1
|
Wei M, Wang Y, Zhang Y, Qiao Y. Plin5: A potential therapeutic target for type 2 diabetes mellitus. Diabetol Metab Syndr 2025; 17:114. [PMID: 40176076 PMCID: PMC11963521 DOI: 10.1186/s13098-025-01680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a kind of metabolic disease characterized by aberrant insulin secretion as a result of -cell loss or injury, or by impaired insulin sensitivity of peripheral tissues, which finally results in insulin resistance and a disturbance of glucose and lipid metabolism. Among them, lipid metabolism disorders lead to lipotoxicity through oxidative stress and inflammatory response, destroying the structure and function of tissues and cells. Abnormal lipid metabolism can lead to abnormal insulin signaling and disrupt glucose metabolism through a variety of pathways. Therefore, emphasizing lipid metabolism may be a crucial step in the prevention and treatment of T2DM. Plin5 is a lipid droplet surface protein, which can bi-directionally regulate lipid metabolism and plays an important role in lipolysis and fat synthesis. Plin5 can simultaneously decrease the buildup of free fatty acids in the cytoplasm, improve mitochondrial uptake of free fatty acids, speed up fatty acid oxidation through lipid drops-mitochondria interaction, and lessen lipotoxicity. In oxidative tissues like the heart, liver, and skeletal muscle, Plin5 is extensively expressed. And Plin5 is widely involved in β-cell apoptosis, insulin resistance, oxidative stress, inflammatory response and other pathological processes, which has important implications for exploring the pathogenesis of T2DM. In addition, recent studies have found that Plin5 is also closely related to T2DM and cancer, which provides a new perspective for exploring the relationship between T2DM and cancer.
Collapse
Affiliation(s)
- Mengjuan Wei
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yun Qiao
- Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Phan F, Bourron O, Foufelle F, Le Stunff H, Hajduch E. Sphingosine-1-phosphate signalling in the heart: exploring emerging perspectives in cardiopathology. FEBS Lett 2024; 598:2641-2655. [PMID: 38965662 DOI: 10.1002/1873-3468.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.
Collapse
Affiliation(s)
- Franck Phan
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, France
| | - Eric Hajduch
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
3
|
Janapati YK, Junapudi S. Progress in experimental models to investigate the in vivo and in vitro antidiabetic activity of drugs. Animal Model Exp Med 2024; 7:297-309. [PMID: 38837635 PMCID: PMC11228097 DOI: 10.1002/ame2.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders, and it is a rapidly growing global public health issue. It is characterized by hyperglycemia, a condition involving a high blood glucose level brought on by deficiencies in insulin secretion, decreased activity of insulin, or both. Prolonged effects of diabetes include cardiovascular problems, retinopathy, neuropathy, nephropathy, and vascular alterations in both macro- and micro-blood vessels. In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis, identifying targets, and reviewing novel treatment options and medications. Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences. The most popular in vivo studies involves the small animal models, such as rodent models, chemically induced diabetogens like streptozotocin and alloxan, and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals. Other models include virally induced models, diet/nutrition induced diabetic animals, surgically induced models or pancreatectomy models, and non-obese models. Large animals or non-rodent models like porcine (pig), canine (dog), nonhuman primate, and Zebrafish models are also outlined. The in vitro models discussed are murine and human beta-cell lines and pancreatic islets, human stem cells, and organoid cultures. The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition of α-glucosidase activity.
Collapse
Affiliation(s)
- Yasodha Krishna Janapati
- School of Pharmacy & Health SciencesUnited States International University‐AFRICA (USIU‐A)NairobiKenya
| | - Sunil Junapudi
- Department of Pharmaceutical ChemistryGeethanjali College of PharmacyKeesaraIndia
| |
Collapse
|
4
|
Li L, Bai S, Zhao H, Tan J, Wang Y, Zhang A, Jiang L, Zhao Y. Dietary Supplementation with Naringin Improves Systemic Metabolic Status and Alleviates Oxidative Stress in Transition Cows via Modulating Adipose Tissue Function: A Lipid Perspective. Antioxidants (Basel) 2024; 13:638. [PMID: 38929076 PMCID: PMC11200899 DOI: 10.3390/antiox13060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Dairy cows face metabolic challenges around the time of calving, leading to a negative energy balance and various postpartum health issues. Adipose tissue is crucial for cows during this period, as it regulates energy metabolism and supports immune function. Naringin, one of the main flavonoids in citrus fruit and their byproducts, is a potent antioxidant and anti-inflammatory phytoconstituent. The study aimed to evaluate the effects of supplemental naringin on performance, systemic inflammation, oxidative status, and adipose tissue metabolic status. A total of 36 multiparous Holstein cows (from ~21 d prepartum through 35 d postpartum) were provided a basal control (CON) diet or a CON diet containing naringin (NAR) at 30 g/d per cow. Supplemental NAR increased the yield of raw milk and milk protein, without affecting dry matter intake. Cows fed NAR showed significantly lower levels (p < 0.05) of serum non-esterified fatty acid (NEFA), C-reactive protein, IL-1β, IL-6, malonaldehyde, lipopolysaccharide (LPS), aspartate aminotransferase, and alanine aminotransferase, but increased (p < 0.05) glutathione peroxidase activity relative to those fed CON. Supplemental NAR increased (p < 0.05) adipose tissue adiponectin abundance, decreased inflammatory responses, and reduced oxidative stress. Lipidomic analysis showed that cows fed NAR had lower concentrations of ceramide species (p < 0.05) in the serum and adipose tissue than did the CON-fed cows. Adipose tissue proteomics showed that proteins related to lipolysis, ceramide biosynthesis, inflammation, and heat stress were downregulated (p < 0.05), while those related to glycerophospholipid biosynthesis and the extracellular matrix were upregulated (p < 0.05). Feeding NAR to cows may reduce the accumulation of ceramide by lowering serum levels of NEFA and LPS and increasing adiponectin expression, thereby decreasing inflammation and oxidative stress in adipose tissue, ultimately improving their systemic metabolic status. Including NAR in periparturient cows' diets improves lactational performance, reduces excessive lipolysis in adipose tissue, and decreases systemic and adipose tissue inflammation and oxidative stress. Integrating lipidomic and proteomic data revealed that reduced ceramide and increased glycerophospholipids may alleviate metabolic dysregulations in adipose tissue, which in turn benefits systemic metabolic status.
Collapse
Affiliation(s)
- Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Sarula Bai
- Beijing Sunlon Livestock Development Co., Ltd., Beijing 100076, China;
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ying Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ao Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| |
Collapse
|
5
|
Dashti Z, Yousefi Z, Kiani P, Taghizadeh M, Maleki MH, Borji M, Vakili O, Shafiee SM. Autophagy and the unfolded protein response shape the non-alcoholic fatty liver landscape: decoding the labyrinth. Metabolism 2024; 154:155811. [PMID: 38309690 DOI: 10.1016/j.metabol.2024.155811] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is on the rise, mirroring a global surge in diabetes and metabolic syndrome, as its major leading causes. NAFLD represents a spectrum of liver disorders, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Mechanistically, we know the unfolded protein response (UPR) as a protective cellular mechanism, being triggered under circumstances of endoplasmic reticulum (ER) stress. The hepatic UPR is turned on in a broad spectrum of liver diseases, including NAFLD. Recent data also defines molecular mechanisms that may underlie the existing correlation between UPR activation and NAFLD. More interestingly, subsequent studies have demonstrated an additional mechanism, i.e. autophagy, to be involved in hepatic steatosis, and thus NAFLD pathogenesis, principally by regulating the insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. All these findings suggest possible mechanistic roles for autophagy in the progression of NAFLD and its complications. Both UPR and autophagy are dynamic and interconnected fluxes that act as protective responses to minimize the harmful effects of hepatic lipid accumulation, as well as the ER stress during NAFLD. The functions of UPR and autophagy in the liver, together with findings of decreased hepatic autophagy in correlation with conditions that predispose to NAFLD, such as obesity and aging, suggest that autophagy and UPR, alone or combined, may be novel therapeutic targets against the disease. In this review, we discuss the current evidence on the interplay between autophagy and the UPR in connection to the NAFLD pathogenesis.
Collapse
Affiliation(s)
- Zahra Dashti
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Borji
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Engin A. Nonalcoholic Fatty Liver Disease and Staging of Hepatic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:539-574. [PMID: 39287864 DOI: 10.1007/978-3-031-63657-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
7
|
Ali-Berrada S, Guitton J, Tan-Chen S, Gyulkhandanyan A, Hajduch E, Le Stunff H. Circulating Sphingolipids and Glucose Homeostasis: An Update. Int J Mol Sci 2023; 24:12720. [PMID: 37628901 PMCID: PMC10454113 DOI: 10.3390/ijms241612720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sphingolipids are a family of lipid molecules produced through different pathways in mammals. Sphingolipids are structural components of membranes, but in response to obesity, they are implicated in the regulation of various cellular processes, including inflammation, apoptosis, cell proliferation, autophagy, and insulin resistance which favors dysregulation of glucose metabolism. Of all sphingolipids, two species, ceramides and sphingosine-1-phosphate (S1P), are also found abundantly secreted into the bloodstream and associated with lipoproteins or extracellular vesicles. Plasma concentrations of these sphingolipids can be altered upon metabolic disorders and could serve as predictive biomarkers of these diseases. Recent important advances suggest that circulating sphingolipids not only serve as biomarkers but could also serve as mediators in the dysregulation of glucose homeostasis. In this review, advances of molecular mechanisms involved in the regulation of ceramides and S1P association to lipoproteins or extracellular vesicles and how they could alter glucose metabolism are discussed.
Collapse
Affiliation(s)
- Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Anna Gyulkhandanyan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| |
Collapse
|
8
|
Jiang H, Huang T, Yu Y, Zhou C, Qiu L, Mai HN, Gropler RJ, Klein RS, Tu Z. Characterization of a S1PR2 specific 11C-labeled radiotracer in streptozotocin-induced diabetic murine model. Nucl Med Biol 2023; 122-123:108370. [PMID: 37556928 PMCID: PMC10949307 DOI: 10.1016/j.nucmedbio.2023.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Diabetes mellitus is a chronic progressive metabolic disorder that affects millions of people worldwide. Emerging evidence suggests the important roles of sphingolipid metabolism in diabetes. In particular, sphingosine-1-phosphate (S1P) and S1P receptor 2 (S1PR2) have important metabolic functions and are involved in several metabolic diseases. In diabetes, S1PR2 can effectively preserve β cells and improve glucose/insulin tolerance in high-fat diet induced and streptozotocin (STZ)-induced diabetic mouse models. We previously developed a group of potent and selective S1PR2 ligands and radioligands. METHODS In this study, we continued our efforts and characterized our leading S1PR2 radioligand, [11C]TZ34125, in a STZ-induced diabetic mouse model. [11C]TZ34125 was radiosynthesized in an automated synthesis module and in vitro saturation binding assay was performed using recombinant human S1PR2 membrane. In vitro saturation autoradiography analysis was also performed to determine the binding affinity of [11C]TZ34125 against mouse tissues. Type-1 diabetic mouse model was developed following a single high dose of STZ in C57BL/6 mice. Ex vivo biodistribution was performed to evaluate the distribution and amount of [11C]TZ34125 in tissues. In vitro autoradiography analysis was performed to compare the uptake of [11C]TZ34125 between diabetic and control animals in mouse spleen and pancreas. RESULTS Our in vitro saturation binding assay using [11C]TZ34125 confirmed [11C]TZ34125 is a potent radioligand to recombinant human S1PR2 membrane with a Kd value of 0.9 nM. Saturation autoradiographic analysis showed [11C]TZ34125 has a Kd of 67.5, 45.9, and 25.0 nM to mouse kidney, spleen, and liver tissues respectively. Biodistribution study in STZ-induced diabetic mice showed the uptake of [11C]TZ34125 was significantly elevated in the spleen (~2 fold higher) and pancreas (~1.4 fold higher) compared to normal controls. The increased uptake of [11C]TZ34125 was further confirmed using autoradiographic analysis in the spleen and pancreases of STZ-induced diabetic mice, indicating S1PR2 can potentially act as a biomarker of diabetes in pancreases and inflammation in spleen. Future mechanistic analysis and in vivo quantitative assessment using non-invasive PET imaging in large animal model of diabetes is worthwhile. CONCLUSIONS Overall, our data showed an increased uptake of our lead S1PR2-specific radioligand, [11C]TZ34125, in the spleen and pancreases of STZ-induced diabetic mice, and demonstrated [11C]TZ34125 has a great potential for preclinical and clinical usage for assessment of S1PR2 in diabetes and inflammation.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, United States of America
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, United States of America
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, United States of America
| | - Charles Zhou
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, United States of America
| | - Lin Qiu
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, United States of America
| | - Hien Ngoc Mai
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, United States of America
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, United States of America
| | - Robyn S Klein
- Departments of Medicine and Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, United States of America
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, United States of America.
| |
Collapse
|
9
|
Kakehi S, Tamura Y, Ikeda SI, Kaga N, Taka H, Nishida Y, Kawamori R, Watada H. Physical inactivity induces insulin resistance in plantaris muscle through protein tyrosine phosphatase 1B activation in mice. Front Physiol 2023; 14:1198390. [PMID: 37389126 PMCID: PMC10300557 DOI: 10.3389/fphys.2023.1198390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Inactivity causes insulin resistance in skeletal muscle and exacerbates various lifestyle-related diseases. We previously found that 24-h hindlimb cast immobilization (HCI) of the predominantly slow-twitch soleus muscle increased intramyocellular diacylglycerol (IMDG) and insulin resistance by activation of lipin1, and HCI after a high-fat diet (HFD) further aggravated insulin resistance. Here, we investigated the effects of HCI on the fast-twitch-predominant plantaris muscle. HCI reduced the insulin sensitivity of plantaris muscle by approximately 30%, and HCI following HFD dramatically reduced insulin sensitivity by approximately 70% without significant changes in the amount of IMDG. Insulin-stimulated phosphorylation levels of insulin receptor (IR), IR substrate-1, and Akt were reduced in parallel with the decrease in insulin sensitivity. Furthermore, tyrosine phosphatase 1B (PTP1B), a protein known to inhibit insulin action by dephosphorylating IR, was activated, and PTP1B inhibition canceled HCI-induced insulin resistance. In conclusion, HCI causes insulin resistance in the fast-twitch-predominant plantaris muscle as well as in the slow-twitch-predominant soleus muscle, and HFD potentiates these effects in both muscle types. However, the mechanism differed between soleus and plantaris muscles, since insulin resistance was mediated by the PTP1B inhibition at IR in plantaris muscle.
Collapse
Affiliation(s)
- Saori Kakehi
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Shin-ichi Ikeda
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Naoko Kaga
- Division of Proteomics and Biomolecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hikari Taka
- Division of Proteomics and Biomolecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| |
Collapse
|
10
|
Bandet CL, Tan-Chen S, Ali-Berrada S, Campana M, Poirier M, Blachnio-Zabielska A, Pais-de-Barros JP, Rouch C, Ferré P, Foufelle F, Le Stunff H, Hajduch E. Ceramide analogue C2-cer induces a loss in insulin sensitivity in muscle cells through the salvage/recycling pathway. J Biol Chem 2023:104815. [PMID: 37178918 DOI: 10.1016/j.jbc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes (T2D). However, many of the studies involved in the discovery of deleterious ceramide actions used a non-physiological cell-permeable short-chain ceramide analogue, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes de-acylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous mono-unsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1 (DGAT1)-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and T2D.
Collapse
Affiliation(s)
- Cécile L Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Mélanie Campana
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Maxime Poirier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | | | - Jean-Paul Pais-de-Barros
- Lipidomics Core Facility, INSERM UMR1231 - Université Bourgogne Franche Comté, 15 Boulevard Mal de Lattre de Tassigny, F-21000 Dijon, France
| | - Claude Rouch
- Université de Paris Cité, Functional and Adaptive Biology Unit, UMR 8251, CNRS, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France.
| |
Collapse
|
11
|
Serum ceramides could predict durable diabetes remission following gastric bypass surgery. MED 2022; 3:440-441. [PMID: 35809557 DOI: 10.1016/j.medj.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Morbid obesity is a major risk factor for the development of type 2 diabetes (T2D). One strategy to both lose weight and counteract T2D is bariatric surgery (RYGB). In a study published in this issue of Med, Poss et al. revealed that circulating ceramides could predict the durability of T2D remission independently of weight loss following RYGB.
Collapse
|
12
|
Brusatori M, Wood MH, Tucker SC, Maddipati KR, Koya SK, Auner GW, Honn KV, Seyoum B. Ceramide changes in abdominal subcutaneous and visceral adipose tissue among diabetic and nondiabetic patients. J Diabetes 2022; 14:271-281. [PMID: 35470585 PMCID: PMC9060146 DOI: 10.1111/1753-0407.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND This study profiles ceramides extracted from visceral and subcutaneous adipose tissue of human subjects by liquid chromatography-mass spectrometry to determine a correlation with status of diabetes and gender. METHODS Samples of visceral and abdominal wall subcutaneous adipose tissue (n = 36 and n = 31, respectively) were taken during laparoscopic surgery from 36 patients (14 nondiabetic, 22 diabetic and prediabetic) undergoing bariatric surgery with a body mass index (BMI) >35 kg/m2 with ≥1 existing comorbidity or BMI ≥40 kg/m2 . Sphingolipids were extracted and analyzed using liquid chromatography-mass spectrometry. RESULTS After logarithm 2 conversion, paired analysis of visceral to subcutaneous tissue showed differential accumulation of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in visceral tissue of prediabetic/diabetic female subjects, but not in males. Within-tissue analysis showed higher mean levels of ceramide species linked to insulin resistance, such as Cer(d18:1/18:0) and Cer(d18:1/16:0), in visceral tissue of prediabetic/diabetic patients compared with nondiabetic subjects and higher content of Cer(d18:1/14:0) in subcutaneous tissue of insulin-resistant female patients compared with prediabetic/diabetic males. Statistically significant differences in mean levels of ceramide species between insulin-resistant African American and insulin-resistant Caucasian patients were not evident in visceral or subcutaneous tissue. CONCLUSIONS Analysis of ceramides is important for developing a better understanding of biological processes underlying type 2 diabetes, metabolic syndrome, and obesity. Knowledge of the accumulated ceramides/dihydroceramides may reflect on the prelipolytic state that leads the lipotoxic phase of insulin resistance and may shed light on the predisposition to insulin resistance by gender.
Collapse
Affiliation(s)
- Michelle Brusatori
- Michael and Marian Ilitch Department of SurgerySchool of Medicine, Wayne State UniversityDetroitMichiganUSA
- Smart Sensors and Integrated Microsystems ProgramWayne State UniversityDetroitMichiganUSA
| | - Michael H. Wood
- Michael and Marian Ilitch Department of SurgerySchool of Medicine, Wayne State UniversityDetroitMichiganUSA
- Harper Bariatric Medicine InstituteHarper University Hospital, Detroit Medical CenterDetroitMichiganUSA
| | - Stephanie C. Tucker
- Department of PathologyBioactive Lipids Research Program and Lipidomics Core Facility, Wayne State UniversityDetroitMichiganUSA
| | - Krishna Rao Maddipati
- Department of PathologyBioactive Lipids Research Program and Lipidomics Core Facility, Wayne State UniversityDetroitMichiganUSA
| | - S. Kiran Koya
- Michael and Marian Ilitch Department of SurgerySchool of Medicine, Wayne State UniversityDetroitMichiganUSA
- Smart Sensors and Integrated Microsystems ProgramWayne State UniversityDetroitMichiganUSA
| | - Gregory W. Auner
- Michael and Marian Ilitch Department of SurgerySchool of Medicine, Wayne State UniversityDetroitMichiganUSA
- Smart Sensors and Integrated Microsystems ProgramWayne State UniversityDetroitMichiganUSA
| | - Kenneth V. Honn
- Department of PathologyBioactive Lipids Research Program and Lipidomics Core Facility, Wayne State UniversityDetroitMichiganUSA
| | - Berhane Seyoum
- Division of EndocrinologyWayne State University, School of MedicineDetroitMichiganUSA
| |
Collapse
|
13
|
Wang Z, Song Y, Sun S, Zhao C, Fu S, Xia C, Bai Y. Metabolite Comparison between Serum and Follicular Fluid of Dairy Cows with Inactive Ovaries Postpartum. Animals (Basel) 2022; 12:ani12030285. [PMID: 35158609 PMCID: PMC8833624 DOI: 10.3390/ani12030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although the milk production of dairy cows has increased rapidly in recent decades, the reproductive performance of dairy cows has gradually declined. In modern intensive dairy farms, prevention and treatment of inactive ovaries has become an important challenge of reproduction disorders during early lactation. Our aim is to screen out metabolites and metabolic pathways related to inactive ovaries through serum and follicular fluid metabolomics. We found that the changes in serum and follicular fluid were mainly enriched in nine metabolic pathways. In serum, these included d-glutamine and d-glutamate metabolism, alanine, aspartic and glutamate metabolism, arginine and proline metabolism, pentose and glucuronate interconversions, and glycerophospholipid metabolism. In follicular fluid, they were valine, leucine, and isoleucine biosynthesis; arachidonic acid metabolism; glycerophospholipid metabolism; starch and sucrose metabolism; phenylalanine metabolism; and pentose and glucuronate interconversion. The common metabolic pathways of disease-related serum and follicular fluid were pentose and glucuronate interconversions and glycerophospholipid metabolism. This research will provide a theoretical basis for exploring the causes of inactive ovaries and provide new ideas for the prevention and treatment of inactive ovaries in the future. Abstract Inactive ovaries (IO) accounts for 50% of ovarian disease in postpartum dairy cows, which seriously affects their reproductive efficiency. To investigate the metabolic changes in the serum and follicular fluid of dairy cows with IO during lactation, six estrus (E) cows and six IO cows at 50 to 55 days in milk were selected based on B ultrasonic detection and clinical manifestations. The differential metabolites in serum and follicular fluid between the E cows and IO cows were identified by ultra-high-pressure liquid chromatography–quadrupole time-of-flight mass spectrometry, combined with multidimensional statistical methods. The results showed that dairy cows with IO were in a subclinical ketosis status where beta-hydroxybutyrate (BHB) exceeded 1.20 mmol/L, 14 differential metabolites in the serum of IO cows included 10 increased metabolites and 4 decreased metabolites, and 14 differential metabolites in the follicular fluid of IO cows included 8 increased metabolites and 6 decreased metabolites. These differential metabolites mainly involved nine metabolic pathways. The common enrichment pathway of different metabolites in serum and follicular fluid were glycerophospholipid metabolism and pentose and glucuronate interconversions. In conclusion, there were significant differences in the differential metabolites and enrichment pathways between serum and follicular fluid of IO cows, implying that there were complex changes in blood metabolism and local follicular metabolism of IO cows, whose interactions need further investigation.
Collapse
Affiliation(s)
- Zhijie Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Yuxi Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Shuhan Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Shixin Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing 163319, China
- Correspondence: (C.X.); (Y.B.)
| | - Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.W.); (Y.S.); (S.S.); (S.F.)
- Correspondence: (C.X.); (Y.B.)
| |
Collapse
|
14
|
Jiang LP, Sun HZ. Long-chain saturated fatty acids and its interaction with insulin resistance and the risk of nonalcoholic fatty liver disease in type 2 diabetes in Chinese. Front Endocrinol (Lausanne) 2022; 13:1051807. [PMID: 36568120 PMCID: PMC9768420 DOI: 10.3389/fendo.2022.1051807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION This study aimed to explore relationships between long-chain saturated fatty acids (LSFAs) and nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes (T2D); and whether insulin action had an interactive effect with LSFAs on NAFLD progression. METHODS From April 2018 to April 2019, we extracted the electronic medical records of 481 patients with T2D who meet the inclusion and exclusion criteria from the Second Affiliated Hospital of Dalian Medical University. Ultrasound was used to estimate NAFLD at admission. Logistic regression analysis were used to estimate odds ratios (OR) and 95% confidence intervals (CI). The additive interaction was carried out to estimate interactions between LSFAs and insulin resistance (IR) in NAFLD patients with T2D. RESULTS Myristic acid (14:0) and palmitic acid (16:0) were positively associated with the risk of NAFLD (OR for myristic acid (14:0): 7.516, 3.557-15.882 and OR for palmitic acid (16:0): 4.071, 1.987-8.343, respectively). After adjustment for traditional risk factors, these associations were slightly attenuated but still highly significant. Co-presence of myristic acid (14:0)>72.83 μmol/L and IR>4.89 greatly increased OR of NAFLD to 9.691 (4.113-22.833). Similarly, co-presence of palmitic acid (16:0)>3745.43μmol/L and IR>4.89 greatly increased OR of NAFLD to 6.518(2.860-14.854). However, stearic acid (18:0) and risk of NAFLD have no association. Moreover, there was no association between very-long-chain SFAs (VLSFAs) and risk of NAFLD. DISCUSSION Myristic acid (14:0) and palmitic acid (16:0) were positively associated with the risk of NAFLD in T2D patients in China. High IR amplified the effect of high myristic acid (14:0) and high palmitic acid (16:0) on NAFLD.
Collapse
Affiliation(s)
- Li-Peng Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hong-Zhi Sun
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou, China
- *Correspondence: Hong-Zhi Sun,
| |
Collapse
|
15
|
Aganetti MA, Cruz CS, Galvão I, Engels DF, Ricci MF, Vieira AT. The Gut Microbiota and Immunopathophysiology. COMPREHENSIVE PHARMACOLOGY 2022:492-514. [DOI: 10.1016/b978-0-12-820472-6.00128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Yin H, Shi A, Wu J. Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2022; 15:2003-2030. [PMID: 35837578 PMCID: PMC9275506 DOI: 10.2147/dmso.s367483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted clinicopathological syndrome characterised by excessive hepatic lipid accumulation that causes steatosis, excluding alcoholic factors. Platelet-activating factor (PAF), a biologically active lipid transmitter, induces platelet activation upon binding to the PAF receptor. Recent studies have found that PAF is associated with gamma-glutamyl transferase, which is an indicator of liver disease. Moreover, PAF can stimulate hepatic lipid synthesis and cause hypertriglyceridaemia. Furthermore, the knockdown of the PAF receptor gene in the animal models of NAFLD helped reduce the inflammatory response, improve glucose homeostasis and delay the development of NAFLD. These findings suggest that PAF is associated with NAFLD development. According to reports, patients with NAFLD or animal models have marked platelet activation abnormalities, mainly manifested as enhanced platelet adhesion and aggregation and altered blood rheology. Pharmacological interventions were accompanied by remission of abnormal platelet activation and significant improvement in liver function and lipids in the animal model of NAFLD. These confirm that platelet activation may accompany a critical importance in NAFLD development and progression. However, how PAFs are involved in the NAFLD signalling pathway needs further investigation. In this paper, we review the relevant literature in recent years and discuss the role played by PAF in NAFLD development. It is important to elucidate the pathogenesis of NAFLD and to find effective interventions for treatment.
Collapse
Affiliation(s)
- Hang Yin
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Anhua Shi
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
- Correspondence: Junzi Wu; Anhua Shi, Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China, Tel/Fax +86 187 8855 7524; +86 138 8885 0813, Email ;
| |
Collapse
|
17
|
Bonilha I, Hajduch E, Luchiari B, Nadruz W, Le Goff W, Sposito AC. The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites 2021; 11:metabo11120807. [PMID: 34940565 PMCID: PMC8708656 DOI: 10.3390/metabo11120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus and insulin resistance feature substantial modifications of the lipoprotein profile, including a higher proportion of smaller and denser low-density lipoprotein (LDL) particles. In addition, qualitative changes occur in the composition and structure of LDL, including changes in electrophoretic mobility, enrichment of LDL with triglycerides and ceramides, prolonged retention of modified LDL in plasma, increased uptake by macrophages, and the formation of foam cells. These modifications affect LDL functions and favor an increased risk of cardiovascular disease in diabetic individuals. In this review, we discuss the main findings regarding the structural and functional changes in LDL particles in diabetes pathophysiology and therapeutic strategies targeting LDL in patients with diabetes.
Collapse
Affiliation(s)
- Isabella Bonilha
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France;
| | - Beatriz Luchiari
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
| | - Wilson Nadruz
- Cardiology Division, Cardiovascular Pathophysiology Laboratory, State University of Campinas (Unicamp), Campinas 13083-887, Brazil;
| | - Wilfried Le Goff
- Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, ICAN, Inserm, Sorbonne Université, F-75013 Paris, France;
| | - Andrei C. Sposito
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
- Correspondence: ; Tel.: +55-19-3521-7098; Fax: +55-19-3289-410
| |
Collapse
|
18
|
Experimental animal models for diabetes and its related complications-a review. Lab Anim Res 2021; 37:23. [PMID: 34429169 PMCID: PMC8385906 DOI: 10.1186/s42826-021-00101-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus, a very common and multifaceted metabolic disorder is considered as one of the fastest growing public health problems in the world. It is characterized by hyperglycemia, a condition with high glucose level in the blood plasma resulting from defects in insulin secretion or its action and in some cases both the impairment in secretion and also action of insulin coexist. Historically, animal models have played a critical role in exploring and describing malady pathophysiology and recognizable proof of targets and surveying new remedial specialists and in vivo medicines. In the present study, we reviewed the experimental models employed for diabetes and for its related complications. This paper reviews briefly the broad chemical induction of alloxan and streptozotocin and its mechanisms associated with type 1 and type 2 diabetes. Also we highlighted the different models in other species and other animals.
Collapse
|
19
|
Hajduch E, Lachkar F, Ferré P, Foufelle F. Roles of Ceramides in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021; 10:jcm10040792. [PMID: 33669443 PMCID: PMC7920467 DOI: 10.3390/jcm10040792] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease is one of the most common chronic liver diseases, ranging from simple steatosis to steatohepatitis, fibrosis, and cirrhosis. Its prevalence is rapidly increasing and presently affects around 25% of the general population of Western countries, due to the obesity epidemic. Liver fat accumulation induces the synthesis of specific lipid species and particularly ceramides, a sphingolipid. In turn, ceramides have deleterious effects on hepatic metabolism, a phenomenon called lipotoxicity. We review here the evidence showing the role of ceramides in non-alcoholic fatty liver disease and the mechanisms underlying their effects.
Collapse
Affiliation(s)
- Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (E.H.); (F.L.); (P.F.)
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
- Correspondence: ; Tel.: +33-1-44-27-24-25
| |
Collapse
|
20
|
Cicuéndez B, Ruiz-Garrido I, Mora A, Sabio G. Stress kinases in the development of liver steatosis and hepatocellular carcinoma. Mol Metab 2021; 50:101190. [PMID: 33588102 PMCID: PMC8324677 DOI: 10.1016/j.molmet.2021.101190] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important component of metabolic syndrome and one of the most prevalent liver diseases worldwide. This disorder is closely linked to hepatic insulin resistance, lipotoxicity, and inflammation. Although the mechanisms that cause steatosis and chronic liver injury in NAFLD remain unclear, a key component of this process is the activation of stress-activated kinases (SAPKs), including p38 and JNK in the liver and immune system. This review summarizes findings which indicate that the dysregulation of stress kinases plays a fundamental role in the development of steatosis and are important players in inducing liver fibrosis. To avoid the development of steatohepatitis and liver cancer, SAPK activity must be tightly regulated not only in the hepatocytes but also in other tissues, including cells of the immune system. Possible cellular mechanisms of SAPK actions are discussed. Hepatic JNK triggers steatosis and insulin resistance, decreasing lipid oxidation and ketogenesis in HFD-fed mice. Decreased liver expression of p38α/β in HFD increases lipogenesis. Hepatic p38γ/δ drive insulin resistance and inhibit autophagy, which may lead to steatosis. Macrophage p38α/β promote cytokine production and M1 polarization, leading to lipid accumulation in hepatocytes. Myeloid p38γ/δ contribute to cytokine production and neutrophil migration, protecting against steatosis, diabetes and NAFLD. JNK1 and p38γ induce HCC while p38α blocks it. However, deletion of hepatic JNK1/2 induces cholangiocarcinoma. SAPK are potential therapeutic target for metabolic disorders, steatohepatitis and liver cancer.
Collapse
Affiliation(s)
- Beatriz Cicuéndez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Irene Ruiz-Garrido
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
21
|
Lachkar F, Ferré P, Foufelle F, Papaioannou A. Dihydroceramides: their emerging physiological roles and functions in cancer and metabolic diseases. Am J Physiol Endocrinol Metab 2021; 320:E122-E130. [PMID: 33135459 DOI: 10.1152/ajpendo.00330.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dihydroceramides (DhCers) are a type of sphingolipids that for a long time were regarded as biologically inactive. They are metabolic intermediates of the de novo sphingolipid synthesis pathway, and are converted into ceramides (Cers) with the addition of a double bond. Ceramides are abundant in tissues and have well-established biological functions. On the contrary, dihydroceramides are less prevalent, and despite their hitherto characterization as inert lipids, studies of the past decade began to unravel their implication in various biological processes distinct from those involving ceramides. These processes include cellular stress responses and autophagy, cell growth, pro-death or pro-survival pathways, hypoxia, and immune responses. In addition, their plasma concentration has been related to metabolic diseases and shown as a long-term predictor of type 2 diabetes onset. They are thus important players and potential biomarkers in pathologies ranging from diabetes to cancer and neurodegenerative diseases. The purpose of this mini-review is to highlight the emergence of dihydroceramides as a new class of bioactive sphingolipids by reporting recent advances on their biological characterization and pathological implications, focusing on cancer and metabolic diseases.
Collapse
Affiliation(s)
- Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Department of Oncology and Endocrine Biochemistry, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Papaioannou
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
22
|
Blachnio-Zabielska A, Hajduch E, Le Stunff H. Editorial: The Role of Sphingolipid Metabolism in the Development of Type 2 Diabetes and Obesity. Front Endocrinol (Lausanne) 2021; 12:835751. [PMID: 35069458 PMCID: PMC8777266 DOI: 10.3389/fendo.2021.835751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Paris, France
| | - Hervé Le Stunff
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Saclay, France
- *Correspondence: Hervé Le Stunff,
| |
Collapse
|
23
|
Juchnicka I, Kuźmicki M, Szamatowicz J. Ceramides and Sphingosino-1-Phosphate in Obesity. Front Endocrinol (Lausanne) 2021; 12:635995. [PMID: 34054722 PMCID: PMC8158155 DOI: 10.3389/fendo.2021.635995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing worldwide problem, especially in developed countries. This disease adversely affects the quality of life and notably contributes to the development of type 2 diabetes, metabolic syndrome, and cardiovascular disorders. It is characterised by excessive lipids accumulation in the subcutaneous and visceral adipose tissue. Considering the secretory function of adipose tissue, this leads to impaired adipokines and cytokines release. Changes in adipose tissue metabolism result in chronic inflammation, pancreatic islets dysfunction and peripheral insulin resistance. In addition to saturating various adipocytes, excess lipids are deposited into non-adipose peripheral tissues, which disturbs cell metabolism and causes a harmful effect known as lipotoxicity. Fatty acids are metabolised into bioactive lipids such as ceramides, from which sphingolipids are formed. Ceramides and sphingosine-1-phosphate (S1P) are involved in intracellular signalling, cell proliferation, migration, and apoptosis. Studies demonstrate that bioactive lipids have a crucial role in regulating insulin signalling pathways, glucose homeostasis and β cell death. Data suggests that ceramides may have an opposite cellular effect than S1P; however, the role of S1P remains controversial. This review summarises the available data on ceramide and sphingolipid metabolism and their role in obesity.
Collapse
|
24
|
Carlier A, Phan F, Szpigel A, Hajduch E, Salem JE, Gautheron J, Le Goff W, Guérin M, Lachkar F, Ratziu V, Hartemann A, Ferré P, Foufelle F, Bourron O. Dihydroceramides in Triglyceride-Enriched VLDL Are Associated with Nonalcoholic Fatty Liver Disease Severity in Type 2 Diabetes. CELL REPORTS MEDICINE 2020; 1:100154. [PMID: 33377125 PMCID: PMC7762772 DOI: 10.1016/j.xcrm.2020.100154] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
Plasma dihydroceramides are predictors of type 2 diabetes and related to metabolic dysfunctions, but the underlying mechanisms are not characterized. We compare the relationships between plasma dihydroceramides and biochemical and hepatic parameters in two cohorts of diabetic patients. Hepatic steatosis, steatohepatitis, and fibrosis are assessed by their plasma biomarkers. Plasma lipoprotein sphingolipids are studied in a sub-group of diabetic patients. Liver biopsies from subjects with suspected non-alcoholic fatty liver disease are analyzed for sphingolipid synthesis enzyme expression. Dihydroceramides, contained in triglyceride-rich very-low-density lipoprotein (VLDL), are associated with steatosis and steatohepatitis. Expression of sphingolipid synthesis enzymes is correlated with histological steatosis and inflammation grades. In conclusion, association of plasma dihydroceramides with nonalcoholic fatty liver might explain their predictive character for type 2 diabetes. Our results suggest a relationship between hepatic sphingolipid metabolism and steatohepatitis and an involvement of dihydroceramides in the synthesis/secretion of triglyceride-rich VLDL, a hallmark of NAFLD and type 2 diabetes dyslipidemia. Plasma dihydroceramides are associated with NAFLD severity in type 2 diabetic patients Plasma dihydroceramides are found in triglyceride-enriched VLDL A role for dihydroceramide in triglyceride-rich VLDL synthesis/secretion is suggested Expression of enzymes of hepatic sphingolipid synthesis increases with NAFLD severity
Collapse
Affiliation(s)
- Aurélie Carlier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France.,Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Diabetes Department, Hospital Pitié-Salpêtrière, 75013 Paris, France
| | - Franck Phan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France.,Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Diabetes Department, Hospital Pitié-Salpêtrière, 75013 Paris, France
| | - Anaïs Szpigel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France.,Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Joe-Elie Salem
- Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique-Hôpitaux de Paris, Paris, France.,Sorbonne Université, Assistance Publique-Hôpitaux de Paris, CIC Paris-Est, Hospital Pitié-Salpêtrière, 75013 Paris, France
| | - Jérémie Gautheron
- Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, 75012 Paris, France
| | - Wilfried Le Goff
- Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique-Hôpitaux de Paris, Paris, France.,UMR ICAN, INSERM, Sorbonne Université, 75013 Paris, France
| | - Maryse Guérin
- Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique-Hôpitaux de Paris, Paris, France.,UMR ICAN, INSERM, Sorbonne Université, 75013 Paris, France
| | - Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Vlad Ratziu
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France.,Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique-Hôpitaux de Paris, Paris, France.,Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hepatology Department, Hospital Pitié-Salpêtrière, 75013 Paris, France
| | - Agnès Hartemann
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France.,Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Diabetes Department, Hospital Pitié-Salpêtrière, 75013 Paris, France.,Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France.,Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique-Hôpitaux de Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris, Oncology and endocrine biochemistry Department, Hospital Pitié-Salpêtrière, 75013 Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France.,Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France.,Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Diabetes Department, Hospital Pitié-Salpêtrière, 75013 Paris, France.,Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
25
|
Mohammed ED, Abdel-Naim AB, Kangpeng J, Jiang R, Wei J, Sun B. The mother relationship between insulin resistance and non-alcoholic steatohepatitis: Glucosinolates hydrolysis products as a promising insulin resistance-modulator and fatty liver-preventer. Life Sci 2020; 264:118615. [PMID: 33096115 DOI: 10.1016/j.lfs.2020.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022]
Abstract
Non-alcoholic fatty liver disease (NFLD) is one of the present public health problems which have no specific and effective treatment. The speed of the disease progression depends on the patient's lifestyle. Due to life stresses and lack of time, a high number of people depend on fast food containing a high amount of fats which one of the main causes of insulin resistance (IR). IR is one of the metabolic disorders which strongly intersected with molecular NAFLD and leading to its progression into non-alcoholic steatohepatitis (NASH). In this review, we introduced the updated statistics of NAFLD and NASH progression all over the world shows its importance, etiologies, and pathogenesis. Also, IR and its role in NASH initiation and progression explored, and current treatments with its limitations have been explained. Glucosinolates (GLS) is a group of phytochemicals which known by its potent hydrolysis products with promising anti-cancer effect. In this review, we have collected the recent experimental studies of different GLS hydrolysis products against IR and chronic liver diseases supported by our lab finding. Finally, we recommend this group of phytochemicals as promising molecules to be studied experimentally and clinically against a wide range of chronic liver diseases with an acceptable safety margin.
Collapse
Affiliation(s)
- Eman D Mohammed
- Department of Clinical Pharmacology, Nanjing Drum Tower Hospital, Pharmacy Collage of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China; Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, Jiangsu Province, China; Natural Products Unit, Medicinal and Aromatic Plants Department, Desert Research Centre, Cairo, Egypt
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jin Kangpeng
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, Jiangsu Province, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, Jiangsu Province, China
| | - Jifu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital, Pharmacy College of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, Jiangsu Province, China; Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China.
| |
Collapse
|
26
|
Boyce GR, Shoeb M, Kodali V, Meighan TG, Roach KA, McKinney W, Stone S, Powell MJ, Roberts JR, Zeidler-Erdely PC, Erdely A, Antonini JM. Welding fume inhalation exposure and high-fat diet change lipid homeostasis in rat liver. Toxicol Rep 2020; 7:1350-1355. [PMID: 33102138 PMCID: PMC7569188 DOI: 10.1016/j.toxrep.2020.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
It is estimated that greater than 1 million workers are exposed to welding fume (WF) by inhalation daily. The potentially toxic metals found in WF are known to cause multiple adverse pulmonary and systemic effects, including cardiovascular disease, and these metals have also been shown to translocate to the liver. This occupational exposure combined with a high fat (HF) Western diet, which has been shown to cause hyperlipidemia and non-alcoholic fatty liver disease (NAFLD), has the potential to cause significant mixed exposure metabolic changes in the liver. The goal of this study was to use matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) to analyze the spatial distribution and abundance changes of lipid species in Sprague Dawley rat liver maintained on a HF diet combined with WF inhalation. The results of the MALDI-IMS analysis revealed unique hepatic lipid profiles for each treatment group. The HF diet group had significantly increased abundance of triglycerides and phosphatidylinositol lipids, as well as decreased lysophosphatidic lipids and cardiolipin. Ceramide-1-phosphate was found at higher abundance in the regular (REG) diet WF-exposed group which has been shown to regulate the eicosanoid pathway involved in pro-inflammatory response. The results of this study showed that the combined effects of WF inhalation and a HF diet significantly altered the hepatic lipidome. Additionally, pulmonary exposure to WF alone increased lipid markers of inflammation.
Collapse
Affiliation(s)
- Greg R. Boyce
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- Corresponding author.
| | - Mohammad Shoeb
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Vamsi Kodali
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Terence G. Meighan
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Katherine A. Roach
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samuel Stone
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Jenny R. Roberts
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Aaron Erdely
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - James M. Antonini
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
27
|
Guitton J, Bandet CL, Mariko ML, Tan-Chen S, Bourron O, Benomar Y, Hajduch E, Le Stunff H. Sphingosine-1-Phosphate Metabolism in the Regulation of Obesity/Type 2 Diabetes. Cells 2020; 9:E1682. [PMID: 32668665 PMCID: PMC7407406 DOI: 10.3390/cells9071682] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a pathophysiological condition where excess free fatty acids (FFA) target and promote the dysfunctioning of insulin sensitive tissues and of pancreatic β cells. This leads to the dysregulation of glucose homeostasis, which culminates in the onset of type 2 diabetes (T2D). FFA, which accumulate in these tissues, are metabolized as lipid derivatives such as ceramide, and the ectopic accumulation of the latter has been shown to lead to lipotoxicity. Ceramide is an active lipid that inhibits the insulin signaling pathway as well as inducing pancreatic β cell death. In mammals, ceramide is a key lipid intermediate for sphingolipid metabolism as is sphingosine-1-phosphate (S1P). S1P levels have also been associated with the development of obesity and T2D. In this review, the current knowledge on S1P metabolism in regulating insulin signaling in pancreatic β cell fate and in the regulation of feeding by the hypothalamus in the context of obesity and T2D is summarized. It demonstrates that S1P can display opposite effects on insulin sensitive tissues and pancreatic β cells, which depends on its origin or its degradation pathway.
Collapse
Affiliation(s)
- Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Cecile L. Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Mohamed L. Mariko
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies métaboliques, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Yacir Benomar
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| |
Collapse
|
28
|
Tan-Chen S, Bourron O, Hajduch É. [Ceramides, crucial actors in the development of insulin resistance and type 2 diabetes]. Med Sci (Paris) 2020; 36:497-503. [PMID: 32452372 DOI: 10.1051/medsci/2020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In healthy subjects, the balance between glucose production and its usage is precisely controlled. When circulating glucose reaches a critical threshold, pancreatic β-cells secrete insulin, which has two major actions: lowering circulating glucose concentrations by facilitating its uptake mainly in skeletal muscles and the liver, and inhibiting glucose production. Triglycerides are the main source of fatty acids to meet the energy needs of oxidative tissues and any excess is stored in adipocytes. Thus, adipose tissue acts as a trap for excess fatty acids released from plasma triglycerides. When the buffering action of adipose tissue to store fatty acids is impaired, they accumulate in other tissues where they are metabolized in several lipid species, including sphingolipid derivatives such as ceramides. Numerous studies have shown that ceramides are among the most active lipid second messengers to inhibit insulin signalling. This review describes the major role played by ceramides in the development of insulin resistance in peripheral tissues.
Collapse
Affiliation(s)
- Sophie Tan-Chen
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, 18 rue de l'École de Médecine, F-75006 Paris, France - Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, 18 rue de l'École de Médecine, F-75006 Paris, France - Institut Hospitalo-Universitaire ICAN, Paris, France - Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service de Diabétologie et Maladies Métaboliques, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Éric Hajduch
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, 18 rue de l'École de Médecine, F-75006 Paris, France - Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
29
|
Tan-Chen S, Guitton J, Bourron O, Le Stunff H, Hajduch E. Sphingolipid Metabolism and Signaling in Skeletal Muscle: From Physiology to Physiopathology. Front Endocrinol (Lausanne) 2020; 11:491. [PMID: 32849282 PMCID: PMC7426366 DOI: 10.3389/fendo.2020.00491] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids represent one of the major classes of eukaryotic lipids. They play an essential structural role, especially in cell membranes where they also possess signaling properties and are capable of modulating multiple cell functions, such as apoptosis, cell proliferation, differentiation, and inflammation. Many sphingolipid derivatives, such as ceramide, sphingosine-1-phosphate, and ganglioside, have been shown to play many crucial roles in muscle under physiological and pathological conditions. This review will summarize our knowledge of sphingolipids and their effects on muscle fate, highlighting the role of this class of lipids in modulating muscle cell differentiation, regeneration, aging, response to insulin, and contraction. We show that modulating sphingolipid metabolism may be a novel and interesting way for preventing and/or treating several muscle-related diseases.
Collapse
Affiliation(s)
- Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Jeanne Guitton
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies Métaboliques, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hervé Le Stunff
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- *Correspondence: Eric Hajduch
| |
Collapse
|
30
|
Sarcopoterium spinosum Inhibited the Development of Non-Alcoholic Steatosis and Steatohepatitis in Mice. Nutrients 2019; 11:nu11123044. [PMID: 31847157 PMCID: PMC6950080 DOI: 10.3390/nu11123044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a comorbidity of obesity, which gradually develops from hepatic steatosis into steatohepatitis (NASH) and eventually even into fibrosis or hepatic carcinoma. To date, there has been no specific and effective treatment for NAFLD. Sarcopoterium spinosum extract (SSE) was found to improve insulin sensitivity. Recognizing the intimate link between insulin resistance and NAFLD, the aim of this study was to investigate the effectivity of SSE in the prevention and management of NAFLD at various severities. SSE was given to high-fat diet (HFD)-fed mice (steatosis model) or to mice given a Western diet (WD) in the short or long term (NASH prevention or treatment, respectively). SSE reduced body weight accumulation, improved glucose tolerance and insulin sensitivity and prevented the development of hepatic steatosis. SSE also blocked the progression of liver disease toward NASH in a dose-dependent manner. The expression of genes involved in lipid metabolism, inflammation, and antioxidant machinery was regulated by SSE in both models of steatosis and NASH development. However, SSE failed to reverse the hepatic damage in the advanced model of NASH. In summary, SSE might be considered as a botanical supplement for the prevention and treatment of hepatic steatosis, and for slowing the deterioration toward NASH.
Collapse
|
31
|
Asadipooya K, Lankarani KB, Raj R, Kalantarhormozi M. RAGE is a Potential Cause of Onset and Progression of Nonalcoholic Fatty Liver Disease. Int J Endocrinol 2019; 2019:2151302. [PMID: 31641351 PMCID: PMC6766674 DOI: 10.1155/2019/2151302] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/05/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Fatty liver is a rising global health concern, significantly increasing the burden of health care cost. Nonalcoholic fatty liver disease (NAFLD) has a correlation with metabolic syndrome and its complications. METHOD We reviewed the literature regarding the mechanisms of developing NAFLD through AGE-RAGE signaling. RESULTS NAFLD, metabolic syndrome, and production of advanced glycation end-products (AGEs) share many common risk factors and appear to be connected. AGE induces production of the receptor for AGE (RAGE). AGE-RAGE interaction contributes to fat accumulation in the liver leading to inflammation, fibrosis, insulin resistance, and other complications of the fatty liver disease. The immune system, especially macrophages, has an important defense mechanism against RAGE pathway activities. CONCLUSION Soluble form of RAGE (sRAGE) has the capability to reduce inflammation by blocking the interaction of AGE with RAGE. However, sRAGE has some limitations, and the best method of usage is probably autotransplantation of transfected stem cells or monocytes, as a precursor of macrophages and Kupffer cells, with a virus that carries sRAGE to alleviate the harmful effects of AGE-RAGE signaling in the settings of fatty liver disease.
Collapse
Affiliation(s)
- Kamyar Asadipooya
- Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kamran B. Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rishi Raj
- Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Mohammadreza Kalantarhormozi
- Endocrinology and Internal Medicine, The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
32
|
Liang X, Wu K, Liu M, Yang B. Adverse impact of carbon tetrachloride on metabolic function in mice. J Cell Biochem 2019; 120:11973-11980. [PMID: 30775809 DOI: 10.1002/jcb.28481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
Carbon tetrachloride (CCl4 ), a potent hepatotoxin, is linked to the histopathological outcomes of inflammatory or oxidative stress, and cell death. However, further study of additional dysmetabolism induced by CCl 4 toxicant has not yet been investigated. In current study, chronical and acute exposures of CCl 4 in mice were used to unmask the biological molecular mechanism responsible for insulin-dependent metabolic disorder. In experimental methods, a number of biochemical assays were used in assessment of biological impacts on insulin-produced pancreas and insulin-responsive hepatocyte after long- and short-term exposures of CCl 4 toxicant, respectively. As a result, data from oral glucose tolerance test showed that CCl 4 exposures induced glucose tolerance and disrupted blood insulin and glucagon levels time-dependently. Meanwhile, biochemical and histocytological analyses further indicated that CCl 4 exposures significantly resulted in liver cell damage, induced abnormal changes of hepatic and skeletal glycogen synthesis. In addition, acute CCl 4 -exposed mice showed reduced functional proteins of glucose transporter 2 (GLUT2), insulin receptor β, insulin receptor substrate 1, glycogen synthase kinase 3β (GSK3β), p-AKT Ser473 associated with AKT signaling pathway in liver cells, whereas acute CCl 4 exposure downregulated the endogenous expressions of the insulin and glucagon hormonal proteins in the pancreas. Taken together, the current findings highlight that CCl 4 impaired insulin-dependent glucose homeostasis through modulating hepatocellular AKT signaling pathway in acute CCl 4 exposure and GLUT2/GSK3β pathway in chronic CCl 4 -exposed liver cells.
Collapse
Affiliation(s)
- Xiaoliu Liang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, P. R. China
| | - Ka Wu
- Department of Pharmacy, The Second People's Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, P. R. China
| | - Meizhen Liu
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, P. R. China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, P. R. China
| |
Collapse
|
33
|
Neto JGO, Bento-Bernardes T, Pazos-Moura CC, Oliveira KJ. Maternal cinnamon intake during lactation led to visceral obesity and hepatic metabolic dysfunction in the adult male offspring. Endocrine 2019; 63:520-530. [PMID: 30276593 DOI: 10.1007/s12020-018-1775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Studies with foods, known to promote health benefits in addition to the nutritive value, show that their consumption by pregnant and/or lactating females could induce negative outcomes to the offspring. It is well characterized that cinnamon intake promotes benefits to energy homeostasis. The present study aimed to analyze the effects of the consumption of an aqueous extract of cinnamon by lactating female rats on the endocrine-metabolic outcomes in the adult offspring. METHODS Lactating dams (Wistar rats) were supplemented with cinnamon aqueous extract (400 mg/kg body weight/day) for the entire lactating period. The male adult offspring were evaluated at 180 days old (CinLac). RESULTS The offspring presented visceral obesity (P = 0.001), hyperleptinemia (P = 0.002), and hyperinsulinemia (P = 0.016). In the liver, CinLac exhibited reduced p-IRβ (P = 0.018) suggesting insulin resistance. However, phosphorylation of IRS1 (P = 0.041) and AKT (P = 0.050) were increased. JAK2 (P = 0.030) and p-STAT3 (P = 0.015) expressions were higher, suggesting that the activation of IRS1/AKT in the CinLac group could have resulted from the increased activation of leptin signaling. Although we observed no changes in the gluconeogenic pathway, the CinLac group exhibited lower hepatic glycogen content (P = 0.005) accompanied by increased p-GSK3β (P = 0.011). In addition, the CinLac group showed increased hepatic triacylglycerol content (P = 0.049) and a mild steatosis (P = 0.001), accompanied by reduced PPARα mRNA expression (P = 0.005). CONCLUSION We conclude that maternal intake of aqueous extract of cinnamon induces long-term molecular, metabolic, and hormonal changes in the adult progeny, including visceral obesity, higher lipid accumulation, and lower glycogen content in the liver.
Collapse
Affiliation(s)
| | - Thais Bento-Bernardes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-900, RJ, Brazil
| | - Carmen Cabanelas Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-900, RJ, Brazil
| | - Karen Jesus Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, 24210-130, RJ, Brazil.
| |
Collapse
|
34
|
Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Int J Mol Sci 2019; 20:ijms20030479. [PMID: 30678043 PMCID: PMC6387241 DOI: 10.3390/ijms20030479] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin-resistance is a characteristic feature of type 2 diabetes (T2D) and plays a major role in the pathogenesis of this disease. Skeletal muscles are quantitatively the biggest glucose users in response to insulin and are considered as main targets in development of insulin-resistance. It is now clear that circulating fatty acids (FA), which are highly increased in T2D, play a major role in the development of muscle insulin-resistance. In healthy individuals, excess FA are stored as lipid droplets in adipocytes. In situations like obesity and T2D, FA from lipolysis and food are in excess and eventually accumulate in peripheral tissues. High plasma concentrations of FA are generally associated with increased risk of developing diabetes. Indeed, ectopic fat accumulation is associated with insulin-resistance; this is called lipotoxicity. However, FA themselves are not involved in insulin-resistance, but rather some of their metabolic derivatives, such as ceramides. Ceramides, which are synthetized de novo from saturated FA like palmitate, have been demonstrated to play a critical role in the deterioration of insulin sensitivity in muscle cells. This review describes the latest progress involving ceramides as major players in the development of muscle insulin-resistance through the targeting of selective actors of the insulin signaling pathway.
Collapse
|
35
|
Bandet CL, Mahfouz R, Véret J, Sotiropoulos A, Poirier M, Giussani P, Campana M, Philippe E, Blachnio-Zabielska A, Ballaire R, Le Liepvre X, Bourron O, Berkeš D, Górski J, Ferré P, Le Stunff H, Foufelle F, Hajduch E. Ceramide Transporter CERT Is Involved in Muscle Insulin Signaling Defects Under Lipotoxic Conditions. Diabetes 2018; 67:1258-1271. [PMID: 29759974 DOI: 10.2337/db17-0901] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/29/2018] [Indexed: 11/13/2022]
Abstract
One main mechanism of insulin resistance (IR), a key feature of type 2 diabetes, is the accumulation of saturated fatty acids (FAs) in the muscles of obese patients with type 2 diabetes. Understanding the mechanism that underlies lipid-induced IR is an important challenge. Saturated FAs are metabolized into lipid derivatives called ceramides, and their accumulation plays a central role in the development of muscle IR. Ceramides are produced in the endoplasmic reticulum (ER) and transported to the Golgi apparatus through a transporter called CERT, where they are converted into various sphingolipid species. We show that CERT protein expression is reduced in all IR models studied because of a caspase-dependent cleavage. Inhibiting CERT activity in vitro potentiates the deleterious action of lipotoxicity on insulin signaling, whereas overexpression of CERT in vitro or in vivo decreases muscle ceramide content and improves insulin signaling. In addition, inhibition of caspase activity prevents ceramide-induced insulin signaling defects in C2C12 muscle cells. Altogether, these results demonstrate the importance of physiological ER-to-Golgi ceramide traffic to preserve muscle cell insulin signaling and identify CERT as a major actor in this process.
Collapse
Affiliation(s)
- Cécile L Bandet
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Rana Mahfouz
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Julien Véret
- Université Paris-Diderot, Unité de biologie fonctionnelle et adaptative, CNRS UMR 8251, Paris, France
| | | | - Maxime Poirier
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Milan, Italy
| | - Mélanie Campana
- Université Paris-Diderot, Unité de biologie fonctionnelle et adaptative, CNRS UMR 8251, Paris, France
| | - Erwann Philippe
- Université Paris-Diderot, Unité de biologie fonctionnelle et adaptative, CNRS UMR 8251, Paris, France
| | - Agnieszka Blachnio-Zabielska
- Departments of Physiology and Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Raphaëlle Ballaire
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Xavier Le Liepvre
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies métaboliques, Hôpital Pitié-Salpêtrière, Paris, France
| | - Dušan Berkeš
- Department of Organic Chemistry, Slovak University of Technology, Bratislava, Slovakia
| | - Jan Górski
- Departments of Physiology and Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Pascal Ferré
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Université Paris-Diderot, Unité de biologie fonctionnelle et adaptative, CNRS UMR 8251, Paris, France
- UMR 9197 Institut des Neurosciences Paris Saclay (Neuro-PSI), Université Paris-Saclay, Saclay, France
| | - Fabienne Foufelle
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Eric Hajduch
- INSERM UMRS 1138, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
36
|
Banerji U, Dean EJ, Pérez-Fidalgo JA, Batist G, Bedard PL, You B, Westin SN, Kabos P, Garrett MD, Tall M, Ambrose H, Barrett JC, Carr TH, Cheung SYA, Corcoran C, Cullberg M, Davies BR, de Bruin EC, Elvin P, Foxley A, Lawrence P, Lindemann JPO, Maudsley R, Pass M, Rowlands V, Rugman P, Schiavon G, Yates J, Schellens JHM. A Phase I Open-Label Study to Identify a Dosing Regimen of the Pan-AKT Inhibitor AZD5363 for Evaluation in Solid Tumors and in PIK3CA-Mutated Breast and Gynecologic Cancers. Clin Cancer Res 2018; 24:2050-2059. [PMID: 29066505 DOI: 10.1158/1078-0432.ccr-17-2260] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022]
Abstract
Purpose: This phase I, open-label study (Study 1, D3610C00001; NCT01226316) was the first-in-human evaluation of oral AZD5363, a selective pan-AKT inhibitor, in patients with advanced solid malignancies. The objectives were to investigate the safety, tolerability, and pharmacokinetics of AZD5363, define a recommended dosing schedule, and evaluate preliminary clinical activity.Experimental Design: Patients were aged ≥18 years with World Health Organization (WHO) performance status of 0 to 1. Dose escalation was conducted within separate continuous and intermittent [4 days/week (4/7) or 2 days/week (2/7)] schedules with safety, pharmacokinetic, and pharmacodynamic analyses. Expansion cohorts of approximately 20 patients each explored AZD5363 activity in PIK3CA-mutant breast and gynecologic cancers.Results: MTDs were 320, 480, and 640 mg for continuous (n = 47), 4/7 (n = 21), and 2/7 (n = 22) schedules, respectively. Dose-limiting toxicities were rash and diarrhea for continuous, hyperglycemia for 2/7, and none for 4/7. Common adverse events were diarrhea (78%) and nausea (49%) and, for Common Terminology Criteria for Adverse Events grade ≥3 events, hyperglycemia (20%). The recommended phase II dose (480 mg bid, 4/7 intermittent) was assessed in PIK3CA-mutant breast and gynecologic expansion cohorts: 46% and 56% of patients, respectively, showed a reduction in tumor size, with RECIST responses of 4% and 8%. These responses were less than the prespecified 20% response rate; therefore, the criteria to stop further recruitment to the PIK3CA-mutant cohort were met.Conclusions: At the recommended phase II dose, AZD5363 was well tolerated and achieved plasma levels and robust target modulation in tumors. Proof-of-concept responses were observed in patients with PIK3CA-mutant cancers treated with AZD5363. Clin Cancer Res; 24(9); 2050-9. ©2017 AACRSee related commentary by Costa and Bosch, p. 2029.
Collapse
Affiliation(s)
- Udai Banerji
- Clinical Pharmacology and Trials, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Emma J Dean
- Medical Oncology (Drug Development), University of Manchester and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - J Alejandro Pérez-Fidalgo
- Department of Oncology and Hematology, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, CIBERONC, Valencia, Spain
| | - Gerald Batist
- Department of Oncology, Segal Cancer Centre, Jewish General Hospital, McGill University, Montreal, Canada
| | - Philippe L Bedard
- Department of Medical Oncology, The Princess Margaret Cancer Centre, Toronto, Canada
| | - Benoit You
- Medical Oncology Department, Institut de Cancérologie des Hospices Civils de Lyon, CITOHL, Université Lyon 1, Lyon, France
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Kabos
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, Colorado
| | | | - Mathew Tall
- Clinical PD Biomarker Group, The Institute of Cancer Research, Sutton, United Kingdom
| | | | | | | | | | | | | | | | | | - Paul Elvin
- IMED, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | | | - Martin Pass
- IMED, AstraZeneca, Cambridge, United Kingdom
| | | | - Paul Rugman
- IMED, AstraZeneca, Cambridge, United Kingdom
| | | | - James Yates
- IMED, AstraZeneca, Cambridge, United Kingdom
| | - Jan H M Schellens
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
37
|
Polce SA, Burke C, França LM, Kramer B, de Andrade Paes AM, Carrillo-Sepulveda MA. Ellagic Acid Alleviates Hepatic Oxidative Stress and Insulin Resistance in Diabetic Female Rats. Nutrients 2018; 10:nu10050531. [PMID: 29693586 PMCID: PMC5986411 DOI: 10.3390/nu10050531] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects more than 70% of patients with type 2 diabetes mellitus (T2DM) and has become one of the most common metabolic liver diseases worldwide. To date, treatments specifically targeting NAFLD do not exist. Oxidative stress and insulin resistance have been implicated in the pathogenesis of NAFLD in diabetes. Accordingly, the goal of this present study was to determine whether Ellagic acid (EA), a natural antioxidant polyphenol found in berries and nuts, mitigates hepatic oxidative stress and insulin resistance in T2DM rats, and thus alleviates NAFLD. Using adult female Goto Kakizaki (GK) rats, a non-obese and spontaneous model of T2DM, we found that EA treatment significantly lowered fasting blood glucose and reduced insulin resistance, as shown by a 21.8% reduction in the homeostasis model assessment index of insulin resistance (HOMA-IR), while triglyceride and total cholesterol levels remained unchanged. Increased hepatic lipid accumulation and oxidative stress present in diabetic GK rats was markedly reduced with EA treatment. This effect was associated with a downregulation of the NADPH oxidase subunit, p47-phox, and overexpression of NF-E2-related factor-2 (NRF2). Moreover, EA was able to decrease the hepatic expression of hypoxia-inducible factor (HIF-α), a transcription factor linked to hypoxia and hepatic steatosis. We further showed that EA treatment activated an insulin signaling pathway in the liver, as evidenced by increased levels of phosphorylated Akt (Ser 473). In conclusion, our results demonstrate that EA diminishes blood glucose levels and potently suppress NAFLD in diabetic rats via mechanisms that involve reductions in p47-phox and HIF-α, upregulation of NRF2 and enhancement of the Akt signaling pathway in the liver. Together, these results reveal that EA improves hepatic insulin sensitivity and lipid metabolism as a result of its antioxidant effects. This implies an anti-diabetic effect of EA with beneficial effects for the treatment of hepatic complications in T2DM.
Collapse
Affiliation(s)
- Simran Alexandria Polce
- Department of Life Sciences, College of Arts and Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA.
| | - Cameron Burke
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhao, Sao Luis, MA 65080-805, Brazil.
| | - Benjamin Kramer
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhao, Sao Luis, MA 65080-805, Brazil.
| | - Maria Alicia Carrillo-Sepulveda
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
| |
Collapse
|
38
|
Sun W, Yang J, Wang W, Hou J, Cheng Y, Fu Y, Xu Z, Cai L. The beneficial effects of Zn on Akt-mediated insulin and cell survival signaling pathways in diabetes. J Trace Elem Med Biol 2018; 46:117-127. [PMID: 29413101 DOI: 10.1016/j.jtemb.2017.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Zinc is one of the essential trace elements and participates in numerous physiological processes. Abnormalities in zinc homeostasis often result in the pathogenesis of various chronic metabolic disorders, such as diabetes and its complications. Zinc has insulin-mimetic and anti-diabetic effects and deficiency has been shown to aggravate diabetes-induced oxidative stress and tissue injury in diabetic rodent models and human subjects with diabetes. Akt signaling pathway plays a central role in insulin-stimulated glucose metabolism and cell survival. Anti-diabetic effects of zinc are largely dependent on the activation of Akt signaling. Zn is also an inducer of metallothionein that plays important role in anti-oxidative stress and damage. However, the exact molecular mechanisms underlying zinc-induced activation of Akt signaling pathway remains to be elucidated. This review summarizes the recent advances in deciphering the possible mechanisms of zinc on Akt-mediated insulin and cell survival signaling pathways in diabetes conditions. Insights into the effects of zinc on epigenetic regulation and autophagy in diabetic nephropathy are also discussed in the latter part of this review.
Collapse
Affiliation(s)
- Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Jiaxing Yang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| | - Jie Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yaowen Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Lu Cai
- Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
39
|
Glutamine Synthetase: Localization Dictates Outcome. Genes (Basel) 2018; 9:genes9020108. [PMID: 29463059 PMCID: PMC5852604 DOI: 10.3390/genes9020108] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 01/03/2023] Open
Abstract
Glutamine synthetase (GS) is the adenosine triphosphate (ATP)-dependent enzyme that catalyses the synthesis of glutamine by condensing ammonium to glutamate. In the circulatory system, glutamine carries ammonia from muscle and brain to the kidney and liver. In brain reduction of GS activity has been suggested as a mechanism mediating neurotoxicity in neurodegenerative disorders. In cancer, the delicate balance between glutamine synthesis and catabolism is a critical event. In vitro evidence, confirmed in vivo in some cases, suggests that reduced GS activity in cancer cells associates with a more invasive and aggressive phenotype. However, GS is known to be highly expressed in cells of the tumor microenvironment, such as fibroblasts, adipocytes and immune cells, and their ability to synthesize glutamine is responsible for the acquisition of protumoral phenotypes. This has opened a new window into the complex scenario of the tumor microenvironment, in which the balance of glutamine consumption versus glutamine synthesis influences cellular function. Since GS expression responds to glutamine starvation, a lower glutamine synthesizing power due to the absence of GS in cancer cells might apply a metabolic pressure on stromal cells. This event might push stroma towards a GS-high/protumoral phenotype. When referred to stromal cells, GS expression might acquire a ‘bad’ significance to the point that GS inhibition might be considered a conceivable strategy against cancer metastasis.
Collapse
|
40
|
Ganesan S, Summers CM, Pearce SC, Gabler NK, Valentine RJ, Baumgard LH, Rhoads RP, Selsby JT. Short-term heat stress altered metabolism and insulin signaling in skeletal muscle. J Anim Sci 2018; 96:154-167. [PMID: 29432553 PMCID: PMC6140929 DOI: 10.1093/jas/skx083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Heat-related complications continue to be a major health concern for humans and animals and lead to potentially life-threatening conditions. Heat stress (HS) alters metabolic parameters and may alter glucose metabolism and insulin signaling. Therefore, the purpose of this investigation was to determine the extent to which 12 h of HS-altered energetic metabolism in oxidative skeletal muscle. To address this, crossbred gilts (n = 8/group) were assigned to one of three environmental treatments for 12 h: thermoneutral (TN; 21 °C), HS (37 °C), or pair-fed to HS counterparts but housed in TN conditions (PFTN). Following treatment, animals were euthanized and the semitendinosus red (STR) was recovered. Despite increased relative protein abundance of the insulin receptor, insulin receptor substrate (IRS1) phosphorylation was increased (P = 0.0005) at S307, an inhibitory site, and phosphorylated protein kinase B (AKT) (S473) was decreased (P = 0.03) likely serving to impair insulin signaling following 12 h of HS. Further, HS increased phosphorylated protein kinase C (PKC) ζ/λ (P = 0.02) and phosphorylated PKCδ/θ protein abundance (P = 0.02), which are known to regulate inhibitory serine phosphorylation of IRS1 (S307). Sarcolemmal glucose transporter 4 (Glut4) was decreased (P = 0.04) in the membrane fraction of HS skeletal muscle suggesting diminished glucose uptake capacity. HS-mediated increases (P = 0.04) in mechanistic target of rapamycin (mTOR) were not accompanied by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). HS decreased (P = 0.0006) glycogen synthase (GS) and increased (P = 0.02) phosphorylated GS suggesting impaired glycogen synthesis. In addition, HS altered fatty acid metabolic signaling by increasing (P = 0.02) Acetyl-CoA carboxylase (ACC), decreasing (P = 0.005) phosphorylated ATP-citrate lyase (pATPCL) and fatty acid synthase (P = 0.01) (FAS). These data suggest that 12 h of HS blunted insulin signaling, decreased protein synthesis, and altered glycogen and fatty acid metabolism.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA
| | - Corey M Summers
- Department of Animal Science, Iowa State University, Ames, IA
- Department of Kinesiology, Iowa State University, Ames, IA
| | - Sarah C Pearce
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | | | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
41
|
Inácio MD, Rafacho A, de Paula Camaforte NA, Teixeira P, Vareda PMP, Violato NM, Bosqueiro JR. Prevention of Elevation in Plasma Triacylglycerol with High-Dose Bezafibrate Treatment Abolishes Insulin Resistance and Attenuates Glucose Intolerance Induced by Short-Term Treatment with Dexamethasone in Rats. Int J Endocrinol 2018; 2018:3257812. [PMID: 30532777 PMCID: PMC6250034 DOI: 10.1155/2018/3257812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/07/2018] [Accepted: 08/27/2018] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE Fibrates are used as lipid-lowering drugs and are well tolerated as cotreatments when glucose metabolism disturbances are also present. Synthetic glucocorticoids (GCs) are diabetogenic drugs that cause dyslipidemia, dysglycemia, glucose intolerance, and insulin resistance when in excess. Thus, we aimed to describe the potential of bezafibrate in preventing or attenuating the adverse effects of GCs on glucose and lipid homeostasis. METHODS Male Wistar rats were treated with high-dose bezafibrate (300 mg/kg, body mass (b.m.)) daily for 28 consecutive days. In the last five days, the rats were also treated with dexamethasone (1 mg/kg, b.m.). RESULTS Dexamethasone treatment reduced the body mass gain and food intake, and bezafibrate treatment exerted no impact on these parameters. GC treatment caused an augmentation in fasting and fed glycemia, plasma triacylglycerol and nonesterified fatty acids, and insulinemia, and bezafibrate treatment completely prevented the elevation in plasma triacylglycerol and attenuated all other parameters. Insulin resistance and glucose intolerance induced by GC treatment were abolished and attenuated, respectively, by bezafibrate treatment. CONCLUSION High-dose bezafibrate treatment prevents the increase in plasma triacylglycerol and the development of insulin resistance and attenuates glucose intolerance in rats caused by GC treatment, indicating the involvement of dyslipidemia in the GC-induced insulin resistance.
Collapse
Affiliation(s)
- Maiara Destro Inácio
- Institute of Biosciences, São Paulo State University–UNESP, Botucatu, SP, Brazil
| | - Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina–UFSC, Florianópolis, SC, Brazil
| | | | - Poliana Teixeira
- Institute of Biosciences, São Paulo State University–UNESP, Botucatu, SP, Brazil
| | | | | | - José Roberto Bosqueiro
- Department of Physical Education, Faculty of Sciences, São Paulo State University–UNESP, Bauru, SP, Brazil
| |
Collapse
|
42
|
Do flavanols-rich natural products relieve obesity-related insulin resistance? Food Chem Toxicol 2017; 112:157-167. [PMID: 29288757 DOI: 10.1016/j.fct.2017.12.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/28/2022]
Abstract
Growing evidence support that insulin resistance may occur as a severe problem due to chronic energetic overfeeding and subsequent obesity. When an abundance of glucose and saturated fat enter the cell, impaired blood flow, hypoxia, inflammation and macrophage infiltration in obese adipose tissue may induce oxidative stress and insulin resistance. Excessive circulating saturated fatty acids ectopically accumulate in insulin-sensitive tissues and impair insulin action. In this context, excessive hepatic lipid accumulation may play a central, pathogenic role in insulin resistance. It is thought that dietary polyphenols may ameliorate obesity-related insulin resistance by attenuating inflammatory responses and oxidative stress. The most often occurring natural polyphenolic compounds are flavonoids. In this review, the possible mechanistic effect of flavonoid-rich natural products on insulin resistance-related metabolic pathways is discussed. Polyphenol intake can prevent high-fat-diet-induced insulin resistance via cell surface G protein-coupled estrogen receptors by upregulating the expression of related genes, and their pathways, which are responsible for the insulin sensitivity.
Collapse
|
43
|
Supruniuk E, Mikłosz A, Chabowski A. The Implication of PGC-1α on Fatty Acid Transport across Plasma and Mitochondrial Membranes in the Insulin Sensitive Tissues. Front Physiol 2017; 8:923. [PMID: 29187824 PMCID: PMC5694779 DOI: 10.3389/fphys.2017.00923] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
PGC-1α coactivator plays a decisive role in the maintenance of lipid balance via engagement in numerous metabolic processes (i.e., Krebs cycle, β-oxidation, oxidative phosphorylation and electron transport chain). It constitutes a link between fatty acids import and their complete oxidation or conversion into bioactive fractions through the coordination of both the expression and subcellular relocation of the proteins involved in fatty acid transmembrane movement. Studies on cell lines and/or animal models highlighted the existence of an upregulation of the total and mitochondrial FAT/CD36, FABPpm and FATPs content in skeletal muscle in response to PGC-1α stimulation. On the other hand, the association between PGC-1α level or activity and the fatty acids transport in the heart and adipocytes is still elusive. So far, the effects of PGC-1α on the total and sarcolemmal expression of FAT/CD36, FATP1, and FABPpm in cardiomyocytes have been shown to vary in relation to the type of PPAR that was coactivated. In brown adipose tissue (BAT) PGC-1α knockdown was linked with a decreased level of lipid metabolizing enzymes and fatty acid transporters (FAT/CD36, FABP3), whereas the results obtained for white adipose tissue (WAT) remain contradictory. Furthermore, dysregulation in lipid turnover is often associated with insulin intolerance, which suggests the coactivator's potential role as a therapeutic target.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
44
|
Engin A. Non-Alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:443-467. [DOI: 10.1007/978-3-319-48382-5_19] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 2017; 49:e291. [PMID: 28154371 PMCID: PMC5336562 DOI: 10.1038/emm.2016.157] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
Free fatty acids (FFAs) are important substrates for mitochondrial oxidative metabolism and ATP synthesis but also cause serious stress to various tissues, contributing to the development of metabolic diseases. CD36 is a major mediator of cellular FFA uptake. Inside the cell, saturated FFAs are able to induce the production of cytosolic and mitochondrial reactive oxygen species (ROS), which can be prevented by co-exposure to unsaturated FFAs. There are close connections between oxidative stress and organellar Ca2+ homeostasis. Highly oxidative conditions induced by palmitate trigger aberrant endoplasmic reticulum (ER) Ca2+ release and thereby deplete ER Ca2+ stores. The resulting ER Ca2+ deficiency impairs chaperones of the protein folding machinery, leading to the accumulation of misfolded proteins. This ER stress may further aggravate oxidative stress by augmenting ER ROS production. Secondary to ER Ca2+ release, cytosolic and mitochondrial matrix Ca2+ concentrations can also be altered. In addition, plasmalemmal ion channels operated by ER Ca2+ depletion mediate persistent Ca2+ influx, further impairing cytosolic and mitochondrial Ca2+ homeostasis. Mitochondrial Ca2+ overload causes superoxide production and functional impairment, culminating in apoptosis. This vicious cycle of lipotoxicity occurs in multiple tissues, resulting in β-cell failure and insulin resistance in target tissues, and further aggravates diabetic complications.
Collapse
|
46
|
Huang S, Huang S, Wang X, Zhang Q, Liu J, Leng Y. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. Int J Biol Sci 2017; 13:1-12. [PMID: 28123341 PMCID: PMC5264256 DOI: 10.7150/ijbs.17149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/30/2016] [Indexed: 11/21/2022] Open
Abstract
Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Shujuan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zu Chong Zhi Road 555, Shanghai 201203, China.; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Suling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zu Chong Zhi Road 555, Shanghai 201203, China
| | - Xi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zu Chong Zhi Road 555, Shanghai 201203, China
| | - Qingli Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zu Chong Zhi Road 555, Shanghai 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zu Chong Zhi Road 555, Shanghai 201203, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zu Chong Zhi Road 555, Shanghai 201203, China
| |
Collapse
|
47
|
Tran TTT, Postal BG, Demignot S, Ribeiro A, Osinski C, Pais de Barros JP, Blachnio-Zabielska A, Leturque A, Rousset M, Ferré P, Hajduch E, Carrière V. Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production. J Biol Chem 2016; 291:16328-38. [PMID: 27255710 DOI: 10.1074/jbc.m115.709626] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/16/2022] Open
Abstract
The worldwide prevalence of metabolic diseases is increasing, and there are global recommendations to limit consumption of certain nutrients, especially saturated lipids. Insulin resistance, a common trait occurring in obesity and type 2 diabetes, is associated with intestinal lipoprotein overproduction. However, the mechanisms by which the intestine develops insulin resistance in response to lipid overload remain unknown. Here, we show that insulin inhibits triglyceride secretion and intestinal microsomal triglyceride transfer protein expression in vivo in healthy mice force-fed monounsaturated fatty acid-rich olive oil but not in mice force-fed saturated fatty acid-rich palm oil. Moreover, when mouse intestine and human Caco-2/TC7 enterocytes were treated with the saturated fatty acid, palmitic acid, the insulin-signaling pathway was impaired. We show that palmitic acid or palm oil increases ceramide production in intestinal cells and that treatment with a ceramide analogue partially reproduces the effects of palmitic acid on insulin signaling. In Caco-2/TC7 enterocytes, ceramide effects on insulin-dependent AKT phosphorylation are mediated by protein kinase C but not by protein phosphatase 2A. Finally, inhibiting de novo ceramide synthesis improves the response of palmitic acid-treated Caco-2/TC7 enterocytes to insulin. These results demonstrate that a palmitic acid-ceramide pathway accounts for impaired intestinal insulin sensitivity, which occurs within several hours following initial lipid exposure.
Collapse
Affiliation(s)
- Thi Thu Trang Tran
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Bárbara Graziela Postal
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Sylvie Demignot
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Agnès Ribeiro
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Céline Osinski
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | | | | | - Armelle Leturque
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Monique Rousset
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Pascal Ferré
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Institute of Cardiometabolism and Nutrition (ICAN), Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Eric Hajduch
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Institute of Cardiometabolism and Nutrition (ICAN), Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Véronique Carrière
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France,
| |
Collapse
|
48
|
Jalabert A, Vial G, Guay C, Wiklander OPB, Nordin JZ, Aswad H, Forterre A, Meugnier E, Pesenti S, Regazzi R, Danty-Berger E, Ducreux S, Vidal H, El-Andaloussi S, Rieusset J, Rome S. Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia 2016; 59:1049-58. [PMID: 26852333 DOI: 10.1007/s00125-016-3882-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The crosstalk between skeletal muscle (SkM) and beta cells plays a role in diabetes aetiology. In this study, we have investigated whether SkM-released exosome-like vesicles (ELVs) can be taken up by pancreatic beta cells and can deliver functional cargoes. METHODS Mice were fed for 16 weeks with standard chow diet (SCD) or with standard diet enriched with 20% palmitate (HPD) and ELVs were purified from quadriceps muscle. Fluorescent ELVs from HPD or SCD quadriceps were injected i.v. or intramuscularly (i.m.) into mice to determine their biodistributions. Micro (mi)RNA quantification in ELVs was determined using quantitative real-time RT-PCR (qRT-PCR)-based TaqMan low-density arrays. Microarray analyses were performed to determine whether standard diet ELVs (SD-ELVs) and high palmitate diet ELVs (HPD-ELVs) induced specific transcriptional signatures in MIN6B1 cells. RESULTS In vivo, muscle ELVs were taken up by pancreas, 24 h post-injection. In vitro, both SD-ELVs and HPD-ELVs transferred proteins and miRNAs to MIN6B1 cells and modulated gene expressions whereas only HPD-ELVs induced proliferation of MIN6B1 cells and isolated islets. Bioinformatic analyses suggested that transferred HPD-ELV miRNAs may participate in these effects. To validate this, we demonstrated that miR-16, which is overexpressed in HPD-ELVs, was transferred to MIN6B1 cells and regulated Ptch1, involved in pancreas development. In vivo, islets from HPD mice showed increased size and altered expression of genes involved in development, including Ptch1, suggesting that the effect of palm oil on islet size in vivo was reproduced in vitro by treating beta cells with HPD-ELVs. CONCLUSIONS/INTERPRETATION Our data suggest that muscle ELVs might have an endocrine effect and could participate in adaptations in beta cell mass during insulin resistance.
Collapse
Affiliation(s)
- Audrey Jalabert
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Guillaume Vial
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Joel Z Nordin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Hala Aswad
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Alexis Forterre
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Emmanuelle Meugnier
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Sandra Pesenti
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Emmanuelle Danty-Berger
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Sylvie Ducreux
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Hubert Vidal
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Samir El-Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jennifer Rieusset
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France
| | - Sophie Rome
- CarMeN laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculté de Médecine Lyon-Sud, Chemin du Grand Revoyet, 69600, Oullins, France.
| |
Collapse
|
49
|
Aristizabal JC, Barona J, Gonzalez-Zapata LI, Deossa GC, Estrada A. Fatty Acid Content of Plasma Triglycerides May Contribute to the Heterogeneity in the Relationship Between Abdominal Obesity and the Metabolic Syndrome. Metab Syndr Relat Disord 2016; 14:311-7. [PMID: 26982448 DOI: 10.1089/met.2015.0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND About one-third of the people with abdominal obesity do not exhibit the metabolic syndrome (MetS). Fatty acids in plasma triglycerides (TGs) may help to explain part of this heterogeneity. This study compared TG fatty acid profile of adults with and without abdominal obesity and examined the associations of these fatty acids with MetS components. METHODS Fifty-four abdominally obese subjects were matched by age and sex with 54 adults without abdominal obesity. People were classified with MetS according to the harmonizing criteria for MetS. Fatty acids in plasma TGs were analyzed by gas chromatography. RESULTS There were no differences in fatty acids of plasma TGs between people with and without abdominal obesity. However, there were differences between abdominally obese people with and without MetS. The abdominally obese group with MetS had higher palmitic (+2.9%; P = 0.012) and oleic (+4.0%; P = 0.001) acids and lower linoleic (-6.4%; P = 0.018) and arachidonic (-1.2%; P = 0.004) acids. After adjustment for abdominal obesity, age, and sex, a stepwise regression analysis showed that palmitic acid positively contributed to the variance in insulin (β = +1.08 ± 1.01; P = 0.000) and homeostasis model assessment of insulin resistance (HOMA-IR) index (β = +1.09 ± 1.01; P = 0.000) and myristic acid positively contributed to the variance in systolic blood pressure (β = +1.09 ± 1.03; P = 0.006). In contrast, linoleic acid negatively contributed to the variance in glucose (β = -0.321 ± 0.09; P = 0.001) and high-sensitivity C-reactive protein (hsCRP; β = -1.05 ± 1.01; P = 0.000). CONCLUSIONS There were no differences in the plasma TG fatty acid profile between people with and without abdominal obesity. Likewise, fatty acids in plasma TGs associated with many of the MetS variables independently of abdominal obesity. These results suggest that the plasma TG fatty acid profile may help to explain part of the heterogeneity between abdominal obesity and the MetS.
Collapse
Affiliation(s)
- Juan C Aristizabal
- 1 Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Universidad de Antioquia , Medellín, Colombia .,2 Escuela de Nutrición y Dietética, Universidad de Antioquia , Medellín, Colombia
| | - Jacqueline Barona
- 3 Grupo de Ofidismo, Línea de Alternativas Terapéuticas y Alimentarias. Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | - Laura I Gonzalez-Zapata
- 2 Escuela de Nutrición y Dietética, Universidad de Antioquia , Medellín, Colombia .,4 Grupo de Investigación en Determinantes Sociales y Económicos de la Salud y la Nutrición, Universidad de Antioquia , Medellín, Colombia
| | - Gloria C Deossa
- 2 Escuela de Nutrición y Dietética, Universidad de Antioquia , Medellín, Colombia
| | - Alejandro Estrada
- 2 Escuela de Nutrición y Dietética, Universidad de Antioquia , Medellín, Colombia .,5 Grupo de Investigación en Demografía y Salud, Universidad de Antioquia , Medellín, Colombia
| |
Collapse
|
50
|
A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats. Br J Nutr 2016; 115:1155-66. [PMID: 26856891 DOI: 10.1017/s0007114515005528] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The prevalence of the metabolic syndrome components including abdominal obesity, dyslipidaemia and insulin resistance is increasing in both developed and developing countries. It is generally accepted that the development of these features is preceded by, or accompanied with, impaired mitochondrial function. The present study was designed to analyse the effects of a mitochondrial-targeted lipophilic ubiquinone (MitoQ) on muscle lipid profile modulation and mitochondrial function in obesogenic diet-fed rats. For this purpose, twenty-four young male Sprague-Dawley rats were divided into three groups and fed one of the following diets: (1) control, (2) high fat (HF) and (3) HF+MitoQ. After 8 weeks, mitochondrial function markers and lipid metabolism/profile modifications in skeletal muscle were measured. The HF diet was effective at inducing the major features of the metabolic syndrome--namely, obesity, hepatic enlargement and glucose intolerance. MitoQ intake prevented the increase in rat body weight, attenuated the increase in adipose tissue and liver weights and partially reversed glucose intolerance. At the muscle level, the HF diet induced moderate TAG accumulation associated with important modifications in the muscle phospholipid classes and in the fatty acid composition of total muscle lipid. These lipid modifications were accompanied with decrease in mitochondrial respiration. MitoQ intake corrected the lipid alterations and restored mitochondrial respiration. These results indicate that MitoQ protected obesogenic diet-fed rats from some features of the metabolic syndrome through its effects on muscle lipid metabolism and mitochondrial activity. These findings suggest that MitoQ is a promising candidate for future human trials in the metabolic syndrome prevention.
Collapse
|