1
|
Byeon G, Byun MS, Yi D, Ahn H, Jung G, Sohn BK, Jung JH, Chang YY, Kim K, Choi H, Kim YH, Kim YK, Kang KM, Sohn CH, Lee DY. The Effect of Cholinesterase Inhibitors on Neurodegeneration in Individuals with Amnestic Mild Cognitive Impairment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:256-265. [PMID: 40223260 PMCID: PMC12000676 DOI: 10.9758/cpn.24.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/27/2024] [Accepted: 12/31/2024] [Indexed: 04/15/2025]
Abstract
Objective Cholinesterase inhibitors (ChEIs) are effective in treating mild to moderate Alzheimer's disease (AD) dementia by compensating for acetylcholine deficiency. While their use in mild cognitive impairment (MCI) lacks strong trial support, some studies suggest they may delay neurodegeneration. This study aims to investigate ChEIs' neuroprotective effects in individuals with amnestic MCI (aMCI) using multi-modal neuroimaging, and to determine if amyloid-beta (Aβ) deposition influences these effects. Methods Longitudinal data from a cohort study were retrospectively analyzed. A total of 118 aMCI patients (ages 55- 90), who underwent baseline evaluations encompassing the assessment of ChEI use and [11C] Pittsburgh compound B-positron emission tomography (PET), were included in the analyses. All participants also received baseline and 2-year follow-up magnetic resonance imaging and [18F] fluorodeoxyglucose-PET imaging. Results The ChEI use group exhibited a significantly lesser decline in AD-signature region cerebral metabolism (AD-CM) over a 2-year period than the ChEI non-use group (B = 0.089, 95% CI: 0.030-0.149). However, there was no significant difference in the 2-year change of AD-signature region cortical thickness (AD-CT) (B = 0.032, 95% CI: -0.075 to 0.138) and hippocampal volume (B = -88.013, 95% CI: -323.900 to 147.874) between the ChEI use and non-use groups. The presence of Aβ pathology did not moderate the effect of ChEI use on AD-CM, AD-CT, or hippocampal volume. Conclusion The findings suggest that ChEIs may delay functional neurodegeneration in aMCI individuals, irrespective of the presence of amyloid pathology.
Collapse
Affiliation(s)
- Gihwan Byeon
- Department of Psychiatry, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul, Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Hyejin Ahn
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Interdisciplinary Program of Cognitive Science, College of Humanities, Seoul National University, Seoul, Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Bo Kyung Sohn
- Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| | - Joon Hyung Jung
- Department of Neuropsychiatry, Chungbuk National University Hospital, Cheongju, Korea
| | - Yoon Young Chang
- Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| | - Kyungtae Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Hyeji Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Yoon Hee Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Interdisciplinary Program of Cognitive Science, College of Humanities, Seoul National University, Seoul, Korea
| | | |
Collapse
|
2
|
Kim JW, Keum M, Byun MS, Yi D, Jeon SY, Jung JH, Kong N, Chang YY, Jung G, Ahn H, Lee JY, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Lifetime walking and Alzheimer's pathology: A longitudinal study in older adults. J Prev Alzheimers Dis 2025:100203. [PMID: 40382248 DOI: 10.1016/j.tjpad.2025.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
IMPORTANCE While many studies have shown that greater amounts or longer durations of walking are associated with a lower risk of Alzheimer's disease (AD) or cognitive decline in older adults, the neuropathological basis for this is not yet fully understood. OBJECTIVE To examine the relationship between walking intensity and duration and longitudinal changes in Alzheimer's disease (AD)-related brain pathologies, including Aβ and tau accumulation, neurodegeneration, and white matter hyperintensity (WMH). DESIGN Data were drawn from the Korean Brain Aging Study for the Early Diagnosis and Prediction of AD, a longitudinal cohort study (initiated in 2014). SETTING Community and memory clinic setting. PARTICIPANTS One hundred fifty-one older adults. MAIN OUTCOME AND MEASURES Participants underwent baseline and 4-year follow-up neuroimaging assessments. Lifetime walking, as measured using the Lifetime Total Physical Activity Questionnaire, was categorized by intensity (high vs. low) and duration (short ≤360 min/week vs. long >360 min/week), forming four combined walking groups. Aβ and tau deposition, neurodegeneration, and WMH volume were assessed via PET/MRI. RESULTS Long-duration or high-intensity walking was associated with significantly reduced Aβ accumulation over 4 years. The high-combined walking group showed similar benefits, while medium-combined groups did not. The effect was significant only in the early life-initiated walking subgroup. No associations were found with tau, neurodegeneration, or WMH volume. CONCLUSIONS Long-duration, high-intensity walking may reduce brain Aβ accumulation, potentially lowering AD risk, particularly when initiated before late life.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-gil, Hwaseong, Gyeonggi, 18450, Republic of Korea; Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, 24252, Republic of Korea.
| | - Musung Keum
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-gil, Hwaseong, Gyeonggi, 18450, Republic of Korea.
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dahyun Yi
- Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - So Yeon Jeon
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, 776, 1sunhwan-ro, Seowon-gu, Cheongju, Chungcheongbuk-do, 28644, Republic of Korea.
| | - Nayeong Kong
- Department of Psychiatry, Keimyung University Dongsan Hospital, 56, Dalseong-ro, Jung-gu, Daegu, 42601, Republic of Korea
| | - Yoon Young Chang
- Department of Psychiatry, Inje University Sanggye Paik Hospital, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea.
| | - Gijung Jung
- Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, 290-42, Gyeongin-ro, Guro-gu, Seoul, 08274, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, 290-42, Gyeongin-ro, Guro-gu, Seoul, 08274, Republic of Korea.
| |
Collapse
|
3
|
Ahn H, Cha WJ, Woo DH, Ha S, Kim K, Choi H, Byun MS, Jung G, Yi D, Lee DY. Performance on the Rey-Osterrieth complex figure test in non-demented middle-aged and elderly Koreans. J Alzheimers Dis 2025:13872877251332663. [PMID: 40261284 DOI: 10.1177/13872877251332663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BackgroundExisting studies on Rey-Osterrieth Complex Figure (ROCF) performance in South Korea have not fully accounted for key demographic factors and often include limited sample sizes. This study examines ROCF performance in a non-demented aging sample to explore cognitive variability and provide comparative data for future research.ObjectiveThis study investigates the effects of age, education, and gender on performance on the ROCF test copy, immediate recall, and delayed recall trials for middle-aged and elderly Koreans.MethodsThe ROCF was administered to 461 community-dwelling, non-demented adults aged 50 to 90 years (M = 70.1, SD = 8.4), with 0 to 25 years of education (M = 11.4, SD = 4.7). We analyzed cognitive performance across age groups (50-59, 60-69, 70-79, and 80-90 years), education levels (0-8, 9-12, ≥13 years), and gender to characterize cognitive variability in a non-demented aging sample. Analysis of variance and stepwise multiple regression analyses were conducted to assess the relative contributions of the demographic variables.ResultsLower education levels, advanced age, and female gender were associated with poorer performance. Education accounted for the greatest variation in the copy trials, whereas age accounted for the largest portion of the variance in the recall trials.ConclusionsThe findings highlight the necessity of accounting for age, education, and gender when interpreting ROCF test scores in aging populations, especially in South Korea where educational attainment among older adults varies widely. Based on these findings, we established reference values stratified by these demographic variables for middle-aged and older Korean adults.
Collapse
Affiliation(s)
- Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, Republic of Korea
| | - Woo-Jin Cha
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do Hyeon Woo
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seunghyuk Ha
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyungtae Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeji Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong Young Lee
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kim JW, Byun MS, Yi D, Jung JH, Kong N, Chang YY, Jung G, Ahn H, Lee JY, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Daily fluid intake and brain amyloid deposition: A cohort study. J Alzheimers Dis 2025; 104:138-149. [PMID: 39980438 PMCID: PMC11934770 DOI: 10.1177/13872877251314176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
BackgroundLittle information is yet available for the association between daily water intake, a modifiable lifestyle factor, and Alzheimer's disease (AD) pathology and cerebrovascular injury in the living human brain.ObjectiveOur aim was to explore the correlation between daily fluid intake and in vivo AD pathologies (i.e., amyloid-β (Aβ) and tau) and cerebrovascular injury.Methods287 cognitively normal (CN) older adults completed extensive clinical assessments, daily fluid intake evaluations, and multimodal brain imaging at both the initial baseline and the subsequent 2-year follow-up.ResultsLow daily fluid intake was significantly associated with a higher level or a more rapid increase of Aβ deposition, especially in apolipoprotein E4 negative individuals. Meanwhile, low daily fluid intake was cross-sectionally related with cerebrovascular injury.ConclusionsOur findings suggest that high daily fluid intake is associated with decreased brain amyloid deposition, indicating that sufficient daily fluid intake may be helpful for prevention of AD.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi, Republic of Korea
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Nayeong Kong
- Department of Psychiatry, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Yoon Young Chang
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Keum M, Byun MS, Yi D, Ahn H, Jung G, Jung JH, Kong N, Lee JY, Kim YK, Lee YS, Kang KM, Sohn CH, Lee DY. The Use of Antihypertensive Medication and In Vivo Alzheimer's Disease Pathology. Ann Neurol 2025. [PMID: 39960250 DOI: 10.1002/ana.27204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/05/2025]
Abstract
OBJECTIVE We investigated whether the use of antihypertensive medication (AHM) is associated with in vivo Alzheimer's Disease (AD) pathologies in older adults with hypertension and examined if the effect differs by drug-class and blood-brain barrier (BBB) permeability of the drug. METHODS This cross-sectional study recruited participants from the Korean Brain Aging Study for the Early Diagnosis and Prevention of Alzheimer's Disease. Participants comprised both cognitively normal and impaired older adults diagnosed with hypertension (n = 408). All participants underwent comprehensive clinical assessment and [11C] Pittsburgh Compound B positron emission tomography (PET) for measurement of cerebral β-amyloid (Aβ) deposition. Additionally, a subset of participants (n = 120) was subjected to [18F] AV-1451 PET to assess tau deposition. RESULTS The AHM group (n = 227) exhibited significantly lower Aβ deposition (B [SE] = -0.104 [0.037], p = 0.006) compared to the non-AHM group (n = 181), even after controlling for age, sex, apolipoprotein E ε4-positivity, vascular risk factors, and mean arterial blood pressure. Further analysis by AHM class showed an association between the use of renin-angiotensin system inhibitors (RASi) and less Aβ deposition (B [SE] = -0.143[0.049], p = 0.004). No significant relationships were observed between the use of BBB-permeable AHM and Aβ deposition. Additionally, associations between AHM use and tau deposition did not reach statistical significance. INTERPRETATION Our findings suggest that AHM use may be associated with lower Aβ burden in older adults with hypertension. Further studies exploring the underlying mechanism, particularly related to RASi, may provide insights into new therapeutic targets for AD. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Musung Keum
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Gyeonggi, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, South Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Nayeong Kong
- Department of Psychiatry, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, South Korea
| |
Collapse
|
6
|
Han S, Hwang J, Park T, Pyun J, Lee J, Park JS, Bice PJ, Liu S, Yun S, Jeong J, Risacher SL, Saykin AJ, Byun MS, Yi D, Sung J, Lee DY, Kim S, Nho K, Park YH. Transcriptome analysis of early- and late-onset Alzheimer's disease in Korean cohorts. Alzheimers Dement 2025; 21:e14563. [PMID: 39935412 PMCID: PMC11815242 DOI: 10.1002/alz.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 02/13/2025]
Abstract
INTRODUCTION The molecular mechanisms underlying early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD) remain incompletely understood, particularly in Asian populations. METHODS RNA-sequencing was carried out on blood samples from 248 participants in the Seoul National University Bundang Hospital cohort to perform differential gene expression (DGE) and weighted gene co-expression network analysis. Findings were replicated in an independent Korean cohort (N = 275). RESULTS DGE analysis identified 18 and 88 dysregulated genes in EOAD and LOAD, respectively. Network analysis identified a LOAD-associated module showing a significant enrichment in pathways related to mitophagy, 5' adenosine monophosphate-activated protein kinase signaling, and ubiquitin-mediated proteolysis. In the replication cohort, downregulation of SMOX and PLVAP in LOAD was replicated, and the LOAD-associated module was highly preserved. In addition, SMOX and PLVAP were associated with brain amyloid beta deposition. DISCUSSION Our findings suggest distinct molecular signatures for EOAD and LOAD in a Korean population, providing deeper understanding of their diagnostic potential and molecular mechanisms. HIGHLIGHTS Analysis identified 18 and 88 dysregulated genes in early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD), respectively. Expression levels of SMOX and PLVAP were downregulated in LOAD. Expression levels of SMOX and PLVAP were associated with brain amyloid beta deposition. Pathways including mitophagy and 5' adenosine monophosphate-activated protein kinase signaling were enriched in a LOAD module. A LOAD module was highly preserved across two independent cohorts.
Collapse
Affiliation(s)
- Sang‐Won Han
- Department of NeurologySoonchunhyang University Seoul HospitalSeoulRepublic of Korea
- Department of NeurologyChuncheon Sacred Heart Hospital, Hallym University College of MedicineChuncheon‐siRepublic of Korea
| | - Jiyun Hwang
- Genome and Health Big Data Laboratory, Graduate School of Public HealthSeoul National UniversitySeoulRepublic of Korea
| | - Tamina Park
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jung‐Min Pyun
- Department of NeurologySoonchunhyang University Seoul HospitalSeoulRepublic of Korea
| | - Joo‐Yeon Lee
- Genome and Health Big Data Laboratory, Graduate School of Public HealthSeoul National UniversitySeoulRepublic of Korea
- Institute of Health and EnvironmentsSeoul National UniversitySeoulRepublic of Korea
| | - Jeong Su Park
- Department of Laboratory MedicineSeoul National University Bundang Hospital, Seoul National University College of MedicineSeongnam‐siRepublic of Korea
| | - Paula J. Bice
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Shiwei Liu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sunmin Yun
- Precision Medicine CenterSeoul National University Bundang HospitalSeongnam‐siRepublic of Korea
| | - Jibin Jeong
- Precision Medicine CenterSeoul National University Bundang HospitalSeongnam‐siRepublic of Korea
| | - Shannon L. Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Min Soo Byun
- Department of PsychiatrySeoul National University College of MedicineSeoulRepublic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Joohon Sung
- Genome and Health Big Data Laboratory, Graduate School of Public HealthSeoul National UniversitySeoulRepublic of Korea
- Institute of Health and EnvironmentsSeoul National UniversitySeoulRepublic of Korea
| | - Dong Young Lee
- Department of PsychiatrySeoul National University College of MedicineSeoulRepublic of Korea
| | - SangYun Kim
- Department of NeurologySeoul National University Bundang Hospital and Seoul National University College of MedicineSeongnam‐siRepublic of Korea
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Young Ho Park
- Department of NeurologySeoul National University Bundang Hospital and Seoul National University College of MedicineSeongnam‐siRepublic of Korea
| |
Collapse
|
7
|
Yi D, Byun MS, Park J, Kim J, Jung G, Ahn H, Lee J, Lee Y, Kim YK, Kang KM, Sohn C, Liu S, Huang Y, Saykin AJ, Lee DY, Nho K. Tau pathway-based gene analysis on PET identifies CLU and FYN in a Korean cohort. Alzheimers Dement 2025; 21:e14416. [PMID: 39625110 PMCID: PMC11848168 DOI: 10.1002/alz.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION The influence of genetic variation on tau protein aggregation, a key factor in Alzheimer's disease (AD), remains not fully understood. We aimed to identify novel genes associated with brain tau deposition using pathway-based candidate gene association analysis in a Korean cohort. METHODS We analyzed data for 146 older adults from the well-established Korean AD continuum cohort (Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease; KBASE). Fifteen candidate genes related to both tau pathways and AD were selected. Association analyses were performed using PLINK: A tool set for whole-genome association and population-based linkage analyses (PLINK) on tau deposition measured by 18F-AV-1451 positron emission tomography (PET) scans, with additional voxel-wise analysis conducted using Statistical Parametric Mapping 12 (SPM12). RESULTS CLU and FYN were significantly associated with tau deposition, with the most significant single-nucleotide polymorphisms (SNPs) being rs149413552 and rs57650567, respectively. These SNPs were linked to increased tau across key brain regions and showed additive effects with apolipoprotein E (APOE) ε4. DISCUSSION CLU and FYN may play specific roles in tau pathophysiology, offering potential targets for biomarkers and therapies. HIGHLIGHTS Gene-based analysis identified CLU and FYN as associated with tau deposition on positron emission tomography (PET). CLU rs149413552 and FYN rs57650567 were associated with brain tau deposition. rs149413552 and rs57650567 were associated with structural brain atrophy. CLU rs149413552 was associated with immediate verbal memory. CLU and FYN may play specific roles in tau pathophysiology.
Collapse
Affiliation(s)
- Dahyun Yi
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Min Soo Byun
- Department of NeuropsychiatrySeoul National University HospitalSeoulSouth Korea
- Department of PsychiatrySeoul National University College of MedicineSeoulSouth Korea
| | - Jong‐Ho Park
- Precision Medicine CenterSeoul National University Bundang HospitalSeongnam‐siGyeonggi‐doSouth Korea
| | - Jong‐Won Kim
- Department of Laboratory Medicine and GeneticsSamsung Medical CenterSungkyunkwan University School of MedicineGangnam‐guSeoulSouth Korea
| | - Gijung Jung
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive ScienceSeoul National University College of HumanitiesGwanak‐guSeoulSouth Korea
| | - Jun‐Young Lee
- Department of PsychiatrySeoul National University Boramae Medical Center, Dongjak‐guSeoulSouth Korea
| | - Yun‐Sang Lee
- Department of Nuclear MedicineSeoul National University College of MedicineJongro‐guSeoulSouth Korea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSeoul National University Boramae Medical Center, Dongjak‐guSeoulSouth Korea
| | - Koung Mi Kang
- Department of RadiologySeoul National University Hospital, Jongro‐guSeoulSouth Korea
- Department of RadiologySeoul National University College of Medicine, Jongro‐guSeoulSouth Korea
| | - Chul‐Ho Sohn
- Department of RadiologySeoul National University Hospital, Jongro‐guSeoulSouth Korea
| | - Shiwei Liu
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yen‐Ning Huang
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew J. Saykin
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Dong Young Lee
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSouth Korea
- Department of NeuropsychiatrySeoul National University HospitalSeoulSouth Korea
- Department of PsychiatrySeoul National University College of MedicineSeoulSouth Korea
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | | |
Collapse
|
8
|
Ko K, Yi D, Byun MS, Jung JH, Kong N, Jung G, Ahn H, Chang YY, Keum M, Lee J, Lee Y, Kim YK, Lee DY. Moderation of midlife cognitive activity on tau-related cognitive impairment. Alzheimers Dement 2025; 21:e14606. [PMID: 39988958 PMCID: PMC11847999 DOI: 10.1002/alz.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION We investigated the moderating effects of midlife and late-life cognitive activity (CA) on the relationship between tau pathology and both cognition and cognitive decline. METHODS Eighty-nine non-demented older adults from a Korean cohort underwent comprehensive evaluations, including CA assessments and tau neuroimaging at baseline, and Mini-Mental State Examination (MMSE) at baseline and the 2-year follow-up. RESULTS Greater midlife CA was associated with higher MMSE scores in a given amount of tau pathology, whereas higher levels of midlife CA were associated with faster tau-related decline in MMSE scores, particularly in individuals with mild cognitive impairment. Late-life CA did not exhibit any interaction with tau on either MMSE scores or their 2-year change. DISCUSSION Greater midlife CA is generally associated with better cognitive performance despite the presence of tau pathology. However, paradoxically, increased midlife CA appears to be linked to a more rapid tau-related cognitive decline in already cognitively impaired individuals. HIGHLIGHTS Greater midlife cognitive activity (CA) was generally associated with better cognitive performance in a given amount of tau pathology. Paradoxically, higher levels of midlife CA were related to a more rapid tau-related cognitive decline in already cognitively impaired individuals. Late-life CA did not exhibit any moderation effect on the association between tau and cognitive performance or decline.
Collapse
Grants
- U01AG072177 Ministry of Science, ICT, and Future Planning, Republic of Korea
- 27303C0140 NIEHS NIH HHS
- RS-2022-00165636 Ministry of Science, ICT, and Future Planning, Republic of Korea
- NRF-2014M3C7A1046042 Ministry of Science, ICT, and Future Planning, Republic of Korea
- HU23C0140 Ministry of Science, ICT, and Future Planning, Republic of Korea
- HI18C0630 Ministry of Science, ICT, and Future Planning, Republic of Korea
- U01 AG072177 NIA NIH HHS
- HI19C0149 Ministry of Science, ICT, and Future Planning, Republic of Korea
Collapse
Affiliation(s)
- Kang Ko
- Department of PsychiatrySeoul National University College of MedicineSeoulRepublic of Korea
- Department of PsychiatryNational Health Insurance Service Ilsan HospitalGoyangRepublic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Min Soo Byun
- Department of PsychiatrySeoul National University College of MedicineSeoulRepublic of Korea
- Department of NeuropsychiatrySeoul National University HospitalSeoulRepublic of Korea
| | - Joon Hyung Jung
- Department of PsychiatryChungbuk National University HospitalCheongjuRepublic of Korea
| | - Nayeong Kong
- Department of PsychiatryKeimyung University Dongsan HospitalDaeguRepublic of Korea
| | - Gijung Jung
- Department of NeuropsychiatrySeoul National University HospitalSeoulRepublic of Korea
| | - Hyejin Ahn
- Department of NeuropsychiatrySeoul National University HospitalSeoulRepublic of Korea
| | - Yoon Young Chang
- Department of PsychiatryInje University Sanggye Paik HospitalSeoulRepublic of Korea
| | - Musung Keum
- Department of NeuropsychiatrySeoul National University HospitalSeoulRepublic of Korea
| | - Jun‐Young Lee
- Department of PsychiatrySeoul National University College of MedicineSeoulRepublic of Korea
- Department of NeuropsychiatrySMG‐SNU Boramae Medical CenterSeoulRepublic of Korea
| | - Yun‐Sang Lee
- Department of Nuclear MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSMG‐SNU Boramae Medical CenterSeoulRepublic of Korea
| | - Dong Young Lee
- Department of PsychiatrySeoul National University College of MedicineSeoulRepublic of Korea
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulRepublic of Korea
- Department of NeuropsychiatrySeoul National University HospitalSeoulRepublic of Korea
| | | |
Collapse
|
9
|
Yi D, Byun MS, Jung JH, Jung G, Ahn H, Chang YY, Keum M, Lee J, Lee Y, Kim YK, Kang KM, Sohn C, Risacher SL, Saykin AJ, Lee DY. Locus coeruleus tau is linked to successive cortical tau accumulation. Alzheimers Dement 2025; 21:e14426. [PMID: 39641328 PMCID: PMC11848382 DOI: 10.1002/alz.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION We investigated the hypothesis that tau burden in the locus coeruleus (LC) correlates with tau accumulation in cortical regions according to the Braak stages and examined whether the relationships differed according to cortical amyloid beta (Aβ) deposition. METHODS One hundred and seventy well-characterized participants from an ongoing cohort were included. High-resolution T1, tau positron emission tomography (PET), and amyloid PET were obtained. RESULTS LC tau burden was significantly linked to global tau in neocortical regions, as was tau in both early Braak stage (stage I/II) and later Braak stage areas. This relationship was significant only in Aβ-positive individuals. While LC tau did not directly impact memory, it was indirectly associated with delayed memory through mediation or moderation pathways. DISCUSSION The findings from living human brains support the idea that LC tau closely relates to subsequent cortical tau accumulation, particularly among individuals with pathological Aβ accumulation, and identify LC tau burden as a promising indicator of cognitive trajectories of AD. HIGHLIGHTS Tau burden in the LC was significantly associated with cortical tau accumulation. Tau burden in SN or PPN showed no association with cortical tau accumulation. LC tau burden was serially associated with Braak stages. The tau-LC and cortical tau relationship was significant only in the Aβ-positive group. Cortical amyloid's impact on memory worsens with higher tau accumulation in the LC.
Collapse
Affiliation(s)
- Dahyun Yi
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSeoulRepublic of Korea
| | - Min Soo Byun
- Department of NeuropsychiatrySeoul National University HospitalSeoulSeoulRepublic of Korea
- Department of PsychiatrySeoul National University College of MedicineSeoulSeoulRepublic of Korea
| | - Joon Hyung Jung
- Department of PsychiatryChungbuk National University HospitalCheongju‐siRepublic of Korea
| | - Gijung Jung
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSeoulRepublic of Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive ScienceSeoul National University College of HumanitiesSeoulSeoulRepublic of Korea
| | - Yoon Young Chang
- Inje University Sanggye Paik HospitalSeoulSeoulRepublic of Korea
| | - Musung Keum
- Department of NeuropsychiatrySoonchunhyang University HospitalBucheon‐siGyeonggi‐doRepublic of Korea
| | - Jun‐Young Lee
- Department of PsychiatrySeoul National University Boramae Medical CenterSeoulSeoulRepublic of Korea
| | - Yun‐Sang Lee
- Department of Nuclear MedicineSeoul National University College of MedicineSeoulSeoulRepublic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSeoul National University Boramae Medical CenterSeoulSeoulRepublic of Korea
| | - Koung Mi Kang
- Department of RadiologySeoul National University HospitalSeoulSeoulRepublic of Korea
- Department of RadiologySeoul National University College of MedicineSeoulSeoulRepublic of Korea
| | - Chul‐Ho Sohn
- Department of RadiologySeoul National University HospitalSeoulSeoulRepublic of Korea
- Department of RadiologySeoul National University College of MedicineSeoulSeoulRepublic of Korea
| | - Shannon L. Risacher
- Indiana Alzheimer's Disease Research CenterIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew J. Saykin
- Indiana Alzheimer's Disease Research CenterIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Network Science InstituteIndiana UniversityBloomingtonIndianaUSA
| | - Dong Young Lee
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSeoulRepublic of Korea
- Department of NeuropsychiatrySeoul National University HospitalSeoulSeoulRepublic of Korea
- Department of PsychiatrySeoul National University College of MedicineSeoulSeoulRepublic of Korea
| | | |
Collapse
|
10
|
Weiner MW, Kanoria S, Miller MJ, Aisen PS, Beckett LA, Conti C, Diaz A, Flenniken D, Green RC, Harvey DJ, Jack CR, Jagust W, Lee EB, Morris JC, Nho K, Nosheny R, Okonkwo OC, Perrin RJ, Petersen RC, Rivera‐Mindt M, Saykin AJ, Shaw LM, Toga AW, Tosun D, Veitch DP. Overview of Alzheimer's Disease Neuroimaging Initiative and future clinical trials. Alzheimers Dement 2025; 21:e14321. [PMID: 39711072 PMCID: PMC11775462 DOI: 10.1002/alz.14321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 12/24/2024]
Abstract
The overall goal of the Alzheimer's Disease Neuroimaging Initiative (ADNI) is to optimize and validate biomarkers for clinical trials while sharing all data and biofluid samples with the global scientific community. ADNI has been instrumental in standardizing and validating amyloid beta (Aβ) and tau positron emission tomography (PET) imaging. ADNI data were used for the US Food and Drug Administration (FDA) approval of the Fujirebio and Roche Elecsys cerebrospinal fluid diagnostic tests. Additionally, ADNI provided data for the trials of the FDA-approved treatments aducanumab, lecanemab, and donanemab. More than 6000 scientific papers have been published using ADNI data, reflecting ADNI's promotion of open science and data sharing. Despite its enormous success, ADNI has some limitations, particularly in generalizing its data and findings to the entire US/Canadian population. This introduction provides a historical overview of ADNI and highlights its significant accomplishments and future vision to pioneer "the clinical trial of the future" focusing on demographic inclusivity. HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) introduced a novel model for public-private partnerships and data sharing. It successfully validated amyloid and Tau PET imaging, as well as CSF and plasma biomarkers, for diagnosing Alzheimer's disease. ADNI generated and disseminated vital data for designing AD clinical trials.
Collapse
|
11
|
Kim JW, Byun MS, Yi D, Jung JH, Kong N, Chang YY, Jung G, Ahn H, Lee JY, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Liver function and Alzheimer's brain pathologies: A longitudinal study: Liver and Alzheimer's pathologies. J Prev Alzheimers Dis 2025; 12:100012. [PMID: 39800466 PMCID: PMC12065704 DOI: 10.1016/j.tjpad.2024.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
IMPORTANCE The neuropathological links underlying the association between changes in liver function and AD have not yet been clearly elucidated. OBJECTIVE We aimed to examine the relationship between liver function markers and longitudinal changes in Alzheimer's disease (AD) core pathologies. DESIGN Data from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease, a longitudinal cohort study initiated in 2014, were utilized. SETTING Community and memory clinic setting. PARTICIPANTS Three hundred forty-seven older adults. MAIN OUTCOME AND MEASURES Participants underwent baseline and 2-year follow-up evaluations, including liver function assessments and various brain imaging techniques, such as amyloid and tau PET, FDG-PET, and MRI). Liver function indicators [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin] were examined as exposure variables. RESULTS Higher baseline ALT levels were associated with a greater increase in beta-amyloid deposition over 2 years [β = 0.166, Bonferroni-corrected P (PB) = 0.012], while lower total bilirubin levels were associated with a greater increase in tau deposition over the same period (β = -0.570, PB < 0.001). In contrast, AST alone showed no significant association with changes of AD pathologies. CONCLUSIONS AND RELEVANCE The findings suggest a possible link between lower liver function and the accumulation of core AD pathologies in the brain. These results also support the possibility that the liver-brain axis could be a potential target for therapeutic or preventive strategies against AD.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-gil, Hwaseong, Gyeonggi, 18450, Republic of Korea; Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, 24252, Republic of Korea.
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080, Republic of Korea.
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, 28644, Republic of Korea.
| | - Nayeong Kong
- Department of Psychiatry, Keimyung University Dongsan Hospital, Daegu, 42601, Republic of Korea.
| | - Yoon Young Chang
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, 01757, Republic of Korea.
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, 08826, Republic of Korea.
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080, Republic of Korea; Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Okonkwo OC, Rivera‐Mindt M, Weiner MW. Alzheimer's Disease Neuroimaging Initiative: Two decades of pioneering Alzheimer's disease research and future directions. Alzheimers Dement 2025; 21:e14186. [PMID: 39760440 PMCID: PMC11772699 DOI: 10.1002/alz.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 01/07/2025]
Affiliation(s)
- Ozioma C. Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Monica Rivera‐Mindt
- Department of Psychology, Latin American and Latino Studies Institute, African and African American StudiesFordham UniversityNew YorkNew YorkUSA
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | | |
Collapse
|
13
|
Jung JH, Byun MS, Yi D, Ahn H, Lee JH, Lee JS, Lee HS, Lee JY, Kim YK, Lee YS, Kang KM, Sohn CH, Lee DY. Telomere length, in vivo Alzheimer's disease pathologies and cognitive decline in older adults. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-334314. [PMID: 39667908 DOI: 10.1136/jnnp-2024-334314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Whether telomere length (TL), an indicator of biological ageing, reflects Alzheimer's disease (AD)-related neuropathological change remains unclear. We investigated the relationships between TL, in vivo AD pathologies, including cerebral beta-amyloid and tau deposition, and cognitive outcomes in older adults. METHODS A total of 458 older adults were included, encompassing both cognitively normal (CN) individuals and those cognitively impaired (CI), with the CI group consisting of individuals with mild cognitive impairment or AD dementia. All participants underwent clinical and neuropsychological assessments, amyloid positron emission tomography (PET) scan and DNA extraction for measuring TL at baseline. A subset of participants (n=140) underwent tau PET scan. At follow-up, the participants underwent neuropsychological assessments annually for up to 4 years. RESULTS Overall, longer TL was associated with greater brain tau deposition (B=0.139, 95% CI 0.040, 0.238) and a faster decline in global cognition (B = - 0.371, 95% CI - 0.720, -0.023). In the subgroup analysis, the association between longer TL and greater in vivo AD pathologies, as well as faster cognitive decline, was observed particularly in the CI group. Mediation analysis suggested that longer TL was associated with cognitive decline through increased tau deposition in the CI group. CONCLUSION Our finding suggests that older adults with relatively longer TL, particularly in the CI group, may have greater in vivo AD pathologies and experience more rapid cognitive decline, potentially mediated by brain tau deposition. Further studies are necessary to elucidate the biological links underlying these associations.
Collapse
Affiliation(s)
- Joon Hyung Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Korea (the Republic of)
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea (the Republic of)
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, Korea (the Republic of)
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea (the Republic of)
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Neuroscience, Seoul National University College of Humanities, Seoul, Korea (the Republic of)
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea (the Republic of)
| | - Jang-Seok Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (the Republic of)
| | - Hyun-Seob Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (the Republic of)
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Neuropsychiatry, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul, Korea (the Republic of)
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul, Korea (the Republic of)
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea (the Republic of)
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea (the Republic of)
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea (the Republic of)
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, Korea (the Republic of)
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea (the Republic of)
- Interdisciplinary Program of Cognitive Neuroscience, Seoul National University College of Humanities, Seoul, Korea (the Republic of)
| |
Collapse
|
14
|
Park T, Hwang J, Liu S, Chaudhuri S, Han SW, Yi D, Byun MS, Huang YN, Rosewood T, Jung G, Kim MJ, Ahn H, Lee JY, Kim YK, Cho M, Bice PJ, Craft H, Risacher SL, Gao H, Liu Y, Kim S, Park YH, Lee DY, Saykin AJ, Nho K. Genome-wide transcriptome analysis of Aβ deposition on PET in a Korean cohort. Alzheimers Dement 2024; 20:8787-8801. [PMID: 39513963 DOI: 10.1002/alz.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Despite the recognized importance of including ethnic diversity in Alzheimer's disease (AD) research, substantial knowledge gaps remain, particularly in Asian populations. METHODS RNA sequencing was performed on blood samples from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) to perform differential gene expression (DGE), gene co-expression network, gene-set enrichment, and machine learning analyses for amyloid beta (Aβ) deposition on positron emission tomography. RESULTS DGE analysis identified 265 dysregulated genes associated with Aβ deposition and replicated three AD-associated genes in an independent Korean cohort. Network analysis identified two modules related to pathways including a natural killer (NK) cell-mediated immunity. Machine learning analysis showed the classification of Aβ positivity improved with the inclusion of gene expression data. DISCUSSION Our results in a Korean population suggest Aβ deposition-associated genes are enriched in NK cell-mediated immunity, providing a better understanding of AD molecular mechanisms and yielding potential diagnostic and therapeutic strategies. HIGHLIGHTS Dysregulated genes were associated with amyloid beta (Aβ) deposition on positron emission tomography in a Korean cohort. Dysregulated genes in Alzheimer's disease were replicated in an independent Korean cohort. Gene network modules were associated with Aβ deposition. Natural killer (NK) cell proportion in blood was associated with Aβ deposition. Dysregulated genes were related to a NK cell-mediated immunity.
Collapse
Affiliation(s)
- Tamina Park
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jiyun Hwang
- Genome and Health Big Data Laboratory Graduate School of Public Health, , Seoul National University, Seoul, South Korea
| | - Shiwei Liu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Soumilee Chaudhuri
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sang Won Han
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Yen-Ning Huang
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thea Rosewood
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Min Jeong Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Hyejin Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Psychiatry, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - MinYoung Cho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paula J Bice
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hannah Craft
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Genome and Health Big Data Laboratory Graduate School of Public Health, , Seoul National University, Seoul, South Korea
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam-si, South Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam-si, South Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Genome and Health Big Data Laboratory Graduate School of Public Health, , Seoul National University, Seoul, South Korea
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- School of Informatics and Computing, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Kang M, Farrell JJ, Zhu C, Park H, Kang S, Seo EH, Choi KY, Jun GR, Won S, Gim J, Lee KH, Farrer LA. Whole-genome sequencing study in Koreans identifies novel loci for Alzheimer's disease. Alzheimers Dement 2024; 20:8246-8262. [PMID: 39428694 DOI: 10.1002/alz.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION The genetic basis of Alzheimer's disease (AD) in Koreans is poorly understood. METHODS We performed an AD genome-wide association study using whole-genome sequence data from 3540 Koreans (1583 AD cases, 1957 controls) and single-nucleotide polymorphism array data from 2978 Japanese (1336 AD cases, 1642 controls). Significant findings were evaluated by pathway enrichment and differential gene expression analysis in brain tissue from controls and AD cases with and without dementia prior to death. RESULTS We identified genome-wide significant associations with APOE in the total sample and ROCK2 (rs76484417, p = 2.71×10-8) among APOE ε4 non-carriers. A study-wide significant association was found with aggregated rare variants in MICALL1 (MICAL like 1) (p = 9.04×10-7). Several novel AD-associated genes, including ROCK2 and MICALL1, were differentially expressed in AD cases compared to controls (p < 3.33×10-3). ROCK2 was also differentially expressed between AD cases with and without dementia (p = 1.34×10-4). DISCUSSION Our results provide insight into genetic mechanisms leading to AD and cognitive resilience in East Asians. HIGHLIGHTS Novel genome-wide significant associations for AD identified with ROCK2 and MICALL1. ROCK2 and MICALL1 are differentially expressed between AD cases and controls in the brain. This is the largest whole-genome-sequence study of AD in an East Asian population.
Collapse
Affiliation(s)
- Moonil Kang
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Hyeonseul Park
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
| | - Sarang Kang
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Eun Hyun Seo
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Premedical Science, College of Medicine, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Kolab Inc., Dong-gu, Gwangju, Republic of Korea
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- RexSoft Corps, Gwanak-gu, Seoul, Republic of Korea
| | - Jungsoo Gim
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Well-ageing Medicare Institute, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Korea Brain Research Institute, Dong-gu, Daegu, Republic of Korea
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Chaudhuri S, Dempsey DA, Huang YN, Park T, Cao S, Chumin EJ, Craft H, Crane PK, Mukherjee S, Choi SE, Scollard P, Lee M, Nakano C, Mez J, Trittschuh EH, Klinedinst BS, Hohman TJ, Lee JY, Kang KM, Sohn CH, Kim YK, Yi D, Byun MS, Risacher SL, Nho K, Saykin AJ, Lee DY. Association of amyloid and cardiovascular risk with cognition: Findings from KBASE. Alzheimers Dement 2024; 20:8527-8540. [PMID: 39511852 DOI: 10.1002/alz.14290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Limited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians. METHODS Vascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally. RESULTS Baseline analyses revealed that amyloid-negative (Aβ-) cognitively normal (CN) individuals with high FRS had lower cognition compared to Aβ- CN individuals with low FRS (p < 0.0001). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups. CONCLUSION Our findings indicate that managing vascular risk may be crucial in preserving cognition in Aβ- individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid-positive individuals had worse cognitive performance than Aβ- individuals. HIGHLIGHTS Vascular risk significantly affects cognition in amyloid-negative older Koreans. Amyloid-negative CN older adults with high vascular risk had lower baseline cognition. Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk. The study underscores the impact of vascular health on the AD disease spectrum.
Collapse
Affiliation(s)
- Soumilee Chaudhuri
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Desarae A Dempsey
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Ning Huang
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tamina Park
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sha Cao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Evgeny J Chumin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hannah Craft
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Seo-Eun Choi
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Phoebe Scollard
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael Lee
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Connie Nakano
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jesse Mez
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Emily H Trittschuh
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Geriatrics Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Brandon S Klinedinst
- Department of General Internal Medicine, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMGSNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMGSNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Jongno-gu, Seoul, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- School of Informatics and Computing, Indiana University, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Medical Research and Library Building, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Jongno-gu, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
17
|
Byeon G, Byun MS, Yi D, Jung JH, Kong N, Chang Y, KEUM MUSUNG, Jung G, Ahn H, Lee JY, Kim YK, Kang KM, Sohn CH, Lee DY. Visual and Auditory Sensory Impairments Differentially Relate with Alzheimer's Pathology. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:610-623. [PMID: 39420608 PMCID: PMC11494423 DOI: 10.9758/cpn.24.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 10/19/2024]
Abstract
Objective We intended to investigate the relationships between visual sensory impairment (VSI) or auditory sensory impairment (ASI) and brain pathological changes associated with cognitive decline in older adults. Methods We primarily tried to examine whether each sensory impairment is related to Alzheimer's disease (AD) pathology, specifically beta-amyloid (Aβ) deposition, through both cross-sectional and longitudinal approaches in cognitively unimpaired older adults. Self-report questionnaires on vision and hearing status were administered at the baseline. Neuroimaging scans including brain [11C] Pittsburgh Compound B PET and MRI, as well as clinical assessments, were performed at baseline and 2-year follow-up. Results Cross-sectional analyses showed that the VSI-positive group had significantly higher Aβ deposition than the VSI-negative group, whereas there was no significant association between ASI positivity and Aβ deposition. Longitudinal analyses revealed that VSI positivity at baseline was significantly associated with increased Aβ deposition over 2 years (β = 0.153, p = 0.025), although ASI positivity was not (β = 0.045, p = 0.518). VSI positivity at baseline was also significantly associated with greater atrophic changes in AD-related brain regions over the 2-year follow-up period (β = -0.207, p = 0.005), whereas ASI positivity was not (β = 0.024, p = 0.753). Neither VSI nor ASI positivity was related to cerebrovascular injury, as measured based on the white matter hyperintensity volume. Conclusion The findings suggest that VSI is probably related to AD-specific pathological changes, which possibly mediate the reported relationship between VSI and cognitive decline. In contrast, ASI appears not associated with AD pathologies but may contribute to cognitive decline via other mechanisms.
Collapse
Affiliation(s)
- Gihwan Byeon
- Department of Neuropsychiatry, Kangwon National University Hospital, Chuncheon, Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Korea
| | - Nayeong Kong
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Yoonyoung Chang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - MUSUNG KEUM
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Hyejin Ahn
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | | |
Collapse
|
18
|
Park J, Byun MS, Yi D, Ahn H, Jung JH, Kong N, Chang YY, Jung G, Lee JY, Kim YK, Lee YS, Kang KM, Sohn CH, Lee DY. The Moderating Effect of Serum Vitamin D on the Relationship between Beta-amyloid Deposition and Neurodegeneration. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:646-654. [PMID: 39420611 PMCID: PMC11494430 DOI: 10.9758/cpn.24.1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 10/19/2024]
Abstract
Objective Previous studies have reported that vitamin D deficiency increased the risk of Alzheimer's disease (AD) dementia in older adults. However, little is known about how vitamin D is involved in the pathophysiology of AD. Thus, this study aimed to examine the association and interaction of serum vitamin D levels with in vivo AD pathologies including cerebral beta-amyloid (Aβ) deposition and neurodegeneration in nondemented older adults. Methods 428 Nondemented older adults were recruited from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease, a prospective cohort that began in 2014. All participants underwent comprehensive clinical assessments, measurement of serum 25-hydroxyvitamin D (25[OH]D), and multimodal brain imaging including Pittsburgh compound B (PiB) positron emission tomography and magnetic resonance imaging. Global PiB deposition was measured for the Aβ biomarker. Intracranial volume-adjusted hippocampal volume (HVa) was used as a neurodegeneration biomarker. Results Overall, serum 25(OH)D level was not associated with either Aβ deposition or HVa after controlling for age, sex, apolipoprotein E ε4 positivity, and vascular risk factors. However, serum 25(OH)D level had a significant moderating effect on the association between Aβ and neurodegeneration, with lower serum 25(OH)D level significantly exacerbating cerebral Aβ-associated hippocampal volume loss (B = 34.612, p = 0.008). Conclusion Our findings indicate that lower serum vitamin D levels may contribute to AD by exacerbating Aβ-associated neurodegeneration in nondemented older adults. Further studies to explore the potential therapeutic effect of vitamin D supplementation on the progression of AD pathology will be necessary.
Collapse
Affiliation(s)
- Junha Park
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, College of Humanities, Seoul National University, Seoul, Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Korea
| | - Nayeong Kong
- Department of Psychiatry, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Yoon Young Chang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Psychiatry, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Interdisciplinary Program of Cognitive Science, College of Humanities, Seoul National University, Seoul, Korea
| | | |
Collapse
|
19
|
Kim H, Lee E, Park M, Min K, Diep YN, Kim J, Ahn H, Lee E, Kim S, Kim Y, Kang YJ, Jung JH, Byun MS, Joo Y, Jeong C, Lee DY, Cho H, Park H, Kim T. Microbiome-derived indole-3-lactic acid reduces amyloidopathy through aryl-hydrocarbon receptor activation. Brain Behav Immun 2024; 122:568-582. [PMID: 39197546 DOI: 10.1016/j.bbi.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer's disease (AD) pathogenesis has been associated with the gut microbiome and its metabolites, though the specific mechanisms have remained unclear. In our study, we used a multi-omics approach to identify specific microbial strains and metabolites that could potentially mitigate amyloidopathy in 5xFAD mice, a widely used model for AD research. Among the microbial strains tested, three showed promising results in reducing soluble amyloid-beta (Aβ) levels. Plasma metabolomics analysis revealed an enrichment of tryptophan (Trp) and indole-3-lactic acid (ILA) in mice with reduced soluble Aβ levels, suggesting a potential preventative role. The administration of a combined treatment of Trp and ILA prevented both Aβ accumulation and cognitive impairment in the 5xFAD mice. Our investigation into the mechanism revealed that ILA's effect on reducing Aβ levels was mediated through the activation of microglia and astrocytes, facilitated by the aryl hydrocarbon receptor (AhR) signaling pathway. These mechanisms were verified through experiments in 5xFAD mice that included an additional group with the administration of ILA alone, as well as in vitro experiments using an AhR inhibitor. Clinical data analysis revealed a greater abundance of Lactobacillus reuteri in the gut of healthy individuals compared to those at early stages of Aβ accumulation or with mild cognitive impairment. Additionally, human post-mortem brain analyses showed an increased expression of genes associated with the AhR signaling pathway in individuals without AD, suggesting a protective effect against AD progression. Our results indicate that ILA from gut microbes could inhibit the progression of amyloidopathy in 5xFAD mice through activation of AhR signaling in the brain.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eunkyung Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Kyungchan Min
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yen N Diep
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Jinhong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyeok Ahn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eulgi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yanghyun Joo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chanyeong Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; Genome and Company, Gyeonggi-do, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
20
|
Han MH, Kwon HS, Hwang M, Park HH, Jeong JH, Park KW, Kim EJ, Yoon SJ, Yoon B, Jang JW, Hong JY, Choi SH, Koh SH. Association between osteoporosis and the rate of telomere shortening. Aging (Albany NY) 2024; 16:11151-11161. [PMID: 39074257 PMCID: PMC11315396 DOI: 10.18632/aging.206034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
A shorter leukocyte telomere length (LTL) is reported to be associated with age-related diseases, including osteoporosis. Many studies have tried identifying the association between LTL and osteoporosis, although it remains controversial. This study aimed to determine whether osteoporosis is independently associated with LTL shortening in a prospective longitudinal cohort. The KBASE study is an independent multicenter prospective cohort in South Korea, which began in 2014. We compared the LTL values for each participant at baseline and over a 2-year follow-up period. Boxplots were used to demonstrate the differences in the change in LTL over a 2-year follow-up according to osteoporosis. Multivariable linear regression was conducted to identify whether osteoporosis is independently associated with the rate of telomere shortening. A total of 233 subjects (from 55 to 88 years) from the KBASE cohort were finally enrolled in the study. We observed that the LTL decreased by approximately 1.2 kbp over 2 years. While the LTL decreased as age increased, the rate of LTL shortening did not increase with age. Multivariable linear regression analysis indicated that only osteoporosis was independently associated with rapid LTL shortening over 2 years (B, -8.08; p = 0.038). We sought to identify an association between osteoporosis and LTL shortening in an independent prospective cohort. We found that participants with osteoporosis had significantly faster LTL shortening over 2 years than those without osteoporosis. We hope this study will help elucidate the underlying mechanisms in the relationship between LTL and osteoporosis in the future.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Hyuk Sung Kwon
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Mina Hwang
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University College of Medicine, Seoul 07804, South Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A Medical Center, Dong-A University College of Medicine, Busan 49201, South Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan 49241, South Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, South Korea
| | - Bora Yoon
- Department of Neurology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Yong Hong
- Department of Neurology, Yonsei University Wonju College of Medicine, Wonju 26426, South Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University College of Medicine, Incheon 22332, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, South Korea
| |
Collapse
|
21
|
Byeon JH, Byun MS, Yi D, Jung JH, Sohn BK, Chang YY, Kong N, Jung G, Ahn H, Lee JY, Lee YS, Kim YK, Lee DY. Moderation of thyroid hormones for the relationship between amyloid and tau pathology. Alzheimers Res Ther 2024; 16:164. [PMID: 39044293 PMCID: PMC11264392 DOI: 10.1186/s13195-024-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Altered thyroid hormone levels have been associated with increased risk of Alzheimer's disease (AD) dementia and related cognitive decline. However, the neuropathological substrates underlying the link between thyroid hormones and AD dementia are not yet fully understood. We first investigated the association between serum thyroid hormone levels and in vivo AD pathologies including both beta-amyloid (Aβ) and tau deposition measured by positron emission tomography (PET). Given the well-known relationship between Aβ and tau pathology in AD, we additionally examined the moderating effects of thyroid hormone levels on the association between Aβ and tau deposition. METHODS This cross-sectional study was conducted as part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) cohort. This study included a total of 291 cognitively normal adults aged 55 to 90. All participants received comprehensive clinical assessments, measurements for serum total triiodothyronine (T3), free triiodothyronine (fT3), free thyroxine (fT4), and thyroid-stimulating hormone (TSH), and brain imaging evaluations including [11C]-Pittsburgh compound B (PiB)- PET and [18F] AV-1451 PET. RESULTS No associations were found between either thyroid hormones or TSH and Aβ and tau deposition on PET. However, fT4 (p = 0.002) and fT3 (p = 0.001) exhibited significant interactions with Aβ on tau deposition: The sensitivity analyses conducted after the removal of an outlier showed that the interaction effect between fT4 and Aβ deposition was not significant, whereas the interaction between fT3 and Aβ deposition remained significant. However, further subgroup analyses demonstrated a more pronounced positive relationship between Aβ and tau in both the higher fT4 and fT3 groups compared to the lower group, irrespective of outlier removal. Meanwhile, neither T3 nor TSH had any interaction with Aβ on tau deposition. CONCLUSION Our findings suggest that serum thyroid hormones may moderate the relationship between cerebral Aβ and tau pathology. Higher levels of serum thyroid hormones could potentially accelerate the Aβ-dependent tau deposition in the brain. Further replication studies in independent samples are needed to verify the current results.
Collapse
Affiliation(s)
- Jeong Hyeon Byeon
- Department of Neuropsychiatry, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Bo Kyung Sohn
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Yoon Young Chang
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Nayeong Kong
- Department of Psychiatry, Keimyung University Hospital, Daegu, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program of Cognitive Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Lee S, Byun MS, Yi D, Ahn H, Jung G, Jung JH, Chang YY, Kim K, Choi H, Choi J, Lee JY, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Plasma Leptin and Alzheimer Protein Pathologies Among Older Adults. JAMA Netw Open 2024; 7:e249539. [PMID: 38700863 PMCID: PMC11069086 DOI: 10.1001/jamanetworkopen.2024.9539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 05/06/2024] Open
Abstract
Importance Many epidemiologic studies have suggested that low levels of plasma leptin, a major adipokine, are associated with increased risk of Alzheimer disease (AD) dementia and cognitive decline. Nevertheless, the mechanistic pathway linking plasma leptin and AD-related cognitive decline is not yet fully understood. Objective To examine the association of plasma leptin levels with in vivo AD pathologies, including amyloid-beta (Aβ) and tau deposition, through both cross-sectional and longitudinal approaches among cognitively unimpaired older adults. Design, Setting, and Participants This was a longitudinal cohort study from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer Disease. Data were collected from January 1, 2014, to December 31, 2020, and data were analyzed from July 11 to September 6, 2022. The study included a total of 208 cognitively unimpaired participants who underwent baseline positron emission tomography (PET) scans for brain Aβ deposition. For longitudinal analyses, 192 participants who completed both baseline and 2-year follow-up PET scans for brain Aβ deposition were included. Exposure Plasma leptin levels as assessed by enzyme-linked immunosorbent assay. Main Outcomes and Measures Baseline levels and longitudinal changes of global Aβ and AD-signature region tau deposition measured by PET scans. Results Among the 208 participants, the mean (SD) age was 66.0 (11.3) years, 114 were women (54.8%), and 37 were apolipoprotein E ε4 carriers (17.8%). Lower plasma leptin levels had a significant cross-sectional association with greater brain Aβ deposition (β = -0.04; 95% CI, -0.09 to 0.00; P = .046), while there was no significant association between plasma leptin levels and tau deposition (β = -0.02; 95% CI, -0.05 to 0.02; P = .41). In contrast, longitudinal analyses revealed that there was a significant association between lower baseline leptin levels and greater increase of tau deposition over 2 years (β = -0.06; 95% CI, -0.11 to -0.01; P = .03), whereas plasma leptin levels did not have a significant association with longitudinal change of Aβ deposition (β = 0.006; 95% CI, 0.00-0.02; P = .27). Conclusions and Relevance The present findings suggest that plasma leptin may be protective for the development or progression of AD pathology, including both Aβ and tau deposition.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Yoon Young Chang
- Department of Psychiatry, Inje University, Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Kyungtae Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeji Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeongmin Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, Republic of Korea
| |
Collapse
|
23
|
Cha WJ, Yi D, Ahn H, Byun MS, Chang YY, Choi JM, Kim K, Choi H, Jung G, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Association between brain amyloid deposition and longitudinal changes of white matter hyperintensities. Alzheimers Res Ther 2024; 16:50. [PMID: 38454444 PMCID: PMC10918927 DOI: 10.1186/s13195-024-01417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Growing evidence suggests that not only cerebrovascular disease but also Alzheimer's disease (AD) pathological process itself cause cerebral white matter degeneration, resulting in white matter hyperintensities (WMHs). Some preclinical evidence also indicates that white matter degeneration may precede or affect the development of AD pathology. This study aimed to clarify the direction of influence between in vivo AD pathologies, particularly beta-amyloid (Aβ) and tau deposition, and WMHs through longitudinal approach. METHODS Total 282 older adults including cognitively normal and cognitively impaired individuals were recruited from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) cohort. The participants underwent comprehensive clinical and neuropsychological assessment, [11C] Pittsburgh Compound B PET for measuring Aβ deposition, [18F] AV-1451 PET for measuring tau deposition, and MRI scans with fluid-attenuated inversion recovery image for measuring WMH volume. The relationships between Aβ or tau deposition and WMH volume were examined using multiple linear regression analysis. In this analysis, baseline Aβ or tau were used as independent variables, and change of WMH volume over 2 years was used as dependent variable to examine the effect of AD pathology on increase of WMH volume. Additionally, we set baseline WMH volume as independent variable and longitudinal change of Aβ or tau deposition for 2 years as dependent variables to investigate whether WMH volume could precede AD pathologies. RESULTS Baseline Aβ deposition, but not tau deposition, had significant positive association with longitudinal change of WMH volume over 2 years. Baseline WMH volume was not related with any of longitudinal change of Aβ or tau deposition for 2 years. We also found a significant interaction effect between baseline Aβ deposition and sex on longitudinal change of WMH volume. Subsequent subgroup analyses showed that high baseline Aβ deposition was associated with increase of WMH volume over 2 years in female, but not in male. CONCLUSIONS Our findings suggest that Aβ deposition accelerates cerebral WMHs, particularly in female, whereas white matter degeneration appears not influence on longitudinal Aβ increase. The results also did not support any direction of influence between tau deposition and WMHs.
Collapse
Affiliation(s)
- Woo-Jin Cha
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Interdisciplinary program of cognitive science, Seoul National University College of Humanities, Seoul, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Young Chang
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Jung-Min Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyungtae Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeji Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary program of cognitive science, Seoul National University College of Humanities, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Xue D, Blue EE, Conomos MP, Fohner AE. The power of representation: Statistical analysis of diversity in US Alzheimer's disease genetics data. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12462. [PMID: 38500778 PMCID: PMC10945594 DOI: 10.1002/trc2.12462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a complex disease influenced by genetics and environment. More than 75 susceptibility loci have been linked to late-onset AD, but most of these loci were discovered in genome-wide association studies (GWAS) exclusive to non-Hispanic White individuals. There are wide disparities in AD risk across racially stratified groups, and while these disparities are not due to genetic differences, underrepresentation in genetic research can further exacerbate and contribute to their persistence. We investigated the racial/ethnic representation of participants in United States (US)-based AD genetics and the statistical implications of current representation. METHODS We compared racial/ethnic data of participants from array and sequencing studies in US AD genetics databases, including National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) and NIAGADS Data Sharing Service (dssNIAGADS), to AD and related dementia (ADRD) prevalence and mortality. We then simulated the statistical power of these datasets to identify risk variants from non-White populations. RESULTS There is insufficient statistical power (probability <80%) to detect single nucleotide polymorphisms (SNPs) with low to moderate effect sizes (odds ratio [OR]<1.5) using array data from Black and Hispanic participants; studies of Asian participants are not powered to detect variants OR <= 2. Using available and projected sequencing data from Black and Hispanic participants, risk variants with OR = 1.2 are detectable at high allele frequencies. Sample sizes remain insufficiently powered to detect these variants in Asian populations. DISCUSSION AD genetics datasets are largely representative of US ADRD burden. However, there is a wide discrepancy between proportional representation and statistically meaningful representation. Most variation identified in GWAS of non-Hispanic White individuals have low to moderate effects. Comparable risk variants in non-White populations are not detectable given current sample sizes, which could lead to disparities in future studies and drug development. We urge AD genetics researchers and institutions to continue investing in recruiting diverse participants and use community-based participatory research practices.
Collapse
Affiliation(s)
- Diane Xue
- Institute for Public Health GeneticsUniversity of Washington School of Public HealthSeattleWashingtonUSA
| | - Elizabeth E. Blue
- Institute for Public Health GeneticsUniversity of Washington School of Public HealthSeattleWashingtonUSA
- Division of Medical GeneticsDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Brotman Baty InstituteSeattleWashingtonUSA
| | - Matthew P. Conomos
- Department of BiostatisticsUniversity of Washington School of Public HealthSeattleWashingtonUSA
| | - Alison E. Fohner
- Institute for Public Health GeneticsUniversity of Washington School of Public HealthSeattleWashingtonUSA
- Department of EpidemiologyUniversity of Washington School of Public HealthSeattleWashingtonUSA
| |
Collapse
|
25
|
Byeon G, Byun MS, Yi D, Ahn H, Jung G, Lee YS, Kim YK, Kang KM, Sohn CH, Lee DY. Moderation of Amyloid-β Deposition on the Effect of Cholinesterase Inhibitors on Cognition in Mild Cognitive Impairment. J Alzheimers Dis 2024; 101:91-97. [PMID: 39121119 PMCID: PMC11380220 DOI: 10.3233/jad-240380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background Clinical trial findings on cholinesterase inhibitors (ChEIs) for mild cognitive impairment (MCI) are inconclusive, offering limited support for their MCI treatment. Given that nearly half of amnestic MCI cases lack cerebral amyloid-β (Aβ) deposition, a hallmark of Alzheimer's disease; this Aβ heterogeneity may explain inconsistent results. Objective This study aimed to assess whether Aβ deposition moderates ChEI effects on amnestic MCI cognition. Methods We examined 118 individuals with amnestic MCI (ages 55-90) in a longitudinal cohort study. Baseline and 2-year follow-up assessments included clinical evaluations, neuropsychological testing, and multimodal neuroimaging. Generalized linear models were primarily analyzed to test amyloid positivity's moderation of ChEI effects on cognitive change over 2 years. Cognitive outcomes included Mini-Mental Status Examination score, the total score of the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological battery, and Clinical Dementia Rating-sum of boxes. Results The analysis found no significant ChEI use x amyloid positivity interaction for all cognitive outcomes. ChEI use, irrespective of Aβ status, was associated with more cognitive decline over the 2-year period. Conclusions Aβ pathology does not appear to moderate ChEI effects on cognitive decline in MCI.
Collapse
Affiliation(s)
- Gihwan Byeon
- Department of Neuropsychiatry, Kangwon National University Hospital, Chuncheon, Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG- SNU Boramae Medical Center, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Korea
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, Korea
| |
Collapse
|
26
|
Han SM, Byun MS, Yi D, Jung JH, Kong N, Chang YY, Keum M, Jung GJ, Lee JY, Lee YS, Kim YK, Kang KM, Sohn CH, Lee DY. Modulatory Effect of Blood LDL Cholesterol on the Association between Cerebral Aβ and Tau Deposition in Older Adults. J Prev Alzheimers Dis 2024; 11:1767-1774. [PMID: 39559888 PMCID: PMC11573824 DOI: 10.14283/jpad.2024.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND This study investigates the synergistic relationship between blood low-density lipoprotein cholesterol (LDL-C) and cerebral beta-amyloid (Aβ) in relation to tau deposition, a key factor in the pathology of Alzheimer's disease (AD), in older adults across a diverse cognitive spectrum. OBJECTIVES To examine whether higher levels of LDL-C in the blood moderate the association of cerebral Aβ with tau deposition in older adults, including those with normal cognition, mild cognitive impairment, and Alzheimer's disease dementia. DESIGN Cross-sectional design. SETTING The study was conducted as a part of a prospective cohort study. All assessments were done at the Seoul National University Hospital, Seoul, South Korea. PARTICIPANTS A total of 136 older adults (aged 60-85 years) with normal cognition, mild cognitive impairment or Alzheimer's disease (AD) dementia were included. MEASUREMENTS Serum lipid measurements, [11C] Pittsburgh Compound B-positron emission tomography (PET), [18F] AV-1451 PET, and magnetic resonance imaging were performed on all participants. RESULTS There was a significant Aβ x LDL-C interaction effect on tau deposition indicating a synergistic moderation effect of LDL-C on the relationship between Aβ and tau deposition. Subsequent subgroup analysis showed that the positive association between Aβ and tau deposition was stronger in higher LDL-C group than in lower LDL-C group. In contrast, other lipids, such as total cholesterol, high-density lipoprotein cholesterol, and triglycerides, did not show a similar moderation effect on the relationship between Aβ deposition and tau deposition. CONCLUSION Our findings suggest that blood LDL-C synergistically enhances the influence of Aβ deposition on tau pathology, emphasizing the need for greater attention to the role of LDL-C in AD progression.
Collapse
Affiliation(s)
- S M Han
- Dong Young Lee, Department of Neuropsychiatry, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Telephone: +82-2-2072-2205, Fax: +82-2-744-2471,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hirschfeld LR, Deardorff R, Chumin EJ, Wu YC, McDonald BC, Cao S, Risacher SL, Yi D, Byun MS, Lee JY, Kim YK, Kang KM, Sohn CH, Nho K, Saykin AJ, Lee DY. White matter integrity is associated with cognition and amyloid burden in older adult Koreans along the Alzheimer's disease continuum. Alzheimers Res Ther 2023; 15:218. [PMID: 38102714 PMCID: PMC10725037 DOI: 10.1186/s13195-023-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND White matter (WM) microstructural changes in the hippocampal cingulum bundle (CBH) in Alzheimer's disease (AD) have been described in cohorts of largely European ancestry but are lacking in other populations. METHODS We assessed the relationship between CBH WM integrity and cognition or amyloid burden in 505 Korean older adults aged ≥ 55 years, including 276 cognitively normal older adults (CN), 142 with mild cognitive impairment (MCI), and 87 AD patients, recruited as part of the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) at Seoul National University. RESULTS Compared to CN, AD and MCI subjects showed significantly higher RD, MD, and AxD values (all p-values < 0.001) and significantly lower FA values (left p ≤ 0.002, right p ≤ 0.015) after Bonferroni adjustment for multiple comparisons. Most tests of cognition and mood (p < 0.001) as well as higher medial temporal amyloid burden (p < 0.001) were associated with poorer WM integrity in the CBH after Bonferroni adjustment. CONCLUSION These findings are consistent with patterns of WM microstructural damage previously reported in non-Hispanic White (NHW) MCI/AD cohorts, reinforcing existing evidence from predominantly NHW cohort studies.
Collapse
Affiliation(s)
- Lauren R Hirschfeld
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Evgeny J Chumin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Yu-Chien Wu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brenna C McDonald
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sha Cao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, 07061, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061, South Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University School of Informatics and Computing, Indianapolis, IN, 46202, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, South Korea
| |
Collapse
|
28
|
Heng NYW, Rittman T. Understanding ethnic diversity in open dementia neuroimaging data sets. Brain Commun 2023; 5:fcad308. [PMID: 38025280 PMCID: PMC10667030 DOI: 10.1093/braincomms/fcad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Ethnic differences in dementia are increasingly recognized in epidemiological measures and diagnostic biomarkers. Nonetheless, ethnic diversity remains limited in many study populations. Here, we provide insights into ethnic diversity in open-access neuroimaging dementia data sets. Data sets comprising dementia populations with available data on ethnicity were included. Statistical analyses of sample and effect sizes were based on the Cochrane Handbook. Nineteen databases were included, with 17 studies of healthy groups or a combination of diagnostic groups if breakdown was unavailable and 12 of mild cognitive impairment and dementia groups. Combining all studies on dementia patients, the largest ethnic group was Caucasian (20 547 participants), with the next most common being Afro-Caribbean (1958), followed by Asian (1211). The smallest effect size detectable within the Caucasian group was 0.03, compared to Afro-Caribbean (0.1) and Asian (0.13). Our findings quantify the lack of ethnic diversity in openly available dementia data sets. More representative data would facilitate the development and validation of biomarkers relevant across ethnicities.
Collapse
Affiliation(s)
- Nicholas Yew Wei Heng
- Department of Neurosciences, University of Cambridge, Herchel Smith building, Cambridge Biomedical Campus, Robinson Way, Cambridge CB2 0SZ, UK
| | - Timothy Rittman
- Department of Neurosciences, University of Cambridge, Herchel Smith building, Cambridge Biomedical Campus, Robinson Way, Cambridge CB2 0SZ, UK
| |
Collapse
|
29
|
Byun MS, Chang M, Yi D, Ahn H, Han D, Jeon S, Jang H, Lee DY, Oh SH. Association of Central Auditory Processing Dysfunction With Preclinical Alzheimer's Disease. Otolaryngol Head Neck Surg 2023; 169:112-119. [PMID: 36939433 PMCID: PMC10846842 DOI: 10.1002/ohn.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To investigate whether central auditory processing dysfunction measured by the dichotic digit test-1 digit (DDT1) is present in preclinical Alzheimer's disease (AD) individuals who are cognitively normal (CN) older adults with the cerebral beta-amyloid (Aβ) deposition and to explore the potential of the DDT1 as a screening test for preclinical AD. STUDY DESIGN Cross-sectional design. SETTING A prospective observational cohort study. METHODS CN older adults with a global clinical dementia rating score of 0 were included. The hearing test battery including pure-tone audiometry, speech audiometry, distortion product otoacoustic emission, and DDT1 was administered to participants. RESULTS Fifty CN older adults were included. Among them, 38 individuals were included in the Aβ deposition negative (AN) group and 12 were included in the Aβ deposition positive (AP) group. The DDT1 scores of both the better and worse ears were significantly lower in the AP group than in the AN group (p = .008 and p = .015, respectively). No significant differences were observed between the groups in tests of the peripheral auditory pathways. In multivariable logistic regression analysis adjusted for apolipoprotein E4 positivity, the DDT1 better ear score predicted the AP group (p = .036, odds ratio = 0.892, 95% confidence interval: 0.780-0.985) with relatively high diagnostic accuracy. CONCLUSION Our findings suggest that Aβ deposition may affect the central auditory pathway even before cognitive decline appears. DDT1, which can easily be applied to the old-age population, may have the potential as a screening tool for preclinical AD.
Collapse
Affiliation(s)
- Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Munyoung Chang
- Department of Otolaryngology–Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, South Korea
- Department of Otolaryngology–Head and Neck Surgery, Chung-Ang University Hospital, Seoul, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Centre, Seoul National University, Seoul, South Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, South Korea
| | - Dongkyun Han
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Seulki Jeon
- Department of Otolaryngology–Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hyunsook Jang
- Division of Speech Pathology and Audiology, Research Institute of Audiology & Speech Pathology, Hallym University, Chuncheon-si, Gangwon-do, South Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Institute of Human Behavioral Medicine, Medical Research Centre, Seoul National University, Seoul, South Korea
| | - Seung Ha Oh
- Department of Otolaryngology–Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Otolaryngology–Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
30
|
Lee S, Byun MS, Yi D, Kim MJ, Jung JH, Kong N, Jung G, Ahn H, Lee JY, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Body mass index and two-year change of in vivo Alzheimer's disease pathologies in cognitively normal older adults. Alzheimers Res Ther 2023; 15:108. [PMID: 37312229 DOI: 10.1186/s13195-023-01259-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Low body mass index (BMI) or underweight status in late life is associated with an increased risk of dementia or Alzheimer's disease (AD). However, the relationship between late-life BMI and prospective longitudinal changes of in-vivo AD pathology has not been investigated. METHODS This prospective longitudinal study was conducted as part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease (KBASE). A total of 194 cognitive normal older adults were included in the analysis. BMI at baseline was measured, and two-year changes in brain Aβ and tau deposition on PET imaging were used as the main outcomes. Linear mixed-effects (LME) models were used to examine the relationships between late-life BMI and longitudinal change in AD neuropathological biomarkers. RESULTS A lower BMI at baseline was significantly associated with a greater increase in tau deposition in AD-signature region over 2 years (β, -0.018; 95% CI, -0.028 to -0.004; p = .008), In contrast, BMI was not related to two-year changes in global Aβ deposition (β, 0.0002; 95% CI, -0.003 to 0.002, p = .671). An additional exploratory analysis for each sex showed lower baseline BMI was associated with greater increases in tau deposition in males (β, -0.027; 95% CI, -0.046 to -0.009; p = 0.007), but not in females. DISCUSSION The findings suggest that lower BMI in late-life may predict or contribute to the progression of tau pathology over the subsequent years in cognitively unimpaired older adults.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, 10475, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Min Jung Kim
- Department of Neuropsychiatry, Nowon Eulji University Hospital, Seoul, 01830, Republic of Korea
| | - Joon Hyung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Nayeong Kong
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Hyejin Ahn
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
31
|
Park JC, Lim H, Byun MS, Yi D, Byeon G, Jung G, Kim YK, Lee DY, Han SH, Mook-Jung I. Sex differences in the progression of glucose metabolism dysfunction in Alzheimer's disease. Exp Mol Med 2023; 55:1023-1032. [PMID: 37121979 PMCID: PMC10238450 DOI: 10.1038/s12276-023-00993-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 05/02/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid plaques and impaired brain metabolism. Because women have a higher prevalence of AD than men, sex differences are of great interest. Using cross-sectional and longitudinal data, we showed sex-dependent metabolic dysregulations in the brains of AD patients. Cohort 1 (South Korean, n = 181) underwent Pittsburgh compound B-PET, fluorodeoxyglucose-PET, magnetic resonance imaging, and blood biomarker (plasma tau and beta-amyloid 42 and 40) measurements at baseline and two-year follow-ups. Transcriptome analysis of data from Cohorts 2 and 3 (European, n = 78; Singaporean, n = 18) revealed sex differences in AD-related alterations in brain metabolism. In women (but not in men), all imaging indicators displayed consistent correlation curves with AD progression. At the two-year follow-up, clear brain metabolic impairment was revealed only in women, and the plasma beta-amyloid 42/40 ratio was a possible biomarker for brain metabolism in women. Furthermore, our transcriptome analysis revealed sex differences in transcriptomes and metabolism in the brains of AD patients as well as a molecular network of 25 female-specific glucose metabolic genes (FGGs). We discovered four key-attractor FGG genes (ALDOA, ENO2, PRKACB, and PPP2R5D) that were associated with amyloid/tau-related genes (APP, MAPT, BACE1, and BACE2). Furthermore, these genes successfully distinguished amyloid positivity in women. Understanding sex differences in the pathogenesis of AD and considering these differences will improve development of effective diagnostics and therapeutic treatments for AD.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hanbyeol Lim
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Dahyun Yi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Gihwan Byeon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sun-Ho Han
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Korea Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Ilchun Genomic Medicine Institute (GMI), College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Korea Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
32
|
Hirschfeld LR, Deardorff R, Chumin EJ, Wu YC, McDonald BC, Cao S, Risacher SL, Yi D, Byun MS, Lee JY, Kim YK, Kang KM, Sohn CH, Nho K, Saykin AJ, Lee DY. White matter integrity is associated with cognition and amyloid burden in older adult Koreans along the Alzheimer's disease continuum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.05.23288147. [PMID: 37066317 PMCID: PMC10104207 DOI: 10.1101/2023.04.05.23288147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND White matter (WM) microstructural changes in the hippocampal cingulum bundle (CBH) in Alzheimer's disease (AD) have been described in cohorts of largely European ancestry but are lacking in other populations. METHODS We assessed the relationship between CBH WM integrity and cognition or amyloid burden in 505 Korean older adults aged ≥55 years, including 276 cognitively normal older adults (CN), 142 mild cognitive impairment (MCI), and 87 AD, recruited as part of the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) at Seoul National University. RESULTS Compared to CN, AD and MCI subjects showed decreased WM integrity in the bilateral CBH. Cognition, mood, and higher amyloid burden were also associated with poorer WM integrity in the CBH. CONCLUSION These findings are consistent with patterns of WM microstructural damage previously reported in non-Hispanic White (NHW) MCI/AD cohorts, reinforcing existing evidence from predominantly NHW cohort studies.
Collapse
Affiliation(s)
- Lauren Rose Hirschfeld
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Evgeny J Chumin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA, 47405
| | - Yu-Chien Wu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Brenna C McDonald
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Sha Cao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Korea, 03080
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea, 03080
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea, 03080
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea, 03080
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Korea, 07061
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea, 07061
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea, 03080
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea, 03080
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Indiana University School of Informatics and Computing, Indianapolis, IN USA, 46202
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA, 46202
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA, 46202
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Korea, 03080
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea, 03080
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea, 03080
| |
Collapse
|
33
|
Fillenbaum GG, Mohs R. CERAD (Consortium to Establish a Registry for Alzheimer's Disease) Neuropsychology Assessment Battery: 35 Years and Counting. J Alzheimers Dis 2023; 93:1-27. [PMID: 36938738 PMCID: PMC10175144 DOI: 10.3233/jad-230026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND In 1986, the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) was mandated to develop a brief neuropsychological assessment battery (CERAD-NAB) for AD, for uniform neuropsychological assessment, and information aggregation. Initially used across the National Institutes of Aging-funded Alzheimer's Disease Research Centers, it has become widely adopted wherever information is desired on cognitive status and change therein, particularly in older populations. OBJECTIVE Our purpose is to provide information on the multiple uses of the CERAD-NAB since its inception, and possible further developments. METHODS Since searching on "CERAD neuropsychological assessment battery" or similar terms missed important information, "CERAD" alone was entered into PubMed and SCOPUS, and CERAD-NAB use identified from the resulting studies. Use was sorted into major categories, e.g., psychometric information, norms, dementia/differential dementia diagnosis, epidemiology, intervention evaluation, genetics, etc., also translations, country of use, and alternative data gathering approaches. RESULTS CERAD-NAB is available in ∼20 languages. In addition to its initial purpose assessing AD severity, CERAD-NAB can identify mild cognitive impairment, facilitate differential dementia diagnosis, determine cognitive effects of naturally occurring and experimental interventions (e.g., air pollution, selenium in soil, exercise), has helped to clarify cognition/brain physiology-neuroanatomy, and assess cognitive status in dementia-risk conditions. Surveys of primary and tertiary care patients, and of population-based samples in multiple countries have provided information on prevalent and incident dementia, and cross-sectional and longitudinal norms for ages 35-100 years. CONCLUSION CERAD-NAB has fulfilled its original mandate, while its uses have expanded, keeping up with advances in the area of dementia.
Collapse
Affiliation(s)
- Gerda G Fillenbaum
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Richard Mohs
- Global Alzheimer's Platform Foundation, Washington, DC, USA
| |
Collapse
|
34
|
Moon SW, Byun MS, Yi D, Kim MJ, Jung JH, Kong N, Jung G, Ahn H, Lee JY, Kang KM, Sohn CH, Kim YK, Lee DY. Low Ankle-Brachial Index Relates to Alzheimer-Signature Cerebral Glucose Metabolism in Cognitively Impaired Older Adults. J Alzheimers Dis 2023; 93:87-95. [PMID: 36938732 DOI: 10.3233/jad-220911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Ankle-brachial index (ABI), an indicator of atherosclerosis or arterial stiffness, has been associated with Alzheimer's disease (AD) dementia and related cognitive impairment. Nevertheless, only limited information is available regarding its contribution to brain alterations leading to cognitive decline in late-life. OBJECTIVE We aimed to investigate the relationship of ABI with in vivo AD pathologies and cerebrovascular injury in cognitively impaired older adults. METHODS Total 127 cognitively impaired (70 mild cognitive impairment and 57 AD dementia) individuals, who participated in an ongoing prospective cohort study, were included. All participants underwent comprehensive clinical and neuropsychological assessment, ABI measurement, apolipoprotein E (APOE) ɛ4 genotyping, and multi-modal brain imaging including [11C] Pittsburgh Compound B (PiB)-positron emission tomography (PET) and [18F] fludeoxyglucose (FDG)-PET, and MRI. RESULTS General linear model analysis showed significant relationship between ABI strata (low ABI: <1.00, normal ABI: 1.00-1.29, and high ABI: ≥1.30) and AD-signature region cerebral glucose metabolism (AD-CM), even after controlling age, sex, clinical dementia rating-sum of box, and APOE ɛ4 positivity (p = 0.029). Post hoc comparison revealed that low ABI had significantly lower AD-CM than middle and high ABI, while no difference of AD-CM was found between middle and high ABI. There was no significant difference of global Aβ deposition, AD-signature region cortical thickness, and white matter hyperintensity volume between the three ABI strata. CONCLUSION Our findings suggest that lower ABI, likely related to atherosclerosis, may contribute to the aggravation of AD-related regional neurodegeneration in cognitively impaired older adults.
Collapse
Affiliation(s)
- Seok Woo Moon
- Department of Neuropsychiatry & Research Institute of Medical Science, Konkuk University School of Medicine, Chungju, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Psychiatry, Eulji University Nowon Eulji Medical Center, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nayeong Kong
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
35
|
Kim M, Yi D, Byun MS, Ahn H, Jung JH, Kong N, Chang Y, Choi H, Choi J, Kim K, Jung G, Lee DY. Development of a Cognitive Composite for Preclinical Alzheimer's Disease in Korean Older Adults. J Alzheimers Dis 2023; 96:633-641. [PMID: 37807780 PMCID: PMC10657668 DOI: 10.3233/jad-230263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND As tracking subtle cognitive declines in the preclinical stage of Alzheimer's disease (AD) is difficult with traditional individual outcome measures, need for cognitive composite for preclinical AD is widely recognized. OBJECTIVE We aimed to develop culturally appropriate cognitive composite that sensitively identifies subtle cognitive decline of preclinical AD in Korean older adults. METHODS A total 225 cognitively normal elderly individuals from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease, were included. Tests of episodic memory, orientation, and executive function were carefully selected through review of previously established composites. Three candidate composites including Consortium to Establish a Registry for Alzheimer's Disease Word list recall (WLR), Logical memory (LM) II, and Mini-Mental status examination (MMSE) in common, and Letter fluency test (LF), category fluency test, or Stroop color and word test, were selected. RESULTS Student t-tests demonstrated that only the composite composed of WLR, LM II, MMSE, and LF (Composite 1) showed a significant difference in score decline over two-year follow-up period between Aβ positive and negative group (p = 0.03). Linear mixed model analyses also showed that the Aβ x time interaction effect was significant only for Composite 1 (p = 0.025). Based on the results, Composite 1 was chosen as the final cognitive composite for preclinical Alzheimer's disease (CPAD). CONCLUSIONS CPAD can be used to assess subtle cognitive decline of preclinical AD in clinical research settings, especially in Korean older adults. It also may be used for monitoring progression or treatment benefits in clinical practices.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Psychiatry, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Dahyun Yi
- Medical Research Center, Institute of Human Behavioral Medicine, Seoul National University, Seoul, Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Hyejin Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Joon Hyung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Nayeong Kong
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Yoonyoung Chang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Hyeji Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Jungmin Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Kyungtae Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Dong Young Lee
- Medical Research Center, Institute of Human Behavioral Medicine, Seoul National University, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - for the KBASE Research Group
- Department of Psychiatry, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Medical Research Center, Institute of Human Behavioral Medicine, Seoul National University, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Synergistic interaction of high blood pressure and cerebral beta-amyloid on tau pathology. Alzheimers Res Ther 2022; 14:193. [PMID: 36566225 PMCID: PMC9789538 DOI: 10.1186/s13195-022-01149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hypertension has been associated with Alzheimer's disease (AD) dementia as well as vascular dementia. However, the underlying neuropathological changes that link hypertension to AD remain poorly understood. In our study, we examined the relationships of a history of hypertension and high current blood pressure (BP) with in vivo AD pathologies including β-amyloid (Aβ) and tau and also investigated whether a history of hypertension and current BP respectively affect the association between Aβ and tau deposition. METHODS This cross-sectional study was conducted as part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease, a prospective cohort study. Cognitively normal older adults who underwent both Aβ and tau positron emission tomography (PET) (i.e., [11C]-Pittsburgh compound B and [18F] AV-1451 PET) were selected. History of hypertension and current BP were evaluated and cerebral Aβ and tau deposition measured by PET were used as main outcomes. Generalized linear regression models were used to estimate associations. RESULTS A total of 68 cognitively normal older adults (mean [SD] age, 71.5 [7.4] years; 40 women [59%]) were included in the study. Neither a history of hypertension nor the current BP exhibited a direct association with Aβ or tau deposition. However, the synergistic interaction effects of high current systolic (β, 0.359; SE, 0.141; p = 0.014) and diastolic (β, 0.696; SE, 0.158; p < 0.001) BP state with Aβ deposition on tau deposition were significant, whereas there was no such effect for a history of hypertension (β, 0.186; SE, 0.152; p = 0.224). CONCLUSIONS The findings suggest that high current BP, but not a history of hypertension, synergistically modulate the relationship between cerebral Aβ and tau deposition in late-life. In terms of AD prevention, the results support the importance of strict BP control in cognitively normal older adults with hypertension.
Collapse
|
37
|
Jeon SY, Byun MS, Yi D, Jung G, Lee JY, Kim YK, Sohn CH, Kang KM, Lee YJ, Lee DY. Circadian rest-activity rhythm and longitudinal brain changes underlying late-life cognitive decline. Psychiatry Clin Neurosci 2022; 77:205-212. [PMID: 36527292 PMCID: PMC10360409 DOI: 10.1111/pcn.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
AIM The neurobiological substrates underlying the relationship of circadian rest-activity rhythm (RAR) alteration with accelerated late-life cognitive decline are not clearly understood. In the present study, the longitudinal relationship of objectively measured circadian RAR with in vivo Alzheimer disease (AD) pathologies and cerebrovascular injury was investigated in older adults without dementia. METHODS The present study included 129 participants without dementia who participated in the KBASE (Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease) cohort. All participants underwent actigraphy at baseline and two consecutive [11 C] Pittsburgh compound-B positron emission tomography (PET), [18 F] fluorodeoxyglucose-PET, magnetic resonance imaging, and Mini-Mental State Examination (MMSE) at baseline and at a 2-year follow-up assessment. The associations of circadian RAR with annualized change in neuroimaging measures including global amyloid-beta retention, AD-signature region cerebral glucose metabolism (AD-CM), and white matter hyperintensity volume were examined. RESULTS Delayed acrophase at baseline was significantly associated with greater annualized decline of AD-CM over a 2-year period, but not with that of other neuroimaging measures. In contrast, other circadian RAR parameters at baseline had no association with annualized change of any neuroimaging measures. Annualized decline of AD-CM was also significantly positively associated with the annual change in MMSE scores. Furthermore, a mediation analysis showed that greater reduction in AD-CM mediated the effect of delayed acrophase at baseline on faster decline of MMSE score. CONCLUSION The findings indicate that delayed acrophase in late life may cause or predict hypometabolism at AD-signature brain regions, which underlies cognitive decline in the near future.
Collapse
Affiliation(s)
- So Yeon Jeon
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea.,Department of Psychiatry, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Centre, Seoul National University, Seoul, South Korea
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University College of Medcine, Seoul, South Korea.,Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Yu Jin Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Medical Research Centre, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
38
|
Kang KM, Byun MS, Yi D, Lee KH, Kim M, Ahn H, Jung G, Lee J, Kim YK, Lee Y, Sohn C, Lee DY. Enlarged perivascular spaces are associated with decreased brain tau deposition. CNS Neurosci Ther 2022; 29:577-586. [PMID: 36468423 PMCID: PMC9873511 DOI: 10.1111/cns.14040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/10/2022] Open
Abstract
AIMS The aim of this study was to investigate the associations of enlarged perivascular spaces (EPVS) in the basal ganglia (BG) and centrum semiovale (CSO) with beta-amyloid (Aβ) and tau deposition in older adults with a diverse cognitive spectrum. METHODS A total of 163 (68 cognitively normal and 95 cognitively impaired) older participants underwent [11 C] Pittsburgh compound B and [18 F] AV-1451 PET, and MRI. EPVS in the BG and CSO and other small vessel disease markers, such as white matter hyperintensities, lacunes, and deep and lobar microbleeds, were assessed. RESULTS Increased EPVS in the BG showed a significant association with lower cerebral tau deposition, even after controlling for other small vessel disease markers. Further exploratory analyses showed that this association was significant in cognitively impaired, Aβ-positive, or APOE4-positive individuals, but not significant in the cognitively normal, Aβ-negative, or APOE4-negative participants. In contrast to EPVS in the BG, EPVS in the CSO did not have any relationship with cerebral tau deposition. In addition, none of the two types of EPVS were associated with cerebral Aβ deposition. CONCLUSION Brain tau deposition appears to be reduced with increased EPVS in the BG, especially in individuals with cognitive impairment, pathological amyloid burden, or genetic Alzheimer's disease risk.
Collapse
Affiliation(s)
- Koung Mi Kang
- Department of RadiologySeoul National University HospitalSeoulKorea,Department of RadiologySeoul National University College of MedicineSeoulKorea
| | - Min Soo Byun
- Department of NeuropsychiatrySeoul National University College of MedicineSeoulKorea,Department of NeuropsychiatrySeoul National University HospitalSeoulKorea
| | - Dahyun Yi
- Biomedical Research Institute, Seoul National University HospitalSeoulKorea
| | - Kyung Hoon Lee
- Department of RadiologySeoul National University HospitalSeoulKorea
| | - Min Jung Kim
- Department of NeuropsychiatrySeoul National University HospitalSeoulKorea
| | - Hyejin Ahn
- Department of NeuropsychiatrySeoul National University HospitalSeoulKorea
| | - Gijung Jung
- Department of NeuropsychiatrySeoul National University HospitalSeoulKorea
| | - Jun‐Young Lee
- Department of NeuropsychiatrySeoul National University College of MedicineSeoulKorea,Department of NeuropsychiatrySMG‐SNU Boramae Medical CenterSeoulKorea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSMG‐SNU Boramae Medical CenterSeoulKorea
| | - Yun‐Sang Lee
- Department of Nuclear MedicineSeoul National University College of MedicineSeoulKorea
| | - Chul‐Ho Sohn
- Department of RadiologySeoul National University HospitalSeoulKorea,Department of RadiologySeoul National University College of MedicineSeoulKorea
| | - Dong Young Lee
- Department of NeuropsychiatrySeoul National University College of MedicineSeoulKorea,Department of NeuropsychiatrySeoul National University HospitalSeoulKorea,Institute of Human Behavioral MedicineMedical Research Center Seoul National UniversitySeoulKorea
| | | |
Collapse
|
39
|
Jung JH, Kim G, Byun MS, Lee JH, Yi D, Park H, Lee DY. Gut microbiome alterations in preclinical Alzheimer's disease. PLoS One 2022; 17:e0278276. [PMID: 36445883 PMCID: PMC9707757 DOI: 10.1371/journal.pone.0278276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Although some human studies have reported gut microbiome changes in individuals with Alzheimer's disease (AD) dementia or mild cognitive impairment (MCI), gut microbiome alterations in preclinical AD, i.e., cerebral amyloidosis without cognitive impairment, is largely unknown. OBJECTIVE We aimed to identify gut microbial alterations associated with preclinical AD by comparing cognitively normal (CN) older adults with cerebral Aβ deposition (Aβ+ CN) and those without cerebral Aβ deposition (Aβ- CN). METHODS Seventy-eight CN older participants (18 Aβ+ CN and 60 Aβ- CN) were included, and all participants underwent clinical assessment and Pittsburg compound B-positron emission tomography. The V3-V4 region of the 16S rRNA gene of genomic DNA extracted from feces was amplified and sequenced to establish the microbial community. RESULTS Generalized linear model analysis revealed that the genera Megamonas (B = 3.399, q<0.001), Serratia (B = 3.044, q = 0.005), Leptotrichia (B = 5.862, q = 0.024) and Clostridium (family Clostridiaceae) (B = 0.788, q = 0.034) were more abundant in the Aβ+ CN group than the Aβ- CN group. In contrast, genera CF231 (B = -3.237, q< 0.001), Victivallis (B = -3.447, q = 0.004) Enterococcus (B = -2.044, q = 0.042), Mitsuokella (B = -2.119, q = 0.042) and Clostridium (family Erysipelotrichaceae) (B = -2.222, q = 0.043) were decreased in Aβ+ CN compared to Aβ- CN. Notably, the classification model including the differently abundant genera could effectively distinguish Aβ+ CN from Aβ- CN (AUC = 0.823). CONCLUSION Our findings suggest that specific alterations of gut bacterial taxa are related to preclinical AD, which means these changes may precede cognitive decline. Therefore, examining changes in the microbiome may be helpful in preclinical AD screening.
Collapse
Affiliation(s)
- Joon Hyung Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Genome and Company, Seongnam, Republic of Korea
- * E-mail: (DYL); (HP)
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
- * E-mail: (DYL); (HP)
| | | |
Collapse
|
40
|
Kim JW, Byun MS, Yi D, Lee JH, Sung K, Han D, Byeon G, Kim MJ, Jung JH, Chang YY, Jung G, Lee JY, Lee YS, Kim YK, Kang KM, Sohn CH, Lee DY. Association of low meal frequency with decreased in vivo Alzheimer's pathology. iScience 2022; 25:105422. [PMID: 36388975 PMCID: PMC9646955 DOI: 10.1016/j.isci.2022.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/11/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Little is known about the association between meal frequency and Alzheimer's disease (AD) in humans. We tested the hypothesis that low meal frequency (LMF) is associated with reduced in vivo AD pathology in human brain, and additionally investigated the mediation of serum ghrelin, a hunger-related hormone, for the association. A total of 411 non-demented older adults were systematically interviewed to identify their dietary patterns including meal frequency and underwent multi-modal neuroimaging for cerebral beta-amyloid (Aβ) and tau deposition, glucose metabolism, and cerebrovascular injury. LMF (less than three meals a day) was significantly associated with lower Aβ deposition compared to high meal frequency (HMF). In addition, both LMF and reduced Aβ deposition were significantly related to elevated serum ghrelin. Our findings suggest that LMF may be related to the lower risk of AD through reduced brain amyloid deposition. Additionally, ghrelin appears mediate the association between LMF and lower amyloid deposition.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-gil, Hwaseong, Gyeonggi 18450, Republic of Korea
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon 24252, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dahyun Yi
- Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, Seoul 03080, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Kiyoung Sung
- Department of Psychiatry, Eulji University Nowon Eulji Medical Center, Seoul 01830, Republic of Korea
| | - Dongkyun Han
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gihwan Byeon
- Department of Neuropsychiatry, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea
| | - Min Jung Kim
- Department of Psychiatry, Eulji University Nowon Eulji Medical Center, Seoul 01830, Republic of Korea
| | - Joon Hyung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Yoon Young Chang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
41
|
Effect of Obesity and High-Density Lipoprotein Concentration on the Pathological Characteristics of Alzheimer's Disease in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232012296. [PMID: 36293147 PMCID: PMC9603479 DOI: 10.3390/ijms232012296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
The typical pathological features of Alzheimer's disease (AD) are the accumulation of amyloid plaques in the brain and reactivity of glial cells such as astrocytes and microglia. Clinically, the development of AD and obesity are known to be correlated. In this study, we analyzed the changes in AD pathological characteristics in 5XFAD mice after obesity induction through a high-fat diet (HFD). Surprisingly, high-density lipoprotein and apolipoprotein AI (APOA-I) serum levels were increased without low-density lipoprotein alteration in both HFD groups. The reactivity of astrocytes and microglia in the dentate gyrus of the hippocampus and fornix of the hypothalamus in 5XFAD mice was decreased in the transgenic (TG)-HFD high group. Finally, the accumulation of amyloid plaques in the dentate gyrus region of the hippocampus was also significantly decreased in the TG-HFD high group. These results suggest that increased high-density lipoprotein level, especially with increased APOA-I serum level, alleviates the pathological features of AD and could be a new potential therapeutic strategy for AD treatment.
Collapse
|
42
|
Kim JW, Byun MS, Lee JH, Yi D, Kim MJ, Jung G, Lee JY, Lee YS, Kim YK, Kang KM, Sohn CH, Lee DY. Spouse bereavement and brain pathologies: A propensity score matching study. Psychiatry Clin Neurosci 2022; 76:490-504. [PMID: 35751876 PMCID: PMC9796777 DOI: 10.1111/pcn.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 01/07/2023]
Abstract
AIM Spouse bereavement is one of life's greatest stresses and has been suggested to trigger or accelerate cognitive decline and dementia. However, little information is available about the potential brain pathologies underlying the association between spouse bereavement and cognitive decline. We aimed to investigate that lifetime spouse bereavement is associated with in vivo human brain pathologies underlying cognitive decline. METHODS A total of 319 ever-married older adults between the ages of 61 and 90 years underwent comprehensive clinical assessments and multimodal brain imaging including [11 C] Pittsburgh compound B-positron emission tomography (PET), AV-1451 PET, [18 F] fluorodeoxyglucose-PET, and magnetic resonance imaging. Participants were classified as experiencing no spouse bereavement or spouse bereavement, and comparisons using propensity score matching (59 cases and 59 controls) were performed. RESULTS Spouse bereavement was significantly associated with higher cerebral white matter hyperintensity (WMH) volume compared with no spouse bereavement. Interaction and subsequent subgroup analyses showed that spouse bereavement was significantly associated with higher WMH in the older (>75 years) subgroup and among those with no- or low-skill occupations. In addition, spouse bereavement at 60 years or older affects WMH volume compared with no spouse bereavement, whereas spouse bereavement at younger than 60 years did not. No group differences were observed in other brain pathologies between spouse bereavement categories. CONCLUSIONS The findings suggest that the spouse bereavement may contribute to dementia or cognitive decline by increasing cerebrovascular injury, particularly in older individuals and those with no- or low-skill occupations.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea.,Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Geriatric Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Dahyun Yi
- Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Psychiatry, Eulji University Nowon Eulji Medical Center, Seoul, Republic of Korea
| | - Gijung Jung
- Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
43
|
Park JC, Noh J, Jang S, Kim KH, Choi H, Lee D, Kim J, Chung J, Lee DY, Lee Y, Lee H, Yoo DK, Lee AC, Byun MS, Yi D, Han SH, Kwon S, Mook-Jung I. Association of B cell profile and receptor repertoire with the progression of Alzheimer's disease. Cell Rep 2022; 40:111391. [PMID: 36130492 DOI: 10.1016/j.celrep.2022.111391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Reports have revealed that the peripheral immune system is linked to neuropathology; however, little is known about the contribution of B lymphocytes in AD. For this longitudinal study, 133 participants are included at baseline and second-year follow-up. Also, we analyze B cell receptor (BCR) repertoire data generated from a public dataset of three normal and 10 AD samples and perform BCR repertoire profiling and pairwise sharing analysis. As a result, longitudinal increase in B lymphocytes is associated with increased cerebral amyloid deposition and hyperactivates induced pluripotent stem cell-derived microglia with loss-of-function for beta-amyloid clearance. Patients with AD share similar class-switched BCR sequences with identical isotypes, despite the high somatic hypermutation rate. Thus, BCR repertoire profiling can lead to the development of individualized immune-based therapeutics and treatment. We provide evidence of both quantitative and qualitative changes in B lymphocytes during AD pathogenesis.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jinsung Noh
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sukjin Jang
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hayoung Choi
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jieun Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Psychiatry, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyunho Lee
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Amos Chungwon Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dahyun Yi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sun-Ho Han
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; BK21+ Creative Research Engineer Development for IT, Seoul National University, Seoul 08826, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
44
|
Park J, Barahona‐Torres N, Jang S, Mok KY, Kim HJ, Han S, Cho K, Zhou X, Fu AKY, Ip NY, Seo J, Choi M, Jeong H, Hwang D, Lee DY, Byun MS, Yi D, Han JW, Mook‐Jung I, Hardy J. Multi-Omics-Based Autophagy-Related Untypical Subtypes in Patients with Cerebral Amyloid Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201212. [PMID: 35694866 PMCID: PMC9376815 DOI: 10.1002/advs.202201212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Indexed: 05/05/2023]
Abstract
Recent multi-omics analyses paved the way for a comprehensive understanding of pathological processes. However, only few studies have explored Alzheimer's disease (AD) despite the possibility of biological subtypes within these patients. For this study, unsupervised classification of four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with systems-biological approaches following various downstream analyses are performed. New subgroups within 170 patients with cerebral amyloid pathology (Aβ+) are revealed and the features of them are identified based on the top-rated targets constructing multi-omics factors of both whole (M-TPAD) and immune-focused models (M-IPAD). The authors explored the characteristics of subtypes and possible key-drivers for AD pathogenesis. Further in-depth studies showed that these subtypes are associated with longitudinal brain changes and autophagy pathways are main contributors. The significance of autophagy or clustering tendency is validated in peripheral blood mononuclear cells (PBMCs; n = 120 including 30 Aβ- and 90 Aβ+), induced pluripotent stem cell-derived human brain organoids/microglia (n = 12 including 5 Aβ-, 5 Aβ+, and CRISPR-Cas9 apolipoprotein isogenic lines), and human brain transcriptome (n = 78). Collectively, this study provides a strategy for precision medicine therapy and drug development for AD using integrative multi-omics analysis and network modelling.
Collapse
Affiliation(s)
- Jong‐Chan Park
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- Neuroscience Research InstituteMedical Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Natalia Barahona‐Torres
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| | - So‐Yeong Jang
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Kin Y. Mok
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| | - Haeng Jun Kim
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Sun‐Ho Han
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- Neuroscience Research InstituteMedical Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Kwang‐Hyun Cho
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Xiaopu Zhou
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong Kong999077China
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdong518057China
| | - Amy K. Y. Fu
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong Kong999077China
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdong518057China
| | - Nancy Y. Ip
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong Kong999077China
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdong518057China
| | - Jieun Seo
- Department of Laboratory MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Murim Choi
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Hyobin Jeong
- European Molecular Biology LaboratoryGenome Biology UnitHeidelberg69117Germany
| | - Daehee Hwang
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoul03080Republic of Korea
- Department of PsychiatryCollege of medicineSeoul National UniversitySeoul03080Republic of Korea
- Department of NeuropsychiatrySeoul National University HospitalSeoul03080Republic of Korea
| | - Min Soo Byun
- Department of PsychiatryPusan National University Yangsan HospitalYangsan50612Republic of Korea
| | - Dahyun Yi
- Biomedical Research InstituteSeoul National University HospitalSeoul03082Republic of Korea
| | - Jong Won Han
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Inhee Mook‐Jung
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- Neuroscience Research InstituteMedical Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - John Hardy
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| |
Collapse
|
45
|
Choe YM, Suh GH, Lee BC, Choi IG, Lee JH, Kim HS, Hwang J, Kim JW. Brain Amyloid Index as a Probable Marker Bridging Between Subjective Memory Complaint and Objective Cognitive Performance. Front Neurosci 2022; 16:912891. [PMID: 35860302 PMCID: PMC9289513 DOI: 10.3389/fnins.2022.912891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background The association between types of subjective memory complaint (SMC), poor objective cognitive performance, and brain Aβ deposition have been poorly understood. We investigated the association between types of SMC and objective global cognitive performance, then assessed whether this association is mediated by the brain amyloid prediction index (API). Methods In total, 173 non-demented older adults [63 cognitively normal (CN) and 110 mild cognitive impairment (MCI)] underwent comprehensive clinical assessments. Objective global cognitive performance and brain amyloid index were measured using the total score (TS) of the Consortium to Establish a Registry for Alzheimer’s Disease neuropsychological battery and API, respectively. In total, four items of SMC from the subjective memory complaints questionnaire (SMCQ) (SMCQ1: a feeling of memory problem; SMCQ2: the feeling of worse memory than 10 years ago; SMCQ3: the feeling of worse memory than others of similar age; or SMCQ4: the feeling of difficulty in everyday life) in global memory function were assessed. Results In non-demented and participants with MCI, SMCQ3-positive and SMCQ4-positive groups were associated with decreased TS. In participants with MCI, the SMCQ3-positive group was associated with increased API, and API was associated with decreased TS, but the SMCQ4-positive group did not. In addition, the association between the SMCQ3-positive group and poor TS disappeared when API was controlled as a covariate, indicating that API has a mediation effect. Conclusion The present findings suggest that SMC, a feeling of worse memory performance than others in a similar age group, in the older adults without dementia is associated with poor objective cognitive performance via increased brain amyloid index.
Collapse
Affiliation(s)
- Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
| | - Guk-Hee Suh
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
| | - Boung Chul Lee
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neuropsychiatry, Hallym University Hangang Sacred Heart Hospital, Seoul, South Korea
| | - Ihn-Geun Choi
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Psychiatry, Seoul W Psychiatric Office, Seoul, South Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University Hospital, Seoul, South Korea
| | - Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- *Correspondence: Jee Wook Kim,
| |
Collapse
|
46
|
Cognitive reserve proxies, Alzheimer pathologies, and cognition. Neurobiol Aging 2022; 110:88-95. [PMID: 34879329 PMCID: PMC9234822 DOI: 10.1016/j.neurobiolaging.2021.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 02/03/2023]
Abstract
This study aimed to explore the moderating effects of the frequently used cognitive reserve (CR) proxies [i.e., education, premorbid intelligence quotient (pIQ), occupational complexity (OC), and lifetime cognitive activity (LCA)] on the relationships between various in vivo Alzheimer's disease (AD) pathologies and cognition. In total, 351 [268 cognitively unimpaired (CU), 83 cognitive impaired (CI)] older adults underwent multi-modal brain imaging to measure AD pathologies and cognitive assessments, and information on CR proxies was obtained. For overall participants, only education moderated the relationship between Aβ deposition and cognition. Education, pIQ, and LCA, but not OC, showed moderating effect on the relationship between AD-signature cerebral hypometabolism and cognition. In contrast, only OC had a moderating effect on the relationship between cortical atrophy of the AD-signature regions and cognition. Such moderation effects of the CR proxies were similarly observed in CI individuals, but most of them were not in CU individuals. The findings suggest that the proposed CR proxies have different moderating effects on the relationships between specific AD pathologies and cognition.
Collapse
|
47
|
Application of QPLEXTM biomarkers in cognitively normal individuals across a broad age range and diverse regions with cerebral amyloid deposition. Exp Mol Med 2022; 54:61-71. [PMID: 35058557 PMCID: PMC8814000 DOI: 10.1038/s12276-021-00719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
The deposition of beta-amyloid (Aβ) in the brain precedes the onset of symptoms such as cognitive impairment in Alzheimer’s disease (AD); therefore, the early detection of Aβ accumulation is crucial. We previously reported the applicability of the QPLEXTM Alz plus assay kit for the prescreening of Aβ accumulation. Here, we tested the specific application of the kit in a large cohort of cognitively normal (CN) individuals of varying ages for the early detection of Aβ accumulation. We included a total of 221 CN participants with or without brain Aβ. The QPLEXTM biomarkers were characterized based on age groups (1st–3rd tertile) and across various brain regions with cerebral amyloid deposition. The 3rd tertile group (>65 years) was found to be the most suitable age group for the application of our assay kit. Receiver operating characteristic curve analysis showed that the area under the curve (AUC, discrimination power) was 0.878 with 69.7% sensitivity and 98.4% specificity in the 3rd tertile group. Additionally, specific correlations between biomarkers and cerebral amyloid deposition in four different brain regions revealed an overall correlation with general amyloid deposition, consistent with previous findings. Furthermore, the combinational panel with plasma Aβ1–42 levels maximized the discrimination efficiency and achieved an AUC of 0.921 with 95.7% sensitivity and 67.3% specificity. Thus, we suggest that the QPLEXTM Alz plus assay is useful for prescreening brain Aβ levels in CN individuals, especially those aged >65 years, to prevent disease progression via the early detection of disease initiation. A novel assay kit called QPLEXTM Alz plus assay offers a convenient method for assessing brain levels of the beta-amyloid proteins implicated in Alzheimer’s disease in people with normal cognitive abilities, especially those aged over 65. South Korean researchers led by Inhee Mook-Jung at Seoul National University assessed the efficacy of blood tests using the QPLEXTM kit on 221 participants in the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer’s Disease (KBASE). The researchers developed the assay to identify several circulating biomarkers of brain beta-amyloid accumulation. They found the test can distinguish between people known to either have or not have beta-amyloid deposits in their brain. This suggests QPLEXTM Alz plus assay could offer an improved procedure for easy and early diagnosis of Alzheimer’s, increasing the opportunities for effective early treatment.
Collapse
|
48
|
Sohn BK, Byun MS, Yi D, Jeon SY, Lee JH, Choe YM, Lee DW, Lee JY, Kim YK, Sohn CH, Lee DY. Late-Life Physical Activities Moderate the Relationship of Amyloid-β Pathology with Neurodegeneration in Individuals Without Dementia. J Alzheimers Dis 2022; 86:441-450. [PMID: 35068452 PMCID: PMC9210327 DOI: 10.3233/jad-215258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Physical activities (PA) have been suggested to reduce the risk of Alzheimer's disease (AD) dementia. However, information on the neuropathological links underlying the relationship is limited. OBJECTIVE We investigated the role of midlife and late-life PA with in vivo AD neuropathologies in old adults without dementia. METHODS This study included participants from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's disease (KBASE). The participants underwent comprehensive clinical and neuropsychological assessment, [11C] Pittsburgh Compound B positron emission tomography (PET), [18F] fluorodeoxyglucose PET, and magnetic resonance imaging. Using the multi-modal brain imaging data, in vivo AD pathologies including global amyloid deposition, AD-signature region cerebral glucose metabolism (AD-CM), and AD-signature region cortical thickness (AD-CT) were quantified. Both midlife and late-life PA of participants were measured using the Lifetime Total Physical Activity Questionnaire. RESULTS This study was performed on 260 participants without dementia (195 with normal cognitive function and 65 with mild cognitive impairment). PA of neither midlife nor late-life showed direct correspondence with any neuroimaging biomarker. However, late-life PA moderated the relationship of brain amyloid-β (Aβ) deposition with AD-CM and AD-CT. Aβ positivity had a significant negative effect on both AD-CM and AD-CT in individuals with lower late-life PA, but those with higher late-life PA did not show such results. Midlife PA did not have such a moderation effect. CONCLUSION The findings suggest that physically active lifestyle in late-life, rather than that in midlife, may delay AD-associated cognitive decline by decreasing Aβ-induced neurodegenerative changes in old adults.
Collapse
Affiliation(s)
- Bo Kyung Sohn
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dahyun Yi
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - So Yeon Jeon
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Dong Woo Lee
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea,Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea,Correspondence to: Dong Young Lee, Department of Neuropsychiatry, Seoul National University Hospital & Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea. Tel.: +82 2 2072 2205; Fax: +82 2 744 7241;
| | | |
Collapse
|
49
|
Kim JW, Byun MS, Yi D, Lee JH, Kim MJ, Jung G, Lee JY, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Serum zinc levels and in vivo beta-amyloid deposition in the human brain. Alzheimers Res Ther 2021; 13:190. [PMID: 34798903 PMCID: PMC8605596 DOI: 10.1186/s13195-021-00931-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022]
Abstract
Background Despite the known associations between zinc levels and Alzheimer’s disease (AD) dementia and related cognitive impairment, the underlying neuropathological links remain poorly understood. We tested the hypothesis that serum zinc level is associated with cerebral beta-amyloid protein (Aβ) deposition. Additionally, we explored associations between serum zinc levels and other AD pathologies [i.e., tau deposition and AD-signature cerebral glucose metabolism (AD-CM)] and white matter hyperintensities (WMHs), which are measures of cerebrovascular injury. Methods A total of 241 cognitively normal older adults between 55 and 90 years of age were enrolled. All the participants underwent comprehensive clinical assessments, serum zinc level measurement, and multimodal brain imaging, including Pittsburgh compound B-positron emission tomography (PET), AV-1451 PET, fluorodeoxyglucose (FDG)-PET, and magnetic resonance imaging. Zinc levels were stratified into three categories: < 80 μg/dL (low), 80 to 90 μg/dL (medium), and > 90 μg/dL (high). Results A low serum zinc level was significantly associated with increased Aβ retention. In addition, apolipoprotein E ε4 allele (APOE4) status moderated the association: the relationship between low zinc level and Aβ retention was significant only in APOE4 carriers. Although a low zinc level appeared to reduce AD-CM, the relationship became insignificant on sensitivity analysis including only individuals with no nutritional deficiency. The serum zinc level was associated with neither tau deposition nor the WMH volume. Conclusions Our findings suggest that decreased serum zinc levels are associated with elevation of brain amyloid deposition. In terms of AD prevention, more attention needs to be paid to the role of zinc. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00931-3.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi, 18450, Republic of Korea.,Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwan, 24252, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080, Republic of Korea
| | - Jun Ho Lee
- Department of Geriatric Psychiatry, National Center for Mental Health, Seoul, 04933, Republic of Korea
| | - Min Jung Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080, Republic of Korea. .,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | | |
Collapse
|
50
|
Kim S, Lee P, Oh KT, Byun MS, Yi D, Lee JH, Kim YK, Ye BS, Yun MJ, Lee DY, Jeong Y. Deep learning-based amyloid PET positivity classification model in the Alzheimer's disease continuum by using 2-[ 18F]FDG PET. EJNMMI Res 2021; 11:56. [PMID: 34114091 PMCID: PMC8192639 DOI: 10.1186/s13550-021-00798-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Considering the limited accessibility of amyloid position emission tomography (PET) in patients with dementia, we proposed a deep learning (DL)-based amyloid PET positivity classification model from PET images with 2-deoxy-2-[fluorine-18]fluoro-D-glucose (2-[18F]FDG). METHODS We used 2-[18F]FDG PET datasets from the Alzheimer's Disease Neuroimaging Initiative and Korean Brain Aging Study for the Early diagnosis and prediction of Alzheimer's disease for model development. Moreover, we used an independent dataset from another hospital. A 2.5-D deep learning architecture was constructed using 291 submodules and three axes images as the input. We conducted the voxel-wise analysis to assess the regions with substantial differences in glucose metabolism between the amyloid PET-positive and PET-negative participants. This facilitated an understanding of the deep model classification. In addition, we compared these regions with the classification probability from the submodules. RESULTS There were 686 out of 1433 (47.9%) and 50 out of 100 (50%) amyloid PET-positive participants in the training and internal validation datasets and the external validation datasets, respectively. With 50 times iterations of model training and validation, the model achieved an AUC of 0.811 (95% confidence interval (CI) of 0.803-0.819) and 0.798 (95% CI, 0.789-0.807) on the internal and external validation datasets, respectively. The area under the curve (AUC) was 0.860 when tested with the model with the highest value (0.864) on the external validation dataset. Moreover, it had 75.0% accuracy, 76.0% sensitivity, 74.0% specificity, and 75.0% F1-score. We found an overlap between the regions within the default mode network, thus generating high classification values. CONCLUSION The proposed model based on the 2-[18F]FDG PET imaging data and a DL framework might successfully classify amyloid PET positivity in clinical practice, without performing amyloid PET, which have limited accessibility.
Collapse
Affiliation(s)
- Suhong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), KI for Health Science Technology, Daejeon, Republic of Korea
| | - Peter Lee
- Korea Advanced Institute of Science and Technology (KAIST), KI for Health Science Technology, Daejeon, Republic of Korea
| | - Kyeong Taek Oh
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Jin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Dong Young Lee
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Joungno-gu, Seoul, 03080, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Yong Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Korea Advanced Institute of Science and Technology (KAIST), KI for Health Science Technology, Daejeon, Republic of Korea.
| |
Collapse
|