1
|
Tiongco RE, Flores JA, Castro EJ, Dayrit SA, Dominguez MJ, Manahan E, Pineda-Cortel MR. Association of Strongyloides stercoralis infection with the development of diabetes mellitus: a meta-analysis. J Helminthol 2024; 98:e86. [PMID: 39703057 DOI: 10.1017/s0022149x24000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Previous studies have shown that helminth infection protects against the development of diabetes mellitus (DM), possibly related to the hygiene hypothesis. However, studies involving Stronglyoides stercoralis and its possible association with DM are scarce and have shown contradicting results, prompting us to perform this meta-analysis to obtain more precise estimates. Related studies were searched from PubMed, Google Scholar, Science Direct, and Cochrane Library until 1 August 2024. Data on the occurrence of DM in patients positive and negative for S. stercoralis were obtained. All analyses were done using Review Manager 5.4. The initial search yielded a total of 1725 studies, and after thorough screening and exclusion, only five articles involving 2106 participants (536 cases and 1570 controls) were included in the meta-analysis. Heterogeneity was assessed, and outlier studies were excluded using a funnel plot. Results showed a significant association of S. stercoralis infection with DM, suggesting that those with the infection are less likely to develop DM. Overall, the results suggest that S. stercoralis infection may decrease the likelihood of developing DM, potentially supporting the hygiene hypothesis.
Collapse
Affiliation(s)
- R E Tiongco
- Department of Medical Technology, School of Health Sciences, UST General Santos, General Santos City 9500, Philippines
| | - J A Flores
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City2009, Philippines
| | - E J Castro
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City2009, Philippines
| | - S A Dayrit
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City2009, Philippines
| | - M J Dominguez
- School of Medicine, Angeles University Foundation, Angeles City2009, Philippines
| | - E Manahan
- Department of Medical Technology, School of Health Sciences, UST General Santos, General Santos City 9500, Philippines
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila1008, Philippines
| | - M R Pineda-Cortel
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila1008, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila1008, Philippines
| |
Collapse
|
2
|
Oyesola O, Downie AE, Howard N, Barre RS, Kiwanuka K, Zaldana K, Chen YH, Menezes A, Lee SC, Devlin J, Mondragón-Palomino O, Souza COS, Herrmann C, Koralov SB, Cadwell K, Graham AL, Loke P. Genetic and environmental interactions contribute to immune variation in rewilded mice. Nat Immunol 2024; 25:1270-1282. [PMID: 38877178 PMCID: PMC11224019 DOI: 10.1038/s41590-024-01862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/02/2024] [Indexed: 06/16/2024]
Abstract
The relative and synergistic contributions of genetics and environment to interindividual immune response variation remain unclear, despite implications in evolutionary biology and medicine. Here we quantify interactive effects of genotype and environment on immune traits by investigating C57BL/6, 129S1 and PWK/PhJ inbred mice, rewilded in an outdoor enclosure and infected with the parasite Trichuris muris. Whereas cellular composition was shaped by interactions between genotype and environment, cytokine response heterogeneity including IFNγ concentrations was primarily driven by genotype with consequence on worm burden. In addition, we show that other traits, such as expression of CD44, were explained mostly by genetics on T cells, whereas expression of CD44 on B cells was explained more by environment across all strains. Notably, genetic differences under laboratory conditions were decreased following rewilding. These results indicate that nonheritable influences interact with genetic factors to shape immune variation and parasite burden.
Collapse
Affiliation(s)
- Oyebola Oyesola
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Alexander E Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nina Howard
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ramya S Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Kasalina Kiwanuka
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly Zaldana
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, New York University, Grossman School of Medicine, New York, NY, USA
| | - Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, NY, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Arthur Menezes
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Soo Ching Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Devlin
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, NY, USA
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camila Oliveira Silva Souza
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christin Herrmann
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, NY, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sergei B Koralov
- Department of Pathology, New York University, Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| | - P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Wong QYA, Chew FT. The Association between Migration and Prevalence of Allergic Diseases: A Systematic Review and Meta-Analysis. Int Arch Allergy Immunol 2024; 185:1099-1122. [PMID: 38901406 PMCID: PMC11548107 DOI: 10.1159/000539382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION Allergic diseases remain of concern due to their increasing prevalence worldwide. Intrinsic and environmental risk factors have been implicated in the pathogenesis of allergic disease. Among the possible risk factors, migration has been associated with the manifestation of allergic diseases. We aimed to consolidate the existing evidence, review the hypotheses for the relationship between environmental factors and allergic disease, and provide a direction for future work. METHODS This systematic review and meta-analysis complied with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The Web of Science database was searched in September 2023 to retrieve publications investigating the relationship between allergic rhinitis (AR), atopic dermatitis (AD), or asthma and the following factors: (i) migrant status (i.e., migrants vs. natives) or (ii) duration since migration among migrants. Risk of bias was assessed using the JBI critical appraisal tool. Details and findings from the included studies were also summarized and meta-analyses were conducted where appropriate. RESULTS Fifty studies encompassing an estimated 3,755,248 individuals were reviewed. Articles investigated asthma (n = 46), AR (n = 16), and AD (n = 14). A variety of migration-related factors were also studied: movement of individuals across regions (n = 40), duration since immigration (n = 12), age at immigration (n = 9), and acculturation (n = 2). Migration status was not significantly associated with AD (pooled odds ratio [pOR] = 0.68, 95% confidence interval (CI) = 0.31, 1.49). Although AR prevalence was lower among immigrants than natives (pOR = 0.58, 95% CI = 0.45, 0.74), immigrants who had resided at least 10 years in the destination country had a higher risk of AR than immigrants with a duration of residence of less than 10 years (pOR = 8.36, 95% CI = 4.15, 16.81). Being an immigrant was also associated with a decreased risk of asthma (pOR = 0.56, 95% CI = 0.44, 0.72). Among immigrants, residing in the host country for at least 10 years was associated with increased asthma manifestation (pOR = 1.85, 95% CI = 1.25, 2.73). Immigrants who migrated aged 5 and below did not exhibit a significantly higher likelihood of asthma than migrants who immigrated older than 5 years (pOR = 1.01, 95% CI = 0.68, 1.50). CONCLUSION This review was limited by the primarily cross-sectional nature of the included studies. Objective diagnoses of allergic disease, such as using the spirometry of bronchodilator reversibility test for asthma rather than questionnaire responses, could add to the reliability of the outcomes. Furthermore, immigrant groups were mostly nonspecific, with little distinction between their country of origin. Overall, migration appears to be a protective factor for allergic diseases, but the protection subsides over time and the prevalence of allergic diseases among the immigrant group approaches that of the host population.
Collapse
Affiliation(s)
- Qi Yi Ambrose Wong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Allergy and Molecular Immunology Laboratory, Functional Genomics Laboratories, National University of Singapore, Singapore, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Allergy and Molecular Immunology Laboratory, Functional Genomics Laboratories, National University of Singapore, Singapore, Singapore
- Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Gazzinelli-Guimaraes PH, Dulek B, Swanson P, Lack J, Roederer M, Nutman TB. Single-cell molecular signature of pathogenic T helper subsets in type 2-associated disorders in humans. JCI Insight 2024; 9:e177720. [PMID: 38587077 PMCID: PMC11128205 DOI: 10.1172/jci.insight.177720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
To unravel the heterogeneity and molecular signature of effector memory Th2 cells (Tem2), we analyzed 23 individuals' PBMCs of filaria-infected (Filaria+) and 24 healthy volunteers (Filaria-), with or without coincident house dust mite (HDM) allergic sensitization. Flow cytometry revealed 3 CD4+ Tem subsets - CCR4+CCR6+CRTH2- Tem17, CCR4+CCR6-CRTH2+ Tem2, and CCR6+CCR4+CRTH2+ Tem17.2 - markedly enriched in Filaria+ individuals. These subsets were sorted and analyzed by multiomic single-cell RNA immunoprofiling. SingleR-annotated Th2 cells from Tem2 and Tem17.2 cell subsets had features of pathogenic Th2 effector cells based on their transcriptional signatures, with downregulated CD27 and elevated expression levels of ITGA4, IL17RB, HPGDS, KLRB1, PTGDR2, IL9R, IL4, IL5, and IL13 genes. When the Filaria+ individuals were subdivided based on their allergic status, Tem2 cells in HDM+Filaria+ individuals showed an overall reduction in TCR diversity, suggesting the occurrence of antigen-driven clonal expansion. Moreover, HDM+Filaria+ individuals showed not only an expansion in the frequency of both Tem2 and Tem17.2 cell subsets, but also a change in their molecular program by overexpressing GATA3, IL17RB, CLRF2, and KLRB1, as well as increased antigen-induced IL-4, IL-5, and IL-13 production, suggesting that aeroallergens reshape the transcriptional and functional programming of Th2 cell subsets in human filarial infection toward a pathogenic immunophenotype.
Collapse
Affiliation(s)
| | | | - Phillip Swanson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
5
|
Gazzinelli-Guimaraes PH, Golec DP, Karmele EP, Sciurba J, Bara-Garcia P, Hill T, Kang B, Bennuru S, Schwartzberg PL, Nutman TB. Eosinophil trafficking in allergen-mediated pulmonary inflammation relies on IL-13-driven CCL-11 and CCL-24 production by tissue fibroblasts and myeloid cells. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100131. [PMID: 37781651 PMCID: PMC10509988 DOI: 10.1016/j.jacig.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 10/03/2023]
Abstract
Background The immunologic mechanisms underlying pulmonary type 2 inflammation, including the dynamics of eosinophil recruitment to the lungs, still need to be elucidated. Objective We sought to investigate how IL-13-producing TH2 effector cells trigger eosinophil migration in house dust mite (HDM)-driven allergic pulmonary inflammation. Methods Multiparameter and molecular profiling of murine lungs with HDM-induced allergy was investigated in the absence of IL-13 signaling by using IL-13Rα1-deficient mice and separately through adoptive transfer of CD4+ T cells from IL-5-deficient mice into TCRα-/- mice before allergic inflammation. Results We demonstrated through single-cell techniques that HDM-driven pulmonary inflammation displays a profile characterized by TH2 effector cell-induced IL-13-dominated eosinophilic inflammation. Using HDM-sensitized IL-13Rα1-/- mice, we found a marked reduction in the influx of eosinophils into the lungs along with a significant downregulation of both CCL-11 and CCL-24. We further found that eosinophil trafficking to the lung relies on production of IL-13-driven CCL-11 and CCL-24 by fibroblasts and Ly6C+ (so-called classical) monocytes. Moreover, this IL-13-mediated eotaxin-dependent eosinophil influx to the lung tissue required IL-5-induced eosinophilia. Finally, we demonstrated that this IL-13-driven eosinophil-dominated pulmonary inflammation was critical for limiting bystander lung transiting Ascaris parasites in a model of allergy and helminth interaction. Conclusion Our data suggest that IL-5-dependent allergen-specific TH2 effector cell response and subsequent signaling through the IL-13/IL-13Rα1 axis in fibroblasts and myeloid cells regulate the eotaxin-dependent recruitment of eosinophils to the lungs, with multiple downstream consequences, including bystander control of lung transiting parasitic helminths.
Collapse
Affiliation(s)
| | - Dominic P. Golec
- Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, MD
| | - Erik P. Karmele
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, MD
| | - Joshua Sciurba
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD
| | - Pablo Bara-Garcia
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD
| | - Tom Hill
- National Institute of Allergy and Infectious Diseases (NIAID) Collaborative Bioinformatics Resource, NIAID, National Institutes of Health, Bethesda, MD
| | - Byunghyun Kang
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, MD
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD
| | | | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Akelew Y, Andualem H, Ebrahim E, Atnaf A, Hailemichael W. Immunomodulation of COVID‐19 severity by helminth co‐infection: Implications for COVID‐19 vaccine efficacy. Immun Inflamm Dis 2022; 10:e573. [PMID: 34861106 PMCID: PMC8926508 DOI: 10.1002/iid3.573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/07/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), an emerging virus in late 2019 causing coronavirus disease 2019 (COVID‐19), has caused a catastrophic effect, resulting in an unprecedented global crisis. The immunopathology of COVID‐19 appears to be clearly associated with a dysregulated immune response leading to organ failure and death. Similarly, over two billion people worldwide are infected with helminth, with those living in low‐middle‐income countries disproportionately affected. Helminth infections have been shown to possess immunomodulatory effects in several conditions. Helminth co‐infection in COVID‐19 patients is one of the potential reasons for global attention to answer why COVID‐19 severity is still lower in helminth endemic countries. Recent studies have shown that helminth endemic countries showed fewer cases and deaths so far and helminth co‐infection might reduce the severity of COVID‐19. Moreover, lessons from other diseases with helminth co‐infection have been shown to substantially reduce vaccine efficacy that could also be implicated for COVID‐19. This immunomodulatory effect of helminth has intended and unintended consequences, both advantageous and disadvantageous which could decrease the severity of COVID‐19 and COVID‐19 vaccine efficacy respectively. Herewith, we discuss the overview of COVID‐19 immune response, immunomodulatory effects of helminth co‐infections in COVID‐19, lessons from other diseases, and perspectives on the efficacy of COVID‐19 vaccines.
Collapse
Affiliation(s)
- Yibeltal Akelew
- Immunology and Molecular Biology, Medical Laboratory Sciences, College of Health Sciences Debre Markos University Debre Markos Ethiopia
| | - Henok Andualem
- Immunology and Molecular Biology, Medical Laboratory Sciences, College of Health Sciences Debre Tabor University Debre Tabor Ethiopia
| | - Endris Ebrahim
- Immunology and Molecular Biology, Medical Laboratory Sciences, College of Health Sciences Wollo University Dessie Ethiopia
| | - Aytenew Atnaf
- Hematology and Immunohematology, Medical Laboratory Sciences, College of Health Sciences Debre Markos University Debre Markos Ethiopia
| | - Wasihun Hailemichael
- Immunology and Molecular Biology, Medical Laboratory Sciences, College of Health Sciences Debre Tabor University Debre Tabor Ethiopia
| |
Collapse
|
8
|
Wiszniewsky A, Layland LE, Arndts K, Wadephul LM, Tamadaho RSE, Borrero-Wolff D, Chunda VC, Kien CA, Hoerauf A, Wanji S, Ritter M. Adoptive Transfer of Immune Cells Into RAG2IL-2Rγ-Deficient Mice During Litomosoides sigmodontis Infection: A Novel Approach to Investigate Filarial-Specific Immune Responses. Front Immunol 2021; 12:777860. [PMID: 34868049 PMCID: PMC8636703 DOI: 10.3389/fimmu.2021.777860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Despite long-term mass drug administration programmes, approximately 220 million people are still infected with filariae in endemic regions. Several research studies have characterized host immune responses but a major obstacle for research on human filariae has been the inability to obtain adult worms which in turn has hindered analysis on infection kinetics and immune signalling. Although the Litomosoides sigmodontis filarial mouse model is well-established, the complex immunological mechanisms associated with filarial control and disease progression remain unclear and translation to human infections is difficult, especially since human filarial infections in rodents are limited. To overcome these obstacles, we performed adoptive immune cell transfer experiments into RAG2IL-2Rγ-deficient C57BL/6 mice. These mice lack T, B and natural killer cells and are susceptible to infection with the human filaria Loa loa. In this study, we revealed a long-term release of L. sigmodontis offspring (microfilariae) in RAG2IL-2Rγ-deficient C57BL/6 mice, which contrasts to C57BL/6 mice which normally eliminate the parasites before patency. We further showed that CD4+ T cells isolated from acute L. sigmodontis-infected C57BL/6 donor mice or mice that already cleared the infection were able to eliminate the parasite and prevent inflammation at the site of infection. In addition, the clearance of the parasites was associated with Th17 polarization of the CD4+ T cells. Consequently, adoptive transfer of immune cell subsets into RAG2IL-2Rγ-deficient C57BL/6 mice will provide an optimal platform to decipher characteristics of distinct immune cells that are crucial for the immunity against rodent and human filarial infections and moreover, might be useful for preclinical research, especially about the efficacy of macrofilaricidal drugs.
Collapse
Affiliation(s)
- Anna Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Laura E Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Lisa M Wadephul
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Ruth S E Tamadaho
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Dennis Borrero-Wolff
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Valerine C Chunda
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Samuel Wanji
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
9
|
Risch F, Ritter M, Hoerauf A, Hübner MP. Human filariasis-contributions of the Litomosoides sigmodontis and Acanthocheilonema viteae animal model. Parasitol Res 2021; 120:4125-4143. [PMID: 33547508 PMCID: PMC8599372 DOI: 10.1007/s00436-020-07026-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Filariae are vector-borne parasitic nematodes that are endemic worldwide, in tropical and subtropical regions. Important human filariae spp. include Onchocerca volvulus, Wuchereria bancrofti and Brugia spp., and Loa loa and Mansonella spp. causing onchocerciasis (river blindness), lymphatic filariasis (lymphedema and hydrocele), loiasis (eye worm), and mansonelliasis, respectively. It is estimated that over 1 billion individuals live in endemic regions where filarial diseases are a public health concern contributing to significant disability adjusted life years (DALYs). Thus, efforts to control and eliminate filarial diseases were already launched by the WHO in the 1970s, especially against lymphatic filariasis and onchocerciasis, and are mainly based on mass drug administration (MDA) of microfilaricidal drugs (ivermectin, diethylcarbamazine, albendazole) to filarial endemic areas accompanied with vector control strategies with the goal to reduce the transmission. With the United Nations Sustainable Development Goals (SDGs), it was decided to eliminate transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. It was also requested that novel drugs and treatment strategies be developed. Mouse models provide an important platform for anti-filarial drug research in a preclinical setting. This review presents an overview about the Litomosoides sigmodontis and Acanthocheilonema viteae filarial mouse models and their role in immunological research as well as preclinical studies about novel anti-filarial drugs and treatment strategies.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
10
|
Wanji S, Deribe K, Minich J, Debrah AY, Kalinga A, Kroidl I, Luguet A, Hoerauf A, Ritter M. Podoconiosis - From known to unknown: Obstacles to tackle. Acta Trop 2021; 219:105918. [PMID: 33839086 DOI: 10.1016/j.actatropica.2021.105918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022]
Abstract
Podoconiosis is a non-filarial and non-communicable disease leading to lymphedema of the lower limbs. Worldwide, 4 million individuals live with podoconiosis, which is accompanied by disability and painful intermittent acute inflammatory episodes that attribute to significant disability adjusted life years (DALYs). Different risk factors like contact with volcanic red clay soil, high altitude (above 1000 m), high seasonal rainfall (above 1000 mm/year) and occupation (e.g., subsistence farmer) are associated with the risk of podoconiosis. Although podoconiosis was described to be endemic in 32 countries in Africa, parts of Latin America and South East Asia, knowledge about related genetics, pathophysiology, immunology and especially the causing molecule(s) in the soil remain uncertain. Thus, podoconiosis can be considered as one of the most neglected diseases. This review provides an overview about this non-filarial related geochemical disease and aim to present perspectives and future directions that might be important for better understanding of the disease, prospect for point-of-care diagnosis, achieving protection and developing novel treatment strategies.
Collapse
|
11
|
Gazzinelli-Guimaraes PH, Bennuru S, de Queiroz Prado R, Ricciardi A, Sciurba J, Kupritz J, Moser M, Kamenyeva O, Nutman TB. House dust mite sensitization drives cross-reactive immune responses to homologous helminth proteins. PLoS Pathog 2021; 17:e1009337. [PMID: 33651853 PMCID: PMC7924806 DOI: 10.1371/journal.ppat.1009337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The establishment of type 2 responses driven by allergic sensitization prior to exposure to helminth parasites has demonstrated how tissue-specific responses can protect against migrating larval stages, but, as a consequence, allow for immune-mediated, parasite/allergy-associated morbidity. In this way, whether helminth cross-reacting allergen-specific antibodies are produced and play a role during the helminth infection, or exacerbate the allergic outcome awaits elucidation. Thus, the main objective of the study was to investigate whether house dust mite (HDM) sensitization triggers allergen-specific antibodies that interact with Ascaris antigens and mediate antibody-dependent deleterious effects on these parasites as well as, to assess the capacity of cross-reactive helminth proteins to trigger allergic inflammation in house dust mite presensitized mice. Here, we show that the sensitization with HDM-extract drives marked IgE and IgG1 antibody responses that cross-react with Ascaris larval antigens. Proteomic analysis of Ascaris larval antigens recognized by these HDM-specific antibodies identified Ascaris tropomyosin and enolase as the 2 major HDM homologues based on high sequence and structural similarity. Moreover, the helminth tropomyosin could drive Type-2 associated pulmonary inflammation similar to HDM following HDM tropomyosin sensitization. The HDM-triggered IgE cross-reactive antibodies were found to be functional as they mediated immediate hypersensitivity responses in skin testing. Finally, we demonstrated that HDM sensitization in either B cells or FcγRIII alpha-chain deficient mice indicated that the allergen driven cell-mediated larval killing is not antibody-dependent. Taken together, our data suggest that aeroallergen sensitization drives helminth reactive antibodies through molecular and structural similarity between HDM and Ascaris antigens suggesting that cross-reactive immune responses help drive allergic inflammation. Epidemiological studies related to the interaction between allergies and helminth infection led to the observations that helped shape the so-called hygiene hypothesis, which generally states that chronic exposure to helminths diminishes the risk of the development of allergic disease. However, there are conflicting studies that have called this particular hypothesis into question, such as, the studies that suggest that infection with the helminth Ascaris lumbricoides is a risk factor for wheezing and atopy or can aggravate the clinical symptoms of asthma. A hypothetical explanation for such phenomenon is the fact that there is a high degree of molecular and structural similarities among helminth antigens with many common allergens, including the house dust mite (HDM). This high degree of homology of certain epitopes shared between helminths and allergens generate cross-react antibodies which may play a role in the pathogenesis or regulation of both conditions. Thus, this study aimed to understand the structural basis for cross-reactive antibodies induced by HDM sensitization. Here, we demonstrate that HDM sensitization drives helminth cross-reactive antibodies through molecular and structural homology between tropomyosins and enolases. This study highlights the pro-allergenic properties of HDM and helminth proteins that share homologous epitopes.
Collapse
Affiliation(s)
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Rafael de Queiroz Prado
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Alessandra Ricciardi
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Joshua Sciurba
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Jonah Kupritz
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Matthew Moser
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Olena Kamenyeva
- Biological Imaging Section of Research Technologies Branch, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
- * E-mail: (PHGG); (TBN)
| |
Collapse
|
12
|
Ng YQ, Gupte TP, Krause PJ. Tick hypersensitivity and human tick-borne diseases. Parasite Immunol 2021; 43:e12819. [PMID: 33428244 DOI: 10.1111/pim.12819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Immune-mediated hypersensitivity reactions to ticks and other arthropods are well documented. Hypersensitivity to ixodid (hard bodied) ticks is especially important because they transmit infection to humans throughout the world and are responsible for most vector-borne diseases in the United States. The causative pathogens of these diseases are transmitted in tick saliva that is secreted into the host while taking a blood meal. Tick salivary proteins inhibit blood coagulation, block the local itch response and impair host anti-tick immune responses, which allows completion of the blood meal. Anti-tick host immune responses are heightened upon repeated tick exposure and have the potential to abrogate tick salivary protein function, interfere with the blood meal and prevent pathogen transmission. Although there have been relatively few tick bite hypersensitivity studies in humans compared with those in domestic animals and laboratory animal models, areas of human investigation have included local hypersensitivity reactions at the site of tick attachment and generalized hypersensitivity reactions. Progress in the development of anti-tick vaccines for humans has been slow due to the complexities of such vaccines but has recently accelerated. This approach holds great promise for future prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Yu Quan Ng
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - Trisha P Gupte
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Metwali A, Winckler S, Urban JF, Kaplan MH, Ince MN, Elliott DE. Helminth-induced regulation of T-cell transfer colitis requires intact and regulated T cell Stat6 signaling in mice. Eur J Immunol 2020; 51:433-444. [PMID: 33067820 DOI: 10.1002/eji.201848072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/24/2020] [Indexed: 02/01/2023]
Abstract
Infection with parasitic worms (helminths) alters host immune responses and can inhibit pathogenic inflammation. Helminth infection promotes a strong Th2 and T regulatory response while suppressing Th1 and Th17 function. Th2 responses are largely dependent on transcriptional programs directed by Stat6-signaling. We examined the importance of intact T cell Stat6 signaling on helminth-induced suppression of murine colitis that results from T cell transfer into immune-deficient mice. Colonization with the intestinal nematode Heligmosomoides polygyrus bakeri resolves WT T cell transfer colitis. However, if the transferred T cells lack intact Stat6 then helminth exposure failed to attenuate colitis or suppress MLN T cell IFN-γ or IL17 production. Loss of Stat6 signaling resulted in decreased IL10 and increased IFN-γ co-expression by IL-17+ T cells. We also transferred T cells from mice with constitutive T cell expression of activated Stat6 (Stat6VT). These mice developed a severe eosinophilic colitis that also was not attenuated by helminth infection. These results show that T cell expression of intact but regulated Stat6 signaling is required for helminth infection-associated regulation of pathogenic intestinal inflammation.
Collapse
Affiliation(s)
- Ahmed Metwali
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Sarah Winckler
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD, USA
| | - Mark H Kaplan
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M Nedim Ince
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - David E Elliott
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
14
|
Ferastraoaru D, Bax HJ, Bergmann C, Capron M, Castells M, Dombrowicz D, Fiebiger E, Gould HJ, Hartmann K, Jappe U, Jordakieva G, Josephs DH, Levi-Schaffer F, Mahler V, Poli A, Rosenstreich D, Roth-Walter F, Shamji M, Steveling-Klein EH, Turner MC, Untersmayr E, Karagiannis SN, Jensen-Jarolim E. AllergoOncology: ultra-low IgE, a potential novel biomarker in cancer-a Position Paper of the European Academy of Allergy and Clinical Immunology (EAACI). Clin Transl Allergy 2020; 10:32. [PMID: 32695309 PMCID: PMC7366896 DOI: 10.1186/s13601-020-00335-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Elevated serum IgE levels are associated with allergic disorders, parasitosis and specific immunologic abnormalities. In addition, epidemiological and mechanistic evidence indicates an association between IgE-mediated immune surveillance and protection from tumour growth. Intriguingly, recent studies reveal a correlation between IgE deficiency and increased malignancy risk. This is the first review discussing IgE levels and links to pathological conditions, with special focus on the potential clinical significance of ultra-low serum IgE levels and risk of malignancy. In this Position Paper we discuss: (a) the utility of measuring total IgE levels in the management of allergies, parasitosis, and immunodeficiencies, (b) factors that may influence serum IgE levels, (c) IgE as a marker of different disorders, and d) the relationship between ultra-low IgE levels and malignancy susceptibility. While elevated serum IgE is generally associated with allergic/atopic conditions, very low or absent IgE may hamper anti-tumour surveillance, indicating the importance of a balanced IgE-mediated immune function. Ultra-low IgE may prove to be an unexpected biomarker for cancer risk. Nevertheless, given the early stage of investigations conducted mostly in patients with diseases that influence IgE levels, in-depth mechanistic studies and stratification of malignancy risk based on associated demographic, immunological and clinical co-factors are warranted.
Collapse
Affiliation(s)
- D Ferastraoaru
- Department of Internal Medicine/Allergy and Immunology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY USA
| | - H J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, 9th Floor, Guy's Tower, London, SE1 9RT UK.,School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - C Bergmann
- ENT Research Institute for Clinical Studies, Essen, Germany
| | - M Capron
- LIRIC-Unite Mixte de Recherche 995 INSERM, Universite de Lille 2, CHRU de Lille, Lille, France
| | - M Castells
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA USA
| | - D Dombrowicz
- Recepteurs Nucleaires, Maladies Cardiovasculaires et Diabete, Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - E Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition Research, Department of Medicine Research, Children's University Hospital Boston, Boston, MA USA
| | - H J Gould
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, New Hunt's House, London, SE1 1UL UK.,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - K Hartmann
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - U Jappe
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany.,Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - G Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - D H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, 9th Floor, Guy's Tower, London, SE1 9RT UK.,School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - F Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - V Mahler
- Division of Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - A Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - D Rosenstreich
- Department of Internal Medicine/Allergy and Immunology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY USA
| | - F Roth-Walter
- The Interuniversity Messerli Research Inst, Univ. of Vet. Medicine Vienna, Med. Univ. Vienna, Univ. Vienna, Vienna, Austria
| | - M Shamji
- Immunomodulation and Tolerance Group, Imperial College London, and Allergy and Clinical Immunology, Imperial College London, London, UK
| | - E H Steveling-Klein
- Department of Dermatology, Allergy Division, University Hospital Basel, Basel, Switzerland
| | - M C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - E Untersmayr
- Institute of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, 9th Floor, Guy's Tower, London, SE1 9RT UK.,NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, UK
| | - E Jensen-Jarolim
- The Interuniversity Messerli Research Inst, Univ. of Vet. Medicine Vienna, Med. Univ. Vienna, Univ. Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
15
|
Vacca F, Chauché C, Jamwal A, Hinchy EC, Heieis G, Webster H, Ogunkanbi A, Sekne Z, Gregory WF, Wear M, Perona-Wright G, Higgins MK, Nys JA, Cohen ES, McSorley HJ. A helminth-derived suppressor of ST2 blocks allergic responses. eLife 2020; 9:54017. [PMID: 32420871 PMCID: PMC7234810 DOI: 10.7554/elife.54017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/06/2020] [Indexed: 11/13/2022] Open
Abstract
The IL-33-ST2 pathway is an important initiator of type 2 immune responses. We previously characterised the HpARI protein secreted by the model intestinal nematode Heligmosomoides polygyrus, which binds and blocks IL-33. Here, we identify H. polygyrus Binds Alarmin Receptor and Inhibits (HpBARI) and HpBARI_Hom2, both of which consist of complement control protein (CCP) domains, similarly to the immunomodulatory HpARI and Hp-TGM proteins. HpBARI binds murine ST2, inhibiting cell surface detection of ST2, preventing IL-33-ST2 interactions, and inhibiting IL-33 responses in vitro and in an in vivo mouse model of asthma. In H. polygyrus infection, ST2 detection is abrogated in the peritoneal cavity and lung, consistent with systemic effects of HpBARI. HpBARI_Hom2 also binds human ST2 with high affinity, and effectively blocks human PBMC responses to IL-33. Thus, we show that H. polygyrus blocks the IL-33 pathway via both HpARI which blocks the cytokine, and also HpBARI which blocks the receptor.
Collapse
Affiliation(s)
- Francesco Vacca
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Caroline Chauché
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Abhishek Jamwal
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Elizabeth C Hinchy
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Graham Heieis
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Holly Webster
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Adefunke Ogunkanbi
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, United Kingdom
| | - Zala Sekne
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - William F Gregory
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom.,Division of Microbiology & Parasitology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Wear
- The Edinburgh Protein Production Facility (EPPF), Wellcome Trust Centre for Cell Biology (WTCCB), University of Edinburgh, Edinburgh, United Kingdom
| | - Georgia Perona-Wright
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Josquin A Nys
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - E Suzanne Cohen
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom.,Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
16
|
Khosravi M, Mirsamadi ES, Mirjalali H, Zali MR. Isolation and Functions of Extracellular Vesicles Derived from Parasites: The Promise of a New Era in Immunotherapy, Vaccination, and Diagnosis. Int J Nanomedicine 2020; 15:2957-2969. [PMID: 32425527 PMCID: PMC7196212 DOI: 10.2147/ijn.s250993] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Experimental and epidemiological evidence shows that parasites, particularly helminths, play a central role in balancing the host immunity. It was demonstrated that parasites can modulate immune responses via their excretory/secretory (ES) and some specific proteins. Extracellular vesicles (EVs) are nano-scale particles that are released from eukaryotic and prokaryotic cells. EVs in parasitological studies have been mostly employed for immunotherapy of autoimmune diseases, vaccination, and diagnosis. EVs can carry virulence factors and play a central role in the development of parasites in host cells. These molecules can manipulate the immune responses through transcriptional changes. Moreover, EVs derived from helminths modulate the immune system via provoking anti-inflammatory cytokines. On the other hand, EVs from parasite protozoa can induce efficient immunity, that makes them useful for probable next-generation vaccines. In addition, it seems that EVs from parasites may provide new diagnostic approaches for parasitic infections. In the current study, we reviewed isolation methods, functions, and applications of parasite's EVs in immunotherapy, vaccination, and diagnosis.
Collapse
Affiliation(s)
- Mojdeh Khosravi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
White MPJ, McManus CM, Maizels RM. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology 2020; 160:248-260. [PMID: 32153025 PMCID: PMC7341546 DOI: 10.1111/imm.13190] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Helminth parasites infect an alarmingly large proportion of the world's population, primarily within tropical regions, and their ability to down‐modulate host immunity is key to their persistence. Helminths have developed multiple mechanisms that induce a state of hyporesponsiveness or immune suppression within the host; of particular interest are mechanisms that drive the induction of regulatory T‐cells (Tregs). Helminths actively induce Tregs either directly by secreting factors, such as the TGF‐β mimic Hp‐TGM, or indirectly by interacting with bystander cell types such as dendritic cells and macrophages that then induce Tregs. Expansion of Tregs not only enhances parasite survival but, in cases such as filarial infection, Tregs also play a role in preventing parasite‐associated pathologies. Furthermore, Tregs generated during helminth infection have been associated with suppression of bystander immunopathologies in a range of inflammatory conditions such as allergy and autoimmune disease. In this review, we discuss evidence from natural and experimental infections that point to the pathways and molecules involved in helminth Treg induction, and postulate how parasite‐derived molecules and/or Tregs might be applied as anti‐inflammatory therapies in the future.
Collapse
Affiliation(s)
- Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Hodžić A, Mateos-Hernández L, Fréalle E, Román-Carrasco P, Alberdi P, Pichavant M, Risco-Castillo V, Le Roux D, Vicogne J, Hemmer W, Auer H, Swoboda I, Duscher GG, de la Fuente J, Cabezas-Cruz A. Infection with Toxocara canis Inhibits the Production of IgE Antibodies to α-Gal in Humans: Towards a Conceptual Framework of the Hygiene Hypothesis? Vaccines (Basel) 2020; 8:E167. [PMID: 32268573 PMCID: PMC7349341 DOI: 10.3390/vaccines8020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023] Open
Abstract
α-Gal syndrome (AGS) is a type of anaphylactic reaction to mammalian meat characterized by an immunoglobulin (Ig)E immune response to the oligosaccharide α-Gal (Galα1-3Galβ1-4GlcNAc-R). Tick bites seems to be a prerequisite for the onset of the allergic disease in humans, but the implication of non-tick parasites in α-Gal sensitization has also been deliberated. In the present study, we therefore evaluated the capacity of helminths (Toxocara canis, Ascaris suum, Schistosoma mansoni), protozoa (Toxoplasma gondii), and parasitic fungi (Aspergillus fumigatus) to induce an immune response to α-Gal. For this, different developmental stages of the infectious agents were tested for the presence of α-Gal. Next, the potential correlation between immune responses to α-Gal and the parasite infections was investigated by testing sera collected from patients with AGS and those infected with the parasites. Our results showed that S. mansoni and A. fumigatus produce the terminal α-Gal moieties, but they were not able to induce the production of specific antibodies. By contrast, T. canis, A. suum and T. gondii lack the α-Gal epitope. Furthermore, the patients with T. canis infection had significantly decreased anti-α-Gal IgE levels when compared to the healthy controls, suggesting the potential role of this nematode parasite in suppressing the allergic response to the glycan molecule. This rather intriguing observation is discussed in the context of the 'hygiene hypothesis'. Taken together, our study provides new insights into the relationships between immune responses to α-Gal and parasitic infections. However, further investigations should be undertaken to identify T. canis components with potent immunomodulatory properties and to assess their potential to be used in immunotherapy and control of AGS.
Collapse
Affiliation(s)
- Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France; (L.M.-H.); (D.L.R.)
| | - Emilie Fréalle
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 8204–CIIL–Center for Infection and Immunity of Lille, University of Lille, F-59000 Lille, France;
- CHU Lille, Laboratory of Parasitology and Mycology, F-59000 Lille, France;
| | - Patricia Román-Carrasco
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, 1030 Vienna, Austria; (P.R.-C.); (I.S.)
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (J.d.l.F.)
| | - Muriel Pichavant
- CHU Lille, Laboratory of Parasitology and Mycology, F-59000 Lille, France;
| | - Veronica Risco-Castillo
- EA 7380 Dynamyc, UPEC, USC, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France;
| | - Delphine Le Roux
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France; (L.M.-H.); (D.L.R.)
| | - Jérôme Vicogne
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University of Lille, F-59000 Lille, France;
| | | | - Herbert Auer
- Department of Medical Parasitology, Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ines Swoboda
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, 1030 Vienna, Austria; (P.R.-C.); (I.S.)
| | | | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (J.d.l.F.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France; (L.M.-H.); (D.L.R.)
| |
Collapse
|
19
|
Della Bella C, Spinicci M, Rojo D, Grassi A, Gamboa H, Benagiano M, Torrez R, Tapinassi S, Gabrielli S, Cancrini G, Macchioni F, Alnwaisri H, Azzurri A, Monasterio J, Montresor A, Olliaro P, D’Elios MM, Bartoloni A. Decline in Total Serum IgE and Soluble CD30 in the Context of Soil-Transmitted Helminth Decline in Bolivia. Am J Trop Med Hyg 2020; 102:847-850. [PMID: 31989919 PMCID: PMC7124912 DOI: 10.4269/ajtmh.19-0180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/16/2019] [Indexed: 01/15/2023] Open
Abstract
In the Bolivian Chaco, recent surveys documented a dramatic decrease in the prevalence of soil-transmitted helminth (STH) infections as compared with the 1980s after thirty years of preventive chemotherapy (PC). Concomitant immunological rearrangements are expected. Because nematode infections are associated with increased levels of circulating IgE and glycoprotein CD30 soluble form (sCD30), this study aims to evaluate changes in serological markers of T helper (Th)2-cells activity between 1987 (high STH prevalence) and 2013 (low STH prevalence) in rural communities in the Bolivian Chaco area. We collected 151 sera during two different surveys in 1987 (n = 65) and 2013 (n = 86) and measured the concentration of total IgE and sCD30 by immunoassays. We found a statistically significant age-independent decrease in the total IgE (P < 0.0001) and sCD30 (P < 0.0001) from 1987 to 2013. The significant decrease in serological Th2 markers (IgE and sCD30) between 1987 and 2013 is consistent with the drop in STH prevalence in this geographical area during the same period of time. Further studies might elucidate the clinical and epidemiological impact of these serological rearrangements.
Collapse
Affiliation(s)
- Chiara Della Bella
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Michele Spinicci
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - David Rojo
- Escuela de Salud del Chaco Tekove Katu, Gutierrez, Plurinational State of Bolivia
| | - Alessia Grassi
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Herlan Gamboa
- Facultad Integral del Chaco, Universidad Autónoma Gabriel René Moreno, Camiri, Plurinational State of Bolivia
| | - Marisa Benagiano
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Roberto Torrez
- Servicio Departamental de Salud (SEDES) de Santa Cruz, Santa Cruz, Plurinational State of Bolivia
| | - Simona Tapinassi
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Simona Gabrielli
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma Sapienza, Roma, Italy
| | - Gabriella Cancrini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma Sapienza, Roma, Italy
| | - Fabio Macchioni
- Dipartimento di Scienze Veterinarie, Università degli Studi di Pisa, Pisa, Italy
| | - Heba Alnwaisri
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Annalisa Azzurri
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Joaquín Monasterio
- Servicio Departamental de Salud (SEDES) de Santa Cruz, Santa Cruz, Plurinational State of Bolivia
| | - Antonio Montresor
- Department of Control of Neglected Tropical Diseases (NTD), World Health Organization, Geneva, Switzerland
| | - Piero Olliaro
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Mario Milco D’Elios
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Alessandro Bartoloni
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
20
|
Kim JY, Yi MH, Yong TS. Allergen-like Molecules from Parasites. Curr Protein Pept Sci 2020; 21:186-202. [DOI: 10.2174/1389203720666190708154300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023]
Abstract
Parasite infections modulate immunologic responses, and the loss of parasite infections in the
last two to three decades might explain the increased prevalence of allergic diseases in developed countries.
However, parasites can enhance allergic responses. Parasites contain or release allergen-like molecules
that induce the specific immunoglobulin, IgE, and trigger type-2 immune responses. Some parasites
and their proteins, such as Anisakis and Echinococcus granulosus allergens, act as typical allergens.
A number of IgE-binding proteins of various helminthic parasites are cross-reactive to other environmental
allergens, which cause allergic symptoms or hamper accurate diagnosis of allergic diseases. The
cross-reactivity is based on the fact that parasite proteins are structurally homologous to common environmental
allergens. In addition, IgE-binding proteins of parasites might be useful for developing vaccines
to prevent host re-infection. This review discusses the functions of the IgE-biding proteins of parasites.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
21
|
Sousa-Santos ACAF, Moreno AS, Santos ABR, Barbosa MCR, Aragon DC, Sales VSF, Arruda LK. Parasite Infections, Allergy and Asthma: A Role for Tropomyosin in Promoting Type 2 Immune Responses. Int Arch Allergy Immunol 2019; 181:221-227. [PMID: 31865358 DOI: 10.1159/000504982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The relationship of parasite infections and promotion or protection from allergy and asthma is controversial. Currently, over 1.5 billion people are infected with parasites worldwide, and Ascaris lumbricoides is the most frequent soil-transmitted helminth. OBJECTIVES To evaluate the biological activity of recombinant A. lumbricoides tropomyosin and investigate IgE cross-reactive responses to tropomyosins by means of microarray methodology for the detection of sensitization to allergen components. METHODS Forty patients 12-75 years of age (25 males) with asthma and/or rhinitis and 10 nonallergic control subjects participated in this study. All patients presented positive skin tests to cockroach extracts and underwent skin prick testing (SPT) with recombinant (r) tropomyosins rPer a 7 from Periplaneta americana and rAsc l 3 from A. lumbricoides, at 10 μg/mL. IgE to cockroach and parasite tropomyosins were measured by chimeric ELISA and ImmunoCAP-ISAC, and total IgE was quantitated by ImmunoCAP. Agreement of results was assessed by κ statistics. RESULTS Recombinant A. lumbricoides showed biological activity, inducing positive skin tests in 50% patients with asthma and/or rhinitis. IgE to cockroach and parasite tropomyosins were detected in 55-62% of patients. There was good-to-excellent agreement of results of SPT and IgE measurements by ELISA and ImmunoCAP-ISAC, with κ indices of 0.66-0.95. No skin test reactivity or IgE antibodies to tropomyosins were found in nonallergic individuals. CONCLUSIONS Our results suggest that IgE responses to tropomyosin from A. lumbricoides may enhance reactivity to homologous allergens upon exposure by inhalation or ingestion, promoting allergic reactions and asthma, or increasing the severity of these clinical conditions.
Collapse
Affiliation(s)
| | - Adriana S Moreno
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Beatriz R Santos
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Instituto de Ciências da Saúde ICS, Universidade Paulista UNIP Campus Campinas, Campinas, Brazil
| | - Michelle C R Barbosa
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Escola de Medicina e Ciências da Saúde, Universidade Anhembi Morumbi - Laureate International Universities Campus Piracicaba, Piracicaba, Brazil
| | - Davi C Aragon
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Valeria S F Sales
- Department of Immunology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - L Karla Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,
| |
Collapse
|
22
|
Zhang W, Li L, Zheng Y, Xue F, Yu M, Ma Y, Dong L, Shan Z, Feng D, Wang T, Wang X. Schistosoma japonicum peptide SJMHE1 suppresses airway inflammation of allergic asthma in mice. J Cell Mol Med 2019; 23:7819-7829. [PMID: 31496071 PMCID: PMC6815837 DOI: 10.1111/jcmm.14661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Helminths and their products can shape immune responses by modulating immune cells, which are dysfunctional in inflammatory diseases such as asthma. We previously identified SJMHE1, a small molecule peptide from the HSP60 protein of Schistosoma japonicum. SJMHE1 can inhibit delayed-type hypersensitivity and collagen-induced arthritis in mice. In the present study, we evaluated this peptide's potential intervention effect and mechanism on ovalbumin-induced asthma in mice. SJMHE1 treatment suppressed airway inflammation in allergic mice, decreased the infiltrating inflammatory cells in the lungs and bronchoalveolar lavage fluid, modulated the production of pro-inflammatory and anti-inflammatory cytokines in the splenocytes and lungs of allergic mice, reduced the percentage of Th2 cells and increased the proportion of Th1 and regulatory T cells (Tregs). At the same time, Foxp3 and T-bet expression increased, and GATA3 and RORγt decreased in the lungs of allergic mice. We proved that SJMHE1 can interrupt the development of asthma by diminishing airway inflammation in mice. The down-regulation of Th2 response and the up-regulation of Th1 and Tregs response may contribute to the protection induced by SJMHE1 in allergic mice. SJMHE1 can serve as a novel therapy for asthma and other allergic or inflammatory diseases.
Collapse
Affiliation(s)
- Wenzhe Zhang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yu Zheng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengzhu Yu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Neurology Laboratory, Jintan Hospital, Jiangsu University, Zhenjiang, China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zirui Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ting Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Neurology Laboratory, Jintan Hospital, Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Gazzinelli-Guimaraes PH, de Queiroz Prado R, Ricciardi A, Bonne-Année S, Sciurba J, Karmele EP, Fujiwara RT, Nutman TB. Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth development. J Clin Invest 2019; 129:3686-3701. [PMID: 31380805 DOI: 10.1172/jci127963] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
This study investigates the relationship between helminth infection and allergic sensitization by assessing the influence of preexisting allergy on the outcome of helminth infections, rather than the more traditional approach in which the helminth infection precedes the onset of allergy. Here we used a murine model of house dust mite-induced (HDM-induced) allergic inflammation followed by Ascaris infection to demonstrate that allergic sensitization drives an eosinophil-rich pulmonary type 2 immune response (Th2 cells, M2 macrophages, type 2 innate lymphoid cells, IL-33, IL-4, IL-13, and mucus) that directly hinders larval development and reduces markedly the parasite burden in the lungs. This effect is dependent on the presence of eosinophils, as eosinophil-deficient mice were unable to limit parasite development or numbers. In vivo administration of neutralizing antibodies against CD4 prior to HDM sensitization significantly reduced eosinophils in the lungs, resulting in the reversal of the HDM-induced Ascaris larval killing. Our data suggest that HDM allergic sensitization drives a response that mimics a primary Ascaris infection, such that CD4+ Th2-mediated eosinophil-dependent helminth larval killing in the lung tissue occurs. This study provides insight into the mechanisms underlying tissue-specific responses that drive a protective response against the early stages of the helminths prior to their establishing long-lasting infections in the host.
Collapse
Affiliation(s)
- Pedro H Gazzinelli-Guimaraes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rafael de Queiroz Prado
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Alessandra Ricciardi
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sandra Bonne-Année
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Joshua Sciurba
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Erik P Karmele
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
| | - Ricardo T Fujiwara
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Williams AC, Hill LJ. Nicotinamide and Demographic and Disease transitions: Moderation is Best. Int J Tryptophan Res 2019; 12:1178646919855940. [PMID: 31320805 PMCID: PMC6610439 DOI: 10.1177/1178646919855940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Good health and rapid progress depend on an optimal dose of nicotinamide. Too little meat triggers the neurodegenerative condition pellagra and tolerance of symbionts such as tuberculosis (TB), risking dysbioses and impaired resistance to acute infections. Nicotinamide deficiency is an overlooked diagnosis in poor cereal-dependant economies masquerading as 'environmental enteropathy' or physical and cognitive stunting. Too much meat (and supplements) may precipitate immune intolerance and autoimmune and allergic disease, with relative infertility and longevity, via the tryptophan-nicotinamide pathway. This switch favours a dearth of regulatory T (Treg) and an excess of T helper cells. High nicotinamide intake is implicated in cancer and Parkinson's disease. Pro-fertility genes, evolved to counteract high-nicotinamide-induced infertility, may now be risk factors for degenerative disease. Moderation of the dose of nicotinamide could prevent some common diseases and personalised doses at times of stress or, depending on genetic background or age, may treat some other conditions.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Williams AC, Hill LJ. Nicotinamide as Independent Variable for Intelligence, Fertility, and Health: Origin of Human Creative Explosions? Int J Tryptophan Res 2019; 12:1178646919855944. [PMID: 31258332 PMCID: PMC6585247 DOI: 10.1177/1178646919855944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022] Open
Abstract
Meat and nicotinamide acquisition was a defining force during the 2-million-year evolution of the big brains necessary for, anatomically modern, Homo sapiens to survive. Our next move was down the food chain during the Mesolithic 'broad spectrum', then horticultural, followed by the Neolithic agricultural revolutions and progressively lower average 'doses' of nicotinamide. We speculate that a fertility crisis and population bottleneck around 40 000 years ago, at the time of the Last Glacial Maximum, was overcome by Homo (but not the Neanderthals) by concerted dietary change plus profertility genes and intense sexual selection culminating in behaviourally modern Homo sapiens. Increased reliance on the 'de novo' synthesis of nicotinamide from tryptophan conditioned the immune system to welcome symbionts, such as TB (that excrete nicotinamide), and to increase tolerance of the foetus and thereby fertility. The trade-offs during the warmer Holocene were physical and mental stunting and more infectious diseases and population booms and busts. Higher nicotinamide exposure could be responsible for recent demographic and epidemiological transitions to lower fertility and higher longevity, but with more degenerative and auto-immune disease.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
26
|
Chico ME, Vaca MG, Rodriguez A, Cooper PJ. Soil-transmitted helminth parasites and allergy: Observations from Ecuador. Parasite Immunol 2019; 41:e12590. [PMID: 30229947 PMCID: PMC6563446 DOI: 10.1111/pim.12590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023]
Abstract
There is considerable interest as to potential protective effects of soil-transmitted helminths (STH) against allergy and allergic diseases. Here, we discuss findings of studies done of the effects of STH parasites on atopy and allergic diseases in Ecuador. While cross-sectional studies have consistently shown a reduced prevalence of allergen skin prick test (SPT) reactivity among infected schoolchildren, the removal of these infections by repeated deworming did not affect SPT prevalence over the short-term (ie, 12 months) but may have increased SPT prevalence over the long-term (ie, 15-17 years). In the case of allergic symptoms, cross-sectional studies have generally not shown associations with STH and intervention studies showed no impact on prevalence. However, a birth cohort suggested that early STH infections might reduce wheeze by 5 years. Allergic sensitization to Ascaris, however, explained a significant proportion of wheezing among rural schoolchildren. Studies of the effects of STH on immune and inflammatory responses indicated a potential role of STH in contributing to more robust regulation. The effects of STH on allergy are likely to be determined by history of exposure over the life-course and by interactions with a wide variety of other infectious and non-infectious factors.
Collapse
Affiliation(s)
- Martha E. Chico
- Fundación Ecuatoriana Para Investigación en SaludQuitoEcuador
| | - Maritza G. Vaca
- Fundación Ecuatoriana Para Investigación en SaludQuitoEcuador
| | - Alejandro Rodriguez
- Fundación Ecuatoriana Para Investigación en SaludQuitoEcuador
- Faculty of Epidemiology and Population HealthLondon School of Hygiene and Tropical MedicineLondonUK
- Facultad de Ciencias Medicas, de la Salud y la VidaUniversidad Internacional del EcuadorQuitoEcuador
| | - Philip J. Cooper
- Fundación Ecuatoriana Para Investigación en SaludQuitoEcuador
- Facultad de Ciencias Medicas, de la Salud y la VidaUniversidad Internacional del EcuadorQuitoEcuador
- Institute of Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
27
|
Cooper PJ, Chico ME, Vaca MG, Sandoval CA, Loor S, Amorim LD, Rodrigues LC, Barreto ML, Strachan DP. Effect of Early-Life Geohelminth Infections on the Development of Wheezing at 5 Years of Age. Am J Respir Crit Care Med 2019; 197:364-372. [PMID: 28957644 DOI: 10.1164/rccm.201706-1222oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RATIONALE Exposures to geohelminths during gestation or early childhood may reduce risk of wheezing illness/asthma and atopy during childhood in tropical regions. OBJECTIVES To investigate the effect of maternal and early childhood geohelminths on development of wheeze/asthma and atopy during the first 5 years of life. METHODS A cohort of 2,404 neonates was followed to 5 years of age in a rural district in coastal Ecuador. Data on wheeze were collected by questionnaire and atopy was measured by allergen skin prick test reactivity to 10 allergens at 5 years. Stool samples from mothers and children were examined for geohelminths by microscopy. MEASUREMENTS AND MAIN RESULTS A total of 2,090 (86.9%) children were evaluated at 5 years. Geohelminths were observed in 45.5% of mothers and in 34.1% of children by 3 years. Wheeze and asthma were reported for 12.6% and 5.7% of children, respectively, whereas 14.0% had skin test reactivity at 5 years. Maternal geohelminths were associated with an increased risk of wheeze (adjusted odds ratio, 1.41; 95% confidence interval, 1.06-1.88), whereas childhood geohelminths over the first 3 years of life were associated with reduced risk of wheeze (adjusted odds ratio, 0.70; 95% confidence interval, 0.52-0.96) and asthma (adjusted odds ratio, 0.60; 95% confidence interval, 0.38-0.94) but not skin prick test reactivity. The effects on wheeze/asthma were greatest with later age of first infection, were observed only in skin test-negative children, but were not associated with parasite burden or specific geohelminths. CONCLUSIONS Although maternal exposures to geohelminths may increase childhood wheeze, childhood geohelminths during the first 3 years may provide protection through a nonallergic mechanism. Registered as an observational study (ISRCTN41239086).
Collapse
Affiliation(s)
- Philip J Cooper
- 1 Facultad de Ciencias Medicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador.,2 Laboratorio de Investigaciones FEPIS, Quininde, Esmeraldas Province, Ecuador.,3 Institute of Infection and Immunity and
| | - Martha E Chico
- 2 Laboratorio de Investigaciones FEPIS, Quininde, Esmeraldas Province, Ecuador
| | - Maritza G Vaca
- 2 Laboratorio de Investigaciones FEPIS, Quininde, Esmeraldas Province, Ecuador
| | - Carlos A Sandoval
- 2 Laboratorio de Investigaciones FEPIS, Quininde, Esmeraldas Province, Ecuador
| | - Sofia Loor
- 2 Laboratorio de Investigaciones FEPIS, Quininde, Esmeraldas Province, Ecuador
| | - Leila D Amorim
- 4 Instituto de Saude Coletiva, Universidade Federal da Bahia, Salvador, Brazil; and
| | - Laura C Rodrigues
- 5 Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mauricio L Barreto
- 4 Instituto de Saude Coletiva, Universidade Federal da Bahia, Salvador, Brazil; and
| | - David P Strachan
- 6 Population Health Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
28
|
Alexandre-Silva GM, Brito-Souza PA, Oliveira AC, Cerni FA, Zottich U, Pucca MB. The hygiene hypothesis at a glance: Early exposures, immune mechanism and novel therapies. Acta Trop 2018; 188:16-26. [PMID: 30165069 DOI: 10.1016/j.actatropica.2018.08.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023]
Abstract
The hygiene hypothesis was proposed almost three decades ago. Nevertheless, its mechanism still remains with relevant controversies. Some studies defend that early exposures during childhood to microbes and parasites are key determinants to prevent allergies and autoimmune diseases; however, other studies demonstrated that these early exposures can even potentiate the clinical scenario of the diseases. Based on several studies covering the influences of microbiome, parasites, related theories and others, this review focuses on recent advances in the hygiene hypothesis field. In addition, the main immunological mechanisms underlying the hygiene hypothesis are also discussed. We also strongly encourage that researchers do not consider the hygiene hypothesis as a theory based strictly on hygiene habits, but a theory combining diverse influences, as illustrated in this review as the hygiene hypothesis net.
Collapse
|
29
|
Mpairwe H, Amoah AS. Parasites and allergy: Observations from Africa. Parasite Immunol 2018; 41:e12589. [PMID: 30216486 PMCID: PMC6587767 DOI: 10.1111/pim.12589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Abstract
Population studies from the African continent have observed a marked increase in the prevalence of allergy‐related diseases over the past few decades, but the cause of this rise is not fully understood. The most investigated potential risk factor has been the relationship between exposure to helminths and allergy‐related outcomes. Immunologically, parallels exist between responses to helminths and to allergens as both are associated with elevated levels of immunoglobulin E, increased numbers of T helper 2 cells and other immune cells. However, epidemiological studies from the African continent have found inconsistent results. In this review, observations from population studies carried out in Africa over the last decade that focus on the relationship between helminth infections and allergy‐related outcomes are examined. How these findings advance our understanding of the complex interactions between helminths and allergies at the population level is also explored as well as some of the underlying immune mechanisms involved. This knowledge is important for better diagnosis, treatment and prevention of allergy‐related diseases and has wider global significance.
Collapse
Affiliation(s)
- Harriet Mpairwe
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Abena S Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Suckling CJ, Mukherjee S, Khalaf AI, Narayan A, Scott FJ, Khare S, Dhakshinamoorthy S, Harnett MM, Harnett W. Synthetic analogues of the parasitic worm product ES-62 reduce disease development in in vivo models of lung fibrosis. Acta Trop 2018; 185:212-218. [PMID: 29802846 DOI: 10.1016/j.actatropica.2018.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Parasitic worms are receiving much attention as a potential new therapeutic approach to treating autoimmune and allergic conditions but concerns remain regarding their safety. As an alternative strategy, we have focused on the use of defined parasitic worm products and recently taken this one step further by designing drug-like small molecule analogues of one such product, ES-62, which is anti-inflammatory by virtue of covalently attached phosphorylcholine moieties. Previously, we have shown that ES-62 mimics are efficacious in protecting against disease in mouse models of rheumatoid arthritis, systemic lupus erythematosus and skin and lung allergy. Given the potential role of chronic inflammation in fibrosis, in the present study we have focused our attention on lung fibrosis, a debilitating condition for which there is no cure and which in spite of treatment slowly gets worse over time. Two mouse models of fibrosis - bleomycin-induced and LPS-induced - in which roles for inflammation have been implicated were adopted. Four ES-62 analogues were tested - 11a and 12b, previously shown to be active in mouse models of allergic and autoimmune disease and 16b and AIK-29/62 both of which are structurally related to 11a. All four compounds were found to significantly reduce disease development in both fibrosis models, as shown by histopathological analysis of lung tissue, indicating their potential as treatments for this condition.
Collapse
Affiliation(s)
- Colin J Suckling
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Sambuddho Mukherjee
- Department of Discovery Biology, Jubilant Biosys Ltd, Bangalore, 560022, India
| | - Abedawn I Khalaf
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Ashwini Narayan
- Department of Discovery Biology, Jubilant Biosys Ltd, Bangalore, 560022, India
| | - Fraser J Scott
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Sonal Khare
- Department of Discovery Biology, Jubilant Biosys Ltd, Bangalore, 560022, India
| | | | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK.
| |
Collapse
|
31
|
McSorley HJ, Chayé MAM, Smits HH. Worms: Pernicious parasites or allies against allergies? Parasite Immunol 2018; 41:e12574. [PMID: 30043455 PMCID: PMC6585781 DOI: 10.1111/pim.12574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immune responses are most commonly associated with allergy and helminth parasite infections. Since the discovery of Th1 and Th2 immune responses more than 30 years ago, models of both allergic disease and helminth infections have been useful in characterizing the development, effector mechanisms and pathological consequences of type 2 immune responses. The observation that some helminth infections negatively correlate with allergic and inflammatory disease led to a large field of research into parasite immunomodulation. However, it is worth noting that helminth parasites are not always benign infections, and that helminth immunomodulation can have stimulatory as well as suppressive effects on allergic responses. In this review, we will discuss how parasitic infections change host responses, the consequences for bystander immunity and how this interaction influences clinical symptoms of allergy.
Collapse
Affiliation(s)
- Henry J McSorley
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mathilde A M Chayé
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| |
Collapse
|
32
|
Staal SL, Hogendoorn SKL, Voets SA, Tepper RC, Veenstra M, de Vos II, van Son KC, Gool JK, Paramitha AC, Aristyo K, Wildan A, Pratiwi C, van Ree R, Yazdanbakhsh M, Supali T, Djuardi Y, Labuda LA, Tahapary DL, Sartono E. Prevalence of Atopy following Mass Drug Administration with Albendazole: A Study in School Children on Flores Island, Indonesia. Int Arch Allergy Immunol 2018; 177:192-198. [PMID: 30130756 DOI: 10.1159/000490952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/16/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In many rural areas of tropical countries such as Indonesia, the prevalence of soil-transmitted helminths (STH) infections remains high. At the same time, the burden of allergic disorders in such rural areas is reported to be low and inversely associated with helminth infections. To reduce the morbidity and transmission of helminth infections, the world health organization recommends preventive treatment of school children by providing mass drug administration (MDA) with albendazole. Here, we had an opportunity to evaluate the prevalence of skin reactivity to allergens before and after albendazole treatment to get an indication of the possible impact of MDA on allergic sensitization. METHODS A study was conducted among 150 school children living in an area endemic for STH infections. Before and 1 year after anthelminthic treatment with albendazole, stool samples were examined for the presence of STH eggs, skin prick tests (SPT) for cockroach and house dust mites were performed, blood eosinophilia was assessed, and total immunoglobulin E (IgE) and C-reactive protein (CRP) were measured in plasma. RESULTS Anthelminthic treatment significantly reduced the prevalence of STH from 19.6 before treatment to 6% after treatment (p < 0.001). Levels of total IgE (estimate: 0.30; 95% CI 0.22-0.42, p < 0.0001), CRP (estimate: 0.60; 95% CI 0.42-0.86, p = 0.006), and eosinophil counts (estimate: 0.70; 95% CI 0.61-0.80, p < 0.001) decreased significantly. The prevalence of SPT positivity increased from 18.7 to 32.7%. Multivariate analysis adjusted for confounding factors showed an increased risk of being SPT positive to any allergen (OR 3.04; 95% CI 1.338-6.919, p = 0.008). CONCLUSIONS This study indicates that 1 year of MDA with albendazole was associated with a reduced prevalence of STH infections. This study shows that the prevalence of allergic sensitization increases after 1 year of albendazole treatment. Placebo-controlled and larger studies are needed to further substantiate a role of deworming treatment in an increased risk of allergic sensitization.
Collapse
Affiliation(s)
- Steven L Staal
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sarika K L Hogendoorn
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sophie A Voets
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rebecca C Tepper
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mirte Veenstra
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ivo I de Vos
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Koen C van Son
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jari K Gool
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Antonia C Paramitha
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Kevin Aristyo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ardy Wildan
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Chici Pratiwi
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ronald van Ree
- Departments of Experimental Immunology and Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Lucja A Labuda
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dicky L Tahapary
- Division of Endocrinology, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
33
|
The Untapped Pharmacopeic Potential of Helminths. Trends Parasitol 2018; 34:828-842. [PMID: 29954660 DOI: 10.1016/j.pt.2018.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
The dramatic rise in immunological disorders that occurs with socioeconomic development is associated with alterations in microbial colonization and reduced exposure to helminths. Excretory-secretory (E/S) helminth products contain a mixture of proteins and low-molecular-weight molecules representing the primary interface between parasite and host. Research has shown great pharmacopeic potential for helminth-derived products in animal disease models and even in clinical trials. Although in its infancy, the translation of worm-derived products into therapeutics is highly promising. Here, we focus on important key aspects in the development of immunomodulatory drugs, also highlighting novel approaches that hold great promise for future development of innovative research strategies.
Collapse
|
34
|
Winthrop KL, Mariette X, Silva JT, Benamu E, Calabrese LH, Dumusc A, Smolen JS, Aguado JM, Fernández-Ruiz M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin Microbiol Infect 2018; 24 Suppl 2:S21-S40. [PMID: 29447987 DOI: 10.1016/j.cmi.2018.02.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The present review is part of the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies. AIMS To review, from an Infectious Diseases perspective, the safety profile of agents targeting interleukins, immunoglobulins and complement factors and to suggest preventive recommendations. SOURCES Computer-based MEDLINE searches with MeSH terms pertaining to each agent or therapeutic family. CONTENT Patients receiving interleukin-1 (IL-1) -targeted (anakinra, canakinumab or rilonacept) or IL-5-targeted (mepolizumab) agents have a moderate risk of infection and no specific prevention strategies are recommended. The use of IL-6/IL-6 receptor-targeted agents (tocilizumab and siltuximab) is associated with a risk increase similar to that observed with anti-tumour necrosis factor-α agents. IL-12/23-targeted agents (ustekinumab) do not seem to pose a meaningful risk of infection, although screening for latent tuberculosis infection may be considered and antiviral prophylaxis should be given to hepatitis B surface antigen-positive patients. Therapy with IL-17-targeted agents (secukinumab, brodalumab and ixekizumab) may result in the development of mild-to-moderate mucocutaneous candidiasis. Pre-treatment screening for Strongyloides stercoralis and other geohelminths should be considered in patients who come from areas where these are endemic who are receiving IgE-targeted agents (omalizumab). C5-targeted agents (eculizumab) are associated with a markedly increased risk of infection due to encapsulated bacteria, particularly Neisseria spp. Meningococcal vaccination and chemoprophylaxis must be administered 2-4 weeks before initiating eculizumab. Patients with high-risk behaviours and their partners should also be screened for gonococcal infection. IMPLICATIONS Preventive strategies are particularly encouraged to minimize the occurrence of neisserial infection associated with eculizumab.
Collapse
Affiliation(s)
- K L Winthrop
- Division of Infectious Diseases, Oregon Health and Science University, Portland, OR, USA.
| | - X Mariette
- Department of Rheumatology, Hôpitaux Universitaire Paris-Sud, Université Paris-Sud, INSERM U1184, Paris, France
| | - J T Silva
- Department of Infectious Diseases, University Hospital of Badajoz, Fundación para La Formación e Investigación de Los Profesionales de La Salud (FundeSalud), Badajoz, Spain
| | - E Benamu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - L H Calabrese
- Department of Rheumatic and Immunological Diseases, Cleveland Clinic Foundation, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Case Western University, Cleveland, OH, USA
| | - A Dumusc
- Department of Rheumatology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - J S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - J M Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - M Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Abstract
The Tropics is very appropriate to test the hypotheses raised to explain the increasing trends of allergy and other inflammatory diseases worldwide. The absence of parasite infection as a possible cause of the increase of allergic diseases was proposed by J. Gerrard a long time ago; however, the idea that helminth infections, which induce a strong Th2 could reduce allergy symptoms seems counterintuitive; but the fact is that they have a dual effect: they increase the Th2 responses but also exert immunosuppression and both effects influence the symptoms of allergy. Basic experimentation has provided valuable information about the mechanisms of allergic inflammation and more recently, about its control by helminth induced immunomodulation, discovering helminth molecules with anti-inflammatory properties that are meant to replace the live helminth therapeutic approaches. The immunosuppressive power of helminths makes them excellent candidates to be considered in the hygiene hypotheses. Future comprehensive studies evaluating simultaneously the role of microbial infections, helminth infections, microbiota, pollution and biodiversity will help to elucidate the causes of the increasing trends of allergic disorders. Doing this in the tropics, where all these variables are still present could be difficult but no doubt that will be more informative.
Collapse
Affiliation(s)
- Luis Caraballo
- a Institute for Immunological Research , University of Cartagena , Cartagena , Colombia
| |
Collapse
|
36
|
Cingi C, Muluk NB. Hygiene Hypothesis: What Is the Current Thinking? CURRENT OTORHINOLARYNGOLOGY REPORTS 2017. [DOI: 10.1007/s40136-017-0158-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Varyani F, Fleming JO, Maizels RM. Helminths in the gastrointestinal tract as modulators of immunity and pathology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G537-G549. [PMID: 28302598 PMCID: PMC5495915 DOI: 10.1152/ajpgi.00024.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 01/31/2023]
Abstract
Helminth parasites are highly prevalent in many low- and middle-income countries, in which inflammatory bowel disease and other immunopathologies are less frequent than in the developed world. Many of the most common helminths establish themselves in the gastrointestinal tract and can exert counter-inflammatory influences on the host immune system. For these reasons, interest has arisen as to how parasites may ameliorate intestinal inflammation and whether these organisms, or products they release, could offer future therapies for immune disorders. In this review, we discuss interactions between helminth parasites and the mucosal immune system, as well as the progress being made toward identifying mechanisms and molecular mediators through which it may be possible to attenuate pathology in the intestinal tract.
Collapse
Affiliation(s)
- Fumi Varyani
- 1Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom; ,2Edinburgh Clinical Academic Track, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom; and
| | - John O. Fleming
- 3Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Rick M. Maizels
- 1Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom;
| |
Collapse
|
38
|
Hill LJ, Williams AC. Meat Intake and the Dose of Vitamin B 3 - Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures? Int J Tryptophan Res 2017; 10:1178646917704662. [PMID: 28579801 PMCID: PMC5419340 DOI: 10.1177/1178646917704662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/26/2022] Open
Abstract
Meat and vitamin B3 - nicotinamide - intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by 'welcoming' gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive 'meat transitions'. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic 'old friends' compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress.
Collapse
Affiliation(s)
- Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|