1
|
Sammallahti H, Rezasoltani S, Pekkala S, Kokkola A, Asadzadeh Agdaei H, Azizmohhammad Looha M, Ghanbari R, Zamani F, Sadeghi A, Sarhadi VK, Tiirola M, Puolakkainen P, Knuutila S. Fecal profiling reveals a common microbial signature for pancreatic cancer in Finnish and Iranian cohorts. Gut Pathog 2025; 17:24. [PMID: 40241224 PMCID: PMC12001732 DOI: 10.1186/s13099-025-00698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) presents a significant challenge in oncology because of its late-stage diagnosis and limited treatment options. The inadequacy of current screening methods has prompted investigations into stool-based assays and microbial classifiers as potential early detection markers. The gut microbiota composition of PC patients may be influenced by population differences, thereby impacting the accuracy of disease prediction. However, comprehensive profiling of the PC gut microbiota and analysis of these cofactors remain limited. Therefore, we analyzed the stool microbiota of 33 Finnish and 50 Iranian PC patients along with 35 Finnish and 34 Iranian healthy controls using 16S rRNA gene sequencing. We assessed similarities and differences of PC gut microbiota in both populations while considering sociocultural impacts and generated a statistical model for disease prediction based on microbial classifiers. Our aim was to expand the current understanding of the PC gut microbiota, discuss the impact of population differences, and contribute to the development of early PC diagnosis through microbial biomarkers. RESULTS Compared with healthy controls, PC patients presented reduced microbial diversity, with discernible microbial profiles influenced by factors such as ethnicity, demographics, and lifestyle. PC was marked by significantly higher abundances of facultative pathogens including Enterobacteriaceae, Enterococcaceae, and Fusobacteriaceae, and significantly lower abundances of beneficial bacteria. In particular, bacteria belonging to the Clostridia class, such as butyrate-producing Lachnospiraceae, Butyricicoccaceae, and Ruminococcaceae, were depleted. A microbial classifier for the prediction of pancreatic ductal adenocarcinoma (PDAC) was developed in the Iranian cohort and evaluated in the Finnish cohort, where it yielded a respectable AUC of 0.88 (95% CI 0.78, 0.97). CONCLUSIONS This study highlights the potential of gut microbes as biomarkers for noninvasive PC screening and the development of targeted therapies, emphasizing the need for further research to validate these findings in diverse populations. A comprehensive understanding of the role of the gut microbiome in PC could significantly enhance early detection efforts and improve patient outcomes.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sama Rezasoltani
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074, Aachen, Germany
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland
| | - Hamid Asadzadeh Agdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Mehdi Azizmohhammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Reza Ghanbari
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Marja Tiirola
- Department of Environmental and Biological Sciences, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
- BiopSense Oy, Eeronkatu 10, 40720, Jyväskylä, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Eiser AR. Environmental, Metabolic, and Nutritional Factors Concerning Dementia in African American and Hispanic American Populations. Am J Med 2024; 137:939-942. [PMID: 38942346 PMCID: PMC11438570 DOI: 10.1016/j.amjmed.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
African Americans and Hispanic Americans experience a higher incidence and prevalence of dementia than white Americans while also experiencing more environmental, metabolic, and nutritional factors potentially promoting such disparities. Greater exposure to air, water, and soil pollutants, including toxic metals associated with neurodegeneration, accrues in both minorities, as does worse dental care than Whites exposing them to periodontitis, raising dementia risk. Hispanic Americans experience greater occupational exposure to herbicides and pesticides, and have a higher rate of developing non-alcoholic fatty liver disease (NAFLD), predisposing to dementia. African Americans have a greater likelihood of both vitamin D deficiency and magnesium deficiency, increasing neuroinflammation and dementia risk. Both have greater air pollution exposure, a known dementia risk. Nutritional changes, including greater nut consumption and reduced sugar drink consumption, improved dental care, and reduced toxicant exposure, may help reduce this higher risk of dementia among African Americans and Hispanic Americans.
Collapse
Affiliation(s)
- Arnold R Eiser
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
3
|
Gamage BD, Ranasinghe D, Sahankumari A, Malavige GN. Metagenomic analysis of colonic tissue and stool microbiome in patients with colorectal cancer in a South Asian population. BMC Cancer 2024; 24:1124. [PMID: 39256724 PMCID: PMC11385143 DOI: 10.1186/s12885-024-12885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The gut microbiome is thought to play an important role in the development of colorectal cancer (CRC). However, as the gut microbiome varies widely based on diet, we sought to investigate the gut microbiome changes in patients with CRC in a South Asian population. METHODS The gut microbiome was assessed by 16s metagenomic sequencing targeting the V4 hypervariable region of the bacterial 16S rRNA in stool samples (n = 112) and colonic tissue (n = 36) in 112 individuals. The cohort comprised of individuals with CRC (n = 24), premalignant lesions (n = 10), healthy individuals (n = 50) and in those with diabetes (n = 28). RESULTS Overall, the relative abundances of genus Fusobacterium (p < 0.001), Acinetobacter (p < 0.001), Escherichia-Shigella (p < 0.05) were significantly higher in gut tissue, while Romboutsia (p < 0.01) and Prevotella (p < 0.05) were significantly higher in stool samples. Bacteroides and Fusobacterium were the most abundant genera found in stool samples in patients with CRC. Patients with pre-malignant lesions had significantly high abundances of Christensenellaceae, Enterobacteriaceae, Mollicutes and Ruminococcaceae (p < 0.001) compared to patients with CRC, and healthy individuals. Romboutsia was significantly more abundant (p < 0.01) in stool samples in healthy individuals compared to those with CRC and diabetes. CONCLUSION Despite marked differences in the Sri Lankan diet compared to the typical Western diet, Bacteroides and Fusobacterium species were the most abundant in those with CRC, with Prevotella species, being most abundant in many individuals. We believe these results pave the way for possible dietary interventions for prevention of CRC in the South Asian population.
Collapse
Affiliation(s)
- Bawantha Dilshan Gamage
- Department of Surgery, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Diyanath Ranasinghe
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Agp Sahankumari
- Department of Surgery, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
4
|
Hein DM, Coughlin LA, Poulides N, Koh AY, Sanford NN. Assessment of Distinct Gut Microbiome Signatures in a Diverse Cohort of Patients Undergoing Definitive Treatment for Rectal Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:150-158. [PMID: 39219996 PMCID: PMC11361339 DOI: 10.36401/jipo-23-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 09/04/2024]
Abstract
Introduction Disparities in incidence and outcome of rectal cancer are multifactorial in etiology but may be due, in part, to differences in gut microbiome composition. We used serial robust statistical approaches to assess baseline gut microbiome composition in a diverse cohort of patients with rectal cancer receiving definitive treatment. Methods Microbiome composition was compared by age at diagnosis (< 50 vs ≥ 50 years), race and ethnicity (White Hispanic vs non-Hispanic), and response to therapy. Alpha diversity was assessed using the Shannon, Chao1, and Simpson diversity measures. Beta diversity was explored using both Bray-Curtis dissimilarity and Aitchison distance with principal coordinate analysis. To minimize false-positive findings, we used two distinct methods for differential abundance testing: LinDA and MaAsLin2 (all statistics two-sided, Benjamini-Hochberg corrected false discovery rate < 0.05). Results Among 64 patients (47% White Hispanic) with median age 51 years, beta diversity metrics showed significant clustering by race and ethnicity (p < 0.001 by both metrics) and by onset (Aitchison p = 0.022, Bray-Curtis p = 0.035). White Hispanic patients had enrichment of bacterial family Prevotellaceae (LinDA fold change 5.32, MaAsLin2 fold change 5.11, combined adjusted p = 0.0007). No significant differences in microbiome composition were associated with neoadjuvant therapy response. Conclusion We identified distinct gut microbiome signatures associated with race and ethnicity and age of onset in a diverse cohort of patients undergoing definitive treatment for rectal cancer.
Collapse
Affiliation(s)
- David M. Hein
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura A. Coughlin
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Poulides
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Y. Koh
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nina N. Sanford
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Torres-Galarza A, Toledo Z, Bailón-Moscoso N. The role of human microbiota in the development of colorectal cancer: A literature review. MEDICINE IN MICROECOLOGY 2024; 20:100100. [DOI: 10.1016/j.medmic.2024.100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
6
|
Wen X, Ogunrinde E, Wan Z, Cunningham M, Gilkeson G, Jiang W. Racial Differences in Plasma Microbial Translocation and Plasma Microbiome, Implications in Systemic Lupus Erythematosus Disease Pathogenesis. ACR Open Rheumatol 2024; 6:365-374. [PMID: 38563441 PMCID: PMC11168915 DOI: 10.1002/acr2.11664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Black groups have increased prevalence and accelerated pathogenicity of systemic lupus erythematosus (SLE) compared to other ethnic/racial groups. The microbiome and systemic microbial translocation are considered contributing factors to SLE disease pathogenesis. However, racial differences in the plasma microbiome and microbial translocation in lupus remain unknown. METHODS In the current study, we investigated plasma levels of microbial translocation (lipopolysaccharide [LPS] and zonulin) and the plasma microbiome using microbial 16S RNA sequencing of Black and White patients with SLE and Black and White healthy controls. RESULTS Plasma microbial translocation was increased in Black patients versus in White patients and in patients with SLE versus healthy controls regardless of race. Compared to sex, age, and disease status, race had the strongest association with plasma microbiome differences. Black groups (Black controls and Black patients) had lower α-diversity than White groups (White controls and White patients) and more distinct β-diversity. Black and White patients demonstrated differences in plasma bacterial presence, including Staphylococcus and Burkholderia. Compared to White patients, Black patients had higher SLE Disease Activity Index (SLEDAI) scores and urinary protein levels as well as a trend for increased anti-double-stranded DNA (dsDNA) antibody levels consistent with the known increased severity of lupus in Black patients overall. Certain plasma bacteria at the genus level were identified that were associated with the SLEDAI score, urinary protein, and anti-dsDNA antibody levels. CONCLUSION This study reveals racial differences in both quality and quantity of plasma microbial translocation and identified specific plasma microbiome differences associated with SLE disease pathogenesis. Thus, this study may provide new insights into future potential microbiome therapies on SLE pathogenesis.
Collapse
Affiliation(s)
| | | | - Zhuang Wan
- Medical University of South CarolinaCharleston
| | | | - Gary Gilkeson
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth Carolina
| | - Wei Jiang
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth Carolina
| |
Collapse
|
7
|
Takashima Y, Kawamura H, Okadome K, Ugai S, Haruki K, Arima K, Mima K, Akimoto N, Nowak JA, Giannakis M, Garrett WS, Sears CL, Song M, Ugai T, Ogino S. Enrichment of Bacteroides fragilis and enterotoxigenic Bacteroides fragilis in CpG island methylator phenotype-high colorectal carcinoma. Clin Microbiol Infect 2024; 30:630-636. [PMID: 38266708 PMCID: PMC11043012 DOI: 10.1016/j.cmi.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/04/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Data support that enterotoxigenic Bacteroides fragilis (ETBF) harbouring the Bacteroides fragilis toxin (bft) gene may promote colorectal tumourigenesis through the serrated neoplasia pathway. We hypothesized that ETBF may be enriched in colorectal carcinoma subtypes with high-level CpG island methylator phenotype (CIMP-high), BRAF mutation, and high-level microsatellite instability (MSI-high). METHODS Quantitative PCR assays were designed to quantify DNA amounts of Bacteroides fragilis, ETBF, and each bft gene isotype (bft-1, bft-2, or bft-3) in colorectal carcinomas in the Health Professionals Follow-up Study and Nurses' Health Study. We used multivariable-adjusted logistic regression models with the inverse probability weighting method. RESULTS We documented 4476 colorectal cancer cases, including 1232 cases with available bacterial data. High DNA amounts of Bacteroides fragilis and ETBF were positively associated with BRAF mutation (p ≤ 0.0003), CIMP-high (p ≤ 0.0002), and MSI-high (p < 0.0001 and p = 0.01, respectively). Multivariable-adjusted odds ratios (with 95% confidence interval) for high Bacteroides fragilis were 1.40 (1.06-1.85) for CIMP-high and 2.14 (1.65-2.77) for MSI-high, but 1.02 (0.78-1.35) for BRAF mutation. Multivariable-adjusted odds ratios for high ETBF were 2.00 (1.16-3.45) for CIMP-high and 2.86 (1.64-5.00) for BRAF mutation, but 1.09 (0.67-1.76) for MSI-high. Neither Bacteroides fragilis nor ETBF was associated with colorectal cancer-specific or overall survival. DISCUSSION The tissue abundance of Bacteroides fragilis is associated with CIMP-high and MSI-high, whereas ETBF abundance is associated with CIMP-high and BRAF mutation in colorectal carcinoma. Our findings support the aetiological relevance of Bacteroides fragilis and ETBF in the serrated neoplasia pathway.
Collapse
Affiliation(s)
- Yasutoshi Takashima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Hidetaka Kawamura
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kazuo Okadome
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Satoko Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kosuke Mima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cancer Immunology Program, Dana-Farber Harvard Cancer Centre, Boston, MA, USA.
| |
Collapse
|
8
|
da Silva Rosa SC, Barzegar Behrooz A, Guedes S, Vitorino R, Ghavami S. Prioritization of genes for translation: a computational approach. Expert Rev Proteomics 2024; 21:125-147. [PMID: 38563427 DOI: 10.1080/14789450.2024.2337004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Gene identification for genetic diseases is critical for the development of new diagnostic approaches and personalized treatment options. Prioritization of gene translation is an important consideration in the molecular biology field, allowing researchers to focus on the most promising candidates for further investigation. AREAS COVERED In this paper, we discussed different approaches to prioritize genes for translation, including the use of computational tools and machine learning algorithms, as well as experimental techniques such as knockdown and overexpression studies. We also explored the potential biases and limitations of these approaches and proposed strategies to improve the accuracy and reliability of gene prioritization methods. Although numerous computational methods have been developed for this purpose, there is a need for computational methods that incorporate tissue-specific information to enable more accurate prioritization of candidate genes. Such methods should provide tissue-specific predictions, insights into underlying disease mechanisms, and more accurate prioritization of genes. EXPERT OPINION Using advanced computational tools and machine learning algorithms to prioritize genes, we can identify potential targets for therapeutic intervention of complex diseases. This represents an up-and-coming method for drug development and personalized medicine.
Collapse
Affiliation(s)
- Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
9
|
Faghfuri E, Gholizadeh P. The role of Akkermansia muciniphila in colorectal cancer: A double-edged sword of treatment or disease progression? Biomed Pharmacother 2024; 173:116416. [PMID: 38471272 DOI: 10.1016/j.biopha.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is the second most cancer-related death worldwide. In recent years, probiotics have been used to reduce the potential risks of CRC and tumors with various mechanisms. Different bacteria have been suggested to play different roles in the progression, prevention, or treatment of CRC. Akkermansia muciniphila is considered a next-generation probiotic for preventing and treating some diseases. Therefore, in this review article, we aimed to describe and discuss different mechanisms of A. muciniphila as an intestinal microbiota or probiotic in CRC. Some studies suggested that the abundance of A. muciniphila was higher or increased in CRC patients compared to healthy individuals. However, the decreased abundance of A. muciniphila was associated with severe symptoms of CRC, indicating that A. muciniphila did not play a role in the development of CRC. In addition, A. muciniphila administration elevates gene expression of proliferation-associated molecules such as S100A9, Dbf4, and Snrpd1, or markers for cell proliferation. Some other studies suggested that inflammation and tumorigenesis in the intestine might promoted by A. muciniphila. Overall, the role of A. muciniphila in CRC development or inhibition is still unclear and controversial. Various methods of bacterial supplementation, such as viability, bacterial number, and abundance, could all influence the colonization effect of A. muciniphila administration and CRC progression. Overall, A. mucinipila has been revealed to modulate the therapeutic potential of immune checkpoint inhibitors. Preliminary human data propose that oral consumption of A. muciniphila is safe, but its efficacy needs to be confirmed in more human clinical studies.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
10
|
Huang Y, Huang X, Wang Z, He F, Huang Z, Chen C, Tang B, Qin M, Wu Y, Long C, Tang W, Mo X, Liu J. Analysis of differences in intestinal flora associated with different BMI status in colorectal cancer patients. J Transl Med 2024; 22:142. [PMID: 38331839 PMCID: PMC10854193 DOI: 10.1186/s12967-024-04903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Overweight is known to be an important risk factor for colorectal cancer (CRC), and the differences in intestinal flora among CRC patients with different BMI status have not been clearly defined. The purpose of this study was to elucidate the differences in the abundance, composition and biological function of intestinal flora in CRC patients with different BMI status. METHOD A total of 170 CRC patients were included and grouped according to the BMI data of CRC patients. BMI ≥ 24 kg/m2 was defined as overweight group, and BMI within the range of 18.5-23.9 kg/m2 was defined as normal weight group. Preoperative stool collection of patients in both groups was used for 16S rRNA sequencing. Total RNA was extracted from 17 CRC tumor tissue samples for transcriptome sequencing, and then CIBERSORT algorithm was used to convert the transcriptome data into the relative content matrix of 22 kinds of immune cells, and the correlation between different intestinal flora and immune cells and immune-related genes under different BMI states was analyzed. Finally, we identified BMI-related differential functional pathways and analyzed the correlation between these pathways and differential intestinal flora. RESULT There was no significant difference in α diversity and β diversity analysis between overweight group and normal weight group. Partial least square discriminant analysis (PLS-DA) could divide the flora into two different clusters according to BMI stratification. A total of 33 BMI-related differential flora were identified by linear discriminant effect size analysis (LEfSe), among which Actinomyces, Desulfovibrio and Bacteroides were significantly enriched in overweight group. ko00514: Other types of O-glycan biosynthesis are significantly enriched in overweight group. There was a significant positive correlation between Clostridium IV and Macrophages M2 and T cells regulatory (Tregs). There was a significant negative correlation with Dendritic cells activated and T cells CD4 memory activated. CONCLUSIONS The richness and diversity of intestinal flora of CRC patients may be related to different BMI status, and the enrichment of Actinomyces, Desulphurvibrio and Bacteroides may be related to overweight status of CRC patients. The tumor microenvironment in which BMI-related differential flora resides has different immune landscapes, suggesting that some intestinal flora may affect the biological process of CRC by regulating immune cell infiltration and immune gene expression, but further experiments are needed to confirm this.
Collapse
Affiliation(s)
- Yongqi Huang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Zhen Wang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Fuhai He
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Zigui Huang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Chuanbin Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Binzhe Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Mingjian Qin
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Yongzhi Wu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Chenyan Long
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Weizhong Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.
| | - Xianwei Mo
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.
| | - Jungang Liu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.
| |
Collapse
|
11
|
Brostow DP, Donovan M, Penzenik M, Stamper CE, Spark T, Lowry CA, Ishaq SL, Hoisington AJ, Brenner LA. Food desert residence has limited impact on veteran fecal microbiome composition: a U.S. Veteran Microbiome Project study. mSystems 2023; 8:e0071723. [PMID: 37874170 PMCID: PMC10734509 DOI: 10.1128/msystems.00717-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Social and economic inequities can have a profound impact on human health. The inequities could result in alterations to the gut microbiome, an important factor that may have profound abilities to alter health outcomes. Moreover, the strong correlations between social and economic inequities have been long understood. However, to date, limited research regarding the microbiome and mental health within the context of socioeconomic inequities exists. One particular inequity that may influence both mental health and the gut microbiome is living in a food desert. Persons living in food deserts may lack access to sufficient and/or nutritious food and often experience other inequities, such as increased exposure to air pollution and poor access to healthcare. Together, these factors may confer a unique risk for microbial perturbation. Indeed, external factors beyond a food desert might compound over time to have a lasting effect on an individual's gut microbiome. Therefore, adoption of a life-course approach is expected to increase the ecological validity of research related to social inequities, the gut microbiome, and physical and mental health.
Collapse
Affiliation(s)
- Diana P. Brostow
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colorado, USA
| | - Meghan Donovan
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
| | - Molly Penzenik
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher E. Stamper
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colorado, USA
| | - Talia Spark
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
| | - Christopher A. Lowry
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colorado, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Andrew J. Hoisington
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colorado, USA
- Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Systems Engineering & Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, Ohio, USA
| | - Lisa A. Brenner
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, Colorado, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Military and Veteran Microbiome Consortium for Research and Education, Aurora, Colorado, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
12
|
Miya TV, Marima R, Damane BP, Ledet EM, Dlamini Z. Dissecting Microbiome-Derived SCFAs in Prostate Cancer: Analyzing Gut Microbiota, Racial Disparities, and Epigenetic Mechanisms. Cancers (Basel) 2023; 15:4086. [PMID: 37627114 PMCID: PMC10452611 DOI: 10.3390/cancers15164086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Prostate cancer (PCa) continues to be the most diagnosed cancer and the second primary cause of fatalities in men globally. There is an abundance of scientific evidence suggesting that the human microbiome, together with its metabolites, plays a crucial role in carcinogenesis and has a significant impact on the efficacy of anticancer interventions in solid and hematological cancers. These anticancer interventions include chemotherapy, immune checkpoint inhibitors, and targeted therapies. Furthermore, the microbiome can influence systemic and local immune responses using numerous metabolites such as short-chain fatty acids (SCFAs). Despite the lack of scientific data in terms of the role of SCFAs in PCa pathogenesis, recent studies show that SCFAs have a profound impact on PCa progression. Several studies have reported racial/ethnic disparities in terms of bacterial content in the gut microbiome and SCFA composition. These studies explored microbiome and SCFA racial/ethnic disparities in cancers such as colorectal, colon, cervical, breast, and endometrial cancer. Notably, there are currently no published studies exploring microbiome/SCFA composition racial disparities and their role in PCa carcinogenesis. This review discusses the potential role of the microbiome in PCa development and progression. The involvement of microbiome-derived SCFAs in facilitating PCa carcinogenesis and their effect on PCa therapeutic response, particularly immunotherapy, are discussed. Racial/ethnic differences in microbiome composition and SCFA content in various cancers are also discussed. Lastly, the effects of SCFAs on PCa progression via epigenetic modifications is also discussed.
Collapse
Affiliation(s)
- Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa
| | - Elisa Marie Ledet
- Tulane Cancer Center, Tulane Medical School, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
13
|
Song B, Xian W, Sun Y, Gou L, Guo Q, Zhou X, Ren B, Cheng L. Akkermansia muciniphila inhibited the periodontitis caused by Fusobacterium nucleatum. NPJ Biofilms Microbiomes 2023; 9:49. [PMID: 37460552 DOI: 10.1038/s41522-023-00417-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Periodontitis is the most important cause of tooth loss in adults and is closely related to various systemic diseases. Its etiologic factor is plaque biofilm, and the primary treatment modality is plaque control. Studies have confirmed that Fusobacterium nucleatum can cause periodontitis through its virulence factors and copolymerizing effects with other periodontal pathogens, such as the red complex. Inhibiting F. nucleatum is an essential target for preventing periodontitis. The time-consuming and costly traditional periodontal treatment, periodontal scaling, and root planing are a significant burden on individual and public health. Antibiotic use may lead to oral microbial resistance and microbiome imbalance, while probiotics regulate microbial balance. Akkermansia muciniphila is a critical probiotic isolated from the human intestine. It can protect the integrity of the epithelial barrier, regulate and maintain flora homeostasis, improve metabolism, and colonize the oral cavity. Its abundance is inversely correlated with various diseases. We hypothesized that A. muciniphila could inhibit the effects of F. nucleatum and alleviate periodontitis. Bacterial co-culture experiments showed that A. muciniphila could inhibit the expression of the virulence gene of F. nucleatum. After treating gingival epithelial cells (GECs) with F. nucleatum and A. muciniphila, transcriptome sequencing and ELISA experiments on medium supernatant showed that A. muciniphila inhibited the inflammatory effect of F. nucleatum on GECs by inhibiting TLR/MyD88/NF-κB pathway modulation and secretion of inflammatory factors. Finally, animal experiments demonstrated that A. muciniphila could inhibit F. nucleatum-induced periodontitis in BALB/c mice.
Collapse
Affiliation(s)
- Bingqing Song
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Wenpan Xian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Yan Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China.
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
14
|
Wong CC, Yu J. Colorectal Cancer Subtyping With Microbiome-A Game Changer for Personalized Medicine? Gastroenterology 2023; 165:25-27. [PMID: 37121332 DOI: 10.1053/j.gastro.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
The Gut Microbiota Metabolite Urolithin B Prevents Colorectal Carcinogenesis by Remodeling Microbiota and PD-L1/HLA-B. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6480848. [PMID: 36778211 PMCID: PMC9908333 DOI: 10.1155/2023/6480848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023]
Abstract
Colorectal cancer has risen to the third occurring cancer in the world. Fluorouracil (5-Fu), oxaliplatin, and cisplatin are the most effective chemotherapeutic agents for clinical chemotherapy. Nevertheless, due to chemotherapeutic drug resistance, the survival rate of patients with CRC remains very low. In this study, we used the inflammation-induced or mutation-family-inherited murine CRC models to study the anticancer and immunotherapy effects of urolithin B (UB), the final metabolite of polyphenols in the gastrointestinal tract. The label-free proteomics analysis and the gene ontology (GO) classifications were used to test and analyze the proteins affected by UB. And 16S rDNA sequencing and flow cytometry were utilized to uncover gut microbiome composition and immune defense improved by UB administration. The results indicated that urolithin B prevents colorectal carcinogenesis by remodeling gut microbial and tumor immune microenvironments, such as HLA-B, NK cells, regulatory T cells, and γδ TCR cells, and decreasing the PD-L1. The combination of urolithin B with first-line therapeutic drugs improved the colorectal intestinal hematochezia by shaping gut microbiota, providing a strategy for the treatment of immunotherapy treatment for CRC treatments. UB combined with anti-PD-1 antibody could inhibit the growth of colon cancer. Urolithin B may thus contribute to anticancer treatments and provide a high immune response microenvironment for CRC patients' further immunotherapy.
Collapse
|
16
|
Delgadinho M, Ginete C, Santos B, Mendes J, Miranda A, Vasconcelos J, Brito M. Microbial gut evaluation in an angolan paediatric population with sickle cell disease. J Cell Mol Med 2022; 26:5360-5368. [PMID: 36168945 DOI: 10.1111/jcmm.17402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Sickle cell disease (SCD) is one of the most common genetic conditions worldwide. It can contribute up to 90% of under-5 mortality in sub-Saharan Africa. Clinical manifestations are very heterogeneous, and the intestinal microbiome appears to be crucial in the modulation of inflammation, cell adhesion and induction of aged neutrophils, the main interveners of recurrent vaso-occlusive crisis. Enterocyte injury, increased permeability, altered microbial composition and bacterial overgrowth have all been documented as microbial and pathophysiologic changes in the gut microbiome of SCD patients in recent studies. Our aim was to sequence the bacterial 16S rRNA gene in order to characterize the gut microbiome of Angolan children with SCA and healthy siblings as a control. A total of 72 stool samples were obtained from children between 3 and 14 years old. Our data showed that the two groups exhibit some notable differences in microbiota relative abundance at different classification levels. Children with SCA have a higher number of the phylum Actinobacteria. As for the genus level, Clostridium cluster XI bacteria was more prevalent in the SCA children, whereas the siblings had a higher abundance of Blautia, Aestuariispira, Campylobacter, Helicobacter, Polaribacter and Anaerorhabdus. In this study, we have presented the first microbiota analysis in an Angolan paediatric population with SCD and provided a detailed view of the microbial differences between patients and healthy controls. There is still much to learn before fully relying on the therapeutic approaches for gut modulation, which is why more research in this field is crucial to making this a reality.
Collapse
Affiliation(s)
- Mariana Delgadinho
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Catarina Ginete
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Brígida Santos
- Centro de Investigação em Saúde de Angola (CISA), Bengo, Angola.,Hospital Pediátrico David Bernardino (HPDB), Luanda, Angola
| | - Joana Mendes
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Armandina Miranda
- Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | | | - Miguel Brito
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Investigação em Saúde de Angola (CISA), Bengo, Angola
| |
Collapse
|
17
|
Mosterd CM, Hayfron-Benjamin CF, van den Born BJH, Maitland-van der Zee AH, Agyemang C, van Raalte DH. Ethnic disparities in the association between low-grade inflammation biomarkers and chronic kidney disease: The HELIUS Cohort Study. J Diabetes Complications 2022; 36:108238. [PMID: 35791984 DOI: 10.1016/j.jdiacomp.2022.108238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
AIMS Ethnic differences exist in the prevalence and progression of chronic kidney disease (CKD). However, underlying mechanisms remain unclear. It has been proposed that chronic low-grade inflammation plays an important role in CKD pathogenesis. In the current analysis, we study the association between systemic inflammatory biomarkers and CKD prevalence in different ethnic groups. METHODS We examined cross-sectional associations between biomarkers of low-grade inflammation, including serum high-sensitive (hs)-CRP, fibrinogen, and D-dimer, and CKD prevalence in different ethnic groups residing in Amsterdam, the Netherlands. We included 5740 participants (similar-sized Dutch, African Surinamese, South-Asian Surinamese, Ghanaian, Turkish and Moroccan populations) aged 18 to 70 years of the Healthy Life in an Urban Setting study (HELIUS) cohort. RESULTS In the fully adjusted models, adjusted for ethnicity-specific cut-off values, elevated fibrinogen [odds ratio 2.50 (95 % confidence interval 1.10-5.78)] and D-dimer [2.99 (1.28-7.00)] were significantly associated with CKD in Dutch. In South-Asian Surinamese, a significant association with elevated D-dimer [2.66 (1.32-5.37)] was found. CONCLUSIONS Our study shows that there are both differences in biomarker levels and the association with CKD across ethnic groups. Future research to identify potential drivers of the differential associations and susceptibility of CKD among ethnic groups to reduce the CKD burden is necessary.
Collapse
Affiliation(s)
- Charlotte M Mosterd
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| | - Charles F Hayfron-Benjamin
- Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Anesthesiology/Critical Care, University of Ghana Medical School, Ghana; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | | | - Charles Agyemang
- Department of Public Health, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Daniel H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Carethers JM. Commencing colorectal cancer screening at age 45 years in U.S. racial groups. Front Oncol 2022; 12:966998. [PMID: 35936740 PMCID: PMC9354692 DOI: 10.3389/fonc.2022.966998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 01/05/2023] Open
Abstract
Screening for colorectal cancer (CRC) is cost-effective for reducing its mortality among the average-risk population. In the US, CRC incidence and mortality differ among racial/ethnic groups, with non-Hispanic Blacks (NHB) and American Indian/Alaska Natives showing highest incidence and mortality and earlier presentation. Since 2005, some professional societies have recommended CRC screening for NHB to commence at 45 years or earlier; this was not implemented due to lack of recommendation from key groups that influence insurance payment coverage. In 2017 the highly influential U.S. Multi-Society Task Force for Colorectal Cancer recommended screening to commence at 45 years for NHB; this recommendation was supplanted by data showing an increase in early-onset CRCs in non-Hispanic Whites approaching the under-50-year rates observed for NHB. Subsequently the American Cancer Society and the USPSTF recommended that the entire average-risk population move to commence CRC screening at 45 years. Implementing screening in 45–49-year-olds has its challenges as younger groups compared with older groups participate less in preventive care. The US had made extensive progress pre-COVID-19 in closing the disparity gap for CRC screening in NHB above age 50 years; implementing screening at younger ages will take ingenuity, foresight, and creative strategy to reach a broader-aged population while preventing widening the screening disparity gap. Approaches such as navigation for non-invasive and minimally invasive CRC screening tests, removal of financial barriers such as co-pays, and complete follow up to abnormal non-invasive screening tests will need to become the norm for broad implementation and success across all racial/ethnic groups.
Collapse
|
19
|
Ahmad S, Ashktorab H, Brim H, Housseau F. Inflammation, microbiome and colorectal cancer disparity in African-Americans: Are there bugs in the genetics? World J Gastroenterol 2022; 28:2782-2801. [PMID: 35978869 PMCID: PMC9280725 DOI: 10.3748/wjg.v28.i25.2782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Dysregulated interactions between host inflammation and gut microbiota over the course of life increase the risk of colorectal cancer (CRC). While environmental factors and socio-economic realities of race remain predominant contributors to CRC disparities in African-Americans (AAs), this review focuses on the biological mediators of CRC disparity, namely the under-appreciated influence of inherited ancestral genetic regulation on mucosal innate immunity and its interaction with the microbiome. There remains a poor understanding of mechanisms linking immune-related genetic polymorphisms and microbiome diversity that could influence chronic inflammation and exacerbate CRC disparities in AAs. A better understanding of the relationship between host genetics, bacteria, and CRC pathogenesis will improve the prediction of cancer risk across race/ethnicity groups overall.
Collapse
Affiliation(s)
- Sami Ahmad
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, United States
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC 20060, United States
| | - Hassan Brim
- Department of Pathology, Howard University, Washington, DC 20060, United States
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, United States
| |
Collapse
|
20
|
Pozzo L, Alcántara C, Selma-Royo M, Garcia-Mantrana I, Bramanti E, Longo V, Collado MC, Pucci L. The impact of sourdough fermentation of spelt (Triticum dicoccum) from Garfagnana on gut microbiota composition and in vitro activity. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
21
|
Tortora SC, Bodiwala VM, Quinn A, Martello LA, Vignesh S. Microbiome and colorectal carcinogenesis: Linked mechanisms and racial differences. World J Gastrointest Oncol 2022; 14:375-395. [PMID: 35317317 PMCID: PMC8918999 DOI: 10.4251/wjgo.v14.i2.375] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Various studies have shown the interplay between the intestinal microbiome, environmental factors, and genetic changes in colorectal cancer (CRC) development. In this review, we highlight the various gut and oral microbiota associated with CRC and colorectal adenomas, and their proposed molecular mechanisms in relation to the processes of “the hallmarks of cancer”, and differences in microbial diversity and abundance between race/ethnicity. Patients with CRC showed increased levels of Bacteroides, Prevotella, Escherichia coli, enterotoxigenic Bacteroides fragilis, Streptococcus gallolyticus, Enterococcus faecalis, Fusobacterium nucleatum (F. nucleatum) and Clostridium difficile. Higher levels of Bacteroides have been found in African American (AA) compared to Caucasian American (CA) patients. Pro-inflammatory bacteria such as F. nucleatum and Enterobacter species were significantly higher in AAs. Also, AA patients have been shown to have decreased microbial diversity compared to CA patients. Some studies have shown that using microbiome profiles in conjunction with certain risk factors such as age, race and body mass index may help predict healthy colon vs one with adenomas or carcinomas. Periodontitis is one of the most common bacterial infections in humans and is more prevalent in Non-Hispanic-Blacks as compared to Non-Hispanic Whites. This condition causes increased systemic inflammation, immune dysregulation, gut microbiota dysbiosis and thereby possibly influencing colorectal carcinogenesis. Periodontal-associated bacteria such as Fusobacterium, Prevotella, Bacteroides and Porphyromonas have been found in CRC tissues and in feces of CRC patients. Therefore, a deeper understanding of the association between oral and gastrointestinal bacterial profile, in addition to identifying prevalent bacteria in patients with CRC and the differences observed in ethnicity/race, may play a pivotal role in predicting incidence, prognosis, and lead to the development of new treatments.
Collapse
Affiliation(s)
- Sofia C Tortora
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Vimal M Bodiwala
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Andrew Quinn
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Laura A Martello
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Shivakumar Vignesh
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| |
Collapse
|
22
|
Cheng Y, Selma-Royo M, Cao X, Calatayud M, Qi Q, Zhou J, Zeng L, Garcia-Mantrana I, Collado MC, Han B. Influence of Geographical Location on Maternal-Infant Microbiota: Study in Two Populations From Asia and Europe. Front Cell Infect Microbiol 2022; 11:663513. [PMID: 35186776 PMCID: PMC8855098 DOI: 10.3389/fcimb.2021.663513] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Early gut microbial colonization is driven by many factors, including mode of birth, breastfeeding, and other environmental conditions. Characters of maternal-neonatal microbiota were analyzed from two distinct populations in similar latitude but different continents (Oriental Asia and Europe). A total number of 120 healthy families from China (n=60) and Spain (n=60) were included. Maternal and neonatal microbiota profiles were obtained at birth by 16S rRNA gene profiling. Clinical records were collected. Geographical location influenced maternal-neonatal microbiota. Indeed, neonatal and maternal cores composed by nine genera each one were found independently of location. Geographical location was the most important variable that impact the overall structure of maternal and neoantal microbiota. For neonates, delivery mode effect on neonatal microbial community could modulate how the other perinatal factors, as geographical location or maternal BMI, impact the neoantal initial seeding. Furthermore, lower maternal pre-pregnancy BMI was associated with higher abundance of Faecalibacterium in maternal microbiota and members from Lachnospiraceae family in both mothers and infants. At genus-level, Chinese maternal-neonate dyads possessed higher number of phylogenetic shared microbiota than that of Spanish dyads. Bifidobacterium and Escherichia/Shigella were the genera most shared between dyads in the two groups highlighting their importance in neonatal colonization and mother-infant transmission. Our data showed that early gut microbiota establishment and development is affected by interaction of complex variables, where environment would be a critical factor.
Collapse
Affiliation(s)
- Yue Cheng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Xin Cao
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Marta Calatayud
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Qi Qi
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lingxia Zeng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Izaskun Garcia-Mantrana
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Bei Han
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
23
|
Wang F, Cai K, Xiao Q, He L, Xie L, Liu Z. Akkermansia muciniphila administration exacerbated the development of colitis-associated colorectal cancer in mice. J Cancer 2022; 13:124-133. [PMID: 34976176 PMCID: PMC8692691 DOI: 10.7150/jca.63578] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common digestive tract malignancies and inflammation and gut microbiota are well-known key factors to influence CRC development. Akkermansia mucinipila is an important gram-negative anaerobic bacterium that can degrade mucin in gut. Previous studies suggested that A. muciniphila may affect inflammation and cell proliferation, but the relationship between A. muciniphila and CRC is not clarified. Here C57BL/6 mice were administrated with A. muciniphila or PBS and then treated with azoxymethane (AOM)/dextran sodium sulphate (DSS) to induce CRC. The mice receiving A. muciniphila administration had more serious weight loss, shorter colon length and more intestinal tumors than those receiving PBS administration after AOM/DSS treatment. More colon damage and less goblet cells were also observed in A. muciniphila treated mice. Furthermore, A. muciniphila administration induced more Ki67+ proliferating cells, higher PCNA expression and elevated gene expression of proliferation-associated molecules including Snrpd1, Dbf4 or S100A9. At early stage of CRC development, in comparison with controls, the mice receiving A. muciniphila administration also had more body weight loss and shorter colon length, as well as higher gene expression of inflammatory cytokines. Furthermore, the in vitro experimental results showed that the co-culture of colon epithelial cells with A. muciniphila enhanced the cell proliferation and gene expression of proliferation-associated molecules. Therefore, A. mucinipila may promote the formation of CRC in mice through increasing the early level of inflammation and the proliferation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Fei Wang
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China.,The Fifth People's Hospital of Jinan, Jinan, Shandong, 250000, China
| | - Kuntai Cai
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Qiuxiang Xiao
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Lihua He
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lu Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.,Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.,Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
24
|
Zhang M, Wang Y, Zhao X, Liu C, Wang B, Zhou J. Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutr Res 2021; 95:1-18. [PMID: 34757305 DOI: 10.1016/j.nutres.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023]
Abstract
A key event featured in the early stage of chronic gut inflammatory diseases is the disordered recruitment and excess accumulation of immune cells in the gut lamina propria. This process is followed by the over-secretion of pro-inflammatory factors and the prolonged overactive inflammatory responses. Growing evidence has suggested that gut inflammatory diseases may be mitigated by butyric acid (BA) or butyrate sodium (NaB). Laboratory studies show that BA and NaB can enhance gut innate immune function through G-protein-mediated signaling pathways while mitigating the overactive inflammatory responses by inhibiting histone deacetylase. The regulatory effects may occur in both epithelial enterocytes and the immune cells in the lamina propria. Prior to further clinical trials, comprehensive literature reviews and rigid examination concerning the underlying mechanism are necessary. To this end, we collected and reviewed 197 published reports regarding the mechanisms, bioactivities, and clinical effects of BA and NaB to modulate gut inflammatory diseases. Our review found insufficient evidence to guarantee the safety of clinical practice of BA and NaB, either by anal enema or oral administration of capsule or tablet. The safety of clinical use of BA and NaB should be further evaluated. Alternatively, dietary patterns rich in "fruits, vegetables and beans" may be an effective and safe approach to prevent gut inflammatory disease, which elevates gut microbiota-dependent production of BA. Our review provides a comprehensive reference to future clinical trials of BA and NaB to treat gut inflammatory diseases.
Collapse
Affiliation(s)
- Mingbao Zhang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Yanan Wang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Chang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Baozhen Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| |
Collapse
|
25
|
Rodriguez RM, Menor M, Hernandez BY, Deng Y, Khadka VS. Bacterial Diversity Correlates with Overall Survival in Cancers of the Head and Neck, Liver, and Stomach. Molecules 2021; 26:5659. [PMID: 34577130 PMCID: PMC8468759 DOI: 10.3390/molecules26185659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
One in five cancers is attributed to infectious agents, and the extent of the impact on the initiation, progression, and disease outcomes may be underestimated. Infection-associated cancers are commonly attributed to viral, and to a lesser extent, parasitic and bacterial etiologies. There is growing evidence that microbial community variation rather than a single agent can influence cancer development, progression, response to therapy, and outcome. We evaluated microbial sequences from a subset of infection-associated cancers-namely, head and neck squamous cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), and stomach adenocarcinoma (STAD) from The Cancer Genome Atlas (TCGA). A total of 470 paired tumor and adjacent normal samples were analyzed. In STAD, concurrent presence of EBV and Selemonas sputigena with a high diversity index were associated with poorer survival (HR: 2.23, 95% CI 1.26-3.94, p = 0.006 and HR: 2.31, 95% CI 1.1-4.9, p = 0.03, respectively). In LIHC, lower microbial diversity was associated with poorer overall survival (HR: 2.57, 95% CI: 1.2, 5.5, p = 0.14). Bacterial within-sample diversity correlates with overall survival in infection-associated cancers in a subset of TCGA cohorts.
Collapse
Affiliation(s)
- Rebecca M. Rodriguez
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii Mānoa, Honolulu, HI 96813, USA; (R.M.R.); (M.M.)
- Population Sciences in the Pacific Program-Cancer Epidemiology, University of Hawaii Cancer Center, Honolulu, HI 96813, USA;
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Mark Menor
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii Mānoa, Honolulu, HI 96813, USA; (R.M.R.); (M.M.)
| | - Brenda Y. Hernandez
- Population Sciences in the Pacific Program-Cancer Epidemiology, University of Hawaii Cancer Center, Honolulu, HI 96813, USA;
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii Mānoa, Honolulu, HI 96813, USA; (R.M.R.); (M.M.)
| | - Vedbar S. Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii Mānoa, Honolulu, HI 96813, USA; (R.M.R.); (M.M.)
| |
Collapse
|
26
|
Nizam W, Yeo HL, Obeng-Gyasi S, Brock MV, Johnston FM. Disparities in Surgical Oncology: Management of Advanced Cancer. Ann Surg Oncol 2021; 28:8056-8073. [PMID: 34268636 DOI: 10.1245/s10434-021-10275-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Significant variations in the patterns of care, incidence, and mortality rates of several common cancers have been noted. These disparities have been attributed to a complex interplay of factors, including genetic, environmental, and healthcare-related components. Within this review, primarily focusing on commonly occurring cancers (breast, lung, colorectal), we initially summarize the burden of these disparities with regard to incidence and screening patterns. We then explore the interaction between several proven genetic, epigenetic, and environmental influences that are known to contribute to these disparities.
Collapse
Affiliation(s)
- Wasay Nizam
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Heather L Yeo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Samilia Obeng-Gyasi
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Malcolm V Brock
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Fabian M Johnston
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA. .,Division of Gastrointestinal Surgical Oncology, Peritoneal Surface Malignancy Program, Complex General Surgical Oncology Fellowship, Division of Surgical Oncology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
27
|
Terasaki M, Uehara O, Ogasa S, Sano T, Kubota A, Kojima H, Tanaka T, Maeda H, Miyashita K, Mutoh M. Alteration of fecal microbiota by fucoxanthin results in prevention of colorectal cancer in AOM/DSS mice. Carcinogenesis 2021; 42:210-219. [PMID: 32940665 DOI: 10.1093/carcin/bgaa100] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Fucoxanthin (Fx), a marine carotenoid found in edible brown algae, is well known for having anticancer properties. The gut microbiota has been demonstrated as a hallmark for colorectal cancer progression in both humans and rodents. However, it remains unclear whether the gut microbiota is associated with the anticancer effect of Fx. We investigated the chemopreventive potency of Fx and its effect on gut microbiota in a mouse model of inflammation-associated colorectal cancer (by azoxymethane/dextran sulfate sodium treatment). Fx administration (30 mg/kg bw) during a 14 week period significantly inhibited the multiplicity of colorectal adenocarcinoma in mice. The number of apoptosis-like cleaved caspase-3high cells increased significantly in both colonic adenocarcinoma and mucosal crypts. Fx administration significantly suppressed Bacteroidlales (f_uc; g_uc) (0.3-fold) and Rikenellaceae (g_uc) (0.6-fold) and increased Lachnospiraceae (g_uc) (2.2-fold), compared with those of control mice. Oral administration of a fecal suspension obtained from Fx-treated mice, aimed to enhance Lachnospiraceae, suppress the number of colorectal adenocarcinomas in azoxymethane/dextran sulfate sodium-treated mice with a successful increase in Lachnospiraceae in the gut. Our findings suggested that an alteration in gut microbiota by dietary Fx might be an essential factor in the cancer chemopreventive effect of Fx in azoxymethane/dextran sulfate sodium-treated mice.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Osamu Uehara
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Shinya Ogasa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Taishi Sano
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Kazuo Miyashita
- Center for Regional Collaboration in Research and Education, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
28
|
Morrison MD, Thissen JB, Karouia F, Mehta S, Urbaniak C, Venkateswaran K, Smith DJ, Jaing C. Investigation of Spaceflight Induced Changes to Astronaut Microbiomes. Front Microbiol 2021; 12:659179. [PMID: 34149649 PMCID: PMC8207296 DOI: 10.3389/fmicb.2021.659179] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
The International Space Station (ISS) is a uniquely enclosed environment that has been continuously occupied for the last two decades. Throughout its operation, protecting the health of the astronauts on-board has been a high priority. The human microbiome plays a significant role in maintaining human health, and disruptions in the microbiome have been linked to various diseases. To evaluate the effects of spaceflight on the human microbiome, body swabs and saliva samples were collected from four ISS astronauts on consecutive expeditions. Astronaut samples were analyzed using shotgun metagenomic sequencing and microarrays to characterize the microbial biodiversity before, during, and after the astronauts’ time onboard the ISS. Samples were evaluated at an individual and population level to identify changes in microbial diversity and abundance. No significant changes in the number or relative abundance of taxa were observed between collection time points when samples from all four astronauts were analyzed together. When the astronauts’ saliva samples were analyzed individually, the saliva samples of some astronauts showed significant changes in the relative abundance of taxa during and after spaceflight. The relative abundance of Prevotella in saliva samples increased during two astronauts’ time onboard the ISS while the relative abundance of other commensal taxa such as Neisseria, Rothia, and Haemophilus decreased. The abundance of some antimicrobial resistance genes within the saliva samples also showed significant changes. Most notably, elfamycin resistance gene significantly increased in all four astronauts post-flight and a CfxA6 beta-lactam marker significantly increased during spaceflight but returned to normal levels post-flight. The combination of both shotgun metagenomic sequencing and microarrays showed the benefit of both technologies in monitoring microbes on board the ISS. There were some changes in each astronaut’s microbiome during spaceflight, but these changes were not universal for all four astronauts. Two antimicrobial resistance gene markers did show a significant change in abundance in the saliva samples of all four astronauts across their collection times. These results provide insight for future ISS microbial monitoring studies and targets for antimicrobial resistance screenings.
Collapse
Affiliation(s)
- Michael D Morrison
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - James B Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Fathi Karouia
- KBRwyle, NASA Ames Research Center, Moffett Field, CA, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States.,Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - Satish Mehta
- JesTech, NASA Johnson Space Center, Houston, TX, United States
| | - Camilla Urbaniak
- Biotechnology and Planetary Protection Group, NASA-Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA-Jet Propulsion Laboratory, Pasadena, CA, United States
| | - David J Smith
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
29
|
Abstract
The occurrence of colorectal cancer (CRC) shows a large disparity among recognized races and ethnicities in the U.S., with Black Americans demonstrating the highest incidence and mortality from this disease. Contributors for the observed CRC disparity appear to be multifactorial and consequential that may be initiated by structured societal issues (e.g., low socioeconomic status and lack of adequate health insurance) that facilitate abnormal environmental factors (through use of tobacco and alcohol, and poor diet composition that modifies one's metabolism, microbiome and local immune microenvironment) and trigger cancer-specific immune and genetic changes (e.g., localized inflammation and somatic driver gene mutations). Mitigating the disparity by prevention through CRC screening has been demonstrated; this has not been adequately shown once CRC has developed. Acquiring additional knowledge into the science behind the observed disparity will inform approaches towards abating both the incidence and mortality of CRC between U.S. racial and ethnic groups.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
30
|
Malik SA, Zhu C, Li J, LaComb JF, Denoya PI, Kravets I, Miller JD, Yang J, Kramer M, McCombie WR, Robertson CE, Frank DN, Li E. Impact of preoperative antibiotics and other variables on integrated microbiome-host transcriptomic data generated from colorectal cancer resections. World J Gastroenterol 2021; 27:1465-1482. [PMID: 33911468 PMCID: PMC8047535 DOI: 10.3748/wjg.v27.i14.1465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Integrative multi-omic approaches have been increasingly applied to discovery and functional studies of complex human diseases. Short-term preoperative antibiotics have been adopted to reduce site infections in colorectal cancer (CRC) resections. We hypothesize that the antibiotics will impact analysis of multi-omic datasets generated from resection samples to investigate biological CRC risk factors. AIM To assess the impact of preoperative antibiotics and other variables on integrated microbiome and human transcriptomic data generated from archived CRC resection samples. METHODS Genomic DNA (gDNA) and RNA were extracted from prospectively collected 51 pairs of frozen sporadic CRC tumor and adjacent non-tumor mucosal samples from 50 CRC patients archived at a single medical center from 2010-2020. The 16S rRNA gene sequencing (V3V4 region, paired end, 300 bp) and confirmatory quantitative polymerase chain reaction (qPCR) assays were conducted on gDNA. RNA sequencing (IPE, 125 bp) was performed on parallel tumor and non-tumor RNA samples with RNA Integrity Numbers scores ≥ 6. RESULTS PERMANOVA detected significant effects of tumor vs nontumor histology (P = 0.002) and antibiotics (P = 0.001) on microbial β-diversity, but CRC tumor location (left vs right), diabetes mellitus vs not diabetic and Black/African Ancestry (AA) vs not Black/AA, did not reach significance. Linear mixed models detected significant tumor vs nontumor histology*antibiotics interaction terms for 14 genus level taxa. QPCR confirmed increased Fusobacterium abundance in tumor vs nontumor groups, and detected significantly reduced bacterial load in the (+)antibiotics group. Principal coordinate analysis of the transcriptomic data showed a clear separation between tumor and nontumor samples. Differentially expressed genes obtained from separate analyses of tumor and nontumor samples, are presented for the antibiotics, CRC location, diabetes and Black/AA race groups. CONCLUSION Recent adoption of additional preoperative antibiotics as standard of care, has a measurable impact on -omics analysis of resected specimens. This study still confirmed increased Fusobacterium nucleatum in tumor.
Collapse
Affiliation(s)
- Sarah A Malik
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Chencan Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
| | - Jinyu Li
- Stony Brook Cancer Center Biostatistics and Bioinformatics Shared Resource, Stony Brook University, Stony Brook, NY 11794, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Paula I Denoya
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Igor Kravets
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Joshua D Miller
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Jie Yang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Stony Brook Cancer Center Biostatistics and Bioinformatics Shared Resource, Stony Brook University, Stony Brook, NY 11794, United States
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Melissa Kramer
- Cold Spring Harbor Laboratory Cancer Center Sequencing Technologies and Analysis Shared Resource, Cold Spring Harbor, NY 11724, United States
| | - W Richard McCombie
- Cold Spring Harbor Laboratory Cancer Center Sequencing Technologies and Analysis Shared Resource, Cold Spring Harbor, NY 11724, United States
| | - Charles E Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Daniel N Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Ellen Li
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
31
|
Watanabe A, Kadota Y, Tochio T, Shimomura Y, Kitaura Y. Reply to Comment on Watanabe, A.; Kadota, Y.; Yokoyama, H.; Tsuruda, S.; Kamio, R.; Tochio, T.; Shimomura, Y.; Kitaura, Y. Experimental Determination of the Threshold Dose for Bifidogenic Activity of Dietary 1-Kestose in Rats. Foods 2020, 9, 4. Foods 2020; 9:E527. [PMID: 32331466 PMCID: PMC7230746 DOI: 10.3390/foods9040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 11/21/2022] Open
Abstract
The manuscript entitled "Comment on Experimental Determination of the Threshold Dose for Bifidogenic Activity of Dietary 1-Kestose in Rats" by Shen et al [...].
Collapse
Affiliation(s)
- Ayako Watanabe
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan;
| | - Yoshihiro Kadota
- B Food Science Co., Ltd., Chita, Aichi 478-0046, Japan; (Y.K.); (T.T.)
| | - Takumi Tochio
- B Food Science Co., Ltd., Chita, Aichi 478-0046, Japan; (Y.K.); (T.T.)
| | - Yoshiharu Shimomura
- Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan;
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan;
| |
Collapse
|
32
|
Farhana L, Sarkar S, Nangia-Makker P, Yu Y, Khosla P, Levi E, Azmi A, Majumdar APN. Natural agents inhibit colon cancer cell proliferation and alter microbial diversity in mice. PLoS One 2020; 15:e0229823. [PMID: 32196510 PMCID: PMC7083314 DOI: 10.1371/journal.pone.0229823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
The current study was undertaken to investigate the effect of differentially formulated polyphenolic compound Essential Turmeric Oil-Curcumin (ETO-Cur), and Tocotrienol-rich fraction (TRF) of vitamin E isomers on colorectal cancer (CRC) cells that produce aggressive tumors. Combinations of ETO-Cur and TRF were used to determine the combinatorial effects of ETO-Cur and TRF-mediated inhibition of growth of CRC cells in vitro and HCT-116 cells xenograft in SCID mice. 16S rRNA gene sequence profiling was performed to determine the outcome of gut microbial communities in mice feces between control and ETO-Cur-TRF groups. Bacterial identifications were validated by performing SYBR-based Real Time (RT) PCR. For metagenomics analysis to characterize the microbial communities, multiple software/tools were used, including Quantitative Insights into Microbial Ecology (QIIME) processing tool. We found ETO-Cur and TRF to synergize and that the combination of ETO-Cur-TRF significantly inhibited growth of HCT-116 xenografts in SCID mice. This was associated with a marked alteration in microbial communities and increased microbial OTU (operation taxonomic unit) number. The relative abundance of taxa was increased and the level of microbial diversity after 34 days of combinatorial treatment was found to be 44% higher over the control. Shifting of microbial family composition was observed in ETO-Cur-TRF treated mice as evidenced by marked reductions in Bacteroidaceae, Ruminococcaceae, Clostridiales, Firmicutes and Parabacteroids families, compared to controls. Interestingly, during the inhibition of tumor growth in ETO-Cur treated mice, probiotic Lactobacillaceae and Bifidobacteriaceae were increased by 20-fold and 6-fold, respectively. The relative abundance of anti-inflammatory Clostridium XIVa was also increased in ETO-Cur-TRF treated mice when compared with the control. Our data suggest that ETO-Cur-TRF show synergistic effects in inhibiting colorectal cancer cell proliferation in vitro and in mouse xenografts in vivo, and might induce changes in microbial diversity in mice.
Collapse
Affiliation(s)
- Lulu Farhana
- John D Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States of America
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sarah Sarkar
- John D Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States of America
| | - Pratima Nangia-Makker
- John D Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States of America
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Yingjie Yu
- John D Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States of America
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Pramod Khosla
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan, United States of America
| | - Edi Levi
- John D Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States of America
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Asfar Azmi
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Adhip P. N. Majumdar
- John D Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States of America
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Karmanos Cancer Institute, Detroit, Michigan, United States of America
| |
Collapse
|
33
|
Effects of High-Fiber Diets and Macronutrient Substitution on Bloating: Findings From the OmniHeart Trial. Clin Transl Gastroenterol 2020; 11:e00122. [PMID: 31972610 PMCID: PMC7056053 DOI: 10.14309/ctg.0000000000000122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES: To examine the effects of high-fiber, isocaloric, macronutrient substitutions on bloating. METHODS: The OmniHeart study is a randomized 3-period crossover feeding trial conducted from April 2003 to June 2005. Participants were provided 3 isocaloric versions of high-fiber (∼30 g per 2,100 kcal) diet, each different in carbohydrate, protein, and unsaturated fat composition. Each feeding period lasted for 6 weeks with a 2- to 4-week washout period between diets. Participants reported the presence and severity of bloating at baseline (participants were eating their own diet) and at the end of each feeding period. RESULTS: One hundred sixty-four participants were included in the analysis (mean age: 53.1 years; 45% women; 55% black). The prevalence of bloating at baseline and at the end of the carbohydrate-rich, protein-rich, and unsaturated fat-rich diet period was 18%, 24%, 33%, and 30%, respectively. Compared with baseline, the relative risk of bloating for the carbohydrate-rich, protein-rich, and unsaturated fat-rich high-fiber diet was 1.34 (95% confidence interval [CI]: 0.93, 1.92), 1.78 (95% CI: 1.32, 2.40), and 1.63 (95% CI: 1.17, 2.26), respectively. The protein-rich diet increased the risk of bloating more than the carbohydrate-rich diet (relative risk = 1.40; 95% CI: 1.03, 1.88). Bloating did not significantly vary between protein-rich vs unsaturated fat-rich or unsaturated fat-rich vs carbohydrate-rich diets. Black participants compared with non-black participants had a higher risk of bloating after all 3 versions of the high-fiber OmniHeart diet (P-value for interaction = 0.012). DISCUSSION: Substitution of protein with carbohydrate may be an effective strategy to decrease bloating among individuals experiencing gastrointestinal bloating from a high-fiber diet.
Collapse
|
34
|
Carethers JM, Doubeni CA. Causes of Socioeconomic Disparities in Colorectal Cancer and Intervention Framework and Strategies. Gastroenterology 2020; 158:354-367. [PMID: 31682851 PMCID: PMC6957741 DOI: 10.1053/j.gastro.2019.10.029] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) disproportionately affects people from low socioeconomic backgrounds and some racial minorities. Disparities in CRC incidence and outcomes might result from differences in exposure to risk factors such as unhealthy diet and sedentary lifestyle; limited access to risk-reducing behaviors such as chemoprevention, screening, and follow-up of abnormal test results; or lack of access to high-quality treatment resources. These factors operate at the individual, provider, health system, community, and policy levels to perpetuate CRC disparities. However, CRC disparities can be eliminated. Addressing the complex factors that contribute to development and progression of CRC with multicomponent, adaptive interventions, at multiple levels of the care continuum, can reduce gaps in mortality. These might be addressed with a combination of health care and community-based interventions and policy changes that promote healthy behaviors and ensure access to high-quality and effective measures for CRC prevention, diagnosis, and treatment. Improving resources and coordinating efforts in communities where people of low socioeconomic status live and work would increase access to evidence-based interventions. Research is also needed to understand the role and potential mechanisms by which factors in diet, intestinal microbiome, and/or inflammation contribute to differences in colorectal carcinogenesis. Studies of large cohorts with diverse populations are needed to identify epidemiologic and molecular factors that contribute to CRC development in different populations.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology, Department of Internal Medicine, Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Chyke A Doubeni
- Center for Health Equity and Community Engagement Research, Mayo Clinic, Rochester, Minnesota; Department of Family Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Polimeno L, Barone M, Mosca A, Viggiani MT, Di Leo A, Debellis L, Troisi M, Daniele A, Santacroce L. Gut Microbiota Imbalance is Related to Sporadic Colorectal Neoplasms. A Pilot Study. APPLIED SCIENCES 2019; 9:5491. [DOI: 10.3390/app9245491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
(1) Background: Colorectal cancer (CRC) development is sustained by multiple factors including the gut microbiota, as suggested by a growing body of evidence. Most CRCs have a sporadic (non-hereditary) onset and develop from sporadic colorectal adenomas/polyp (SCA/P). In the present study, we investigated the characteristic of anaerobic microorganisms in stool samples obtained from 20 patients with SCA/P and 20 subjects without evidence of proliferative lesions at colonoscopy (Controls). (2) Material and Methods: We designed this clinical trial using adaptive randomization by minimization. Selective culture media and Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) mass spectrometry techniques were used to identify the components of microbiota. The data obtained revealed a different variability of gut microbiota in stool samples of controls and SCA/P subjects. (3) Results: The most interesting difference was observed for Bacteroides species, which represent the 50% of all bacterial species identified in the stool samples: two species, Bacteroides stercoris and Parabacteroides distasonis, were found only in the feces from control group, whereas Bacteroides fragilis and Prevotella melaningenica species were presents only in SCA/P patients. Among Gram+ bacteria also, specific species were found in the two groups of feces: Clostridium clostridioforme, Propionibacterium avidum and Pediococcus pentasaceus were identified only in controls, while Eubacterium limosum, Clostridium innocuum and Corybebacterium xerosus were identified in SCA/P stool samples only. (4) Conclusions: Our findings suggest that, compared to control stool samples, a different intestinal microbiota is present in SCA/P stool samples, that may create a micro-environment predisposing for the development of proliferative phenomena. As a consequence, gut microbiota manipulation could be a future target for personalized treatments.
Collapse
Affiliation(s)
- Lorenzo Polimeno
- Polypheno Academic Spin Off, University of Bari “A. Moro”, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Michele Barone
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari “A. Moro”, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Adriana Mosca
- Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Maria Teresa Viggiani
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari “A. Moro”, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Alfredo Di Leo
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari “A. Moro”, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucantonio Debellis
- Department of Biosciences, Biotechnologies and Biopharmaceuticals, University of Bari “Aldo Moro”, Via E. Orabona 4, 70124 Bari, Italy
| | - Marco Troisi
- Polypheno Academic Spin Off, University of Bari “A. Moro”, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Antonella Daniele
- Experimental Oncology, Scientific Institute for Cancer Care and Research IRCCS “G. Paolo II”, Viale Orazio Flacco, 65, 70124 Bari, Italy
| | - Luigi Santacroce
- Polypheno Academic Spin Off, University of Bari “A. Moro”, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
- School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, 3001 Elbasan, Albania
- Ionian Department, Microbiology & Virology Lab, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
36
|
Royston KJ, Adedokun B, Olopade OI. Race, the microbiome and colorectal cancer. World J Gastrointest Oncol 2019; 11:773-787. [PMID: 31662819 PMCID: PMC6815924 DOI: 10.4251/wjgo.v11.i10.773] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023] Open
Abstract
In the past decade, more cancer researchers have begun to understand the significance of cancer prevention, which has prompted a shift in the increasing body of scientific literature. An area of fascination and great potential is the human microbiome. Recent studies suggest that the gut microbiota has significant roles in an individual's ability to avoid cancer, with considerable focus on the gut microbiome and colorectal cancer. That in mind, racial disparities with regard to colorectal cancer treatment and prevention are generally understudied despite higher incidence and mortality rates among Non-Hispanic Blacks compared to other racial and ethnic groups in the United States. A comprehension of ethnic differences with relation to colorectal cancer, dietary habits and the microbiome is a meritorious area of investigation. This review highlights literature that identifies and bridges the gap in understanding the role of the human microbiome in racial disparities across colorectal cancer. Herein, we explore the differences in the gut microbiota, common short chain fatty acids produced in abundance by microbes, and their association with racial differences in cancer acquisition.
Collapse
Affiliation(s)
- Kendra J Royston
- Division of Hematology Oncology, University of Chicago, Chicago, IL 60637, United States
| | - Babatunde Adedokun
- Center for Clinical Cancer Genetics and Global Health Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Olufunmilayo I Olopade
- Division of Hematology Oncology, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
37
|
Borroni EM, Qehajaj D, Farina FM, Yiu D, Bresalier RS, Chiriva-Internati M, Mirandola L, Štifter S, Laghi L, Grizzi F. Fusobacterium nucleatum and the Immune System in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2019; 15:149-156. [DOI: 10.1007/s11888-019-00442-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Thanikachalam K, Khan G. Colorectal Cancer and Nutrition. Nutrients 2019; 11:nu11010164. [PMID: 30646512 PMCID: PMC6357054 DOI: 10.3390/nu11010164] [Citation(s) in RCA: 461] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal Cancer is the third most common cancer diagnosed in the US. While the incidence and the mortality rate of colorectal cancer has decreased due to effective cancer screening measures, there has been an increase in number of young patients diagnosed in colon cancer due to unclear reasons at this point of time. While environmental and genetic factors play a major role in the pathogenesis of colon cancer, extensive research has suggested that nutrition may play both a causal and protective role in the development of colon cancer. In this review article, we aim to provide a review of factors that play a major role in development of colorectal cancer.
Collapse
Affiliation(s)
- Kannan Thanikachalam
- Department of Hematology/Oncology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Gazala Khan
- Department of Hematology/Oncology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
39
|
Carethers JM. Clinical and Genetic Factors to Inform Reducing Colorectal Cancer Disparitites in African Americans. Front Oncol 2018; 8:531. [PMID: 30524961 PMCID: PMC6256119 DOI: 10.3389/fonc.2018.00531] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent and second deadliest cancer in the U.S. with 140,250 cases and 50,630 deaths for 2018. Prevention of CRC through screening is effective. Among categorized races in the U.S., African Americans (AAs) show the highest incidence and death rates per 100,000 when compared to Non-Hispanic Whites (NHWs), American Indian/Alaskan Natives, Hispanics, and Asian/Pacific Islanders, with an overall AA:NHW ratio of 1.13 for incidence and 1.32 for mortality (2010-2014, seer.cancer.gov). The disparity for CRC incidence and worsened mortality among AAs is likely multifactorial and includes environmental (e.g., diet and intestinal microbiome composition, prevalence of obesity, use of aspirin, alcohol, and tobacco use), societal (e.g., socioeconomic status, insurance and access to care, and screening uptake and behaviors), and genetic (e.g., somatic driver mutations, race-specific variants in genes, and inflammation and immunological factors). Some of these parameters have been investigated, and interventions that address specific parameters have proven to be effective in lowering the disparity. For instance, there is strong evidence raising screening utilization rates among AAs to that of NHWs reduces CRC incidence to that of NHWs. Reducing the age to commence CRC screening in AA patients may further address incidence disparity, due to the earlier age onset of CRC. Identified genetic and epigenetic changes such as reduced MLH1 hypermethylation frequency, presence of inflammation-associated microsatellite alterations, and unique driver gene mutations (FLCN and EPHA6) among AA CRCs will afford more precise approaches toward CRC care, including the use of 5-fluorouracil and anti-PD-1.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology, Departments of Internal Medicine and Human Genetics, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|