1
|
Sheng F, Li M, Yu JM, Yang SY, Zou L, Yang GJ, Zhang LL. IL-33/ST2 axis in diverse diseases: regulatory mechanisms and therapeutic potential. Front Immunol 2025; 16:1533335. [PMID: 39925809 PMCID: PMC11802536 DOI: 10.3389/fimmu.2025.1533335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Interleukin-33 (IL-33) is a nuclear factor and member of the IL-1 cytokine family. IL-33 is mainly expressed by epithelial and endothelial cells and exerts its function through interaction with various immune cells, and binding to its receptor can form the IL-33/Suppression of tumorigenicity 2 (ST2) signaling pathway. While most cytokines are actively synthesized within cells, IL-33 is produced passively in response to tissue damage or cell necrosis, indicating its role as a signaling molecule following cellular infection, stress, or trauma. IL-33/ST2 signaling pathway has been proved to play diverse role in the pathological process of central nervous system disorders, cancer, fibrosis, autoimmune diseases, etc. Although research on the IL-33/ST2 signaling pathway has deepened recently, relevant treatment strategies have been proposed, and even targeted drugs are in the preclinical stage; further research on the effect of the IL-33/ST2 signaling pathway in different diseases is still necessary, to provide a clearer understanding of the different roles of IL-33/ST2 in disease progression and to develop new drugs and treatment strategies. Because IL-33/ST2 plays an important role in the occurrence and progression of diseases, the study of therapeutic drugs targeting this pathway is also necessary. This review focused on recent studies on the positive or negative role of IL-33/ST2 in different diseases, as well as the current related drugs targeting IL-33/ST2 in the preclinical and clinical stage. The mechanism of IL-33/ST2 in different diseases and its mediating effect on different immune cells have been summarized, as well as the antibody drugs targeting IL-33 or ST2, natural compounds with a mediating effect, and small molecule substances targeting relative pathway. We aim to provide new ideas and treatment strategies for IL-33/ST2-related drugs to treat different diseases.
Collapse
Affiliation(s)
- Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Mi Li
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Jia-Mei Yu
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Si-Yu Yang
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro−Products, Ningbo University, Ningbo, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| |
Collapse
|
2
|
Dos Santos Haber JF, Barbalho SM, Sgarbi JA, de Argollo Haber RS, de Labio RW, Laurindo LF, Chagas EFB, Payão SLM. The Relationship between Type 1 Diabetes Mellitus, TNF-α, and IL-10 Gene Expression. Biomedicines 2023; 11:biomedicines11041120. [PMID: 37189738 DOI: 10.3390/biomedicines11041120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is one of the major chronic diseases in children worldwide. This study aimed to investigate interleukin-10 (IL-10) gene expression and tumor necrosis factor-alpha (TNF-α) in T1DM. A total of 107 patients were included, 15 were T1DM in ketoacidosis, 30 patients had T1DM and HbA1c ≥ 8%; 32 patients had T1DM and presented HbA1c < 8%; and 30 were controls. The expression of peripheral blood mononuclear cells was performed using the reverse transcriptase-polymerase chain reaction in real time. The cytokines gene expression was higher in patients with T1DM. The IL-10 gene expression increased substantially in patients with ketoacidosis, and there was a positive correlation with HbA1c. A negative correlation was found for IL-10 expression and the age of patients with diabetes, and the time of diagnosis of the disease. There was a positive correlation between TNF-α expression with age. The expression of IL-10 and TNF-α genes showed a significant increase in DM1 patients. Once current T1DM treatment is based on exogenous insulin, there is a need for other therapies, and inflammatory biomarkers could bring new possibilities to the therapeutic approach of the patients.
Collapse
Affiliation(s)
- Jesselina Francisco Dos Santos Haber
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | - Sandra Maria Barbalho
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Jose Augusto Sgarbi
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Division of Endocrinology and Metabolism, Department of Medicine, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | | | - Roger William de Labio
- Department of Genetics, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | - Lucas Fornari Laurindo
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Spencer Luiz Marques Payão
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Department of Genetics, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| |
Collapse
|
3
|
Ibba R, Corona P, Nonne F, Caria P, Serreli G, Palmas V, Riu F, Sestito S, Nieddu M, Loddo R, Sanna G, Piras S, Carta A. Design, Synthesis, and Antiviral Activities of New Benzotriazole-Based Derivatives. Pharmaceuticals (Basel) 2023; 16:ph16030429. [PMID: 36986528 PMCID: PMC10054465 DOI: 10.3390/ph16030429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Several human diseases are caused by enteroviruses and are currently clinically untreatable, pushing the research to identify new antivirals. A notable number of benzo[d][1,2,3]triazol-1(2)-yl derivatives were designed, synthesized, and in vitro evaluated for cytotoxicity and antiviral activity against a wide spectrum of RNA positive- and negative-sense viruses. Five of them (11b, 18e, 41a, 43a, 99b) emerged for their selective antiviral activity against Coxsackievirus B5, a human enteroviruses member among the Picornaviridae family. The EC50 values ranged between 6 and 18.5 μM. Among all derivatives, compounds 18e and 43a were interestingly active against CVB5 and were selected to better define the safety profile on cell monolayers by transepithelial resistance test (TEER). Results indicated compound 18e as the hit compound to investigate the potential mechanism of action by apoptosis assay, virucidal activity test, and the time of addition assay. CVB5 is known to be cytotoxic by inducing apoptosis in infected cells; in this study, compound 18e was proved to protect cells from viral infection. Notably, cells were mostly protected when pre-treated with derivative 18e, which had, however, no virucidal activity. From the performed biological assays, compound 18e turned out to be non-cytotoxic as well as cell protective against CVB5 infection, with a mechanism of action ascribable to an interaction on the early phase of infection, by hijacking the viral attachment process.
Collapse
Affiliation(s)
- Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Paola Corona
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Francesca Nonne
- GSK Vaccine Institute for Global Health GSK, Via Fiorentina, 1, 53100 Siena, Italy;
| | - Paola Caria
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Gabriele Serreli
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Vanessa Palmas
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
- Department of Chemistry, Biomedicinskt Centrum, BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Roberta Loddo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Giuseppina Sanna
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
- Correspondence: (G.S.); (S.P.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
- Correspondence: (G.S.); (S.P.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| |
Collapse
|
4
|
Shakerian L, Kolahdooz H, Garousi M, Keyvani V, Kamal Kheder R, Abdulsattar Faraj T, Yazdanpanah E, Esmaeili SA. IL-33/ST2 axis in autoimmune disease. Cytokine 2022; 158:156015. [PMID: 36041312 DOI: 10.1016/j.cyto.2022.156015] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/03/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family and plays an ambivalent role in autoimmune diseases. IL-33 signals via the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, NK cells, and T lymphocyte cells. The vital role of IL-33 as an active component gives rise to aberrant local and systemic damage which has been demonstrated in numerous inflammatory disorders and immune-mediated pathological conditions including multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, Sjogren's syndrome, inflammatory bowel disease (IBD), etc. IL-33/ST2 axis can up-regulate pro-inflammatory cytokine release in autoimmune disease, however, in some metabolic diseases like diabetes mellitus type 1 IL-33 can be considered an anti-inflammatory cytokine. The purpose of this review is to discuss selected studies on IL-33/ST2 axis in autoimmune diseases and its potential role as a pathogenic or protective cytokine.
Collapse
Affiliation(s)
- Leila Shakerian
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Kolahdooz
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Garousi
- Department of Internal Medicine, Faculty of Medical Sciences, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Vahideh Keyvani
- Molecular Genetics, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania 46012, Sulaymaniyah, Iraq; Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Tola Abdulsattar Faraj
- Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Wang SC, Liao JY. Epidemiologic Implication of the Association between Herpes Simplex Virus Infection and the Risk of Type 1 Diabetes Mellitus: A Nationwide Case-Control Study in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137832. [PMID: 35805493 PMCID: PMC9265894 DOI: 10.3390/ijerph19137832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023]
Abstract
Enterovirus infection is a known risk factor for type 1 diabetes (T1DM). Whether infection with other viruses induces T1DM remains undetermined. This study investigated the association between human herpesvirus (HHV) infection and the development of T1DM, using the data from Taiwan’s National Health Insurance Research Database. Patients with T1DM and age- and sex-matched controls were included. Subjects with HHV infection were subgrouped into those with histories of varicella-zoster virus, herpes simplex virus (HSV), Epstein-Barr virus, and human cytomegalovirus infections. The odds ratio of the risk of T1DM was calculated using a multivariable conditional logistic regression model. Atopic diseases, autoimmune thyroid diseases, and history of enterovirus infection served as adjusted comorbidities. Our findings suggested a significant association between HSV infection and the risk of T1DM (adjusted odds ratio: 1.21; 95% CI: 1.01–1.47, p = 0.048), while infection with other HHVs was not. The result of HSV infection remained significant when subjects were restricted to age ≤ 18 years (adjusted odds ratio: 1.35; 95% CI: 1.08–1.70, p = 0.010). We found a history of HSV infection might be an independent predictive risk factor for T1DM. This could be potentially helpful to the practice in public health.
Collapse
Affiliation(s)
- Shao-Chang Wang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - Jung-Yu Liao
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2106)
| |
Collapse
|
6
|
Trier NH, Valdarnini N, Fanelli I, Rovero P, Hansen PR, Schafer-Nielsen C, Ciplys E, Slibinskas R, Pociot F, Friis T, Houen G. Peptide Antibody Reactivity to Homologous Regions in Glutamate Decarboxylase Isoforms and Coxsackievirus B4 P2C. Int J Mol Sci 2022; 23:ijms23084424. [PMID: 35457242 PMCID: PMC9028130 DOI: 10.3390/ijms23084424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Two isoforms of the glutamate decarboxylase (GAD) enzyme exist, GAD65 and GAD67, which are associated with type 1 diabetes (T1D) and stiff-person syndrome (SPS), respectively. Interestingly, it has been reported that T1D patients seldom develop SPS, whereas patients with SPS occasionally develop T1D. In addition, coxsackievirus B4 (CVB4) has previously been proposed to be involved in the onset of T1D through molecular mimicry. On this basis, we aimed to examine antibody cross-reactivity between a specific region of GAD65 and GAD67, which has high sequence homology to the nonstructural P2C protein of CVB4 to determine potential correlations at antibody level. Monoclonal peptide antibodies generated in mice specific for a region with high similarity in all three proteins were screened for reactivity along with human sera in immunoassays. In total, six antibodies were generated. Two of the antibodies reacted to both GAD isoforms. However, none of the antibodies were cross-reactive to CVB, suggesting that antibody cross-reactivity between GAD65 and CVB, and GAD67 and CVB may not contribute to the onset of T1D and SPS, respectively.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, 2600 Glostrup, Denmark
- Correspondence: (N.H.T.); (G.H.)
| | - Niccolo Valdarnini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy; (N.V.); (I.F.); (P.R.)
| | - Ilaria Fanelli
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy; (N.V.); (I.F.); (P.R.)
| | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy; (N.V.); (I.F.); (P.R.)
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark;
| | | | - Evaldas Ciplys
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.C.); (R.S.)
| | - Rimantas Slibinskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.C.); (R.S.)
| | - Flemming Pociot
- Steno Diabetes Center, Borgmester Ib Juuls Vej 83, 2730 Hellerup, Denmark;
| | - Tina Friis
- Department of Autoimmunity and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark;
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, 2600 Glostrup, Denmark
- Department Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Correspondence: (N.H.T.); (G.H.)
| |
Collapse
|
7
|
Lloyd RE, Tamhankar M, Lernmark Å. Enteroviruses and Type 1 Diabetes: Multiple Mechanisms and Factors? Annu Rev Med 2022; 73:483-499. [PMID: 34794324 DOI: 10.1146/annurev-med-042320015952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö 214 28, Sweden;
| |
Collapse
|
8
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome.
Collapse
Affiliation(s)
- Richard E. Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö 214 28, Sweden
| |
Collapse
|
9
|
Hegazy WAH, Rajab AAH, Abu Lila AS, Abbas HA. Anti-diabetics and antimicrobials: Harmony of mutual interplay. World J Diabetes 2021; 12:1832-1855. [PMID: 34888011 PMCID: PMC8613656 DOI: 10.4239/wjd.v12.i11.1832] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/26/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes is one of the four major non-communicable diseases, and appointed by the world health organization as the seventh leading cause of death worldwide. The scientists have turned over every rock in the corners of medical sciences in order to come up with better understanding and hence more effective treatments of diabetes. The continuous research on the subject has elucidated the role of immune disorders and inflammation as definitive factors in the trajectory of diabetes, assuring that blood glucose adjustments would result in a relief in the systemic stress leading to minimizing inflammation. On a parallel basis, microbial infections usually take advantage of immunity disorders and propagate creating a pro-inflammatory environment, all of which can be reversed by antimicrobial treatment. Standing at the crossroads between diabetes, immunity and infection, we aim in this review at projecting the interplay between immunity and diabetes, shedding the light on the overlapping playgrounds for the activity of some antimicrobial and anti-diabetic agents. Furthermore, we focused on the anti-diabetic drugs that can confer antimicrobial or anti-virulence activities.
Collapse
Affiliation(s)
- Wael A H Hegazy
- Department of Microbiology and Immunology, Zagazig University, Zagzig 44519, Egypt
| | - Azza A H Rajab
- Department of Microbiology and Immunology, Zagazig University, Zagzig 44519, Egypt
| | - Amr S Abu Lila
- Department of Pharmaceutics, Zagazig University, Faculty of Pharmacy, Zagzig 44519, Egypt
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Zagazig University, Zagzig 44519, Egypt
| |
Collapse
|
10
|
Extending the Enterovirus Lead: Could a Related Picornavirus be Responsible for Diabetes in Humans? Microorganisms 2020; 8:microorganisms8091382. [PMID: 32927606 PMCID: PMC7565261 DOI: 10.3390/microorganisms8091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
We found an association between the abundance of rodents in the wild and onset of type 1 diabetes (T1D) in humans. A picornavirus named Ljungan virus (LV) was subsequently isolated from wild bank voles. Both picornavirus-like particles detected by electron microscopy and LV antigen visualized by immunohistochemistry was seen in islets of Langerhans in diabetic wild bank voles. LV antigen has also been found in islets of Langerhans in a patient with recent onset of T1D and in the commonly used Bio Breeding (BB) T1D rat model. We discuss the possibility of T1D and type 2 diabetes (T2D) as parts of a single disease entity. Antiviral compounds directed against picornavirus have been found to be an effective treatment of diabetes in BB rats. We propose using the same currently available antiviral compounds in clinical trials in humans. Antiviral treatment would have the potential to be both proof of concept for involvement of a picornavirus in diabetes pathogenesis and also present a first-generation therapy.
Collapse
|
11
|
Niklasson B, Klitz W, Juntti-Berggren L, Berggren PO, Lindquist L. Effectiveness of Antivirals in a Type 1 Diabetes Model and the Move Toward Human Trials. Viral Immunol 2020; 33:594-599. [PMID: 32758075 DOI: 10.1089/vim.2020.0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A Picornavirus (Ljungan virus [LV]) originally found in bank voles has been associated with type 1 diabetes (T1D) in its wild rodent reservoir, but also associated with T1D in a laboratory rat model for the disease, the diabetes prone (DP) Bio Breeding (BB) rat. Successful treatment of diabetes in this rat model, using experimental antiviral compounds directed against picornavirus, has been reported. In the present study we show significant clinical response in DP-BB rats using antiviral compounds available for human use (Pleconaril, Efavirenz, and Ribavirin). Presence of LV picornavirus antigen has been detected in islets of Langerhans from both human and the T1D rat model with clear morphological similarity. Based on these data it would be of interest to test antiviral treatment in patients with newly diagnosed T1D. Successful outcome will offer both proof of concept regarding the role of virus involvement in the disease and possibly a first generation treatment interrupting a persistent infection and stopping β-cell destruction.
Collapse
Affiliation(s)
- Bo Niklasson
- Jordbro Primary Health Care Center, Stockholm, Sweden
| | - William Klitz
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Lisa Juntti-Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Lindquist
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Hassine IH, Gharbi J, Hamrita B, Almalki MA, Rodríguez JF, Ben M'hadheb M. Characterization of Coxsackievirus B4 virus-like particles VLP produced by the recombinant baculovirus-insect cell system expressing the major capsid protein. Mol Biol Rep 2020; 47:2835-2843. [PMID: 32240468 DOI: 10.1007/s11033-020-05333-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/18/2020] [Indexed: 01/17/2023]
Abstract
Coxsackievirus B4 (CV-B4) is suspected to be an environmental factor that has the intrinsic capacity to damage the pancreatic beta cells and therefore causes insulitis and type 1 diabetes (T1D). Although vaccination against CV-B4 could reduce the incidence of this chronic auto-immune disease, there is currently no therapeutic reagent or vaccine in clinical use. By the employment of the Bac-to-Bac® vector system to express the major viral capsid protein, we contributed towards the development of a CV-B4 vaccine by producing CV-B4 virus-like particles (VLPs) from recombinant baculovirus in infected insect cells. In fact Western blot and Immunofluorescence analysis detected the viral protein 1 (VP1) in the cells resulting from the construction of a recombinant bacmid DNA carrying the key immunogenic protein then transfected in the insect cells. Sucrose gradient ultracentrifugation fractions of the infected cell lysates contained the recombinant protein and the electron microscopy demonstrated the presence of VLPs in these sucrose fractions. This study clearly shows for the first time the expression of CVB4 VP1 structure protein alone can form VLPs in the baculovirus-infected insect cell keeping conserved both characteristics and morphology.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia.,Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Jawhar Gharbi
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia. .,Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia.
| | - Bechr Hamrita
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| | - Mohammed A Almalki
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia
| | - José Francisco Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Manel Ben M'hadheb
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| |
Collapse
|
13
|
Correya TA, Ashraf AP, Griffin R, Aslibekyan S, Kim HD, Middleton S, McCormick K. Temporal trends in incidence of pediatric type 1 diabetes in Alabama: 2000-2017. Pediatr Diabetes 2020; 21:40-47. [PMID: 31591761 DOI: 10.1111/pedi.12927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The incidence of type 1 diabetes has increased in the United States and worldwide. We hypothesized that trends in the annual incidence rates of childhood-onset type 1 diabetes in the state of Alabama would be different by race and sex. METHODS We performed a retrospective observational cohort study, analyzing children with type 1 diabetes (n = 3770) managed at the Children's Hospital of Alabama between 2000 and 2017. We compared crude incidence rates using negative binomial regression models and analyzed differences in annual trends of age-adjusted incidence by race and sex using joinpoint regression. RESULTS The crude type 1 diabetes incidence rate was estimated at 16.7 per 100 000 children <19 years of age in Alabama. Between 2000 and 2007, there was an increase in age-adjusted incidence of type 1 diabetes with an annual percent change (APC) of 10% from 2000 to 2007 and a 1.7% APC decrease from 2007 to 2017. The age-adjusted incidence for Whites and Blacks increased with an average annual percentage change (AAPC) of 4.4% and 2.8%, respectively. A nearly 11% increasing trend in age-adjusted incidence was observed for both races, though the increase plateaued in 2006 for Whites and 2010 for Blacks. CONCLUSIONS Following significantly increasing annual trends for both races, the age-adjusted rate remained statistically stable for Whites and decreased significantly for Blacks. Longer-sustained trend increases for Blacks resulted in type 1 diabetes incidence tripling compared to the doubling of the rate for Whites.
Collapse
Affiliation(s)
- Tanya A Correya
- Science and Technology Honors, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ambika P Ashraf
- Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Russell Griffin
- Department of Epidemiology, UAB School of Public Health, Birmingham, Alabama
| | - Stella Aslibekyan
- Department of Epidemiology, UAB School of Public Health, Birmingham, Alabama
| | - Hae Dong Kim
- Georgia Campus- Philadelphia College of Osteopathic Medicine, Suwanee, Georgia
| | - Sydney Middleton
- University of Alabama School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenneth McCormick
- Division of Pediatric Endocrinology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019; 11:v11080762. [PMID: 31430946 PMCID: PMC6723519 DOI: 10.3390/v11080762] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
For a long time, viruses have been shown to modify the clinical picture of several autoimmune diseases, including type 1 diabetes (T1D), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s syndrome (SS), herpetic stromal keratitis (HSK), celiac disease (CD), and multiple sclerosis (MS). Best examples of viral infections that have been proposed to modulate the induction and development of autoimmune diseases are the infections with enteric viruses such as Coxsackie B virus (CVB) and rotavirus, as well as influenza A viruses (IAV), and herpesviruses. Other viruses that have been studied in this context include, measles, mumps, and rubella. Epidemiological studies in humans and experimental studies in animal have shown that viral infections can induce or protect from autoimmunopathologies depending on several factors including genetic background, host-elicited immune responses, type of virus strain, viral load, and the onset time of infection. Still, data delineating the clear mechanistic interaction between the virus and the immune system to induce autoreactivity are scarce. Available data indicate that viral-induced autoimmunity can be activated through multiple mechanisms including molecular mimicry, epitope spreading, bystander activation, and immortalization of infected B cells. Contrarily, the protective effects can be achieved via regulatory immune responses which lead to the suppression of autoimmune phenomena. Therefore, a better understanding of the immune-related molecular processes in virus-induced autoimmunity is warranted. Here we provide an overview of the current understanding of viral-induced autoimmunity and the mechanisms that are associated with this phenomenon.
Collapse
|
15
|
Benkahla M, Elmastour F, Sane F, Vreulx AC, Engelmann I, Desailloud R, Jaidane H, Alidjinou E, Hober D. Coxsackievirus-B4E2 can infect monocytes and macrophages in vitro and in vivo. Virology 2018; 522:271-280. [DOI: 10.1016/j.virol.2018.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
|
16
|
El-Senousy WM, Abdel-Moneim A, Abdel-Latif M, El-Hefnawy MH, Khalil RG. Coxsackievirus B4 as a Causative Agent of Diabetes Mellitus Type 1: Is There a Role of Inefficiently Treated Drinking Water and Sewage in Virus Spreading? FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:89-98. [PMID: 29022248 DOI: 10.1007/s12560-017-9322-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/03/2017] [Indexed: 05/09/2023]
Abstract
This study proposed to detect the enterovirus (EV) infection in children with type 1 diabetes mellitus (T1D) and to assess the role of insufficiently treated water and sewage as sources of viral spreading. Three hundred and eighty-two serum specimens of children with T1D, one hundred serum specimens of children who did not suffer from T1D as control, and forty-eight water and sewage samples were screened for EV RNA using nested RT-PCR. The number of genome copies and infectious units of EVs in raw and treated sewage and water samples were investigated using real-time (RT)-PCR and plaque assay, respectively. T1D markers [Fasting blood glucose (FBG), HbA1c, and C-peptide], in addition to anti-Coxsackie A & B viruses (CVs A & B) IgG, were measured in control, T1D-negative EV (T1D-EV-), and T1D-positive EV (T1D-EV+) children specimens. The prevalence of EV genome was significantly higher in diabetic children (26.2%, 100 out of 382) than the control children (0%, 0 out of 100). FBG and HbA1c in T1D-EV- and T1D-EV+ children specimens were significantly higher than those in the control group, while c-peptide in T1D-EV- and T1D-EV+ children specimens was significantly lower than that in the control (n = 100; p < 0.001). Positivity of anti-CVs A & B IgG was 70.7, 6.7, and 22.9% in T1D-EV+, T1D-EV-, and control children specimens, respectively. The prevalence of EV genome in drinking water and treated sewage samples was 25 and 33.3%, respectively. The prevalence of EV infectious units in drinking water and treated sewage samples was 8.5 and 25%, respectively. Quantification assays were performed to assess the capabilities of both wastewater treatment plants (WWTPs) and water treatment plants (WTPs) to remove EV. The reduction of EV genome in Zenin WWTP ranged from 2 to 4 log10, while the reduction of EV infectious units ranged from 1 to 4 log10. The reduction of EV genome in El-Giza WTP ranged from 1 to 3 log10, while the reduction of EV infectious units ranged from 1 to 2 log10. This capability of reduction did not prevent the appearance of infectious EV in treated sewage and drinking water. Plaque purification was performed for isolation of separate EV isolates from treated and untreated water and sewage samples. Characterization of the EV amplicons by RT-PCR followed by sequencing of these isolates revealed high homology (97%) with human coxsackievirus B4 (CV B4) in 60% of the isolates, while the rest of the isolates belonged to poliovirus type 1 and type 2 vaccine strains. On the other hand, characterization of the EV amplicons by RT-PCR followed by sequencing for T1D-EV+ children specimens indicated that all samples contained CV B4 with the same sequence characterized in the environmental samples. CV B4-contaminated drinking water or treated sewage may play a role as a causative agent of T1D in children.
Collapse
Affiliation(s)
- Waled M El-Senousy
- Environmental Virology Lab, Water Pollution Research Department, National Research Centre (NRC), El Bohouth st., Dokki, Giza, 12622, Egypt.
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud Abdel-Latif
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Mohamed H El-Hefnawy
- Department of Pediatric, National Institute of Diabetes and Endocrinology, Cairo, Egypt
| | - Rehab G Khalil
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
17
|
Alidjinou EK, Sane F, Lefevre C, Baras A, Moumna I, Engelmann I, Vantyghem MC, Hober D. Enteroviruses in blood of patients with type 1 diabetes detected by integrated cell culture and reverse transcription quantitative real-time PCR. Acta Diabetol 2017; 54:1025-1029. [PMID: 28861621 DOI: 10.1007/s00592-017-1041-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
Abstract
AIMS Enteroviruses (EV) have been associated with type 1 diabetes (T1D), but EV RNA detection has been reported in only a small proportion of T1D patients. We studied whether integrated cell culture and reverse transcription real-time PCR could improve EV detection in blood samples from patients with T1D. METHODS Blood was collected from 13 patients with T1D. The presence of EV RNA in blood was investigated by using real-time RT-PCR. In addition, plasma and white blood cells (WBC) were inoculated to BGM and Vero cell line cultures. Culture supernatants and cells collected on day 7 and day 14 were tested for EV RNA by real-time RT-PCR. Enterovirus identification was performed through sequencing of the VP4/VP2 region. RESULTS Enterovirus RNA was detected in blood by using real-time RT-PCR in only one out of 13 patients. The detection of EV RNA in cultures inoculated with clinical samples (plasma and/or WBC) gave positive results in five other patients. The viral loads were low, ranging from 45 to 4420 copies/ng of total RNA. One isolate was successfully identified as coxsackievirus B1. CONCLUSIONS Integrated cell culture and reverse transcription real-time PCR can improve the detection rate of EV in blood samples of patients with T1D and can be useful to investigate further the relationship between EV and the disease.
Collapse
Affiliation(s)
- Enagnon Kazali Alidjinou
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France
| | - Famara Sane
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France
| | - Christine Lefevre
- Service d'Endocrinologie pédiatrique, CHU Lille, 59000, Lille, France
| | - Agathe Baras
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France
| | - Ilham Moumna
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France
| | - Ilka Engelmann
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France.
| |
Collapse
|
18
|
Badia-Boungou F, Sane F, Alidjinou EK, Ternois M, Opoko PA, Haddad J, Stukens C, Lefevre C, Gueorguieva I, Hamze M, Ismail M, Weill J, Monabéka HG, Bouenizabila E, Moukassa D, Abena AA, Hober D. Marker of coxsackievirus-B4 infection in saliva of patients with type 1 diabetes. Diabetes Metab Res Rev 2017; 33. [PMID: 28719027 DOI: 10.1002/dmrr.2916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Coxsackieviruses B (CV-B) are enteroviruses that have been reported to play a role in the pathogenesis of type 1 diabetes. Enteroviral RNA was detected in the gut mucosa of patients. The mucosal immunity is an interconnected network; therefore, the response to enteroviruses possibly present in the gastrointestinal mucosa can be reflected by specific antibodies in the saliva. In the present study, the anti-CV-B neutralizing activity of saliva samples from patients with type 1 diabetes was investigated. METHODS Saliva samples were collected from patients and controls of 3 countries, and plasma was obtained from some of them. The anti-CV-B activity of clinical samples was determined by neutralization of the cytopathic effect induced by challenging viruses in vitro and expressed as titre value. RESULTS Overall prevalence and levels of anti-CV-B4 activity of saliva were higher in patients (n = 181) than in controls (n = 135; P = .0002; titre values ≥ 16: odds ratio = 4.22 95% CI: 1.90-9.38 P = .0002). It has been shown that IgA1 played a role in this activity. There was no correlation between the saliva and the plasma anti-CV-B4 neutralizing activity. The neutralizing activity of saliva against CV-B1, CV-B2, CV-B3, and CV-B5 existed rarely, if at all. Increased levels of anti-CV-B4 activity were observed all along a 4 year follow-up period in patients but not in matched controls (P = .01). CONCLUSION There is an anti-CV-B4 activity in saliva of patients with type 1 diabetes that may be a useful marker to study the role of CV-B in the pathogenesis of the disease.
Collapse
Affiliation(s)
- F Badia-Boungou
- Univ. Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, France
- Hôpital Général de Loandjili, Pointe Noire, Republic of Congo
| | - F Sane
- Univ. Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, France
| | - E K Alidjinou
- Univ. Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, France
| | - M Ternois
- Univ. Lille, Faculté d'odontologie et de chirurgie dentaire, Lille, France
| | - P A Opoko
- Hôpital Général de Loandjili, Pointe Noire, Republic of Congo
| | - J Haddad
- Lebanese University Faculty of Public Health, Health and Environment Microbiology Laboratory, Tripoli, Lebanon
| | - C Stukens
- CHU Hôpital Jeanne de Flandres, Lille, France
| | - C Lefevre
- CHU Hôpital Jeanne de Flandres, Lille, France
| | | | - M Hamze
- Lebanese University Faculty of Public Health, Health and Environment Microbiology Laboratory, Tripoli, Lebanon
| | - M Ismail
- Lebanese University Faculty of Public Health, Health and Environment Microbiology Laboratory, Tripoli, Lebanon
| | - J Weill
- CHU Hôpital Jeanne de Flandres, Lille, France
| | - H G Monabéka
- Université Marien Ngouabi, Faculté des sciences et de la santé, Brazzaville, République du Congo
- CHU de Brazzaville, Brazzaville, Republic of Congo
| | | | - D Moukassa
- Hôpital Général de Loandjili, Pointe Noire, Republic of Congo
- Université Marien Ngouabi, Faculté des sciences et de la santé, Brazzaville, République du Congo
| | - A A Abena
- Université Marien Ngouabi, Faculté des sciences et de la santé, Brazzaville, République du Congo
| | - D Hober
- Univ. Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, France
| |
Collapse
|
19
|
Elmastour F, Jaïdane H, Benkahla M, Aguech-Oueslati L, Sane F, Halouani A, Engelmann I, Bertin A, Mokni M, Gharbi J, Aouni M, Alidjinou EK, Hober D. Anti-coxsackievirus B4 (CV-B4) enhancing activity of serum associated with increased viral load and pathology in mice reinfected with CV-B4. Virulence 2017; 8:908-923. [PMID: 27792461 PMCID: PMC5626334 DOI: 10.1080/21505594.2016.1252018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
In previous studies it was shown that inoculation of Swiss albino mice with CV-B4 E2 resulted in the production of serum IgG capable of enhancing the CV-B4 E2 infection of murine spleen cells cultures. To investigate whether such an enhancing activity of serum can play a role in vivo, we decided to study the CV-B4 E2 infection in mice exposed to successive inoculations of virus. In Swiss albino mice infected with CV-B4 E2 at the age of 21 days, anti-CV-B4 E2 neutralizing and enhancing activities of their serum peaked after 55 d. In contrast, mice inoculated at the age of 55 d expressed much lower activities. Despite the neutralizing activity of serum, CV-B4 E2 inoculated a second time to 55 day-old animals spread into the host. At the age of 72 and 89 d the levels of viral RNA and infectious particles were higher in organs of animals exposed to 2 successive infections compared with animals infected once at the age of 21 d or 55 d. In animals with 2 successive inoculations of CV-B4 E2 there was a relationship between the anti-CV-B4 E2 enhancing activity of serum and the level of viral RNA in organs and an enhancement of pathology was observed as displayed by histological analysis of pancreas and hyperglycaemia. Altogether our data strongly suggest that an anti-CV-B4 E2 enhancing activity in the host can play a role in the outcome of a secondary infection with this virus.
Collapse
Affiliation(s)
- Firas Elmastour
- Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie/EA3610, Lille, France
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Tunis, Tunisia
| | - Hela Jaïdane
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Tunis, Tunisia
| | - Mehdi Benkahla
- Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie/EA3610, Lille, France
| | - Leila Aguech-Oueslati
- Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie/EA3610, Lille, France
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia
| | - Famara Sane
- Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie/EA3610, Lille, France
| | - Aymen Halouani
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Tunis, Tunisia
| | - Ilka Engelmann
- Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie/EA3610, Lille, France
| | - Antoine Bertin
- Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie/EA3610, Lille, France
| | - Moncef Mokni
- Université de Sousse, CHU Farhat Hached, Service d'Anatomopathologie, Sousse, Tunisia
| | - Jawhar Gharbi
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia
| | - Mahjoub Aouni
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia
| | - Enagnon K. Alidjinou
- Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie/EA3610, Lille, France
| | - Didier Hober
- Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie/EA3610, Lille, France
| |
Collapse
|
20
|
Abdel-Latif M, Abdel-Moneim AA, El-Hefnawy MH, Khalil RG. Comparative and correlative assessments of cytokine, complement and antibody patterns in paediatric type 1 diabetes. Clin Exp Immunol 2017. [PMID: 28640379 DOI: 10.1111/cei.13001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the most widespread and effective environmental factors is the infection with enteroviruses (EVs) which accelerate β cell destruction in type 1 diabetes (T1D). This study represented a comparison between diabetic EV+ and EV- children as well as correlation analysis between autoantibodies, T1D markers, cytokines, complement activation products and anti-coxsackievirus (CV) immunoglobulin (Ig)G. EV RNA was detected in Egyptian children with T1D (26·2%) and healthy controls (0%). Detection of anti-CV IgG in T1D-EV+ resulted in 64% positivity. Within T1D-EV+ , previously diagnosed (PD) showed 74 versus 56% in newly diagnosed (ND) children. Comparisons between populations showed increased levels of haemoglobin A1c (HbA1c), C-reactive protein (CRP), nitric oxide (NO), glutamic acid decarboxylase and insulin and islet cell autoantibodies [glutamic acid decarboxylase autoantibodies (GADA), insulin autoantibodies (IAA) and islet cell cytoplasmic autoantibodies (ICA), respectively], interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL -10, IL -12, IL -17, C3d and sC5-9 in T1D-EV+ versus T1D-EV- . Conversely, both IL-20 and transforming growth factor (TGF-β) decreased in T1D-EV+ versus EV- , while IL-4, -6 and -13 did not show any changes. Correlation analysis showed dependency of accelerated autoimmunity and β cell destruction on increased IFN-γ, IL-12 and IL-17 versus decreased IL-4, -6 and -13. In conclusion, IFN-γ, IL-12 and IL-17 played an essential role in exacerbating EV+ -T1D, while C3d, sC5b -9, IL-10 and -20 displayed distinct patterns.
Collapse
Affiliation(s)
- M Abdel-Latif
- Division of Immunity, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A A Abdel-Moneim
- Division of Physiology, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - M H El-Hefnawy
- National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| | - R G Khalil
- Division of Immunity, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
21
|
Veteikis D. Anthropogenic and temporal components in a complex trigger of type 1 diabetes suggest the active participation of antipyretics. Med Hypotheses 2016; 93:126-31. [PMID: 27372871 DOI: 10.1016/j.mehy.2016.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
Abstract
Tremendous efforts in research without a conclusion on the cause of type 1 diabetes allow the presumption that there is still a blind spot in the development of T1D that is not covered by current hypotheses. The review of geographical knowledge suggests that there is a well-expressed anthropogenic element within the complex environmental trigger of T1D. On the other hand, the initiation of T1D's directed autoimmunity is temporally related to the organism's immune response, induced by entero-viruses, most expectedly. Consequently, the searched for anthropogenic environmental factor is a player temporally linked to enteroviral infections. This paper discusses the participation of antipyretic medicines, and especially paracetamol, with a whole century's history of growing sales and popularity, including indirect influence through phenacetin during the first half of the 20th century. As proposed by several independent studies, the use of pharmaceuticals to reduce fever may counteract with the protective features of the immune system and create favourable conditions for a virus to spread within the organism and damage specific tissue. A preliminary comparison of paracetamol sales with the incidence of T1D data in Lithuania and the other countries in the North-eastern Baltic region supports this hypothesis.
Collapse
Affiliation(s)
- Darijus Veteikis
- Vilnius University, Faculty of Natural Sciences, Dept. of Geography and Land Management, M. K. Čiurliono Str. 21/27, Vilnius LT-03101, Lithuania.
| |
Collapse
|
22
|
Taherzadeh M, Esmaeili A, Ganjalikhany MR. In silico vaccine design against type 1 diabetes based on molecular modeling of coxsackievirus B4 epitopes. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13721-016-0112-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|