control group, but increased in both treatment groups. We found that the serum level of RELM-β was lower in asthma patients than controls. MSC treatments alleviated the airway inflammation, hyper-responsiveness, and remodeling associated with chronic asthma. hBMSCs were more effective than hADSCs. The RELM-β levels increased in both treatment groups; the RELM-β level may serve as a biomarker of MSC treatment efficacy.
Collapse
|
5
|
Adamič N, Prpar Mihevc S, Blagus R, Kramarič P, Krapež U, Majdič G, Viel L, Hoffman AM, Bienzle D, Vengust M. Effect of intrabronchial administration of autologous adipose-derived mesenchymal stem cells on severe equine asthma. Stem Cell Res Ther 2022; 13:23. [PMID: 35063028 PMCID: PMC8777441 DOI: 10.1186/s13287-022-02704-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Severe equine asthma (SEA) is a common chronic respiratory disease and a significant health and well-being problem in horses. Current therapeutic strategies improve pulmonary function and clinical signs in some horses, but in the long-term, return to full athletic function appears to be rare. The aim of this study was to assess the safety and the effect of intrabronchial administration of adipose-derived mesenchymal stem cells (AD-MSC) on pulmonary inflammatory and clinical parameters in horses with SEA. METHODS This was a randomized controlled trial. Twenty adult horses diagnosed with SEA were randomly divided into two groups (n = 10), and treated either with a single intrabronchial application of autologous AD-MSC or oral dexamethasone for three weeks. A targeted clinical examination with determination of clinical score, maximal change in pleural pressure during the breathing cycle, and an endoscopic examination of the airways were performed at baseline and three weeks after treatment. Bronchoalveolar lavage fluid was analyzed cytologically, and IL-1β, IL-4, IL-8, IL-17, TNFα and IFNγ mRNA and protein concentrations were measured at baseline and three weeks. The horses were then monitored over one year for recurrence of SEA. A non-inferiority analysis and a linear mixed-effects model were performed to assess differences between treatments. RESULTS The non-inferiority of AD-MSC treatment was not established. However, AD-MSC administration significantly ameliorated the clinical score (P = 0.01), decreased the expression of IL-17 mRNA (P = 0.05) and IL-1β (P ≤ 0.001), IL-4 (P ≤ 0.001), TNFα (P = 0.02) protein levels, and had a positive long-term effect on SEA-associated clinical signs (P = 0.02). CONCLUSIONS Intrabronchial administration of AD-MSC had limited short-term anti-inflammatory effects but improved the clinical signs of SEA at one year.
Collapse
Affiliation(s)
- Neža Adamič
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | | | - Rok Blagus
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Petra Kramarič
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Laurent Viel
- Clinical Studies, University of Guelph, Guelph, ON, Canada
| | - Andrew M Hoffman
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Modest Vengust
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Shin JW, Ryu S, Ham J, Jung K, Lee S, Chung DH, Kang HR, Kim HY. Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells. Mol Cells 2021; 44:580-590. [PMID: 34462397 PMCID: PMC8424137 DOI: 10.14348/molcells.2021.0101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Patients with severe asthma have unmet clinical needs for effective and safe therapies. One possibility may be mesenchymal stem cell (MSC) therapy, which can improve asthma in murine models. However, it remains unclear how MSCs exert their beneficial effects in asthma. Here, we examined the effect of human umbilical cord blood-derived MSCs (hUC-MSC) on two mouse models of severe asthma, namely, Alternaria alternata-induced and house dust mite (HDM)/diesel exhaust particle (DEP)-induced asthma. hUC-MSC treatment attenuated lung type 2 (Th2 and type 2 innate lymphoid cell) inflammation in both models. However, these effects were only observed with particular treatment routes and timings. In vitro co-culture showed that hUC-MSC directly downregulated the interleukin (IL)-5 and IL-13 production of differentiated mouse Th2 cells and peripheral blood mononuclear cells from asthma patients. Thus, these results showed that hUC-MSC treatment can ameliorate asthma by suppressing the asthmogenic cytokine production of effector cells. However, the successful clinical application of MSCs in the future is likely to require careful optimization of the route, dosage, and timing.
Collapse
Affiliation(s)
- Jae Woo Shin
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seungwon Ryu
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Keehoon Jung
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
7
|
Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, Mohd Isa SA, Chatar Singh GK, Then KY, Ooi GC, Yahaya BH. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Res Ther 2021; 12:54. [PMID: 33436065 PMCID: PMC7805108 DOI: 10.1186/s13287-020-02088-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an incurable and debilitating chronic disease characterized by progressive airflow limitation associated with abnormal levels of tissue inflammation. Therefore, stem cell-based approaches to tackle the condition are currently a focus of regenerative therapies for COPD. Extracellular vesicles (EVs) released by all cell types are crucially involved in paracrine, extracellular communication. Recent advances in the field suggest that stem cell-derived EVs possess a therapeutic potential which is comparable to the cells of their origin. METHODS In this study, we assessed the potential anti-inflammatory effects of human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs in a rat model of COPD. EVs were isolated from hUC-MSCs and characterized by the transmission electron microscope, western blotting, and nanoparticle tracking analysis. As a model of COPD, male Sprague-Dawley rats were exposed to cigarette smoke for up to 12 weeks, followed by transplantation of hUC-MSCs or application of hUC-MSC-derived EVs. Lung tissue was subjected to histological analysis using haematoxylin and eosin staining, Alcian blue-periodic acid-Schiff (AB-PAS) staining, and immunofluorescence staining. Gene expression in the lung tissue was assessed using microarray analysis. Statistical analyses were performed using GraphPad Prism 7 version 7.0 (GraphPad Software, USA). Student's t test was used to compare between 2 groups. Comparison among more than 2 groups was done using one-way analysis of variance (ANOVA). Data presented as median ± standard deviation (SD). RESULTS Both transplantation of hUC-MSCs and application of EVs resulted in a reduction of peribronchial and perivascular inflammation, alveolar septal thickening associated with mononuclear inflammation, and a decreased number of goblet cells. Moreover, hUC-MSCs and EVs ameliorated the loss of alveolar septa in the emphysematous lung of COPD rats and reduced the levels of NF-κB subunit p65 in the tissue. Subsequent microarray analysis revealed that both hUC-MSCs and EVs significantly regulate multiple pathways known to be associated with COPD. CONCLUSIONS In conclusion, we show that hUC-MSC-derived EVs effectively ameliorate by COPD-induced inflammation. Thus, EVs could serve as a new cell-free-based therapy for the treatment of COPD.
Collapse
Affiliation(s)
- Noridzzaida Ridzuan
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Norashikin Zakaria
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine, School of Pharmacy, University of Reading, Reading, RG6 6AP, UK
| | - Jonathan Sheard
- Stem Cell Biology and Regenerative Medicine, School of Pharmacy, University of Reading, Reading, RG6 6AP, UK
| | - Mitsuru Morimoto
- RIKEN Centre for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hirofumi Kiyokawa
- RIKEN Centre for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Seoparjoo Azmel Mohd Isa
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Malaysia
| | - Gurjeet Kaur Chatar Singh
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Kong-Yong Then
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Ghee-Chien Ooi
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
8
|
Yu X, Yu L, Guo B, Chen R, Qiu C. A narrative review of research advances in mesenchymal stem cell therapy for asthma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1461. [PMID: 33313206 PMCID: PMC7723541 DOI: 10.21037/atm-20-6389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways that involves multiple cells, including inflammatory cells, structural cells, and cellular components. Glucocorticoids and beta-receptor agonists are still the first choices for asthma treatment. However, the asthma symptoms may still be poorly controlled in some patients after an optimal treatment. Mesenchymal stem cells (MSCs) are characterized by the potential for multi-directional differentiation and can exert immunomodulatory and anti-inflammatory effects. Its role in treating asthma has increasingly been recognized in recent years. In this review article, we sought to summarize the recent advances in the therapeutic effects of MSCs on several types of asthma and explain the relevant mechanisms. Articles on asthma treatment with MSCs as of January 2020 were searched in PubMed, Google Scholar, and Web of Science databases. It was found that MSCs have therapeutic effects on allergic asthma, non-allergic asthma and occupational asthma; gene-modified or pretreated MSCs improves the therapeutic effects of MSCs in asthma; MSC-derived conditioned medium or extracellular vesicles possess the considerable curative effect as MSC on asthma; and MSCs exert their therapeutic effects on asthma by restoring Th1/Th2 balance, reversing Th17/Tregs imbalance, inhibiting DC maturation, and promoting the switch of M1 to M2 and repairing epithelial injury. Thus, MSCs may be a promising treatment for asthma.
Collapse
Affiliation(s)
- Xiu Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University & First Affiliated Hospital of Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Li Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University & First Affiliated Hospital of Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Bingxin Guo
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University & First Affiliated Hospital of Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Rongchang Chen
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University & First Affiliated Hospital of Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University & First Affiliated Hospital of Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| |
Collapse
|
9
|
Halim NSS, Ch'ng ES, Kardia E, Ali SA, Radzi R, Yahaya BH. Aerosolised Mesenchymal Stem Cells Expressing Angiopoietin-1 Enhances Airway Repair. Stem Cell Rev Rep 2020; 15:112-125. [PMID: 30178289 DOI: 10.1007/s12015-018-9844-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effects of MSCs and MSC-expressing ANGPT1 (MSC-pANGPT1) treatment via aerosolisation in alleviating the asthma-related airway inflammation in the rabbit model. METHODS Rabbits were sensitised and challenged with both intraperitoneal injection and inhalation of ovalbumin (Ova). MSCs and MSC-pANGPT1 cells were aerosolised into rabbit lungs using the MicroSprayer® Aerosolizer Model IA-1B 48 h after injury. The post mortem was performed 3 days following cell delivery. Histopathological assessments of the lung tissues and inflammatory response were quantitatively scored following treatments. RESULT(S) Administration of aerosolised MSCs and MSC-pANGPT1 were significantly reduced inflammation of the airways (p < 0.001), as reflected by improved of structural changes such as thickness of the basement membrane, epithelium, mucosa and sub-mucosa regions. The airway inflammation score of both treatment groups revealed a significant reduction of inflammation and granulocyte infiltration at the peribronchiale and perivascular regions (p < 0.05). Administration of aerosolised MSCs alone was resulted in significant reduction in the levels of pro-inflammatory genes (IL-4 and TGF-β) while treatment with aerosolised MSC-pANGPT1 led to further reduction of various pro-inflammatory genes to the base-line values (IL4, TNF, MMP9 and TGF-β). Treatment with both aerosolised MSCs and MSC-pANGPT1 cells was also alleviated the number of airway inflammatory cells in the bronchoalveolar lavage (BAL) fluid and goblet cell hyperplasia. CONCLUSION(S) Our findings suggest that treatment with MSCs alone attenuated airway inflammation and structural changes of the airway. Treatment with MSC-pANGPT1 provided an additional effect in reducing the expression levels of various pro-inflammatory genes. Both of these treatment enhancing airway repair and therefore may provide a basis for the development of an innovative approach for the treatment and prevention of airway inflammatory diseases.
Collapse
Affiliation(s)
- N S S Halim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - E S Ch'ng
- Oncological and Radiological Science Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - E Kardia
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - S A Ali
- Oncological and Radiological Science Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - R Radzi
- Animal Research Facilities, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia
| | - B H Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
| |
Collapse
|
10
|
Hur J, Kang JY, Kim YK, Lee SY, Jeon S, Kim Y, Jung CK, Rhee CK. Evaluation of Human MSCs Treatment Frequency on Airway Inflammation in a Mouse Model of Acute Asthma. J Korean Med Sci 2020; 35:e188. [PMID: 32537953 PMCID: PMC7295606 DOI: 10.3346/jkms.2020.35.e188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Studies in experimental models of allergic asthma have shown that mesenchymal stem cells (MSCs) have therapeutic potential for T-helper 2 (TH2) cell-mediated inflammation. However, the mechanisms underlying these therapeutic effects are not fully understood and their safety has not been confirmed. METHODS Using a mouse model of experimental allergic asthma, we investigated the efficacy of human adipose-derived mesenchymal stem cells (hADSCs) or human bone marrow-derived mesenchymal stem cells (hBMSCs) according to treatment frequency and timing. RESULTS Ovalbumin (OVA)-sensitized and -challenged mice exhibited airway hyperresponsiveness (AHR), airway inflammation, and significant increases in TH2 cytokine levels. Both double and single human mesenchymal stem cell (hMSC) treatments significantly decreased AHR and bronchoalveolar lavage fluid counts. In addition, single treatment with hMSCs showed significant attenuation of allergic airway inflammation. However, double treatment with hMSCs during OVA -sensitization and -challenge further increased inflammatory cell infiltration, and TH2 cytokine levels. CONCLUSION The results of treatment with hADSCs or hBMSCs suppresses AHR and airway inflammation. However, double hMSC treatment significantly induces eosinophilic airway inflammation and lung histological changes. Therefore, double hMSC treatment is ineffective against asthma and single injection frequency appears to be more important for the treatment of asthma. These results suggest that hMSC therapy can be used for treatment of asthma patients but that it should be used carefully.
Collapse
Affiliation(s)
- Jung Hur
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Young Kang
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Kyoon Kim
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Young Lee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sora Jeon
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yourha Kim
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Chin Kook Rhee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
11
|
Yen BL, Yen ML, Wang LT, Liu KJ, Sytwu HK. Current status of mesenchymal stem cell therapy for immune/inflammatory lung disorders: Gleaning insights for possible use in COVID-19. Stem Cells Transl Med 2020; 9:1163-1173. [PMID: 32526079 PMCID: PMC7300965 DOI: 10.1002/sctm.20-0186] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 01/08/2023] Open
Abstract
The broad immunomodulatory properties of human mesenchymal stem cells (MSCs) have allowed for wide application in regenerative medicine as well as immune/inflammatory diseases, including unmatched allogeneic use. The novel coronavirus disease COVID‐19 has unleashed a pandemic in record time accompanied by an alarming mortality rate mainly due to pulmonary injury and acute respiratory distress syndrome. Because there are no effective preventive or curative therapies currently, MSC therapy (MSCT) has emerged as a possible candidate despite the lack of preclinical data of MSCs for COVID‐19. Interestingly, MSCT preclinical data specifically on immune/inflammatory disorders of the lungs were among the earliest to be reported in 2003, with the first clinical use of MSCT for graft‐vs‐host disease reported in 2004. Since these first reports, preclinical data showing beneficial effects of MSC immunomodulation have accumulated substantially, and as a consequence, over a third of MSCT clinical trials now target immune/inflammatory diseases. There is much preclinical evidence for MSCT in noninfectious—including chronic obstructive pulmonary disease, asthma, and idiopathic pulmonary fibrosis—as well as infectious bacterial immune/inflammatory lung disorders, with data generally demonstrating therapeutic effects; however, for infectious viral pulmonary conditions, the preclinical evidence is more scarce with some inconsistent outcomes. In this article, we review the mechanistic evidence for clinical use of MSCs in pulmonary immune/inflammatory disorders, and survey the ongoing clinical trials—including for COVID‐19—of MSCT for these diseases, with some perspectives and comment on MSCT for COVID‐19.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan.,Department & Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
12
|
Akkoç T, Genç D. Asthma immunotherapy and treatment approaches with mesenchymal stem cells. Immunotherapy 2020; 12:665-674. [PMID: 32489107 DOI: 10.2217/imt-2019-0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways where exaggerated T helper 2 immune responses and inflammatory mediators play a role. Current asthma treatment options can effectively suppress symptoms and control the inflammatory process; however, cannot modulate the dysregulated immune response. Allergen-specific immunotherapy is one of the effective treatments capable of disease modification. Injecting allergens under the skin in allergen-specific immunotherapy can reduce asthma and improve the sensitivity of the lungs, however, has a risk of severe reactions. Mesenchymal stem cells have immunoregulatory activity with their soluble mediators and contact dependent manner. In this review, we focus on the current treatment strategies with mesenchymal stem cells in asthma as a new therapeutic tool and compare those with immunotherapy.
Collapse
Affiliation(s)
- Tunç Akkoç
- Department of Pediatric Allergy & Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Deniz Genç
- Department of Pediatric Health & Diseases, Faculty of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
13
|
Li H, Tian Y, Xie L, Liu X, Huang Z, Su W. Mesenchymal stem cells in allergic diseases: Current status. Allergol Int 2020; 69:35-45. [PMID: 31445840 DOI: 10.1016/j.alit.2019.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases, which include asthma, allergic skin diseases, allergic rhinitis and allergic conjunctivitis, have already garnered worldwide public health attention over recent decades. Mesenchymal stem cells (MSCs) have gradually emerged as a potential method for treating allergic diseases due to their immunosuppressive characteristics, tissue repair ability and secretion of various biological factors. This potential of MSC-based therapy has been confirmed in clinical and preclinical studies, which report the therapeutic benefits of MSCs for various allergic diseases and explore the antiallergic mechanisms. In this review, we focus on the discoveries and biological mechanisms of MSCs as a therapeutic tool in allergic diseases. We discuss the challenges of conducting MSC studies as well as future directions.
Collapse
|
14
|
Lin SC, Liou YM, Ling TY, Chuang YH, Chiang BL. Placenta-Derived Mesenchymal Stem Cells Reduce the Interleukin-5 Level Experimentally in Children with Asthma. Int J Med Sci 2019; 16:1430-1438. [PMID: 31673233 PMCID: PMC6818200 DOI: 10.7150/ijms.33590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) have been investigated as a new treatment option for various diseases in recent years. However, the role of placenta-derived MSCs in children with asthma remains unclear. We assessed the effect of placenta-derived MSCs on T cell immune responses and cytokine IL-5 levels according to cultures in children with and without asthma. Study design: We enrolled children with and without asthma and recorded asthma symptom scores in the asthma group. Blood samples from children were collected to isolate peripheral blood mononuclear cells (PBMCs) and determine the total IgE level. The PBMCs were cultured in vitro with or without MSCs after stimulation with human anti-CD3 and anti-CD28 antibodies (0.5 μg/mL) to evaluate the effect of placenta-derived MSCs. Flow cytometry was performed to detect the activation and proliferation of CD4+ and CD8+ T cells. Pre- and post-culture IL-5 levels were measured in all samples. Results: The percentages of activation and proliferation among CD4+ and CD8+ T cells after coculture with MSCs were significantly lower in the asthma group (P < 0.05). IL-5 levels differed significantly between the PBMC culture and PBMC + MSC (P+S) coculture in the asthma group (P < 0.05). IL-5 levels differed significantly between the PBMC culture and P+S coculture in both the lower (P < 0.05) and higher (P < 0.0005) IgE asthma subgroups. IL-5 levels were also decreased in children with all severities of asthma (P < 0.05). Conclusions: Placenta-derived MSCs exerted an anti-IL-5 effect and reduced the IL-5 level in culture in different subgroups of children with asthma.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yih-Mei Liou
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Thai-Yen Ling
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Pollaris L, Van Den Broucke S, Decaesteker T, Cremer J, Seys S, Devos FC, Provoost S, Maes T, Verbeken E, Vande Velde G, Nemery B, Hoet PHM, Vanoirbeek JAJ. Dermal exposure determines the outcome of repeated airway exposure in a long-term chemical-induced asthma-like mouse model. Toxicology 2019; 421:84-92. [PMID: 31071364 DOI: 10.1016/j.tox.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/24/2019] [Accepted: 05/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Exposure to diisocyanates is an important cause of occupational asthma (OA) in the industrialized world. Since OA occurs after long-term exposure to diisocyanates, we developed a chronic mouse model of chemical-induced asthma where toluene diisocyanate (TDI) was administered at two different exposure sites. OBJECTIVES Evaluating the effect of long-term respiratory isocyanate exposure - with or without prior dermal exposure- on sensitization, inflammatory responses and airway hyperreactivity (AHR). METHODS On days 1 and 8, BALB/c mice were dermally treated (20 μl/ear) with 0.5% 2,4-toluene diisocyanate TDI or the vehicle acetone olive oil (AOO) (3:2). Starting from day 15, mice received intranasal instillations with 0.1% TDI of vehicle five times in a week, for five successive weeks. One day after the last instillation airway hyperreactivity (AHR) to methacholine was assessed, followed by an evaluation of pulmonary inflammation and structural lung changes. Immune-related parameters were assessed in the lungs (BAL and tissue), blood, cervical- and auricular lymph nodes. RESULTS Mice repeatedly intranasally exposed to TDI showed systemic sensitization and a mixed Th1/Th2 type immune response, without the presence of AHR. However, when mice are first dermally sensitized with TDI, followed by repeated intranasal TDI challenges, this results in a pronounced Th2 response and AHR. CONCLUSION Dermal exposure to TDI determines airway hyperreactivity after repeated airway exposure to TDI.
Collapse
Affiliation(s)
- Lore Pollaris
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Sofie Van Den Broucke
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Tatjana Decaesteker
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Sven Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Fien C Devos
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Sharen Provoost
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Erik Verbeken
- Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | | | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Peter H M Hoet
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Lange-Consiglio A, Stucchi L, Zucca E, Lavoie JP, Cremonesi F, Ferrucci F. Insights into animal models for cell-based therapies in translational studies of lung diseases: Is the horse with naturally occurring asthma the right choice? Cytotherapy 2019; 21:525-534. [PMID: 30929991 DOI: 10.1016/j.jcyt.2019.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
Human asthma is a widespread disease associated with chronic inflammation of the airways, leading to loss of quality of life, disability and death. Corticosteroid administration is the mainstream treatment for asthmatic patients. Corticosteroids reduce airway obstruction and improve quality of life, although symptoms persist despite treatment in many patients. Moreover, available therapies failed to reverse the lung pathology present in asthma. Animal models, mostly rats and mice, in which the disease is experimentally induced, have been studied to identify new therapeutic targets for human asthma. Alternative animal models could include horses in which naturally occurring asthma could represent an important step to test therapies, potentially designed around mouse studies, before being translated to human testing. Horses naturally suffer from asthma, which has striking parallels with human asthma. Severe equine asthma (SEA) is characterized by reversible bronchospasms and neutrophil accumulation in the lungs immunologically mediated mainly by Th2. Moreover, the pulmonary remodelling that occurs in SEA closely resembles that of human asthma, making the equine model unique for investigation of tissue repair and new therapies. Cell therapy, consisting on mesenchymal stromal cells (MSCs) and derivatives (conditioned medium and extracellular vesicles), could represent a novel therapeutic contribution for tissue regeneration. Cell therapy may prove advantageous over conventional therapy in that it may repair or regenerate the site of injury and reduce the reaction to allergens, rather than simply modulating the inflammatory process.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy; Reproduction Unit, Centro Clinico-Veterinario e Zootecnico Sperimentale di Ateneo, Università degli Studi di Milano, Lodi, Italy.
| | - Luca Stucchi
- Equine Medicine Unit, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Enrica Zucca
- Equine Medicine Unit, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Jean Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Fausto Cremonesi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy; Reproduction Unit, Centro Clinico-Veterinario e Zootecnico Sperimentale di Ateneo, Università degli Studi di Milano, Lodi, Italy
| | - Francesco Ferrucci
- Equine Medicine Unit, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
17
|
Zhang LB, He M. Effect of mesenchymal stromal (stem) cell (MSC) transplantation in asthmatic animal models: A systematic review and meta-analysis. Pulm Pharmacol Ther 2018; 54:39-52. [PMID: 30496803 DOI: 10.1016/j.pupt.2018.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/17/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Over the years, mesenchymal stromal (stem) cells (MSCs) have been pre-clinically applied in the treatment of variety kinds of diseases including asthma and chronic lung diseases. Aim of the current study was to systematically review and to conduct meta-analysis on the published studies of MSC treatment in asthma animal models. METHODS Publications on the MSC and asthma treatment was thoroughly searched in the electronic databases. Statistical analysis was then performed using the Comprehensive Meta-Analysis software (Version 3). Effect of MSC therapy on asthma model was assessed by Hedges's g with 95% confidence intervals (95% CIs). Random effect model was used due to the heterogeneity between the studies. RESULTS Meta-analysis of the 32 included studies showed that MSC transplantation was significantly in favor of attenuating lung injury and remodeling (Hedges's g = -9.104 ± 0.951 with 95% CI: -10.969 ∼ -7.240, P < 0.001) and airway inflammation (Hedges's g = -4.146 ± 0.688 with 95% CI: -5.495 ∼ -2.797, P < 0.001). The mechanism of MSC therapy in asthma seems to be regulating the balance of Th1 cytokine and Th2 cytokines (IFN-γ: Hedges's g = 4.779 ± 1.408 with 95% CI: 1.099-2.725, P < 0.001; IL-4: Hedges's g = -10.781 ± 1.062 with 95% CI: -12.863 ∼ -8.699, P < 0.001; IL-5: Hedges's g = -10.537 ± 1.269 with 95% CI: -13.025 ∼ -8.050, P < 0.001; IL-13: Hedges's g = -6.773 ± 0.788 with 95% CI: -8.318 ∼ -5.229, P < 0.001). CONCLUSION Findings of the current systemic review suggested a potential role for MSCs in asthma treatment although it is still challenging in clinical practice. The mechanisms of MSCs in pre-clinical asthma treatment may be associated with attenuating airway inflammation through regulating Th1 and Th2 cytokines.
Collapse
Affiliation(s)
- Li-Bo Zhang
- Department of Respiratory Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Min He
- Department of Respiratory Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
18
|
Zou W, Liu G, Zhang J. Secretome from bone marrow mesenchymal stem cells: A promising, cell-free therapy for allergic rhinitis. Med Hypotheses 2018; 121:124-126. [PMID: 30396464 DOI: 10.1016/j.mehy.2018.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 09/09/2018] [Indexed: 12/18/2022]
Abstract
Allergic rhinitis (AR), characterized by the symptoms of sneezing, rhinorrhea, itchiness and nasal blockage, is a type I allergic disease of nasal mucosa, which is mainly mediated by IgE after exposure to allergens. At present, general drug therapy is limited to alleviating allergic symptoms but fails to regulate the allergic reaction; the recurrence of symptoms and the side effects of the drugs make many patients with AR resist treatments and bring serious impacts on the quality of life. Bone marrow mesenchymal stem cells (BMSCs) are a population of adult stem cells with multipotential differentiation capability, low immunogenicity, and immunoregulatory effects. The unique immunoregulatory properties of BMSCs make them hold great promise in the treatment of chronic inflammation and immune disorders through a paracrine mechanism of anti-inflammatory and anti-allergic effects. The stem cell secretome is defined as the set of molecules secreted to the extracellular space. The secretome such as conditioned media (CM) obtained from BMSCs contains various bioactive molecules and vesicular elements, which may act as therapeutic mediators to support their immunoregulatory effects. Therefore, we hypothesize that the BMSCs secretome may represent a promising treatment for AR by anti-allergic effects via the paracrine mechanism.
Collapse
Affiliation(s)
- Wentao Zou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiaxiong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
19
|
Pham DL, Trinh TH, Ban GY, Kim SH, Park HS. Epithelial folliculin is involved in airway inflammation in workers exposed to toluene diisocyanate. Exp Mol Med 2017; 49:e395. [PMID: 29147010 PMCID: PMC5704188 DOI: 10.1038/emm.2017.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
Toluene diisocyanate (TDI) exposure can directly activate and damage airway epithelium. Folliculin (FLCN) is a protein expressed by human airway epithelial cells (HAECs) to maintain airway epithelial integrity and survival. This study investigated the involvement of FLCN in the pathogenesis of TDI-induced occupational asthma (OA). Enzyme-linked immunosorbent assay was used to measure serum levels of FLCN in TDI-exposed subjects (93 TDI-OA patients and 119 asymptomatic exposed controls (AEC)), 200 non-occupational asthma (NOA) patients and 71 unexposed healthy normal controls (NCs). Significantly more subjects in the TDI-OA and AEC groups had high serum levels of FLCN compared to those in the NOA group (P=0.002 and P=0.001, respectively), all of which were higher than the NC group (all P<0.001). The serum level of FLCN was positively correlated with TDI exposure duration (r=0.251, P=0.027), but was negatively correlated with asthma duration of TDI-OA patients (r=−0.329, P=0.029). TDI-exposed subjects with high FLCN levels had higher serum levels of total IgE than those with lower levels. The effects of TDI exposure on FLCN production was investigated by treating HAECs (A549 cells) with TDI-human serum albumin conjugate, which showed increased expression and release of FLCN and interleukin-8 from HAECs. Co-culture with peripheral blood neutrophils also induced FLCN expression and release from HAECs. In conclusion, TDI exposure and TDI-induced neutrophil recruitment into the airways can activate and stimulate HAECs to produce FLCN, which could be involved in airway inflammation in workers exposed to TDI.
Collapse
Affiliation(s)
- Duy L Pham
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea.,Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Tu Hk Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Ga-Young Ban
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Seung-Hyun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, South Korea
| |
Collapse
|
20
|
Li Y, Li H, Cao Y, Wu F, Ma W, Wang Y, Sun S. Placenta‑derived mesenchymal stem cells improve airway hyperresponsiveness and inflammation in asthmatic rats by modulating the Th17/Treg balance. Mol Med Rep 2017; 16:8137-8145. [PMID: 28944907 PMCID: PMC5779899 DOI: 10.3892/mmr.2017.7605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/04/2017] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess reparative and immunoregulatory properties, representing a hope for stem cell-based treatments. However, the mechanisms by which transplanted MSCs affect T helper (Th)17/regulatory T cell (Treg) balance in asthma patients remain unclear. The aim of the present study was to assess the therapeutic effects of human placenta MSCs (hPMSCs) in asthma, and explore the underlying mechanisms; in addition, the impact of hPMSCs transplantation on Th17/Treg balance in lymph and serum samples from asthmatic animals was evaluated. Sprague-Dawley rats were sensitized and challenged with ovalbumin (OVA). Administration of hPMSCs from human placenta resulted in increased Th17 and Treg in lymph samples compared with peripheral blood specimens. Enhanced pause values in OVA-treated animals were significantly higher than those in the control and hPMSCs treatment groups. The numbers of total cells, macrophages, neutrophils, and eosinophils were markedly increased in the OVA group compared with those of control + hPMSCs and control groups. In addition, interleukin 10, forkhead box P3 (Foxp3) and Treg levels in lymph, peripheral blood and lung tissue samples from asthma rats were increased significantly following hPMSC transplantation. Furthermore, Foxp3 protein levels increased, while those of RAR-related orphan receptor γ (RORγt) decreased after hPMSCs transplantation compared with the asthma group. Reduced IL-17, RORγt and Th17 levels were accompanied by reduced inflammatory cell infiltration, sub-epithelial smooth layer attenuation and mucus production in lung tissues. These results suggest that hPMSCs may improve airway hyperresponsiveness and inflammation by regulating the Th17/Treg balance in rats with asthma.
Collapse
Affiliation(s)
- Yingying Li
- Department of Pediatrics, Nephrology, Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongbo Li
- Department of Respiratory, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yinyin Cao
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Fuling Wu
- Department of Pediatrics, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Wenbin Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yuesi Wang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Shuzhen Sun
- Department of Pediatrics, Nephrology, Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
21
|
Jakobsen KK, Grønhøj C, Jensen DH, Fischer-Nielsen A, Hjuler T, von Buchwald C. Mesenchymal stem cell therapy for laryngotracheal stenosis: A systematic review of preclinical studies. PLoS One 2017; 12:e0185283. [PMID: 28934345 PMCID: PMC5608394 DOI: 10.1371/journal.pone.0185283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022] Open
Abstract
Background Laryngotracheal stenosis (LTS) can be either congenital or acquired. Laryngeal stenosis is most often encountered after prolonged intubation. The mechanism for stenosis following intubation is believed to be hypertrophic scarring. Mesenchymal stem cells (MSCs) therapy has shown promising results in regenerative medicine. We aimed to systematically review the literature on MSC therapy for stenosis of the conductive airways. Methods PubMed, EMBASE, Google Scholar and the Cochrane Library were systematically searched from January 1980–January 2017 with the purpose of identifying all studies addressing the effect of MSC therapy on the airway. We assessed effect on inflammation, fibrosis, and MSC as a component in tissue engineering for treating defects in the airway. Results We identified eleven studies (n = 256 animals) from eight countries evaluating the effect of MSCs as a regenerative therapy in the upper airways. The studies indicate that MSC therapy may lead to a more constructive inflammatory response as well as support tissue regeneration. Conclusion There may be a favorable effect of MSCs in inhibiting inflammation and as a component in tissue engineering. Given the heterogeneous nature of the included animal studies, any clear conclusion regarding the effect of tracheal stenosis in human subjects cannot be drawn. The included preclinical studies are however encouraging for further research.
Collapse
Affiliation(s)
- Kathrine Kronberg Jakobsen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - David H. Jensen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne Fischer-Nielsen
- Cell Therapy Facility, Blood Bank, Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Hjuler
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
22
|
Cruz FF, Rocco PRM. Stem-cell extracellular vesicles and lung repair. Stem Cell Investig 2017; 4:78. [PMID: 29057250 DOI: 10.21037/sci.2017.09.02] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Four out of the ten leading causes of morbidity and mortality worldwide are lung diseases. Despite advances in comprehending the pathophysiological mechanisms involved in these disorders, for several respiratory diseases, there is still no effective treatment able to stop their natural history or reverse the morphological and functional damage they cause. In this context, recent research has supported a potential role of cell therapy for lung diseases and critical illness. The anti-inflammatory, antifibrotic, and microbicidal effects of stem cells are mainly attributed to their secretome, which contains proteins, lipids, microRNAs, and mRNAs. These are secreted in the conditioned medium and are also present in extracellular vesicles (EVs). This review will provide a detailed discussion of the role of EVs produced by mesenchymal stromal cells in preclinical experimental models of pulmonary disorders and critical illness, as well as in ongoing clinical trials.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, and National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, and National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Kang SY, Park DE, Song WJ, Bae BR, Lee JW, Sohn KH, Lee HS, Kang HR, Park HW, Chang YS, Choi SJ, Oh WI, Min KU, Cho SH. Immunologic regulatory effects of human umbilical cord blood-derived mesenchymal stem cells in a murine ovalbumin asthma model. Clin Exp Allergy 2017; 47:937-945. [PMID: 28294434 DOI: 10.1111/cea.12920] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have multiple immunomodulatory properties and hold therapeutic potential for inflammatory diseases. However, the therapeutic and immunologic effects of human umbilical cord blood-derived MSCs (huMSCs) remain largely unexamined for asthma. OBJECTIVE This study was to investigate the immunomodulatory properties of huMSCs in an ovalbumin (OVA)-induced murine asthma model. METHODS Mice were injected intraperitoneally with OVA and an aluminium hydroxide adjuvant. huMSCs were administered via the tail vein (5×105 cells/100 uL) to female BALB/c mice prior to the initial OVA challenge. The effects of huMSCs were assessed by investigating airway hyperresponsiveness, histological changes, inflammatory cell numbers, serum allergen-specific antibodies, cytokine production in spleen, lung tissue, and bronchoalveolar lavage (BAL) fluid as well as expansion of regulatory T cells. RESULTS Administration of huMSCs significantly reduced methacholine bronchial hyperresponsiveness and eosinophil counts in BAL cells. Similarly, there was a significant decrease in serum OVA-specific IgE and IgG1 levels along with Th2 cytokine production (IL-4, IL-5, and IL-13) in the lung and spleen tissues, whereas increased percentage of regulatory T cells was observed after treatment with huMSCs. CONCLUSIONS Our results suggest that huMSC treatment reduces OVA-induced allergic inflammation, which could be mediated by regulatory T cells.
Collapse
Affiliation(s)
- S-Y Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - D-E Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - W-J Song
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - B-R Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - J-W Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - K-H Sohn
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - H-S Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - H-R Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - H-W Park
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Y-S Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - S-J Choi
- Biomedical Research Institute, MEDIPOST, Co., Ltd., Seoul, Korea
| | - W-I Oh
- Biomedical Research Institute, MEDIPOST, Co., Ltd., Seoul, Korea
| | - K-U Min
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - S-H Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Zorzopulos J, Opal SM, Hernando-Insúa A, Rodriguez JM, Elías F, Fló J, López RA, Chasseing NA, Lux-Lantos VA, Coronel MF, Franco R, Montaner AD, Horn DL. Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 2017; 9:45-67. [PMID: 28396715 PMCID: PMC5368622 DOI: 10.4252/wjsc.v9.i3.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.
Collapse
|
25
|
Kardia E, Zakaria N, Sarmiza Abdul Halim NS, Widera D, Yahaya BH. The use of mesenchymal stromal cells in treatment of lung disorders. Regen Med 2017; 12:203-216. [DOI: 10.2217/rme-2016-0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The therapeutic use of mesenchymal stromal cells (MSCs) represents a promising alternative clinical strategy for treating acute and chronic lung disorders. Several preclinical reports demonstrated that MSCs can secrete multiple paracrine factors and that their immunomodulatory properties can support endothelial and epithelial regeneration, modulate the inflammatory cascade and protect lungs from damage. The effects of MSC transplantation into patients suffering from lung diseases should be fully evaluated through careful assessment of safety and associated risks, which is a prerequisite for translation of preclinical research into clinical practice. In this article, we summarize the current status of preclinical research and review initial MSC-based clinical trials for treating lung injuries and lung disorders.
Collapse
Affiliation(s)
- Egi Kardia
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Shuhaidatul Sarmiza Abdul Halim
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Darius Widera
- Stem Cell Biology & Regenerative Medicine, School of Pharmacy, University of Reading, Whiteknights, RG6 6UB Reading, UK
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
26
|
Hong GH, Kwon HS, Lee KY, Ha EH, Moon KA, Kim SW, Oh W, Kim TB, Moon HB, Cho YS. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Exp Mol Med 2017; 49:e288. [PMID: 28127050 PMCID: PMC5291839 DOI: 10.1038/emm.2016.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Although chronic eosinophilic inflammation is a common feature in patients with asthma, some patients have neutrophil-dominant inflammation, which is known to be associated with severe asthma.Human mesenchymal stem cells (hMSCs) have shown promise in treating various refractory immunological diseases. Thus, hMSCs may represent an alternative therapeutic option for asthma patients with neutrophil-dominant inflammation, in whom current treatments are ineffective. BALB/c mice exposed to ovalbumin and polyinosinic:polycytidylic acid (Poly I:C) to induce neutrophilic airway inflammation were systemically treated with hMSCs to examine whether the hMSCs can modulate neutrophilic airway inflammation. In addition, cytokine production was evaluated in co-cultures of hMSCs with either anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) obtained from asthmatic patients or cells of the human bronchial epithelial cell line BEAS-2B to assess the response to hMSC treatment. The total number of immune cells in bronchoalveolar lavage fluid (BALF) showed a dramatic decrease in hMSC-treated asthmatic mice, and, in particular, neutrophilic infiltration was significantly attenuated. This phenomenon was accompanied by reduced CXCL15 production in the BALF. BEAS-2B cells co-cultured with hMSCs showed reduced secretion of IL-8. Moreover, decreased secretion of IL-4, IL-13 and IFN-γ was observed when human PBMCs were cultured with hMSCs, whereas IL-10 production was greatly enhanced. Our data imply that hMSCs may have a role in reducing neutrophilic airway inflammation by downregulating neutrophil chemokine production and modulating T-cell responses.
Collapse
Affiliation(s)
- Gyong Hwa Hong
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung Young Lee
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Hee Ha
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keun-Ai Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, ASAN Medical Center, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co. Ltd, Gyeonggi-do, Korea
| | - Tae-Bum Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Bom Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Trzil JE, Masseau I, Webb TL, Chang CH, Dodam JR, Liu H, Quimby JM, Dow SW, Reinero CR. Intravenous adipose-derived mesenchymal stem cell therapy for the treatment of feline asthma: a pilot study. J Feline Med Surg 2016; 18:981-990. [PMID: 26384398 PMCID: PMC11112236 DOI: 10.1177/1098612x15604351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the feasibility and efficacy of serially administered adipose-derived mesenchymal stem cells (MSCs) in an experimental feline asthma model. METHODS Allergic asthma was acutely induced with Bermuda grass allergen in six purpose-bred cats. Five intravenous infusions of allogeneic MSCs (n = 4; MSC-treated) or saline (n = 2; placebo-treated) were administered over the first 130 days after asthma induction. Infusions contained 2 × 106, 4 × 106, 4.7 × 106, 1 × 107 and 1 × 107 cryopreserved MSCs/cat. For thoracic imaging additional cats were enrolled as control groups: four untreated, experimentally asthmatic cats (combined with placebo-treated cats), and six healthy, non-asthmatic cats. Outcome measures included airway eosinophilia, pulmonary mechanics, thoracic computed tomography and several immunologic assays. RESULTS Cats were assessed for 9 months after treatment. At early points, airway eosinophil percentage was not affected by MSC administration (post-treatment average of days 12, 26, 47, 108 and 133 in MSC-treated cats was 41 ± 15% and in placebo-treated cats it was 34 ± 16%). By month 9, eosinophil percentages in all MSC-treated cats decreased to normal reference intervals (MSC-treated 6%; placebo-treated 20%; normal <17%). Diminished airway hyper-responsiveness was noted in all MSC-treated compared with placebo-treated cats at day 133 (dose of methacholine to double baseline airway resistance: MSC-treated median 22.9 mg/ml [range 6.4-64.0]; individual placebo-treated cats 1.1 and 5.0 mg/ml). Lung attenuation (mean ± SEM MSC-treated -865 ± 12 Hounsfield units [HU]; untreated asthmatics -820 ± 11 HU; P = 0.004) and bronchial wall thickening scores (median [interquartile range] MSC-treated 0 [0-1.5]; untreated asthmatic 11.6 [7.3-27.3]; P = 0.010) were significantly reduced in MSC-treated vs untreated asthmatic cats, consistent with decreased airway remodeling at month 9. No clear immunologic mechanisms by which MSCs act were determined. CONCLUSIONS AND RELEVANCE MSCs may have a delayed effect in reducing airway inflammation, airway hyper-responsiveness and remodeling in experimentally induced asthmatic cats. Results warrant additional investigation of MSC therapy for asthma in cats.
Collapse
Affiliation(s)
- Julie E Trzil
- IndyVet Emergency and Specialty Hospital, Indianapolis, Indiana, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Isabelle Masseau
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tracy L Webb
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Chee-Hoon Chang
- College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - John R Dodam
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Hong Liu
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jessica M Quimby
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven W Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Carol R Reinero
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
28
|
Wang LT, Ting CH, Yen ML, Liu KJ, Sytwu HK, Wu KK, Yen BL. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 2016; 23:76. [PMID: 27809910 PMCID: PMC5095977 DOI: 10.1186/s12929-016-0289-5] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) are multilineage somatic progenitor/stem cells that have been shown to possess immunomodulatory properties in recent years. Initially met with much skepticism, MSC immunomodulation has now been well reproduced across tissue sources and species to be clinically relevant. This has opened up the use of these versatile cells for application as 3rd party/allogeneic use in cell replacement/tissue regeneration, as well as for immune- and inflammation-mediated disease entities. Most surprisingly, use of MSCs for in immune-/inflammation-mediated diseases appears to yield more efficacy than for regenerative medicine, since engraftment of the exogenous cell does not appear necessary. In this review, we focus on this non-traditional clinical use of a tissue-specific stem cell, and highlight important findings and trends in this exciting area of stem cell therapy.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Chiao-Hsuan Ting
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan
| | - Men-Luh Yen
- Department of Ob/Gyn, National Taiwan University Hospital & College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan.,Graduate Institute of Microbiology and Immunology, NDMC, Taipei, Taiwan
| | - Kenneth K Wu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan.,Graduate Institute of Basic Medical Sciences, China Medical College, Taichung, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan.
| |
Collapse
|
29
|
Cruz FF, Borg ZD, Goodwin M, Coffey AL, Wagner DE, Rocco PRM, Weiss DJ. CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation. Stem Cells Transl Med 2016; 5:488-99. [PMID: 26933041 PMCID: PMC4798733 DOI: 10.5966/sctm.2015-0141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
A murine model of severe clinical asthma was used to study which bone marrow-derived mononuclear cells (BMDMCs) are responsible for ameliorating airway hyperresponsiveness and lung inflammation. BMDMCs depleted of either CD11b-positive cells (monocytes, macrophages, dendritic cells) or Sca-1-positive cells (bone marrow-derived mesenchymal stromal cells) were unable to ameliorate these conditions in this model. Depletion of the other cell types did not diminish the ameliorating effects of BMDMC administration. Systemic administration of bone marrow-derived mononuclear cells (BMDMCs) or bone marrow-derived mesenchymal stromal cells (MSCs) reduces inflammation and airway hyperresponsiveness (AHR) in a murine model of Th2-mediated eosinophilic allergic airway inflammation. However, since BMDMCs are a heterogeneous population that includes MSCs, it is unclear whether the MSCs alone are responsible for the BMDMC effects. To determine which BMDMC population(s) is responsible for ameliorating AHR and lung inflammation in a model of mixed Th2-eosinophilic and Th17-neutrophilic allergic airway inflammation, reminiscent of severe clinical asthma, BMDMCs obtained from normal C57Bl/6 mice were serially depleted of CD45, CD34, CD11b, CD3, CD19, CD31, or Sca-1 positive cells. The different resulting cell populations were then assessed for ability to reduce lung inflammation and AHR in mixed Th2/Th17 allergic airway inflammation induced by mucosal sensitization to and challenge with Aspergillus hyphal extract (AHE) in syngeneic C56Bl/6 mice. BMDMCs depleted of either CD11b-positive (CD11b+) or Sca-1-positive (Sca-1+) cells were unable to ameliorate AHR or lung inflammation in this model. Depletion of the other cell types did not diminish the ameliorating effects of BMDMC administration. In conclusion, in the current model of allergic inflammation, CD11b+ cells (monocytes, macrophages, dendritic cells) and Sca-1+ cells (MSCs) are responsible for the beneficial effects of BMDMCs. Significance This study shows that bone marrow-derived mononuclear cells (BMDMCs) are as effective as bone marrow-derived mesenchymal stromal cells (MSCs) in ameliorating experimental asthma. It also demonstrates that not only MSCs present in the pool of BMDMCs are responsible for BMDMCs’ beneficial effects but also monocytes, which are the most important cell population to trigger these effects. All of this is in the setting of a clinically relevant model of severe allergic airways inflammation and thus provides further support for potential clinical use of cell therapy using MSCs, BMDMCs, and also adult cells such as monocytes in patients with severe asthma.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zachary D Borg
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Meagan Goodwin
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Amy L Coffey
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Darcy E Wagner
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
30
|
Hypoxia enhances the protective effects of placenta-derived mesenchymal stem cells against scar formation through hypoxia-inducible factor-1α. Biotechnol Lett 2016; 38:931-9. [PMID: 26932904 DOI: 10.1007/s10529-016-2067-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To explore the effect of placenta-derived mesenchymal stem cells on scar formation as well as the underlying mechanism. RESULTS The isolated placenta-derived mesenchymal stem cells from mice were distributed in the wounded areas of scalded mouse models, attenuated inflammatory responses and decreased the deposition of collagens, thus performing a beneficial effect against scar formation. Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells and hypoxia-inducible factor-1α was involved in the protective effect of placenta-derived mesenchymal stem cells in hypoxic condition. CONCLUSIONS Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells through hypoxia-inducible factor-1α and PMSCs may have a potential application in the treatment of wound.
Collapse
|
31
|
Duong KM, Arikkatt J, Ullah MA, Lynch JP, Zhang V, Atkinson K, Sly PD, Phipps S. Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice. Am J Respir Cell Mol Biol 2016; 53:615-24. [PMID: 25789608 DOI: 10.1165/rcmb.2014-0431oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Allergic asthma is underpinned by T helper 2 (Th2) inflammation. Redundancy in Th2 cytokine function and production by innate and adaptive immune cells suggests that strategies aimed at immunomodulation may prove more beneficial. Hence, we sought to determine whether administration of mesenchymal stromal cells (MSCs) to house dust mite (HDM) (Dermatophagoides pteronyssinus)-sensitized mice would suppress the development of Th2 inflammation and airway hyperresponsiveness (AHR) after HDM challenge. We report that the intravenous administration of allogeneic donor MSCs 1 hour before allergen challenge significantly attenuated the features of allergic asthma, including tissue eosinophilia, Th2 cytokine (IL-5 and IL-13) levels in bronchoalveolar lavage fluid, and AHR. The number of infiltrating type 2 innate lymphoid cells was not affected by MSC transfer, suggesting that MSCs may modulate the adaptive arm of Th2 immunity. The effect of MSC administration was long lasting; all features of allergic airway disease were significantly suppressed in response to a second round of HDM challenge 4 weeks after MSC administration. Further, we observed that MSCs decreased the release of epithelial cell-derived alarmins IL-1α and high mobility group box-1 in an IL-1 receptor antagonist-dependent manner. This significantly decreased the expression of the pro-Th2 cytokine IL-25 and reduced the number of activated and antigen-acquiring CD11c(+)CD11b(+) dendritic cells in the lung and mediastinal lymph nodes. Our findings suggest that MSC administration can ameliorate allergic airway inflammation by blunting the amplification of epithelial-derived inflammatory cytokines induced by HDM exposure and may offer long-term protection against Th2-mediated allergic airway inflammation and AHR.
Collapse
Affiliation(s)
- Khang M Duong
- 1 The School of Biomedical Sciences, The University of Queensland, Brisbane
| | - Jaisy Arikkatt
- 1 The School of Biomedical Sciences, The University of Queensland, Brisbane
| | - M Ashik Ullah
- 2 The Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane
| | - Jason P Lynch
- 1 The School of Biomedical Sciences, The University of Queensland, Brisbane
| | - Vivian Zhang
- 1 The School of Biomedical Sciences, The University of Queensland, Brisbane
| | - Kerry Atkinson
- 3 The Queensland University of Technology at the Translational Research Institute, Brisbane.,4 The University of Queensland Centre for Clinical Research, Brisbane; and
| | - Peter D Sly
- 5 The Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia
| | - Simon Phipps
- 1 The School of Biomedical Sciences, The University of Queensland, Brisbane
| |
Collapse
|
32
|
Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 2016; 7:e2062. [PMID: 26794657 PMCID: PMC4816164 DOI: 10.1038/cddis.2015.327] [Citation(s) in RCA: 819] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/13/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
The unique immunomodulatory properties of mesenchymal stem cells (MSCs) make them an invaluable cell type for the repair of tissue/ organ damage caused by chronic inflammation or autoimmune disorders. Although they hold great promise in the treatment of immune disorders such as graft versus host disease (GvHD) and allergic disorders, there remain many challenges to overcome before their widespread clinical application. An understanding of the biological properties of MSCs will clarify the mechanisms of MSC-based transplantation for immunomodulation. In this review, we summarize the preclinical and clinical studies of MSCs from different adult tissues, discuss the current hurdles to their use and propose the future development of pluripotent stem cell-derived MSCs as an approach to immunomodulation therapy.
Collapse
Affiliation(s)
- F Gao
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - S M Chiu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - D A L Motan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Z Zhang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - L Chen
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - H-L Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - H-F Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Q-L Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Q Lian
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
33
|
Peng WX, Xiong EM, Ge L, Wan YY, Zhang CL, Du FY, Xu M, Bhat RA, Jin J, Gong AH. Egr-1 promotes hypoxia-induced autophagy to enhance chemo-resistance of hepatocellular carcinoma cells. Exp Cell Res 2015; 340:62-70. [PMID: 26708617 DOI: 10.1016/j.yexcr.2015.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Previous studies suggest that early growth response gene-1 (Egr-1) plays an important role in hypoxia-induced drug-resistance. However, the mechanism still remains to be clarified. Herein, we investigated the role of Egr-1 in hypoxia-induced autophagy and its resulted hypoxia-driven chemo-resistance in Hepatocellular Carcinoma (HCC) cells. Our data demonstrated that Egr-1 was overexpressed in HCC tissues and cells and conferred them drug resistance under hypoxia. Mechanistically, Egr-1 transcriptionally regulated hypoxia-induced autophagy by binding to LC3 promoter in HCC cells, which resulted in resistance of HCC cells to chemotherapeutic agents; while dominant negative Egr-1 could inhibit autophagy level, and thus enhanced the sensitivity of HCC cells to chemotherapeutic agents, indicating that hypoxia-induced Egr-1 expression enhanced drug resistance of HCC cells likely through autophagy. Accordingly, it is suggested that a mechanism of hypoxia/Egr-1/autophagy axis might be involved in drug resistance in HCC.
Collapse
Affiliation(s)
- Wan-Xin Peng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Er-Meng Xiong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lu Ge
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yan-Ya Wan
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, PR China
| | - Chun-Li Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Feng-Yi Du
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, PR China
| | - Reyaz Ahmed Bhat
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, PR China
| | - Jie Jin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ai-Hua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
34
|
Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, Antunes M, Robinson KL, Mitsialis SA, Kourembanas S, Thane K, Hoffman AM, McKenna DH, Rocco PRM, Weiss DJ. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice. Stem Cells Transl Med 2015; 4:1302-16. [PMID: 26378259 DOI: 10.5966/sctm.2014-0280] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED An increasing number of studies demonstrate that administration of either conditioned media (CM) or extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) derived from bone marrow and other sources are as effective as the MSCs themselves in mitigating inflammation and injury. The goal of the current study was to determine whether xenogeneic administration of CM or EVs from human bone marrow-derived MSCs would be effective in a model of mixed Th2/Th17, neutrophilic-mediated allergic airway inflammation, reflective of severe refractory asthma, induced by repeated mucosal exposure to Aspergillus hyphal extract (AHE) in immunocompetent C57Bl/6 mice. Systemic administration of both CM and EVs isolated from human and murine MSCs, but not human lung fibroblasts, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyperreactivity (AHR), lung inflammation, and the antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, both CM and EVs from human MSCs (hMSCs) were generally more potent than those from mouse MSCs (mMSCs) in most of the outcome measures. The weak cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride was found to inhibit release of both soluble mediators and EVs, fully negating effects of systemically administered hMSCs but only partly inhibited the ameliorating effects of mMSCs. These results demonstrate potent xenogeneic effects of CM and EVs from hMSCs in an immunocompetent mouse model of allergic airway inflammation and they also show differences in mechanisms of action of hMSCs versus mMSCs to mitigate AHR and lung inflammation in this model. SIGNIFICANCE There is a growing experience demonstrating benefit of mesenchymal stromal cell (MSC)-based cell therapies in preclinical models of asthma. In the current study, conditioned media (CM) and, in particular, the extracellular vesicle fraction obtained from the CM were as potent as the MSCs themselves in mitigating Th2/Th17-mediated allergic airway inflammation in a mouse model of severe refractory clinical asthma. Moreover, human MSC CM and extracellular vesicles were effective in this immunocompetent mouse model. These data add to a growing scientific basis for initiating clinical trials of MSCs or extracellular vesicles derived from MSCs in severe refractory asthma and provide further insight into the mechanisms by which the MSCs may ameliorate the asthma.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Zachary D Borg
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - Meagan Goodwin
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - Dino Sokocevic
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - Darcy E Wagner
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - Amy Coffey
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - Mariana Antunes
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Kristen L Robinson
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristen Thane
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Andrew M Hoffman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Department of Medicine, Pulmonary, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
35
|
Lin HY, Xu L, Xie SS, Yu F, Hu HY, Song XL, Wang CH. Mesenchymal stem cells suppress lung inflammation and airway remodeling in chronic asthma rat model via PI3K/Akt signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8958-8967. [PMID: 26464637 PMCID: PMC4583869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) came out to attract wide attention and had become one of the hotspots of most diseases' research in decades. But at present, the mechanisms of how MSCs work on chronic asthma remain undefined. Our study aims at verifying whether MSCs play a role in preventing inflammation and airway remodeling via PI3K/AKT signaling pathway in the chronic asthma rats model. METHODS First, an ovalbumin (OVA)-induced asthma model was built. MSCs were administered to ovalbumin-induced asthma rats. The total cells in a bronchial alveolar lavage fluid (BALF) and inflammatory mediators in BALF and serum were measured. Histological examination of lung tissue was performed to estimate the pathological changes. Additionally, the expression of phosphorylated-Akt (p-Akt) in all groups was measured by western blot and immunohistochemistry (IHC). RESULTS Compared to normal control group, the degree of airway inflammation and airway remodeling was significantly increased in asthma group. On the contrary, they were obviously inhibited in MSCs transplantation group. Moreover, the expression of p-Akt was increased in lung tissues of asthmatic rats, and suppressed by MSCs transplantation. CONCLUSION Our results demonstrated that MSCs transplantation could suppress lung inflammation and airway remodeling via PI3K/Akt signaling pathway in rat asthma model.
Collapse
Affiliation(s)
- Hai-Yan Lin
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, Peoples PR China
- Department of Respiratory Medicine, Huai’an First Peoples’s Hospital, Nanjing Medical UniversityNanjing, China
| | - Lei Xu
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, Peoples PR China
| | - Shuan-Shuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, Peoples PR China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, Peoples PR China
| | - Hai-Yang Hu
- Department of Geriatric Respiratory, Qianfoshan Hospital Affiliated to Shandong UniversityJinan 250014, Shandong, China
| | - Xiao-Lian Song
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, Peoples PR China
| | - Chang-Hui Wang
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai 200072, Peoples PR China
| |
Collapse
|
36
|
Trzil JE, Masseau I, Webb TL, Chang CH, Dodam JR, Cohn LA, Liu H, Quimby JM, Dow SW, Reinero CR. Long-term evaluation of mesenchymal stem cell therapy in a feline model of chronic allergic asthma. Clin Exp Allergy 2015; 44:1546-57. [PMID: 25220646 DOI: 10.1111/cea.12411] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) decrease airway eosinophilia, airway hyperresponsiveness (AHR), and remodelling in murine models of acutely induced asthma. We hypothesized that MSCs would diminish these hallmark features in a chronic feline asthma model. OBJECTIVE To document effects of allogeneic, adipose-derived MSCs on airway inflammation, AHR, and remodelling over time and investigate mechanisms by which MSCs alter local and systemic immunologic responses in chronic experimental feline allergic asthma. METHODS Cats with chronic, experimentally induced asthma received six intravenous infusions of MSCs (0.36-2.5 × 10E7 MSCs/infusion) or placebo bimonthly at the time of study enrollment. Cats were evaluated at baseline and longitudinally for 1 year. Outcome measures included: bronchoalveolar lavage fluid cytology to assess airway eosinophilia, pulmonary mechanics and clinical scoring to assess AHR, and thoracic computed tomographic (CT) scans to assess structural changes (airway remodelling). CT scans were evaluated using a scoring system for lung attenuation (LA) and bronchial wall thickening (BWT). To assess mechanisms of MSC action, immunologic assays including allergen-specific IgE, cellular IL-10 production, and allergen-specific lymphocyte proliferation were performed. RESULTS There were no differences between treatment groups or over time with respect to airway eosinophilia or AHR. However, significantly lower LA and BWT scores were noted in CT images of MSC-treated animals compared to placebo-treated cats at month 8 of the study (LA P = 0.0311; BWT P = 0.0489). No differences were noted between groups in the immunologic assays. CONCLUSIONS AND CLINICAL RELEVANCE When administered after development of chronic allergic feline asthma, MSCs failed to reduce airway inflammation and AHR. However, repeated administration of MSCs at the start of study did reduce computed tomographic measures of airway remodelling by month 8, although the effect was not sustained at month 12. Further study of MSC therapy including repeated MSC administration is warranted to assess impact on remodelling in chronic asthma.
Collapse
Affiliation(s)
- J E Trzil
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zeng SL, Wang LH, Li P, Wang W, Yang J. Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. Mol Med Rep 2015; 12:2511-20. [PMID: 25936350 PMCID: PMC4464445 DOI: 10.3892/mmr.2015.3706] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/26/2015] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been investigated in the treatment of numerous autoimmune diseases. However, the immune properties of MSCs on the development of asthma have remained to be fully elucidated. Airway dendritic cells (DCs) have an important role in the pathogenesis of allergic asthma, and disrupting their function may be a novel therapeutic approach. The present study used a mouse model of asthma to demonstrate that transplantation of MSCs suppressed features of asthma by targeting the function of lung myeloid DCs. MSCs suppressed the maturation and migration of lung DCs to the mediastinal lymph nodes, and thereby reducing the allergen-specific T helper type 2 (Th2) response in the nodes. In addition, MSC-treated DCs were less potent in activating naive and effector Th2 cells and the capacity of producing chemokine (C-C motif) ligand 17 (CCL17) and CCL22, which are chemokines attracting Th2 cells, to the airways was reduced. These results supported that MSCs may be used as a potential treatment for asthma.
Collapse
Affiliation(s)
- Shao-Lin Zeng
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li-Hui Wang
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ping Li
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Wang
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jiong Yang
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
38
|
Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner D, McKenna DH, Rocco PRM, Weiss DJ. Freshly thawed and continuously cultured human bone marrow-derived mesenchymal stromal cells comparably ameliorate allergic airways inflammation in immunocompetent mice. Stem Cells Transl Med 2015; 4:615-24. [PMID: 25925837 DOI: 10.5966/sctm.2014-0268] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/09/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Recent data suggest that freshly thawed previously frozen mesenchymal stromal cells (MSCs) may not have the same effectiveness or breadth of anti-inflammatory activities as do continuously cultured MSCs. This has significant implications for clinical use, in which many infusion schemes use frozen cells thawed at the bedside for administration. The available data, however, predominantly evaluate in vitro MSC properties, and so far there has been limited in vivo analysis. To further assess this issue, we compared freshly thawed (thawed) versus continuously cultured (fresh) human bone marrow-derived MSC (hMSC) administration in a mouse model of mixed Th2/Th17 allergic airway inflammation induced by Aspergillus hyphal extract (AHE) exposures in immunocompetent C57Bl/6 mice. Control cell populations included fresh versus thawed murine bone marrow-derived MSCs (mMSCs) and human lung fibroblasts (HLFs). Systemic administration of both thawed and fresh hMSCs and mMSCs, but not HLFs, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyper-reactivity, lung inflammation, and antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, there was no difference in effects of fresh versus thawed hMSCs or mMSCs on any outcome measured except for some variability in the effects on the bronchoalveolar lavage fluid composition. These results demonstrated potent xenogeneic effects of human MSCs in an immunocompetent mouse model of allergic airways inflammation and that thawed MSCs are as effective as fresh MSCs. The question of fresh versus thawed MSC effectiveness needs to be investigated carefully and may differ in different in vivo disease-specific models. SIGNIFICANCE This study addressed whether freshly thawed mesenchymal stromal cells (MSCs) are as effective in in vivo settings as those that have been continuously cultured. It also provided further data demonstrating that xenogeneic use of MSCs in immunocompetent mice is as effective as murine MSCs. This information provides further support and direction for potential clinical use of MSCs in patients with severe asthma.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zachary D Borg
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Meagan Goodwin
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dino Sokocevic
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darcy Wagner
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - David H McKenna
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patricia R M Rocco
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA; Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
39
|
Folmsbee SS, Morales-Nebreda L, Van Hengel J, Tyberghein K, Van Roy F, Budinger GRS, Bryce PJ, Gottardi CJ. The cardiac protein αT-catenin contributes to chemical-induced asthma. Am J Physiol Lung Cell Mol Physiol 2014; 308:L253-8. [PMID: 25480337 DOI: 10.1152/ajplung.00331.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ten to 25% of adult asthma is occupational induced, a subtype caused by exposure to workplace chemicals. A recent genomewide association study identified single-nucleotide polymorphisms in the cardiac protein αT-catenin (αT-cat) that correlated with the incidence and severity of toluene diisocyanate (TDI) occupational asthma. αT-cat is a critical mediator of cell-cell adhesion and is predominantly expressed in cardiomyocytes, but its connection to asthma remains unknown. Therefore, we sought to determine the primary αT-cat-expressing cell type in the lung and its contribution to lung physiology in a murine model of TDI asthma. We show that αT-cat is expressed in lung within the cardiac sheath of pulmonary veins. Mechanically ventilated αT-cat knockout (KO) mice exhibit a significantly increased pressure-volume curve area compared with wild-type (WT) mice, suggesting that αT-cat loss affects lung hysteresis. Using a murine model of TDI asthma, we find that αT-cat KO mice show increased airway hyperresponsiveness to methacholine compared with WT mice. Bronchoalveolar lavage reveals only a mild macrophage-dominant inflammation that is not significantly different between WT and KO mice. These data suggest that αT-cat may contribute to asthma through a mechanism independent of inflammation and related to heart and pulmonary vein dysfunction.
Collapse
Affiliation(s)
- Stephen Sai Folmsbee
- Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; The Driskill Graduate Training Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Luisa Morales-Nebreda
- Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jolanda Van Hengel
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent, Belgium; Department of Biomedical Molecular Biology, Molecular Cell Biology Unit, Ghent University, Ghent, Belgium; and Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | - Koen Tyberghein
- Department of Biomedical Molecular Biology, Molecular Cell Biology Unit, Ghent University, Ghent, Belgium; and Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | - Frans Van Roy
- Department of Biomedical Molecular Biology, Molecular Cell Biology Unit, Ghent University, Ghent, Belgium; and Inflammation Research Center, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | - G R Scott Budinger
- Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul J Bryce
- Department of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cara J Gottardi
- Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois;
| |
Collapse
|
40
|
Srour N, Thébaud B. Stem cells in animal asthma models: a systematic review. Cytotherapy 2014; 16:1629-42. [PMID: 25442788 DOI: 10.1016/j.jcyt.2014.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/03/2014] [Accepted: 08/12/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Asthma control frequently falls short of the goals set in international guidelines. Treatment options for patients with poorly controlled asthma despite inhaled corticosteroids and long-acting β-agonists are limited, and new therapeutic options are needed. Stem cell therapy is promising for a variety of disorders but there has been no human clinical trial of stem cell therapy for asthma. We aimed to systematically review the literature regarding the potential benefits of stem cell therapy in animal models of asthma to determine whether a human trial is warranted. METHODS The MEDLINE and Embase databases were searched for original studies of stem cell therapy in animal asthma models. RESULTS Nineteen studies were selected. They were found to be heterogeneous in their design. Mesenchymal stromal cells were used before sensitization with an allergen, before challenge with the allergen and after challenge, most frequently with ovalbumin, and mainly in BALB/c mice. Stem cell therapy resulted in a reduction of bronchoalveolar lavage fluid inflammation and eosinophilia as well as Th2 cytokines such as interleukin-4 and interleukin-5. Improvement in histopathology such as peribronchial and perivascular inflammation, epithelial thickness, goblet cell hyperplasia and smooth muscle layer thickening was universal. Several studies showed a reduction in airway hyper-responsiveness. CONCLUSIONS Stem cell therapy decreases eosinophilic and Th2 inflammation and is effective in several phases of the allergic response in animal asthma models. Further study is warranted, up to human clinical trials.
Collapse
Affiliation(s)
- Nadim Srour
- Université de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Department of Medicine, Division of Pulmonology, Sherbrooke, Canada; Hôpital Charles-LeMoyne, Department of Medicine, Division of Pulmonology, Montreal, Canada; McGill University, Department of Medicine, Montreal, Canada; Mount Sinai Hospital Centre, Montreal, Canada; The Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Canada.
| | - Bernard Thébaud
- The Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Canada; Children's Hospital of Eastern Ontario, Ottawa, Canada; The University of Ottawa, Faculty of Medicine, Ottawa, Canada
| |
Collapse
|
41
|
|
42
|
Martínez-González I, Cruz MJ, Moreno R, Morell F, Muñoz X, Aran JM. Human mesenchymal stem cells resolve airway inflammation, hyperreactivity, and histopathology in a mouse model of occupational asthma. Stem Cells Dev 2014; 23:2352-63. [PMID: 24798370 DOI: 10.1089/scd.2013.0616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1 × 10(6) cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the AP-injured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA.
Collapse
|
43
|
Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012. Ann Am Thorac Soc 2014; 10:S45-97. [PMID: 23869446 DOI: 10.1513/annalsats.201304-090aw] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A conference, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," was held July 25 to 28, 2011 at the University of Vermont to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, to discuss and debate current controversies, and to identify future research directions and opportunities for basic and translational research in cell-based therapies for lung diseases. The goal of this article, which accompanies the formal conference report, is to provide a comprehensive review of the published literature in lung regenerative medicine from the last conference report through December 2012.
Collapse
|
44
|
Stem cells and cell therapies in lung biology and diseases: conference report. Ann Am Thorac Soc 2014; 10:S25-44. [PMID: 23869447 DOI: 10.1513/annalsats.201304-089aw] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
45
|
Mariñas‐Pardo L, Mirones I, Amor‐Carro Ó, Fraga‐Iriso R, Lema‐Costa B, Cubillo I, Rodríguez Milla MÁ, García‐Castro J, Ramos‐Barbón D. Mesenchymal stem cells regulate airway contractile tissue remodeling in murine experimental asthma. Allergy 2014; 69:730-40. [PMID: 24750069 PMCID: PMC4114550 DOI: 10.1111/all.12392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 01/10/2023]
Abstract
Background Mesenchymal stem cells may offer therapeutic potential for asthma due to their immunomodulatory properties and host tolerability, yet prior evidence suggests that bloodborne progenitor cells may participate in airway remodeling. Here, we tested whether mesenchymal stem cells administered as anti‐inflammatory therapy may favor airway remodeling and therefore be detrimental. Methods Adipose tissue‐derived mesenchymal stem cells were retrovirally transduced to express green fluorescent protein and intravenously injected into mice with established experimental asthma induced by repeat intranasal house dust mite extract. Controls were house dust mite‐instilled animals receiving intravenous vehicle or phosphate‐buffered saline‐instilled animals receiving mesenchymal stem cells. Data on lung function, airway inflammation, and remodeling were collected at 72 h after injection or after 2 weeks of additional intranasal challenge. Results The mesenchymal stem cells homed to the lungs and rapidly downregulated airway inflammation in association with raised T‐helper‐1 lung cytokines, but such effect declined under sustained allergen challenge despite a persistent presence of mesenchymal stem cells. Conversely, airway hyperresponsiveness and contractile tissue underwent a late reduction regardless of continuous pathogenic stimuli and inflammatory rebound. Tracking of green fluorescent protein did not show mesenchymal stem cell integration or differentiation in airway wall tissues. Conclusions Therapeutic mesenchymal stem cell infusion in murine experimental asthma is free of unwanted pro‐remodeling effects and ameliorates airway hyper‐responsiveness and contractile tissue remodeling. These outcomes support furthering the development of mesenchymal stem cell‐based asthma therapies, although caution and solid preclinical data building are warranted.
Collapse
Affiliation(s)
- L. Mariñas‐Pardo
- Respiratory Research Unit Instituto de Investigación Biomédica de A Coruña (INIBIC)/Complexo Hospitalario Universitario A Coruña Spain
- Cellular Biotechnology Unit Instituto de Salud Carlos III Madrid Spain
| | - I. Mirones
- Cellular Biotechnology Unit Instituto de Salud Carlos III Madrid Spain
| | - Ó. Amor‐Carro
- Respiratory Research Unit Instituto de Investigación Biomédica de A Coruña (INIBIC)/Complexo Hospitalario Universitario A Coruña Spain
- Respiratory Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona Barcelona Spain
| | - R. Fraga‐Iriso
- Respiratory Research Unit Instituto de Investigación Biomédica de A Coruña (INIBIC)/Complexo Hospitalario Universitario A Coruña Spain
- Respiratory Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona Barcelona Spain
| | - B. Lema‐Costa
- Respiratory Research Unit Instituto de Investigación Biomédica de A Coruña (INIBIC)/Complexo Hospitalario Universitario A Coruña Spain
| | - I. Cubillo
- Cellular Biotechnology Unit Instituto de Salud Carlos III Madrid Spain
| | | | - J. García‐Castro
- Cellular Biotechnology Unit Instituto de Salud Carlos III Madrid Spain
| | - D. Ramos‐Barbón
- Respiratory Research Unit Instituto de Investigación Biomédica de A Coruña (INIBIC)/Complexo Hospitalario Universitario A Coruña Spain
- Respiratory Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona Barcelona Spain
- Meakins‐Christie Laboratories Department of Medicine McGill University Montreal QCCanada
| |
Collapse
|
46
|
Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma. Int Immunopharmacol 2014; 20:101-9. [PMID: 24613203 DOI: 10.1016/j.intimp.2014.02.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
Abstract
New therapeutic strategies are needed in the treatment of asthma besides vaccines and pharmacotherapies. For the development of novel therapies, the use of mesenchymal stem cells (MSCs) is a promising approach in regenerative medicine. Delivery of compact bone (CB) derived MSCs to the injured lungs is an alternative treatment strategy for chronic asthma. In this study, we aimed to isolate highly enriched population of MSCs from mouse CB with regenerative capacity, and to investigate the impact of these cells in airway remodeling and inflammation in experimental ovalbumin-induced mouse model of chronic asthma. mCB-MSCs were isolated, characterized, labeled with GFP and then transferred into mice with chronic asthma developed by ovalbumin (OVA) provocation. Histopathological changes including basement membrane, epithelium, subepithelial smooth thickness and goblet cell hyperplasia, and MSCs migration to lung tissues were evaluated. These histopathological alterations were increased in ovalbumin-treated mice compared to PBS group (P<0.001). Intravenous administration of mCB-MSC significantly reduced these histopathological changes in both distal and proximal airways (P<0.001). We showed that GFP-labeled MSCs were located in the lungs of OVA group 2weeks after intravenous induction. mCB-MSCs also significantly promoted Treg response in ovalbumin-treated mice (OVA+MSC group) (P<0.037). Our studies revealed that mCB-MSCs migrated to lung tissue and suppressed histopathological changes in murine model of asthma. The results reported here provided evidence that mCB-MSCs may be an alternative strategy for the treatment of remodeling and inflammation associated with chronic asthma.
Collapse
|
47
|
Park S, Park MS, Jung KH, Song J, Kim YA, Cho HJ, Min BI, Bae H. Treatment with pyranopyran-1, 8-dione attenuates airway responses in cockroach allergen sensitized asthma in mice. PLoS One 2014; 9:e87558. [PMID: 24489937 PMCID: PMC3906187 DOI: 10.1371/journal.pone.0087558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/24/2013] [Indexed: 12/25/2022] Open
Abstract
Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. Viticis Fructus (VF) has long been used in China and Korea as a traditional herbal remedy for treating various inflammatory diseases. Previously, we have isolated a novel phytochemical, pyranopyran-1, 8-dione (PPY), from VF. This study was conducted to evaluate the ability of PPY to prevent airway inflammation and to attenuate airway responses in a cockroach allergen-induced asthma model in mice. The mice sensitized to and challenged with cockroach allergen were treated with oral administration of PPY. The infiltration of total cells, eosinophils and lymphocytes into the BAL fluid was significantly inhibited in cockroach allergen-induced asthma mice treated with PPY (1, 2, or 10 mg/kg). Th2 cytokines and chemokine, such as IL-4, IL-5, IL-13 and eotaxin in BAL fluid were also reduced to normal levels following treatment with PPY. In addition, the levels of IgE were also markedly suppressed after PPY treatment. Histopathological examination demonstrated that PPY substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. Taken together, these results demonstrate that PPY possesses a potent efficacy on controlling allergic asthma response such as airway inflammation and remodeling.
Collapse
Affiliation(s)
- Soojin Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Sun Park
- Department of East-West Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Hwa Jung
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Joohyun Song
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - You Ah Kim
- Natural Products Department, Korea Promotion Institute for Traditional Medical Industry, Kyungbuk, Republic of Korea
| | - Hi Jae Cho
- Natural Products Department, Korea Promotion Institute for Traditional Medical Industry, Kyungbuk, Republic of Korea
| | - Byung-Il Min
- Department of East-West Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunsu Bae
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Lathrop MJ, Brooks EM, Bonenfant NR, Sokocevic D, Borg ZD, Goodwin M, Loi R, Cruz F, Dunaway CW, Steele C, Weiss DJ. Mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway. Stem Cells Transl Med 2014; 3:194-205. [PMID: 24436442 DOI: 10.5966/sctm.2013-0061] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Systemic administration of mesenchymal stromal cells (MSCs) suppresses airway inflammation and methacholine-induced airway hyper-responsiveness (AHR) in mouse models of T helper cell (Th) type 2-mediated eosinophilic allergic airway inflammation (AAI); however, the efficacy of MSCs in mouse models of severe Th17-mediated neutrophilic AAI has not yet been demonstrated. We assessed MSC effects in a mouse model of mixed Th2/Th17 AAI produced by mucosal exposure to Aspergillus fumigatus hyphal extract (AHE). Following sensitization produced by oropharyngeal AHE administration, systemic (tail vein) administration of syngeneic MSCs on the first day of challenge significantly reduced acute AHR predominantly through reduction of Th17-mediated airway inflammation. In parallel experiments, MSCs also mitigated AHR when administered during recurrent challenge 10 weeks after initial sensitization and challenge through reduction in systemic Th17-mediated inflammation. Investigation into potential mechanistic actions of MSCs in this model demonstrated that although T regulatory cells were increased in all AHE-treated mice, MSC administration did not alter T regulatory cell numbers in either the acute or recurrent model. Differential induction of interleukin-17a secretion was observed in ex vivo restimulation of mediastinal lymph node mixed-cell cytokine analyses. Although the mechanisms by which MSCs act to decrease inflammation and AHR in this model are not yet fully elucidated, decrease in Th17-mediated airway inflammation appears to play a significant role. These results provide a basis for further investigations of MSC administration as a potential therapeutic approach for severe refractory neutrophilic asthma.
Collapse
Affiliation(s)
- Melissa J Lathrop
- Pulmonary Disease & Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA; Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ge X, Bai C, Yang J, Lou G, Li Q, Chen R. Effect of mesenchymal stem cells on inhibiting airway remodeling and airway inflammation in chronic asthma. J Cell Biochem 2013; 114:1595-605. [PMID: 23334934 DOI: 10.1002/jcb.24501] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/08/2013] [Indexed: 12/18/2022]
Abstract
Previous studies proved that bone marrow-derived mesenchymal stem cells (BMSCs) could improve a variety of immune-mediated disease by its immunomodulatory properties. In this study, we investigated the effect on airway remodeling and airway inflammation by administrating BMSCs in chronic asthmatic mice. Forty-eight female BALB/c mice were randomly distributed into PBS group, BMSCs treatment group, BMSCs control group, and asthmatic group. The levels of cytokine and immunoglobulin in serum and bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay. The number of CD4(+) CD25(+) regulatory T cells and morphometric analysis was determined by flow cytometry, hematoxylin-eosin, immunofluorescence staining, periodic-acid Schiff, and masson staining, respectively. We found that airway remodeling and airway inflammation were evident in asthmatic mice. Moreover, low level of IL-12 and high levels of IL-13, IL-4, OVA-specific IgG1, IgE, and IgG2a and the fewer number of CD4(+) CD25(+) regulatory T cells were present in asthmatic group. However, transplantation of BMSCs significantly decreased airway inflammation and airway remodeling and level of IL-4, OVA-specific IgE, and OVA-specific IgG1, but elevated level of IL-12 and the number of CD4 + CD25 + regulatory T cells in asthma (P < 0.05). However, BMSCs did not contribute to lung regeneration and had no significant effect on levels of IL-10, IFN-Y, and IL-13. In our study, BMSCs engraftment prohibited airway inflammation and airway remodeling in chronic asthmatic group. The beneficial effect of BMSCs might involved the modulation imbalance cytokine toward a new balance Th1-Th2 profiles and up-regulation of protective CD4 + CD25 + regulatory T cells in asthma, but not contribution to lung regeneration.
Collapse
Affiliation(s)
- Xiahui Ge
- Department of Respiratory Medicine, Changhai Hospital of Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Inamdar AC, Inamdar AA. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell. Exp Lung Res 2013; 39:315-27. [PMID: 23992090 DOI: 10.3109/01902148.2013.816803] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung disorders such as asthma, acute respiratory distress syndrome (ARDS), chronic obstructive lung disease (COPD), and interstitial lung disease (ILD) show a few common threads of pathogenic mechanisms: inflammation, aberrant immune activity, infection, and fibrosis. Currently no modes of effective treatment are available for ILD or emphysema. Being anti-inflammatory, immunomodulatory, and regenerative in nature, the administration of mesenchymal stem cells (MSCs) has shown the capacity to control immune dysfunction and inflammation in the lung. The intravenous infusion of MSCs, the common mode of delivery, is followed by their entrapment in lung vasculature before MSCs reach to other organ systems thus indicating the feasible and promising approach of MSCs therapy for lung diseases. In this review, we discuss the mechanistic basis for MSCs therapy for asthma, ARDS, COPD, and ILD.
Collapse
|