1
|
Asressu KH, Zhang Q. Detection and Semi-quantification of Lipids on High-Performance Thin-Layer Chromatography Plate using Ceric Ammonium Molybdate Staining. EUR J LIPID SCI TECH 2023; 125:2200096. [PMID: 36818638 PMCID: PMC9937734 DOI: 10.1002/ejlt.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/05/2022]
Abstract
It is desirable to quickly check the composition of lipids in small size samples, but achieving this is challenging using the existing staining methods. Herein, we developed a highly sensitive and semi-quantitative method for analysis of lipid samples with ceric ammonium molybdate (CAM) staining. The CAM detection method was systematically evaluated with a wide range of lipid classes including phospholipids, sphingolipids, glycerolipids, fatty acids (FA) and sterols, demonstrating high sensitivity, stability, and overall efficiency. Additionally, CAM staining provides a clean yellow background in high performance thin-layer chromatography (HPTLC) which facilitates quantification of lipids using image processing software. Lipids can be stained with CAM reagent regardless of their head group types, position of the carbon-carbon double bonds, geometric isomerism and the variation in the length of FA chain, but staining is mostly affected by the degree of unsaturation of the FA backbone. The mechanism of the CAM staining of lipids was proposed on principles of the reduction-oxidation reaction, in which Mo(VI) oxidizes the unsaturated lipids into carbonyl compounds on the HPTLC plate upon heating, while itself being reduced to Mo(IV). This method was applied for the separation, identification, and quantification of lipid extracts from porcine brain.
Collapse
Affiliation(s)
- Kesatebrhan Haile Asressu
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
2
|
Haberl EM, Pohl R, Rein-Fischboeck L, Höring M, Krautbauer S, Liebisch G, Buechler C. Hepatic lipid profile in mice fed a choline-deficient, low-methionine diet resembles human non-alcoholic fatty liver disease. Lipids Health Dis 2020; 19:250. [PMID: 33298075 PMCID: PMC7727224 DOI: 10.1186/s12944-020-01425-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emerging data support a role for lipids in non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) in humans. With experimental models such data can be challenged or validated. Mice fed a low-methionine, choline-deficient (LMCD) diet develop NASH and, when injected with diethylnitrosamine (DEN), HCC. Here, lipidomic analysis was used to elucidate whether the NASH and HCC associated lipid derangements resemble the lipid profile of the human disease. METHODS Lipids were measured in the liver of mice fed a control or a LMCD diet for 16 weeks. DEN was injected at young age to initiate hepatocarcinogenesis. DEN treatment associated changes of the lipid composition and the tumor lipidome were evaluated. RESULTS LMCD diet fed mice accumulated ceramides and triacylglycerols in the liver. Phospholipids enriched with monounsaturated fatty acids were also increased, whereas hepatic cholesterol levels remained unchanged in the LMCD model. Phosphatidylcholine and lysophosphatidylcholine concentrations declined in the liver of LMCD diet fed mice. The changes of most lipids associated with LMCD diet feeding were similar between water and DEN injected mice. Several polyunsaturated (PU) diacylglycerol species were already low in the liver of DEN injected mice fed the control diet. Tumors developed in the liver of LMCD diet fed mice injected with DEN. The tumor specific lipid profile, however, did not resemble the decrease of ceramides and PU phospholipids, which was consistently described in human HCC. Triacylglycerols declined in the cancer tissues, which is in accordance with a low expression of lipogenic enzymes in the tumors. CONCLUSIONS The LMCD model is suitable to study NASH associated lipid reprogramming. Hepatic lipid profile was modestly modified in the DEN injected mice suggesting a function of these derangements in carcinogenesis. Lipid composition of liver tumors did not resemble the human HCC lipidome, and most notably, lipogenesis and triacylglycerol levels were suppressed.
Collapse
Affiliation(s)
- Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
3
|
Irungbam K, Roderfeld M, Glimm H, Hempel F, Schneider F, Hehr L, Glebe D, Churin Y, Morlock G, Yüce I, Roeb E. Cholestasis impairs hepatic lipid storage via AMPK and CREB signaling in hepatitis B virus surface protein transgenic mice. J Transl Med 2020; 100:1411-1424. [PMID: 32612285 PMCID: PMC7572243 DOI: 10.1038/s41374-020-0457-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical studies demonstrated that nonalcoholic steatohepatitis is associated with liver-related outcomes in chronic hepatitis B. Furthermore, primary biliary fibrosis and biliary atresia occurred in patients with HBV infection. Interestingly, hepatitis B virus surface protein (HBs) transgenic mice spontaneously develop hepatic steatosis. Our aim is to investigate the effect of Abcb4 knockout-induced cholestasis on liver steatosis in HBs transgenic mice. Hybrids of HBs transgenic and Abcb4-/- mice were bred on the BALB/c genetic background. Lipid synthesis, storage, and catabolism as well as proteins and genes that control lipid metabolism were analyzed using HPTLC, qPCR, western blot, electrophoretic mobility shift assay (EMSA), lipid staining, and immunohistochemistry. Hepatic neutral lipid depots were increased in HBs transgenic mice and remarkably reduced in Abcb4-/- and HBs/Abcb4-/- mice. Similarly, HPTLC-based quantification analyses of total hepatic lipid extracts revealed a significant reduction in the amount of triacylglycerols (TAG), while the amount of free fatty acids (FFA) was increased in Abcb4-/- and HBs/Abcb4-/- in comparison to wild-type and HBs mice. PLIN2, a lipid droplet-associated protein, was less expressed in Abcb4-/- and HBs/Abcb4-/-. The expression of genes-encoding proteins involved in TAG synthesis and de novo lipogenesis (Agpat1, Gpat1, Mgat1, Dgat1, Dgat2, Fasn, Hmgcs1, Acc1, Srebp1-c, and Pparγ) was suppressed, and AMPK and CREB were activated in Abcb4-/- and HBs/Abcb4-/- compared to wild-type and HBs mice. Simulating cholestatic conditions in cell culture resulted in AMPK and CREB activation while FASN and PLIN2 were reduced. A concurrent inhibition of AMPK signaling revealed normal expression level of FASN and PLIN2, suggesting that activation of AMPK-CREB signaling regulates hepatic lipid metabolism, i.e. synthesis and storage, under cholestatic condition. In conclusions, in vivo and mechanistic in vitro data suggest that cholestasis reduces hepatic lipid storage via AMPK and CREB signaling. The results of the current study could be the basis for novel therapeutic strategies as NASH is a crucial factor that can aggravate chronic liver diseases.
Collapse
Affiliation(s)
- Karuna Irungbam
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Hannah Glimm
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Felix Hempel
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Franziska Schneider
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Hehr
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Yuri Churin
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Imanuel Yüce
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
4
|
Shulgina LV, Davletshina TA, Pavlovskii AM, Pavel KG. Lipid and Fatty-Acid Compositions of Muscle Tissue from Sardinops melanostictus. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Irungbam K, Churin Y, Matono T, Weglage J, Ocker M, Glebe D, Hardt M, Koeppel A, Roderfeld M, Roeb E. Cannabinoid receptor 1 knockout alleviates hepatic steatosis by downregulating perilipin 2. J Transl Med 2020; 100:454-465. [PMID: 31570772 PMCID: PMC7044114 DOI: 10.1038/s41374-019-0327-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid (EC) system has been implicated in the pathogenesis of several metabolic diseases, including nonalcoholic fatty liver disease (NAFLD). With the current study we aimed to verify the modulatory effect of endocannabinoid receptor 1 (CB1)-signaling on perilipin 2 (PLIN2)-mediated lipophagy. Here, we demonstrate that a global knockout of the cannabinoid receptor 1 gene (CB1-/-) reduced the expression of the lipid droplet binding protein PLIN2 in the livers of CB1-/- and hepatitis B surface protein (HBs)-transgenic mice, which spontaneously develop hepatic steatosis. In addition, the pharmacologic activation and antagonization of CB1 in cell culture also caused an induction or reduction of PLIN2, respectively. The decreased PLIN2 expression was associated with suppressed lipogenesis and triglyceride (TG) synthesis and enhanced autophagy as shown by increased colocalization of LC3B with lysosomal-associated membrane protein 1 (LAMP1) in HBs/CB1-/- mice. The induction of autophagy was further supported by the increased expression of LAMP1 in CB1-/- and HBs/CB1-/- mice. LAMP1 and PLIN2 were co-localized in HBs/CB1-/- indicating autophagy of cytoplasmic lipid droplets (LDs) i.e., lipophagy. Lipolysis of lipid droplets was additionally indicated by elevated expression of lysosomal acid lipase. In conclusion, these results suggest that loss of CB1 signaling leads to reduced PLIN2 abundance, which triggers lipophagy. Our new findings about the association between CB1 signaling and PLIN2 may stimulate translational studies analyzing new diagnostic and therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Karuna Irungbam
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Yuri Churin
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Tomomitsu Matono
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Jakob Weglage
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Matthias Ocker
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
- Department of Gastroenterology CBF, Translational Medicine Oncology, Charité University Medicine Berlin and Bayer AG, Experimental Medicine Oncology, Berlin, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, Justus-Liebig-University, Giessen, Germany
| | - Martin Hardt
- Central Biotechnical Facility, Justus-Liebig-University, Giessen, Germany
| | - Alica Koeppel
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
6
|
Rein-Fischboeck L, Haberl EM, Pohl R, Feder S, Liebisch G, Krautbauer S, Buechler C. Variations in hepatic lipid species of age-matched male mice fed a methionine-choline-deficient diet and housed in different animal facilities. Lipids Health Dis 2019; 18:172. [PMID: 31521175 PMCID: PMC6745065 DOI: 10.1186/s12944-019-1114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is a common disease and feeding mice a methionine-choline-deficient (MCD) diet is a frequently used model to study its pathophysiology. Genetic and environmental factors influence NASH development and liver lipid content, which was studied herein using C57BL/6 J mice bred in two different animal facilities. Methods Age-matched male C57BL/6 J mice bred in two different animal facilities (later on referred to as WT1 and WT2) at the University Hospital of Regensburg were fed identical MCD or control chows for 2 weeks. Hepatic gene and protein expression and lipid composition were determined. Results NASH was associated with increased hepatic triglycerides, which were actually higher in WT1 than WT2 liver in both dietary groups. Cholesterol contributes to hepatic injury but was only elevated in WT2 NASH liver. Ceramides account for insulin resistance and cell death, and ceramide species d18:1/16:0 and d18:1/18:0 were higher in the NASH liver of both groups. Saturated sphingomyelins only declined in WT1 NASH liver. Lysophosphatidylcholine concentrations were quite normal in NASH and only one of the 12 altered phosphatidylcholine species declined in NASH liver of both groups. Very few phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol species were comparably regulated in NASH liver of both animal groups. Seven of these lipid species declined and two increased in NASH. Notably, hepatic mRNA expression of proinflammatory (F4/80, CD68, IL-6, TNF and chemerin) and profibrotic genes (TGF beta and alpha SMA) was comparable in WT1 and WT2 mice. Conclusions Mice housed and bred in different animal facilities had comparable disease severity of NASH whereas liver lipids varied among the groups. Thus, there was no specific lipid signature for NASH in the MCD model. Electronic supplementary material The online version of this article (10.1186/s12944-019-1114-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany.
| |
Collapse
|
7
|
Transgenic expression of the RNA binding protein IMP2 stabilizes miRNA targets in murine microsteatosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3099-3108. [PMID: 29859241 DOI: 10.1016/j.bbadis.2018.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Adult expression of IMP2 is often associated with several types of disease and cancer. The RNA binding protein IMP2 binds and stabilizes the IGF2 mRNA as well as hundreds of other transcripts during development. To gain insight into the molecular action of IMP2 and its contribution to disease in context of adult cellular metabolism, we analyze transgenic overexpression of IMP2 in mouse livers, which has been shown to induce a steatosis-like phenotype and enhanced risk to develop hepatocellular carcinoma (HCC). Our data show up-regulation of several HCC marker genes and miRNAs (miR438-3p and miR151-5p). To characterize the impact of miRNAs to their targets, integrative analysis of transcriptome-and miRNAome-dynamics in combination with IMP2 target prediction was carried out. Our analyses show that targets of expressed miRNAs become accumulated in the case that these transcripts have positive IMP2 binding prediction. Therefore, our data indicates that overexpression of IMP2 alters the regulatory capacity of many miRNAs and we conclude that IMP2 competes with miRNAs for binding sites on thousands of transcripts. As a result, our data implicates that overexpression of IMP2 has distinct effects to the regulatory capacity of miRNAs with yet unknown consequences for translational efficiency.
Collapse
|
8
|
Dembek A, Laggai S, Kessler SM, Czepukojc B, Simon Y, Kiemer AK, Hoppstädter J. Hepatic interleukin-6 production is maintained during endotoxin tolerance and facilitates lipid accumulation. Immunobiology 2017; 222:786-796. [DOI: 10.1016/j.imbio.2017.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/23/2016] [Accepted: 01/17/2017] [Indexed: 02/08/2023]
|
9
|
Pope C, Mishra S, Russell J, Zhou Q, Zhong XB. Targeting H19, an Imprinted Long Non-Coding RNA, in Hepatic Functions and Liver Diseases. Diseases 2017; 5:E11. [PMID: 28933364 PMCID: PMC5456333 DOI: 10.3390/diseases5010011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022] Open
Abstract
H19 is a long non-coding RNA regulated by genomic imprinting through methylation at the locus between H19 and IGF2. H19 is important in normal liver development, controlling proliferation and impacting genes involved in an important network controlling fetal development. H19 also plays a major role in disease progression, particularly in hepatocellular carcinoma. H19 participates in the epigenetic regulation of many processes impacting diseases, such as activating the miR-200 pathway by histone acetylation to inhibit the epithelial-mesenchymal transition to suppress tumor metastasis. Furthermore, H19's normal regulation is disturbed in diseases, such as hepatocellular carcinoma. In this disease, aberrant epigenetic maintenance results in biallelic expression of IGF2, leading to uncontrolled cellular proliferation. This review aims to further research utilizing H19 for drug discovery and the treatment of liver diseases by focusing on both the epigenetic regulation of H19 and how H19 regulates normal liver functions and diseases, particularly by epigenetic mechanisms.
Collapse
Affiliation(s)
- Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| | - Shashank Mishra
- Department of Physiology and Neurobiology, University of Connecticut, 75 N Eagleville Road, Storrs, CT 06269, USA.
| | - Joshua Russell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| | - Qingqing Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
10
|
Fengler VHI, Macheiner T, Kessler SM, Czepukojc B, Gemperlein K, Müller R, Kiemer AK, Magnes C, Haybaeck J, Lackner C, Sargsyan K. Susceptibility of Different Mouse Wild Type Strains to Develop Diet-Induced NAFLD/AFLD-Associated Liver Disease. PLoS One 2016; 11:e0155163. [PMID: 27167736 PMCID: PMC4863973 DOI: 10.1371/journal.pone.0155163] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Although non-alcoholic and alcoholic fatty liver disease have been intensively studied, concerning pathophysiological mechanisms are still incompletely understood. This may be due to the use of different animal models and resulting model-associated variation. Therefore, this study aimed to compare three frequently used wild type mouse strains in their susceptibility to develop diet-induced features of non-alcoholic/alcoholic fatty liver disease. Fatty liver disease associated clinical, biochemical, and histological features in C57BL/6, CD-1, and 129Sv WT mice were induced by (i) high-fat diet feeding, (ii) ethanol feeding only, and (iii) the combination of high-fat diet and ethanol feeding. Hepatic and subcutaneous adipose lipid profiles were compared in CD-1 and 129Sv mice. Additionally hepatic fatty acid composition was determined in 129Sv mice. In C57BL/6 mice dietary regimens resulted in heterogeneous hepatic responses, ranging from pronounced steatosis and inflammation to a lack of any features of fatty liver disease. Liver-related serum biochemistry showed high deviations within the regimen groups. CD-1 mice did not exhibit significant changes in metabolic and liver markers and developed no significant steatosis or inflammation as a response to dietary regimens. Although 129Sv mice showed no weight gain, this strain achieved most consistent features of fatty liver disease, apparent from concentration alterations of liver-related serum biochemistry as well as moderate steatosis and inflammation as a result of all dietary regimens. Furthermore, the hepatic lipid profile as well as the fatty acid composition of 129Sv mice were considerably altered, upon feeding the different dietary regimens. Accordingly, diet-induced non-alcoholic/alcoholic fatty liver disease is most consistently promoted in 129Sv mice compared to C57BL/6 and CD-1 mice. As a conclusion, this study demonstrates the importance of genetic background of used mouse strains for modeling diet-induced non-alcoholic/alcoholic fatty liver disease.
Collapse
MESH Headings
- Alanine Transaminase/metabolism
- Animals
- Aspartate Aminotransferases/metabolism
- Biomarkers/metabolism
- Cholesterol/metabolism
- Diet, High-Fat/adverse effects
- Dietary Fats/administration & dosage
- Disease Models, Animal
- Disease Susceptibility
- Ethanol/administration & dosage
- Fatty Acids, Nonesterified/metabolism
- Fatty Liver, Alcoholic/etiology
- Fatty Liver, Alcoholic/genetics
- Fatty Liver, Alcoholic/metabolism
- Fatty Liver, Alcoholic/pathology
- Liver/metabolism
- Liver/pathology
- Liver Function Tests
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/genetics
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Species Specificity
- Subcutaneous Fat/metabolism
- Subcutaneous Fat/pathology
- Triglycerides/metabolism
- Weight Gain
Collapse
Affiliation(s)
| | - Tanja Macheiner
- BioPersMed/Biobank Graz, Medical University of Graz, Graz, Austria
| | - Sonja M. Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Beate Czepukojc
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Katja Gemperlein
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology (HZI), Saarbrücken, Germany
| | - Rolf Müller
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology (HZI), Saarbrücken, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Christoph Magnes
- Institute for Biomedicine and Health Sciences, Joanneum Research, Graz, Austria
| | | | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Karine Sargsyan
- BioPersMed/Biobank Graz, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
11
|
Kessler SM, Laggai S, Van Wonterg E, Gemperlein K, Müller R, Haybaeck J, Vandenbroucke RE, Ogris M, Libert C, Kiemer AK. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation. Front Physiol 2016; 7:147. [PMID: 27199763 PMCID: PMC4843762 DOI: 10.3389/fphys.2016.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/04/2016] [Indexed: 12/12/2022] Open
Abstract
Although insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development. Hydrodynamic gene delivery of an Igf2 plasmid used for transient Igf2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in Igf2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in Igf2-livers while no signs of inflammation were observed. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography, and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD) size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in Igf2 overexpressing mice. Accordingly, Hmgcr/HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBF1 and its target genes. SREBF1 was induced and also SREBF1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic IGF2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation.
Collapse
Affiliation(s)
- Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University Saarbrücken, Germany
| | - Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University Saarbrücken, Germany
| | - Elien Van Wonterg
- Inflammation Research Center, VIBGhent, Belgium; Department of Biomedical Molecular Biology, Ghent UniversityGhent, Belgium
| | - Katja Gemperlein
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University Saarbrücken, Germany
| | | | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIBGhent, Belgium; Department of Biomedical Molecular Biology, Ghent UniversityGhent, Belgium
| | - Manfred Ogris
- Department of Pharmaceutical Chemistry, University of Vienna Vienna, Austria
| | - Claude Libert
- Inflammation Research Center, VIBGhent, Belgium; Department of Biomedical Molecular Biology, Ghent UniversityGhent, Belgium
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University Saarbrücken, Germany
| |
Collapse
|
12
|
Kessler SM, Laggai S, Barghash A, Schultheiss CS, Lederer E, Artl M, Helms V, Haybaeck J, Kiemer AK. IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death Dis 2015; 6:e1894. [PMID: 26426686 PMCID: PMC4632283 DOI: 10.1038/cddis.2015.241] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third leading cause of cancer-related deaths and commonly develops in inflammatory environments. The IGF2 mRNA-binding protein IMP2-2/IGF2BP2-2/p62 was originally identified as an autoantigen in HCC. Aim of this study was to investigate a potential pathophysiological role of p62 in hepatocarcinogenesis. Human HCC tissue showed overexpression of IMP2, which strongly correlated with the fetal markers AFP and DLK1/Pref-1/FA-1 and was particularly elevated in tumors with stem-like features and hypervascularization. Molecular classification of IMP2-overexpressing tumors revealed an aggressive phenotype. Livers of mice overexpressing the IMP2 splice variant p62 highly expressed the stem cell marker DLK1 and secreted DLK1 into the blood. p62 was oncogenic: diethylnitrosamine (DEN)-treated p62 transgenic mice exhibited a higher tumor incidence and multiplicity than wild types. Tumors of transgenics showed a more aggressive and stem-like phenotype and displayed more oncogenic chromosomal aberrations determined with aCGH analysis. DEN-treated p62 transgenic mice exhibited distinct signs of inflammation, such as inflammatory cytokine expression and oxidative stress markers, that is, thiobarbituric acid-reactive substance (TBARS) levels. Reactive oxygen species (ROS) production was elevated in HepG2 cells, which either overexpressed p62 or were treated with DLK1. p62 induced this ROS production by a DLK1-dependent induction and activation of the small Rho-GTPase RAC1, activating NADPH oxidase and being overexpressed in human HCC. Our data indicate that p62/IMP2 promotes hepatocarcinogenesis by an amplification of inflammation.
Collapse
Affiliation(s)
- S M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany.,Institute of Pathology, Medical University of Graz, Graz, Austria
| | - S Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - A Barghash
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany.,Saarbruecken Graduate School of Computer Science, Saarbruecken, Germany
| | - C S Schultheiss
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - E Lederer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - M Artl
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - V Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - J Haybaeck
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - A K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| |
Collapse
|
13
|
Laggai S, Kessler SM, Boettcher S, Lebrun V, Gemperlein K, Lederer E, Leclercq IA, Mueller R, Hartmann RW, Haybaeck J, Kiemer AK. The IGF2 mRNA binding protein p62/IGF2BP2-2 induces fatty acid elongation as a critical feature of steatosis. J Lipid Res 2014; 55:1087-97. [PMID: 24755648 DOI: 10.1194/jlr.m045500] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 12/12/2022] Open
Abstract
Liver-specific overexpression of the insulin-like growth factor 2 (IGF2) mRNA binding protein p62/IGF2BP2-2 induces a fatty liver, which highly expresses IGF2 Because IGF2 expression is elevated in patients with steatohepatitis, the aim of our study was to elucidate the role and interconnection of p62 and IGF2 in lipid metabolism. Expression of p62 and IGF2 highly correlated in human liver disease. p62 induced an elevated ratio of C18:C16 and increased fatty acid elongase 6 (ELOVL6) protein, the enzyme catalyzing the elongation of C16 to C18 fatty acids and promoting nonalcoholic steatohepatitis in mice and humans. The p62 overexpression induced the activation of the ELOVL6 transcriptional activator sterol regulatory element binding transcription factor 1 (SREBF1). Recombinant IGF2 induced the nuclear translocation of SREBF1 and a neutralizing IGF2 antibody reduced ELOVL6 and mature SREBF1 protein levels. Concordantly, p62 and IGF2 correlated with ELOVL6 in human livers. Decreased palmitoyl-CoA levels, as found in p62 transgenic livers, can explain the lipogenic action of ELOVL6. Accordingly, p62 represents an inducer of hepatic C18 fatty acid production via a SREBF1-dependent induction of ELOVL6. These findings underline the detrimental role of p62 in liver disease.
Collapse
Affiliation(s)
- Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Department of Pharmacy, Pharmaceutical, Saarland University, Saarbrücken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Department of Pharmacy, Pharmaceutical, Saarland University, Saarbrücken, Germany Medicinal Chemistry, Saarland University, Saarbrücken, Germany Laboratory of Hepato-gastroenterology, Institut de Recherche expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | | | - Valérie Lebrun
- Laboratory of Hepato-gastroenterology, Institut de Recherche expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Katja Gemperlein
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Eva Lederer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Isabelle A Leclercq
- Laboratory of Hepato-gastroenterology, Institut de Recherche expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Rolf Mueller
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Rolf W Hartmann
- Medicinal Chemistry, Saarland University, Saarbrücken, Germany Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | | | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Department of Pharmacy, Pharmaceutical, Saarland University, Saarbrücken, Germany
| |
Collapse
|