1
|
Arvaniti M, Balomenos A, Tsakanikas P, Skandamis P. VBNC induction and persistence of Listeria monocytogenes Scott A as a defence mechanism against free chlorine stress. Food Microbiol 2025; 130:104781. [PMID: 40210404 DOI: 10.1016/j.fm.2025.104781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
Sodium hypochlorite (SH) belongs to the chlorine-releasing agents (CRAs) and is widely used as a disinfectant or a bleaching agent for sanitizing in the food processing environment and fresh-cut industry. In the present study, the potential induction of dormancy states, i.e. the VBNC state and persistence, in Listeria monocytogenes, Scott A strain, was evaluated after exposure to SH for 3 h at 20 °C. Our results showed that the concentration of free chlorine after cells (109.5 CFU/mL) resuspension into the working solution decreased down to 3.7 ppm (SD ± 0.4 ppm; pH 6.64 ± 0.1). To detect VBNC fractions we evaluated comparatively the results of plate counting with fluorescence microscopy, using 5(6)-carboxy-fluorescein diacetate (CFDA; metabolic activity) and propidium iodide (PI; death) staining. The resuscitation capacity of L. monocytogenes stressed single cells was monitored real-time on TSAYE at 37°C, using time-lapse microscopy. Thus, colony outgrowth kinetics were estimated and non-diving fractions were detected. Furthermore, variability in the division time per generation was examined. Our analyses showed that SH induces the VBNC state and persistence in L. monocytogenes. Phenotypic variants of "high" fitness, i.e. size colony variations (SCVs) were also detected in response to SH stress. L. monocytogenes cells presented a prolonged lag time after exposure to SH. This phenomenon is a defence mechanism that allows cells to tolerate stress and maximize population fitness. The investigation of the VBNC state is of high importance for the food industry, as the impacts of VBNC induction and single cell outgrowth heterogeneity can contribute to false-negative detection outcomes.
Collapse
Affiliation(s)
- Marianna Arvaniti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
| | - Athanasios Balomenos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Panagiotis Tsakanikas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
2
|
Hamilton AN, Jones SL, Baker CA, Liang X, Siepielski A, Robinson A, Dhulappanavar GR, Gibson KE. A Systematic Review and Meta-Analysis of Chemical Sanitizer Efficacy Against Biofilms of Listeria monocytogenes, Salmonella enterica, and STEC on Food Processing Surfaces. J Food Prot 2025; 88:100495. [PMID: 40122344 DOI: 10.1016/j.jfp.2025.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Chemical sanitizers are applied to food processing surfaces to inactivate bacterial pathogens. Pathogen type, surface type along with sanitizer type, concentration, and contact time are important factors potentially impacting sanitation efficacy. Numerous studies on chemical agents and lab-generated biofilms have been published; however, cross-study comparisons can be difficult. A systematic literature review (SLR) and meta-analysis were conducted to evaluate chemical sanitizer efficacy against Listeria monocytogenes, Salmonella spp., and Shiga toxin-producing Escherichia coli (STEC) within lab-generated biofilms on food contact surfaces (FCSs). The SLR included 13 peer-reviewed articles published between 2000 and 2020. Sanitizer concentration, type, contact time, surface type, and bacteria type were explored using multilevel mixed effects models to determine their impact on bacterial log reduction on FCS. The overall estimated log reduction was 2.90 (effect size [ES]) with a 95% CI = 2.40, 3.39 (p < 0.0001). The multilevel mixed effects model estimated log reductions of 2.67-3.82 for peracetic acid (PAA), quaternary ammonium compounds, sodium hypochlorite, hydrogen peroxide + PAA, and calcium hypochlorite, with significant differences across sanitizers. No significant differences were found between L. monocytogenes and STEC; however, both pathogens were significantly different from Salmonella spp. All pathogens were significant predictors of mean log reduction (p < 0.0001). No significant differences were found between surface types, while all were significant predictors of mean log reduction (p < 0.0001). Neither sanitizer concentration (p = 0.5554) nor sanitizer contact time (p = 0.1800) were found to be significant predictors of estimated mean log reduction. These findings highlight the importance of specific sanitizers and tailored approaches based on surface types and pathogen considerations.
Collapse
Affiliation(s)
- Allyson N Hamilton
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA
| | - Sarah L Jones
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA
| | - Christopher A Baker
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA
| | - Xinya Liang
- University of Arkansas, Educational Statistics and Research Methods, Fayetteville, AR 72701, USA
| | - Adam Siepielski
- University of Arkansas, Department of Biological Sciences, Fayetteville, AR 72701, USA
| | - Ashlynn Robinson
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA
| | - Gayatri R Dhulappanavar
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA.
| |
Collapse
|
3
|
Oliveira M, Barbosa J, Teixeira P. Listeria monocytogenes gut interactions and listeriosis: Gut modulation and pathogenicity. Microbiol Res 2025; 297:128187. [PMID: 40279724 DOI: 10.1016/j.micres.2025.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Following ingestion via contaminated food, Listeria monocytogenes faces multiple hurdles through the human digestive system, thereby influencing its capacity to cause infection. This review provides a comprehensive overview of the multifaceted mechanisms employed by L. monocytogenes to overcome gastrointestinal hurdles and interact with the host's microbiota, facing chemical and physical barriers such as saliva, stomach acidity, bile salts and mechanical clearance. Proposed evasion strategies will be highlighted, exploring the bacteriocins produced by L. monocytogenes, such as the well-described bacteriocin Listeriolysin S (LLS), a bacteriocin that inhibits inflammogenic species - Lmo2776, and a phage tail-like bacteriocin, monocin. The competitive dynamic interactions within the gut microbiota, as well as the modulation of microbiota composition and immune responses, will also be explored. Finally, the adhesion and invasion of the intestinal epithelium by L. monocytogenes is described, exploring the mechanism of pathogenesis, biofilm and aggregation capacities and other virulence factors. Unlike previous reviews that may focus on individual aspects of L. monocytogenes pathogenicity, this review offers a holistic perspective on the bacterium's ability to persist and cause infection, integrating information about survival strategies, including bacteriocin production, immune modulation, and virulence factors. By connecting recent findings on microbial interactions and infection dynamics, this review incorporates recent developments in the field and connects various lines of research that explore both host and microbial factors influencing infection outcomes.
Collapse
Affiliation(s)
- M Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - J Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - P Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
4
|
Papadochristopoulos A, Kerry JP, Fegan N, Burgess CM, Duffy G. Potential Use of Selected Natural Anti-Microbials to Control Listeria monocytogenes in Vacuum Packed Beef Burgers and Their Impact on Quality Attributes. Microorganisms 2025; 13:910. [PMID: 40284746 PMCID: PMC12029336 DOI: 10.3390/microorganisms13040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
This study assessed the potential for natural anti-microbials to control Listeria monocytogenes in vacuum packed beef burgers. Minimum inhibitory and bactericidal concentration (MIC and MBC) results for natural anti-microbials (carvacrol; essential oils of thyme, rosemary, clove and cinnamon; hop extract; cranberry extract; cranberry pomace; propolis extract; and chitosan sourced from both shrimp and mushroom) were used to select agents (n = 6) showing the most promise against L. monocytogenes. These agents, including chitosan from shrimp and mushroom (a novel source), and cranberry extract, were then tested against L. monocytogenes in vacuum packed beef burgers during chilled storage (3 ± 1 °C, 16 days). Following storage (16 d), the number of L. monocytogenes in beef burgers treated with chitosan (2.5%), regardless of source, was significantly lower (p < 0.05) (1.2 to 1.6 log10CFU g-1) than in the control samples, while smaller reductions (0.5 log10 CFU g-1; p < 0.05) were noted in samples with cranberry extract (0.625%). While chitosan had no significant impact on HunterLab colour measurements during chilled storage, cranberry extract significantly impacted the colour (p < 0.05), resulting in lower L*, a*, and b* values. Observational assessment of colour, odour and the overall quality of the raw meat on opening the pack found that beef burgers with added chitosan (both sources) were acceptable, while those with added cranberry extract received an overall quality score of approximately 5.4, which is above the acceptability threshold (5/10). Overall, the study showed the potential of chitosan to control L. monocytogenes in beef burgers, and the advantage of this agent sourced from mushrooms is discussed.
Collapse
Affiliation(s)
- Angelos Papadochristopoulos
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; (A.P.); (C.M.B.)
- Food Packaging Group, School of Food & Nutritional Sciences, University College Cork (UCC), T12 K8AF Cork, Ireland;
| | - Joseph P. Kerry
- Food Packaging Group, School of Food & Nutritional Sciences, University College Cork (UCC), T12 K8AF Cork, Ireland;
| | - Narelle Fegan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Coopers Plains, Brisbane, QLD 4108, Australia;
| | - Catherine M. Burgess
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; (A.P.); (C.M.B.)
| | - Geraldine Duffy
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; (A.P.); (C.M.B.)
| |
Collapse
|
5
|
Campos DL, Perdomo A, Nightingale K, Franco J, Jimenez L, Brashears MM. Lactic Acid Bacteria Synergy: Electrostatic Spraying, Dipping, and Formulation Applications of Lactobacillus salivarius L28 and Enterococcus faecium J19 to Enhance Cheese Safety Against Listeria monocytogenes. J Food Prot 2025; 88:100507. [PMID: 40222654 DOI: 10.1016/j.jfp.2025.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Recent outbreaks of listeriosis linked to cheese and recalls of cheese contaminated with Listeria monocytogenes have emerged as a significant public health concern due to the ability of this pathogen to grow during refrigerated storage. We hypothesized that a lactic acid bacteria (LAB) intervention applied onto the surface of cheese by electrostatic spray, dipping or formulation of the product with LAB would be effective in controlling L monocytogenes growth during refrigerated storage. The purpose of this study was to utilize two LAB strains, including J19 Enterococcus faecium and L28 Lactobacillus salivarius individually and in combination, to reduce L. monocytogenes on the surface of cheese during a 60 d of refrigerated storage period. We inoculated various cheeses with a five-strain cocktail of L. monocytogenes. After inoculation, the surface of cheeses had a L. monocytogenes concentration of approximately 106 CFU/cm2 on day 0 and the cheeses were subjected to a LAB electrostatic spray or dipping treatment. Electrostatic spray treatments were as follows, (1) L28 at a concentration of 108, (2) J19 at a concentration of 108 and (3) a combination of L28 and J19 at a concentration of 108 at a 1:1 ratio. Resultant L. monocytogenes populations were enumerated on days 0, 1, 3, 7, 14, 30, 45, and 60. Results indicated that J19 inhibited L. monocytogenes, while the L28 and the combination resulted in little inhibition. When utilizing J19 as an intervention, there was always an immediate reduction of L. monocytogenes on all cheese types on day zero of approximately 1 log10. The use of J19 as a biological intervention in cheese could improve the safety of cheeses that may become contaminated with L. monocytogenes.
Collapse
Affiliation(s)
- David L Campos
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Angela Perdomo
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kendra Nightingale
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jorge Franco
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Luis Jimenez
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mindy M Brashears
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
6
|
Fagerlund A, Møretrø T, Jensen MR, Langsrud S, Moen B. Early detection and population dynamics of Listeria monocytogenes in naturally contaminated drains from a meat processing plant. Front Microbiol 2025; 16:1541481. [PMID: 40270812 PMCID: PMC12014604 DOI: 10.3389/fmicb.2025.1541481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
Listeria monocytogenes, a significant foodborne pathogen, often contaminates ready-to-eat foods through cross-contamination in food processing environments, and floor drains represent one of the most common sites of persistence. Subtyping of L. monocytogenes from food processing plants for the purpose of source tracking is usually performed on a single colony obtained after selective enrichment. This study investigates the temporal variation and population dynamics of L. monocytogenes in drains, focusing on the diversity of L. monocytogenes and the impact of the resident microbiota. Six different drains in a meat processing plant were each sampled four times over a period of 8 weeks and subjected to two-step selective enrichment in Half Fraser and Full Fraser broths. The clonal complexes (CCs) of at least 20 individual L. monocytogenes isolates from each positive sample (460 isolates in total) were determined using either the GenoListeria Multiplex qPCR assay or whole genome sequencing (WGS). The microbiota in drains and enrichment cultures was analyzed by 16S rRNA gene amplicon sequencing and metagenomic or quasimetagenomic sequencing. L. monocytogenes was detected in the majority of samples and four different CCs were identified - CC9, CC11 (ST451), CC121 and CC8 - with up to three CCs in the same sample and with different CCs dominating in different drains. The same clones of CC9, CC11, and CC121 had persisted in the facility for 3-5 years. The composition of the drain microbiota remained relatively stable over time, with Pseudomonas, Acinetobacter, Janthinobacterium, Chryseobacterium, Staphylococcus, and Sphingomonas as the most commonly identified genera. There were no apparent differences in the microbial genera present in L. monocytogenes positive and negative drains or samples. The study highlights the use of techniques such as qPCR and quasimetagenomics for monitoring and controlling the risk of L. monocytogenes contamination in processing environments.
Collapse
Affiliation(s)
- Annette Fagerlund
- Department of Food Safety and Quality, Nofima – Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | | | | | | | - Birgitte Moen
- Department of Food Safety and Quality, Nofima – Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
7
|
Tu Z, Choi D, Chen Y, Yu JH, Huynh TN. The food fermentation fungus Aspergillus oryzae is a source of natural antimicrobials against Listeria monocytogenes. J Dairy Sci 2025; 108:3444-3454. [PMID: 39947601 DOI: 10.3168/jds.2024-25719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/13/2025] [Indexed: 04/20/2025]
Abstract
Listeria monocytogenes is a highly adaptable foodborne pathogen that causes multiple foodborne illness outbreaks annually despite stringent food safety measures. The ubiquitous presence of L. monocytogenes in agricultural production environments provides easy routes of contamination to the human food production chain. The remarkable resilience of L. monocytogenes in harsh food processing and preservation conditions presents further challenges to controlling this pathogen in food and food processing plants. Furthermore, there is an increasing consumer demand for natural antimicrobials in food. Aspergillus oryzae is a food fermentation fungus with a generally recognized as safe status and is a workhorse in biotechnology applications. In this study, we examined the antimicrobial activity of Aspergillus oryzae fermentates and extracts toward L. monocytogenes, both in laboratory cultures and contaminated milk. Aspergillus oryzae-derived antimicrobials can be obtained in 2 culture conditions, which we term natural products 1 and 2 (NP1 and NP2). Laboratory cultures of L. monocytogenes were effectively and rapidly killed by both NP1 and NP2 extracts. In contaminated milk, the NP1 extract was bactericidal, whereas the NP2 extract was bacteriostatic. Nevertheless, the NP2 extract was heat stable, retaining antimicrobial activity even after boiling. Profiling L. monocytogenes transcriptional response to a subinhibitory level of NP2 fermentate, we observed significant shifts in amino acid metabolism and iron uptake, suggesting that these pathways can be tackled to increase the efficacy of NP2. Taken together, A. oryzae fermentates and extracts are promising candidates for natural antimicrobial treatments in food and food processing environments.
Collapse
Affiliation(s)
- Zepeng Tu
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706
| | - Dasol Choi
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Yuxing Chen
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - TuAnh N Huynh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
8
|
Lin M, Dan H, Guan J. A streamlined procedure for advancing the detection and isolation of Listeria monocytogenes from artificially contaminated ground beef in a single working day. Microbiol Spectr 2025; 13:e0157724. [PMID: 39998161 PMCID: PMC11960439 DOI: 10.1128/spectrum.01577-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/27/2024] [Indexed: 02/26/2025] Open
Abstract
Listeria monocytogenes, a rod-shaped Gram-positive bacterium widely distributed in nature, can contaminate foods and represents a foodborne pathogen of public health significance causing a high mortality rate of 20%-30%. Rapid and reliable identification of foods and food-processing environments contaminated with L. monocytogenes is a crucial step in implementing effective intervention strategies to ensure food safety and limit the transmission of bacteria to humans. This study designed and refined a practical workflow to streamline and accelerate the detection of a low level of L. monocytogenes present in ground beef. The workflow coupled an abbreviated 5 h culture enrichment in PALCAM liquid medium with physical separation (filtration and centrifugation) to preprocess enrichment samples. Specific capture was achieved using magnetic separation with a bacteriophage endolysin-derived cell wall-binding domain in a Hyglos Listeria capture kit. Molecular detection was performed using a MicroSEQ L. monocytogenes RTi-PCR detection kit combined with a nested PCR strategy. Preprocessing of enrichment culture samples using a multi-stage filtration system constructed for the study or commercially available BagFilter Pull-up filter bags, in conjunction with centrifugation, enabled the recovery of ~30 colony-forming units (CFUs) from the enrichment culture of a 25 g ground beef sample artificially contaminated with 1 CFU of L. monocytogenes. Integration of magnetic separation into the workflow for capturing L. monocytogenes cells specifically from preprocessed samples and further cleaning up the samples yielded bacterial counts similar to those obtained by direct plating of preprocessed samples. The RTi-PCR-based molecular detection method integrated into the workflow was capable of detecting pure cultures of L. monocytogenes as low as 12.5 CFUs. Evaluation of the workflow using artificially ground beef demonstrated the consistent detection of L. monocytogenes within an 8 h workday in a 25 g sample unit containing the cell count as low as 2 CFU following a 5 h culture enrichment. IMPORTANCE Consuming foods contaminated with the bacterial pathogen Listeria monocytogenes can lead to the development of human listeriosis, a severe and life-threatening foodborne illness. Timely detection of L. monocytogenes present at a low level in foods and food processing environments is a necessary measure to prevent the spread of the Listeria-associated illness. This study designed and evaluated a multi-step workflow for testing L. monocytogenes in artificially contaminated food samples. The workflow was composed of a short 5 h culture enrichment, filtration-based sample preprocessing, magnetic separation, a single-tube nested RTi-PCR, and culture plating. It allowed L. monocytogenes to be detected within 8 h from a 25 g ground beef sample containing the target cells as low as 2 colony-forming units, significantly improving and streamlining the detection methods for this important foodborne pathogen.
Collapse
Affiliation(s)
- Min Lin
- Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hanhong Dan
- Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, Ottawa, Ontario, Canada
| | - Jiewen Guan
- Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Castello A, Alio V, Torresi M, Centorotola G, Chiaverini A, Pomilio F, Arrigo I, Giammanco A, Fasciana T, Ortoffi MF, Gattuso A, Oliveri G, Cardamone C, Costa A. Molecular Characterization and Antimicrobial Resistance Evaluation of Listeria monocytogenes Strains from Food and Human Samples. Pathogens 2025; 14:294. [PMID: 40137779 PMCID: PMC11945527 DOI: 10.3390/pathogens14030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen, markedly persistent even in harsh environments and responsible for high hospitalization and mortality rates. The aim of the present study was to detect the strains circulating in Sicily over a five-year period and characterize their antimicrobial resistance profiles. The key element of this study was the sharing of data among various entities involved in food control and clinical surveillance of listeriosis in order to develop an integrated approach for this pathogen. A total of 128 isolates were analyzed, including 87 food-source strains and 41 clinical specimens. Whole-genome sequencing (WGS) was performed for sequence type (ST) and clonal complex (CC) identification through multilocus sequence typing (MLST) analysis. Antimicrobial resistance was assessed using the Kirby-Bauer method. The majority of strains belonged to serotype IVb (34/41 and 53/87 of clinical and food-source isolates, respectively) and were subtyped as CC2-ST2 (28/34 and 41/53 of clinical and food-source isolates respectively). Most of the isolates were susceptible to the main antimicrobials recommended for treatment of listeriosis. Resistance (R) and intermediate resistance (I) percentages worthy of attention were found against oxacillin (R: 85.9%) and clindamycin (I: 34.6%) in the food-source isolates and trimethoprim/sulfamethoxazole (R: 29.23%) in the clinical isolates. Also, 7.7% of the food-source isolates were multidrug resistant. Our results highlight how the punctual comparison between food and clinical strains is an essential tool for effectively tracking and preventing foodborne outbreaks.
Collapse
Affiliation(s)
- Annamaria Castello
- IZSSI—Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (V.A.); (G.O.); (C.C.); (A.C.)
| | - Vincenzina Alio
- IZSSI—Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (V.A.); (G.O.); (C.C.); (A.C.)
| | - Marina Torresi
- IZSAM—Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Via Campo Boario, 64100 Teramo, Italy; (M.T.); (G.C.); (A.C.); (F.P.)
| | - Gabriella Centorotola
- IZSAM—Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Via Campo Boario, 64100 Teramo, Italy; (M.T.); (G.C.); (A.C.); (F.P.)
| | - Alexandra Chiaverini
- IZSAM—Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Via Campo Boario, 64100 Teramo, Italy; (M.T.); (G.C.); (A.C.); (F.P.)
| | - Francesco Pomilio
- IZSAM—Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Via Campo Boario, 64100 Teramo, Italy; (M.T.); (G.C.); (A.C.); (F.P.)
| | - Ignazio Arrigo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (I.A.); (A.G.); (T.F.)
| | - Anna Giammanco
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (I.A.); (A.G.); (T.F.)
| | - Teresa Fasciana
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (I.A.); (A.G.); (T.F.)
| | - Marco Francesco Ortoffi
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria—Istituto Superiore di Sanità, 00161 Roma, Italy; (M.F.O.); (A.G.)
| | - Antonietta Gattuso
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria—Istituto Superiore di Sanità, 00161 Roma, Italy; (M.F.O.); (A.G.)
| | - Giuseppa Oliveri
- IZSSI—Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (V.A.); (G.O.); (C.C.); (A.C.)
| | - Cinzia Cardamone
- IZSSI—Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (V.A.); (G.O.); (C.C.); (A.C.)
| | - Antonella Costa
- IZSSI—Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (V.A.); (G.O.); (C.C.); (A.C.)
| |
Collapse
|
10
|
Kragh ML, Scheel NH, Leekitcharoenphon P, Truelstrup Hansen L. Repeated biocide treatments cause changes to the microbiome of a food industry floor drain biofilm model. Front Microbiol 2025; 16:1542193. [PMID: 40160267 PMCID: PMC11949963 DOI: 10.3389/fmicb.2025.1542193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
There is a concern about the development of microbial tolerance and resistance to biocides due to their repeated use within the food industry. This study aimed to develop a floor drain biofilm model and test whether repeated biocide treatment would result in increased tolerance to biocides. Culturomics and shotgun metagenomic analysis of 14 drains and 214 bacterial isolates from three industrial food production environments revealed microbiomes with great diversity and complexity, but with the dominance of a few highly abundant taxa, including Pseudomonas. A representative drain biofilm was created (3 days, 15°C) using 31 whole genome sequenced bacterial isolates from 24 genera. The biofilm model represented 47-58% and 76-81% of the microbial abundance observed in the metagenome and viable microbiota, respectively. The biofilm model was exposed on days 3 and 6 to water or different industrial concentrations of benzalkonium chloride (BC), peracetic acid (PAA), or sodium hypochlorite (SH). Analysis of the viable survivors using MALDI-TOF MS and the regrowing biofilms using 16S rRNA amplicon sequencing showed how the diversity of the biofilm decreased but without any change in biocide tolerance as seen in log reductions (CFU/cm2). The use of different biocides did, however, exert significantly different selective pressures on the microbiomes as Citrobacter, Acinetobacter, Aeromonas, and Pseudomonas dominated the biofilm after treatments with SH or PAA, while Serratia and Moraxella dominated after treatments with BC. The dominance of Serratia marcescens could be explained by the carriage of a BC efflux pump (oqxB) and the highest (20 mg/L BC) minimum inhibitory concentration (MIC) result of the drain isolates. In contrast, despite carrying a BC efflux pump (qacH), Listeria monocytogenes ST121 did not show increased survival or presence in the biofilm after BC treatments. Only the highest tested concentration of PAA was able to completely eradicate L. monocytogenes. The developed biofilm model and the repeated biocide treatments enabled a better understanding of how biocides affect the biofilm microbiome. Future research should involve testing biocide rotation strategies to control biofilm regrowth and inactivation of persistent foodborne pathogens in floor drains.
Collapse
Affiliation(s)
- Martin Laage Kragh
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | |
Collapse
|
11
|
Cipriani P, Dalzini E, Cosciani-Cunico E, Abdul ME, Monastero P, Merigo D, Ducoli S, Norton A, Losio MN, Pavoni E. Growth Rate Determination of Listeria monocytogenes in Ready-To-Eat Fish Products Under Different Storage Conditions for Possible Shelf-Life Extension. Foods 2025; 14:777. [PMID: 40077480 PMCID: PMC11898486 DOI: 10.3390/foods14050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
An increasing trend among food business operators (FBOs) to extend the shelf life of Ready-To-Eat (RTE) fish products over 5 days, the duration usually assigned to this kind of product, has been observed recently. In this study, three independent challenge tests (food artificial contamination) were performed on tuna fillet, marinated salmon tartare, and cubed salmon, with the aim of calculating the maximum growth rate (Vmax) of Listeria monocytogenes and estimating the time required to reach the legal limit of 2 log CFU/g, as established by European Regulation 2073/2005. The pathogen counts were fitted by the model of Baranyi and Roberts to calculate the Vmax, which were 0.041, 0.020, and 0.039 log CFU/g·h-1, respectively, for the tuna fillet, marinated salmon tartare, and cubed salmon at 10 °C. These results can help FBOs in assigning the correct shelf life based on hygienic practices during the process, product characteristics, and storage conditions. The time to reach the legal limit greatly depends on the starting concentration of the pathogen and on the storage temperature. The challenges for FBOs and the health authorities include reducing the contamination of L. monocytogenes, controlling the retail temperatures, and implementing the analytical tests for quick responses.
Collapse
|
12
|
Lee J, Park J, Baek J, Lee S, Seo E, Kim S, Choi H, Kang SS. Spent coffee ground disrupts Listeria monocytogenes biofilm formation through inhibition of motility and adhesion via quorum sensing regulation. Int J Food Microbiol 2025; 430:111066. [PMID: 39823805 DOI: 10.1016/j.ijfoodmicro.2025.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Spent coffee grounds (SCGs) have been explored for use as various bioresources, such as biofuels, and are known to possess biological functions, including antioxidant activity. However, the antibiofilm properties of SCGs against pathogenic bacteria have not been fully investigated. Therefore, this study aimed to highlight the inhibitory effects of SCG extract (SCGE) on biofilm formation in Listeria monocytogenes and investigated the underlying mechanisms. Treatment with SCGE disrupted both biofilm formation and architecture in L. monocytogenes. Furthermore, SCGE reduced autoaggregation and surface hydrophobicity. However, SCGE did not affect the viability of planktonic L. monocytogenes, suggesting that the decrease in biofilm formation was not attributed to decreased viability. Instead, SCGE downregulated motility- and adhesion-related genes in L. monocytogenes. Furthermore, SCGE impaired the swimming motility of L. monocytogenes. It also impaired adhesion to and invasion of intestinal epithelial cells. Moreover, SCGE suppressed the production of autoinducer-2, indicating the inhibition of quorum sensing signaling. Taken together, these findings suggest that SCGE inhibits biofilm formation in L. monocytogenes by modulating quorum sensing signaling, which regulates bacterial motility and adhesion.
Collapse
Affiliation(s)
- Jinho Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Jihyun Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Jihyeon Baek
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Suyeon Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Eunsu Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Seunghyeon Kim
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyewon Choi
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
13
|
Domen A, Porter J, Johnson J, Molyneux J, McIntyre L, Kovacevic J, Waite-Cusic J. Variability in cadmium tolerance of closely related Listeria monocytogenes isolates originating from dairy processing environments. Appl Environ Microbiol 2025; 91:e0128124. [PMID: 39570037 PMCID: PMC11784300 DOI: 10.1128/aem.01281-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Increased tolerance to cadmium in Listeria monocytogenes has been suggested to contribute to their persistence in natural and food production environments. This study investigated the phenotypic cadmium response of L. monocytogenes strains with efflux pump cadAC (variants 1-4) and related strains with cadA1C1. Growth of cadAC variant strains (n = 5) in 0 µM-120 µM cadmium salts (CdCl2, CdSO4) in Mueller-Hinton broth (MHB) was evaluated. Additionally, 88 L. monocytogenes strains from dairy processing facilities were exposed to 43.8 µM CdCl2 in MHB, and their lag phase duration (LPD) was measured. Strains with cadA1 through cadA3 showed similar growth trends in the presence of cadmium, while the cadA4 variant (Scott A) had the highest CdCl2 minimum inhibitory concentration (175 µM). Growth varied between the two salts, with CdSO4 significantly increasing LPD (P < 0.05) compared to CdCl2. In 43.8 µM CdCl2, cadA1 strains displayed LPDs ranging from 0.99 ± 0.14 h to 6.44 ± 0.08 h, with no clear genomic differences explaining this variability. Strains without cadA did not grow at 43.8 µM CdCl2 but exhibited low tolerance (10.9 µM CdCl2), potentially due to non-specific soft metal ATPases (626 aa; 737 aa) and soft metal resistance proteins encoded by czc genes (289 aa; 291 aa; 303 aa) within their chromosomes. These findings enhance our understanding of L. monocytogenes cadmium tolerance and underscore the need for further research to explore the genetic and physiological factors underlying these trends. IMPORTANCE Mobile genetic elements in Listeria monocytogenes contribute to its survival in natural and food processing environments. This study focused on how different genetic variants of the efflux pump gene cadAC and group of closely related cadA1C1 strains respond to cadmium exposure. When exposed to two cadmium salts, cadmium chloride and cadmium sulfate, we observed varying growth patterns, with a significantly longer lag phase in cadmium sulfate compared to cadmium chloride. Strains with cadA1 to cadA3 had similar growth trends, whereas a strain with the cadA4 variant had the highest minimum inhibitory concentration value. Among 88 strains from dairy processing facilities, significant phenotypic differences were observed despite core genome similarities, indicating other underlying genetic and physiological factors contribute to cadmium tolerance. Since cadmium tolerance studies in L. monocytogenes are limited, with rare phenotypic comparisons between closely related strains, our study makes an important observation and contribution to understanding of L. monocytogenes tolerance to cadmium by providing phenotypic comparisons between numerous strains within the same clonal group (<16 single nucleotide polymorphisms).
Collapse
Affiliation(s)
- Andrea Domen
- Food Innovation Center, Oregon State University, Portland, Oregon, USA
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jenna Porter
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jared Johnson
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - James Molyneux
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | | | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, Oregon, USA
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
14
|
Xu ZS, Pham VD, Yang X, Gänzle MG. High-throughput analysis of microbiomes in a meat processing facility: are food processing facilities an establishment niche for persisting bacterial communities? MICROBIOME 2025; 13:25. [PMID: 39871374 PMCID: PMC11773833 DOI: 10.1186/s40168-024-02026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Microbial spoilage in meat impedes the development of sustainable food systems. However, our understanding of the origin of spoilage microbes is limited. Here, we describe a detailed longitudinal study that assesses the microbial dynamics in a meat processing facility using high-throughput culture-dependent and culture-independent approaches to reveal the diversity, dispersal, persistence, and biofilm formation of spoilage-associated microbes. RESULTS Culture-dependent and culture-independent approaches revealed a large diversity of microbes within the meat facility, including 74 undescribed bacterial taxa and multiple spoilage-associated microbes. Ten out of 10 reconstituted microbial communities formed biofilms, and the biofilm biomass was generally higher at 4 °C than at 25 °C. Isolates obtained at different sampling times or from different sampling sites that differed in fewer than 10 genome-wide single-nucleotide polymorphisms were considered the same (persistent) strains. Strains of Carnobacterium maltaromaticum and Rahnella rivi persisted over a period of 6 months across sampling sites and time, stemming from floor drains in the cooler room. Meat isolates of Carnobacterium divergens, Rahnella inusitata, and Serratia proteamaculans originated from food contact and non-food contact environments of the packaging area. CONCLUSIONS Culture-dependent isolation, complemented by culture-independent analyses, is essential to fully uncover the microbial diversity in food processing facilities. Microbial populations permanently resided within the meat processing facility, serving as a source of transmission of spoilage microbes. The ability of these microbes to coexist and form biofilms facilitates their persistence. Our data together with prior data on persistence of Listeria monocytogenes indicates that microbial persistence in food processing facilities is the rule rather than an exception. Video Abstract.
Collapse
Affiliation(s)
- Zhaohui S Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Vi D Pham
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
- School of Bioengineering and Food, Hubei University of Technology, Wuhan, People's Republic of China.
| |
Collapse
|
15
|
Mughini-Gras L, Paganini JA, Guo R, Coipan CE, Friesema IHM, van Hoek AHAM, van den Beld M, Kuiling S, Bergval I, Wullings B, van der Voort M, Franz E, Dallman TJ. Source attribution of Listeria monocytogenes in the Netherlands. Int J Food Microbiol 2025; 427:110953. [PMID: 39500210 DOI: 10.1016/j.ijfoodmicro.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/26/2024]
Abstract
The aim of this study was to determine the relative contributions of various potential food sources of human listeriosis and to identify source-specific risk factors, at exposure level, for human Listeria monocytogenes (Lm) infection. To achieve this, available Lm isolates from human cases (n = 756) and food/animal sources (n = 950) from national surveillance systems in the Netherlands (2010-2020) were whole genome sequenced. Additionally, questionnaire-based exposure data for human cases was collected. Source attribution analysis was performed using a Random Forest model based on core-genome multilocus sequence typing (cgMLST). Risk factors for human Lm infection of cattle, chicken and seafood origin were determined using beta regression analysis on the cgMLST-based attribution estimates. Results indicated that the 756 human Lm isolates were mainly attributed to cattle (62.3 %), chicken (19.4 %), and seafood (16.9 %). Specifically, fresh meat (86.2 %), including fresh bovine meat (43.7 %) and fresh chicken meat (39.3 %), accounted for most cases. These attributions stemmed from Lm contamination of either the food products or their production environments. Consumption of steak tartare and smoked salmon was associated with an increased risk of human Lm infections attributed to cattle and seafood, respectively, while no specific risk factors for chicken-borne listeriosis were identified. This study indicated that Lm isolates of cattle origin, particularly those from fresh bovine meat and associated production environments, are estimated to be the primary cause of human listeriosis in the Netherlands. This aligns with several other European source attribution studies on Lm. Moreover, the identified risk factors for human Lm infection from cattle (i.e. steak tartare) and seafood (i.e. smoked salmon) clearly indicated their attributable sources. This joint analysis of core genome and epidemiological data provided novel insights into the origins and transmission pathways of human listeriosis.
Collapse
Affiliation(s)
- Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands.
| | - Julian A Paganini
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Ruoshui Guo
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Claudia E Coipan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Ingrid H M Friesema
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Angela H A M van Hoek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Maaike van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Indra Bergval
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Bart Wullings
- Wageningen Food Safety Research (WFSR), Wageningen, Netherlands
| | | | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Timothy J Dallman
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Zhang X, Niu Y, Liu Y, Zhang P, Ma X. A Listeriosis Case Associated with Ice Cream Consumption in China in 2019. Foodborne Pathog Dis 2025. [PMID: 39772657 DOI: 10.1089/fpd.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
During the 2019 Chinese National Microbiological Food Safety Surveillance program, Listeria monocytogenes was detected in ice cream samples produced by Manufacturer A. By comparing the sequences of isolates derived from the ice cream with those of isolates derived from humans, we identified one human-derived isolate that was genetically indistinguishable from one ice cream-derived isolates. The patient was hospitalized with listeriosis in Beijing, China in March 2019. Food history obtained from the patient indicated that he had consumed ice cream produced by Manufacturer A during the 30-day period before the onset of illness. No cases of listeriosis were detected after the ice cream produced by Manufacturer A was removed from the shelves. Overall, this report presents the first case of L. monocytogenes infection associated with ice cream in China.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China
| | - Yanlin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China
| | - Yuzhu Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China
| | - Penghang Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China
| | - Xiaochen Ma
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control (CDC), Beijing, China
| |
Collapse
|
17
|
Wang J, Schamp CN, Hudson LK, Chaggar HK, Bryan DW, Garman KN, Radosevich M, Denes TG. Whole-genome sequencing and metagenomics reveal diversity and prevalence of Listeria spp. from soil in the Nantahala National Forest. Microbiol Spectr 2025; 13:e0171224. [PMID: 39651889 PMCID: PMC11705966 DOI: 10.1128/spectrum.01712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
Listeria spp. are widely distributed environmental bacteria associated with human foodborne illness. The ability to detect and characterize Listeria strains in the natural environment will contribute to improved understanding of transmission routes of contamination. The current standard for surveillance and outbreak source attribution is whole-genome sequencing (WGS) of Listeria monocytogenes clinical isolates. Recently, metagenomic sequencing has also been explored as a tool for the detection of Listeria spp. in environmental samples. This study evaluated soil samples from four locations across altitudes ranging from 1,500 to 4,500 ft in the Nantahala National Forest in North Carolina, USA. Forty-two Listeria isolates were cultured and sequenced, and 12 metagenomes of soil bacterial communities were generated. These isolates comprised 14 distinct strains from five species, including Listeria cossartiae subsp. cayugensis (n = 8; n represents the number of distinct strains), L. monocytogenes (n = 3), "Listeria swaminathanii" (Lsw) (n = 1), Listeria marthii (n = 1), and Listeria booriae (n = 1). Most strains (n = 13) were isolated from lower altitudes (1,500 or 2,500 ft), while the L. swaminathanii strain was isolated from both higher (4,500 ft) and lower (1,500 ft) altitudes. Metagenomic analysis of soil described a reduction in both bacterial community diversity and relative abundance of Listeria spp. as the altitude increased. Soil pH and cation exchange capacity were positively correlated (P < 0.05) with the abundance of Listeria spp. as detected by metagenomics. By integrating culture-independent metagenomics with culture-based WGS, this study advances current knowledge regarding distribution of Listeria spp. in the natural environment and suggests the potential for future use of culture-independent methods in tracking the transmission of foodborne pathogens. IMPORTANCE As a foodborne pathogen, Listeria continues to cause numerous illnesses in humans and animals. Studying the diversity and distribution of Listeria in soil is crucial for understanding potential sources of contamination and developing effective strategies to prevent foodborne outbreaks of listeriosis. Additionally, examining the ecological niches and survival mechanisms of Listeria in natural habitats provides insights into its persistence and adaptability, informing risk assessments and public health interventions. This research contributes to a broader understanding of microbial ecology and the factors influencing foodborne pathogen emergence, ultimately enhancing food safety and protecting public health. Moreover, using a metagenomic approach provides a detailed understanding of the soil microbial ecosystems, leading to more effective monitoring and control of foodborne pathogens. This study also highlights the potential for integrating metagenomics into routine surveillance systems for food safety in the near future.
Collapse
Affiliation(s)
- Jia Wang
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Claire N. Schamp
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Lauren K. Hudson
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Harleen K. Chaggar
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Daniel W. Bryan
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | | | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas G. Denes
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
18
|
Zawiasa A, Olejnik-Schmidt A. The Genetic Determinants of Listeria monocytogenes Resistance to Bacteriocins Produced by Lactic Acid Bacteria. Genes (Basel) 2025; 16:50. [PMID: 39858597 PMCID: PMC11765107 DOI: 10.3390/genes16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Listeria monocytogenes is a Gram-positive bacterium responsible for listeriosis, a serious foodborne disease that can lead to serious health complications. Pregnant women, newborns, the elderly, and patients with weakened immune systems are particularly susceptible to infection. Due to the ability of L. monocytogenes to survive in extreme environmental conditions, such as low temperatures, high salinity, and acidity, this bacterium poses a serious threat to food production plants and is particularly difficult to eliminate from these plants. One of the promising solutions to reduce the presence of this bacterium in food products is bacteriocins as natural control agents. These are substances with antibacterial activity produced by other bacteria, mainly lactic acid bacteria (LAB), which can effectively inhibit the development of pathogens such as L. monocytogenes. The use of bacteriocins in the food industry is beneficial due to their natural origin, specificity of action, and consumer safety. However, the problem of resistance to these substances exists. RESULTS This review focuses on the mechanisms of bacteriocin resistance, such as modifications of bacteriocin docking receptors, changes in the structure of the cell wall and membrane, and the occurrence of cross-resistance to different bacteriocins. Genetic factors determining these mechanisms and strategies to cope with the problem of resistance are also presented. CONCLUSIONS Research on this issue is crucial for developing effective preventive methods that will enable the safe and long-term use of bacteriocins in food production.
Collapse
Affiliation(s)
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland;
| |
Collapse
|
19
|
Su LM, Huang RT, Hsiao HI. Biofilm formation comparison of Vibrio parahaemolyticus on stainless steel and polypropylene while minimizing environmental impacts and transfer to grouper fish fillets. Int J Food Microbiol 2025; 426:110913. [PMID: 39293097 DOI: 10.1016/j.ijfoodmicro.2024.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
This study investigated the influence of food contact surface materials on the biofilm formation of Vibrio parahaemolyticus while attempting to minimize the impact of environmental factors. The response surface methodology (RSM), incorporating three controlled environmental factors (temperature, pH, and salinity), was employed to determine the optimal conditions for biofilm formation on stainless steel (SS) and polypropylene (PP) coupons. The RSM results demonstrated that pH was highly influential. After minimizing the impacts of environmental factors, initially V. parahaemolyticus adhered more rapidly on PP than SS. To adhere to SS, V. parahaemolyticus formed extra exopolysaccharide (EPS) and exhibited clustered stacking. Both PP and SS exhibited hydrophilic properties, but SS was more hydrophilic than PP. Finally, this study observed a higher transfer rate of biofilms from PP to fish fillets than from SS to fish fillets. The present findings suggest that the food industry should consider the material of food processing surfaces to prevent V. parahaemolyticus biofilm formation and thus to enhance food safety.
Collapse
Affiliation(s)
- Li-Ming Su
- Department of Food Science, National Taiwan Ocean University, Taiwan (R. O. C.)
| | - Rong-Tan Huang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Taiwan (R. O. C.).
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Taiwan (R. O. C.).
| |
Collapse
|
20
|
Diaz M, Aird H, Le Viet T, Gutiérrez AV, Larke-Mejia N, Omelchenko O, Moragues-Solanas L, Fritscher J, Som N, McLauchlin J, Hildebrand F, Jørgensen F, Gilmour M. Microbial composition and dynamics in environmental samples from a ready-to-eat food production facility with a long-term colonization of Listeria monocytogenes. Food Microbiol 2025; 125:104649. [PMID: 39448159 DOI: 10.1016/j.fm.2024.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Listeria monocytogenes is a foodborne pathogen of significant concern for the food industry due to its remarkable ability to persist through safety control efforts, posing a subsequent health threat to consumers. Understanding the microbial communities coexisting with L. monocytogenes in food processing environments provides insights into its persistence mechanisms. We investigated the microbial communities on non-food contact surfaces in a facility producing ready-to-eat foods, known to harbour a ST121 L. monocytogenes strain over multiple years. A 10-week sampling period was coordinated with the company and public health authorities. Metagenomic analysis revealed a stable microbial composition dominated by Pseudomonas fluorescens. While highly related populations were present in high-care production zones, distinctive taxa characteristic of specific areas were observed (e.g., Sphingomonas aerolata). Although Listeria spp. were not detected in metagenomes, they were detected in cultured samples, suggesting low relative abundance in factory settings. The findings suggest that a stable resident microbiota, with distinct adaptations to different areas within the factory, was selected for by their collective ability to survive control efforts in this environment. Listeria spp. was a member of this microbial community, albeit at low abundance, and may likewise benefit from the mutualism of the overall microbial community.
Collapse
Affiliation(s)
- Maria Diaz
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom
| | - Heather Aird
- UK Health Security Agency, Food Water and Environmental Microbiology Laboratory York, National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Thanh Le Viet
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom
| | - Ana Victoria Gutiérrez
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom
| | - Nasmille Larke-Mejia
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom
| | - Oleksii Omelchenko
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom; University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Lluis Moragues-Solanas
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom; University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Joachim Fritscher
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom; University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Nicolle Som
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom
| | - Jim McLauchlin
- Gastrointestinal Infections and Food Safety (One Health) Division, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom
| | - Falk Hildebrand
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom; Earlham Institute, Colney Ln, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom
| | - Frieda Jørgensen
- Gastrointestinal Infections and Food Safety (One Health) Division, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom
| | - Matthew Gilmour
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom; University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
21
|
Haniford LSE, Dussault F, Shay JA, Cooper A, Blais BW, Lau CHF. Bacterial composition and cultural dynamics of microgreens-associated microbiota during selective enrichment for Listeria monocytogenes. Lett Appl Microbiol 2024; 77:ovae113. [PMID: 39544120 DOI: 10.1093/lambio/ovae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Widely regarded as a so-called "superfood," microgreens have become an increasingly significant food crop from both nutritional and agricultural standpoints. However, similar to other produce commodities that are also cultivated using modernized indoor farming methods, there have been mounting concerns over the potential risks of consuming microgreens contaminated by Listeria monocytogenes. To gain insights into the microbial properties of microgreens, this study characterized the bacterial composition of fresh microgreen retail products using amplicon sequencing of 16S rRNA genes. Dominated by Gammaproteobacteria, a total of 36 shared genera were identified as putative constituents of the microgreen core microbiome. By monitoring the dynamics of microgreen-borne bacteria undergoing a Listeria-selective cultural enrichment procedure, it was revealed that, regardless of the presence or absence of L. monocytogenes, off-target bacteria of the Klebsiella and Enterococcus genera were significantly enriched from microgreens by the primary enrichment step, with the secondary enrichment step continuing to promote the expansion of Enterococcus population. While Listeria was generally neither the most-enriched nor the dominant taxon in cultures sampled at different enrichment stages, significant enrichment of Lysinibacillus and Bacillus bacteria was detected in microgreens contaminated with L. monocytogenes, suggesting they could be co-enriched in competition with Listeria.
Collapse
Affiliation(s)
- Laura S E Haniford
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, K1A 0C6, Canada
| | - Forest Dussault
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, K1A 0C6, Canada
| | - Julie A Shay
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, K1A 0C6, Canada
| | - Ashley Cooper
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, K1A 0C6, Canada
| | - Burton W Blais
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, K1A 0C6, Canada
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
22
|
Watson SC, Neujahr AC, Chaves BD, Fernando SC, Sullivan GA. Environmental Monitoring of Nebraska Ready-to-eat Meat Processing Establishments Resulted in the Isolation of Listeria Alongside Pseudomonas Highly Resistant to Quaternary Ammonia Sanitizer. J Food Prot 2024; 87:100391. [PMID: 39490688 DOI: 10.1016/j.jfp.2024.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Robust environmental monitoring for Listeria monocytogenes often may not be feasible for small and very small meat processors in the United States due to the limitations in finances, staffing, or expertise. Three small/very small processors in Nebraska were sampled using sponge applicators in nonfood contact surface areas to determine if biofilm and sanitizer resistance behaviors of Pseudomonas could relate to the prevalence of L. monocytogenes and Listeria spp. in ready-to-eat meat processing environments. Samples were 3.3% (3/90) positive for L. monocytogenes, and 12.2% (11/90) of samples were positive for Listeria spp. Pseudomonas spp. were also isolated. When Listeria spp. and Pseudomonas spp. were assayed for biofilm production and resistance to a quaternary ammonia sanitizer, multiple isolates belonging to both genera capable of forming biofilms were identified. Four Pseudomonas spp. isolates resisted the 200 ppm manufacturer-recommended sanitizer concentration for food contact surface sanitation, and one Pseudomonas spp. isolated from a drain sample that was also positive for L. monocytogenes demonstrated a sanitizer minimum bactericidal concentration of 1000 ppm. These findings further support the need for monitoring of small and very small meat processors for L. monocytogenes as well as highlight the need to identify other bacteria in these processing environments, like Pseudomonas, that are resistant to environmental stressors.
Collapse
Affiliation(s)
- Samuel C Watson
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| | - Alison C Neujahr
- Department of Complex Biosystems, University of Nebraska - Lincoln, Lincoln, NE, 68583-0908, USA.
| | - Byron D Chaves
- Department of Food Science and Technology, University of Nebraska - Lincoln, 1901 N 21 St, Lincoln, NE 68588-6205, USA.
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| | - Gary A Sullivan
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| |
Collapse
|
23
|
Martins BTF, Camargo AC, Tavares RDM, Nero LA. Relevant foodborne bacteria associated to pork production chain. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:181-218. [PMID: 40023561 DOI: 10.1016/bs.afnr.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Foodborne diseases affect millions of people globally, resulting in a huge number of hospitalizations and deaths. In this context, laboratory-based research is crucial to identify the major pathogens as well as the relevance of each one for distinct food production chains. Pork meat is very popular, being the most consumed meat in many countries and its inspection at the slaughterhouse is the main component of surveillance to protect consumers. Healthy pigs may carry pathogenic and antibiotic resistant bacteria that can be subsequently transferred to humans through the consumption of contaminated meat. Further, the food processing environment can harbor pathogenic persistent bacteria, representing a risk of cross-contamination to pork meat, demanding strict slaughtering procedures. Among these foodborne bacteria, Salmonella, Yersinia enterocolitica, Escherichia coli, Campylobacter spp., Listeria monocytogenes and Staphylococcus aureus are the most relevant in the pork production chain. Molecular subtyping has been fundamental for pathogen detection and also to track transmission, and nowadays it is a key component of the efforts to prevent and control foodborne diseases. In this chapter, characteristics of these major foodborne bacteria associated to pork meat will be addressed, including their occurrence and importance along the pork production chain, worldwide distribution, typing, as well as control and prevention measures from farm to fork.
Collapse
Affiliation(s)
- Bruna Torres Furtado Martins
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Anderson Carlos Camargo
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil; InovaLeite-Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Rafaela de Melo Tavares
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Luís Augusto Nero
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
| |
Collapse
|
24
|
Méndez Acevedo M, Rolon ML, Johnson BB, Burns LH, Stacy J, Aurand-Cravens A, LaBorde L, Kovac J. Sanitizer Resistance and Persistence of Listeria monocytogenes Isolates in Tree Fruit Packing Facilities. J Food Prot 2024; 87:100354. [PMID: 39218076 DOI: 10.1016/j.jfp.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The foodborne pathogen Listeria monocytogenes can persist in produce processing environments, which increases the risk for food contamination. Increased resistance to antimicrobials commonly used in cleaning and sanitizing procedures may contribute to L. monocytogenes' persistence in these environments. This study aimed to evaluate sanitizer resistance in L. monocytogenes isolates collected from three tree fruit packing facilities (F1, F2, and F3) during packing seasons 2020-2021 (Y1) and 2021-2022 (Y2), and to assess evidence of persistence based on the genomic similarity of isolates to historical isolates collected in previous years. L. monocytogenes isolates collected in 2020-2022 (n = 44) were tested for resistance to peroxyacetic acid (PAA) and a proprietary biofilm-removing agent using a broth microdilution assay. Further, L. monocytogenes isolates were whole genome sequenced and screened for the presence of antimicrobial resistance and virulence genes, as well as to assess the genomic similarity of isolates using the CFSAN SNP bioinformatic pipeline. Over half (57%) of the tested isolates had a PAA minimum inhibitory concentration (MIC) of 250 ppm, which was similar to the applied concentration of the PAA sanitizer in the three facilities (230 ppm). In contrast, 80% of tested isolates had a biofilm remover MIC of 0.13 ppm, which was substantially below the concentration applied in the facilities (137 ppm). Genomes of all tested isolates carried antimicrobial resistance (fosX, lin, mdrL, mprF, and norB) and virulence (inlA, inlB, plcA, plcB, prfA, hly, mpl, and iap) genes. L. monocytogenes isolates collected between 2020 and 2022 belonged to three distinct lineages, with 22 multilocus sequence types (MLSTs) belonging to 22 different clonal complexes. Genomic similarity analysis with historical isolates collected from the same facilities in 2016-2017 demonstrated a 5-year persistence of the genotypes ST 1003 and ST 554 in F2, which were no longer detected in 2022. Overall, our results highlight the need to re-evaluate sanitizer concentrations to effectively control persistent L. monocytogenes strains in tree fruit packing facilities.
Collapse
Affiliation(s)
- Marysabel Méndez Acevedo
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States.
| | - M Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Beth B Johnson
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY 40601, United States.
| | - Logan H Burns
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY 40601, United States.
| | - Joshua Stacy
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY 40601, United States.
| | - Ashley Aurand-Cravens
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY 40601, United States.
| | - Luke LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
25
|
Elbakush AM, Trunschke O, Shafeeq S, Römling U, Gomelsky M. Maple compounds prevent biofilm formation in Listeria monocytogenes via sortase inhibition. Front Microbiol 2024; 15:1436476. [PMID: 39351304 PMCID: PMC11439720 DOI: 10.3389/fmicb.2024.1436476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The Pss exopolysaccharide (EPS) enhances the ability of the foodborne pathogen Listeria monocytogenes to colonize and persist on surfaces of fresh fruits and vegetables. Eradicating listeria within EPS-rich biofilms is challenging due to their increased tolerance to disinfectants, desiccation, and other stressors. Recently, we discovered that extracts of maple wood, including maple sap, are a potent source of antibiofilm agents. Maple lignans, such as nortrachelogenin-8'-O-β-D-glucopyranoside and lariciresinol, were found to inhibit the formation of, and promote the dispersion of pre-formed L. monocytogenes EPS biofilms. However, the mechanism remained unknown. Here, we report that these lignans do not affect Pss EPS synthesis or degradation. Instead, they promote EPS detachment, likely by interfering with an unidentified lectin that keeps EPS attached to the cell surfaces. Furthermore, the maple lignans inhibit the activity of L. monocytogenes sortase A (SrtA) in vitro. SrtA is a transpeptidase that covalently anchors surface proteins, including the Pss-specific lectin, to the cell wall peptidoglycan. Consistent with this, deletion of the srtA gene results in Pss EPS detachment from listerial cells. We also identified several additional maple compounds, including epicatechin gallate, isoscopoletin, scopoletin, and abscisic acid, which inhibit L. monocytogenes SrtA activity in vitro and prevent biofilm formation. Molecular modelling indicates that, despite their structural diversity, these compounds preferentially bind to the SrtA active site. Since maple products are abundant and safe for consumption, our finding that they prevent biofilm formation in L. monocytogenes offers a viable source for protecting fresh produce from this foodborne pathogen.
Collapse
Affiliation(s)
- Ahmed M Elbakush
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Oliver Trunschke
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
26
|
Lima LS, Müller TN, Ansiliero R, Schuster MB, Silva BL, Jaskulski IB, da Silva WP, Moroni LS. Biofilm formation by Listeria monocytogenes from the meat processing industry environment and the use of different combinations of detergents, sanitizers, and UV-A radiation to control this microorganism in planktonic and sessile forms. Braz J Microbiol 2024; 55:2483-2499. [PMID: 38767749 PMCID: PMC11405597 DOI: 10.1007/s42770-024-01361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
This study aimed to evaluate the ability of biofilm formation by L. monocytogenes from the meat processing industry environment, as well as the use of different combinations of detergents, sanitizers, and UV-A radiation in the control of this microorganism in the planktonic and sessile forms. Four L. monocytogenes isolates were evaluated and showed moderate ability to form biofilm, as well as carried genes related to biofilm production (agrB, agrD, prfA, actA, cheA, cheY, flaA, sigB), and genes related to tolerance to sanitizers (lde and qacH). The biofilm-forming isolates of L. monocytogenes were susceptible to quaternary ammonium compound (QAC) and peracetic acid (PA) in planktonic form, with minimum inhibitory concentrations of 125 and 75 ppm, respectively, for contact times of 10 and 5 min. These concentrations are lower than those recommended by the manufacturers, which are at least 200 and 300 ppm for QAC and PA, respectively. Biofilms of L. monocytogenes formed from a pool of isolates on stainless steel and polyurethane coupons were subjected to 14 treatments involving acid and enzymatic detergents, QAC and PA sanitizers, and UV-A radiation at varying concentrations and contact times. All treatments reduced L. monocytogenes counts in the biofilm, indicating that the tested detergents, sanitizers, and UV-A radiation exhibited antimicrobial activity against biofilms on both surface types. Notably, the biofilm formed on polyurethane showed greater tolerance to the evaluated compounds than the biofilm on stainless steel, likely due to the material's surface facilitating faster microbial colonization and the development of a more complex structure, as observed by scanning electron microscopy. Listeria monocytogenes isolates from the meat processing industry carry genes associated with biofilm production and can form biofilms on both stainless steel and polyurethane surfaces, which may contribute to their persistence within meat processing lines. Despite carrying sanitizer tolerance genes, QAC and PA effectively controlled these microorganisms in their planktonic form. However, combinations of detergent (AC and ENZ) with sanitizers (QAC and PA) at minimum concentrations of 125 ppm and 300 ppm, respectively, were the most effective.
Collapse
Affiliation(s)
- Larissa Siqueira Lima
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Taís Nunzio Müller
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Rafaela Ansiliero
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Marcia Bär Schuster
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Bruna Louise Silva
- Centro Multiusuário, Centro de Ciências Tecnológicas, Universidade do Estado de Santa Catarina, Joinville, SC, 89219-710, Brazil
| | - Itiane Barcellos Jaskulski
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Capão do Leão, RS, 96001-970, Brazil
- Centro de Desenvolvimento Tecnológico, Departamento de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 960110-610, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Capão do Leão, RS, 96001-970, Brazil
- Centro de Desenvolvimento Tecnológico, Departamento de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 960110-610, Brazil
| | - Liziane Schittler Moroni
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil.
| |
Collapse
|
27
|
Andrews N, Unrath N, Wall P, Buckley JF, Fanning S. Prediction of Listeria monocytogenes Clonal Complexes from Multilocus Variable Number Tandem Repeat Analysis Patterns Using a Machine Learning Approach. Foodborne Pathog Dis 2024; 21:593-599. [PMID: 38963774 DOI: 10.1089/fpd.2023.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Multilocus variable number tandem repeat analysis (MLVA) is a molecular subtyping technique that remains useful for those without the resources to access whole genome sequencing for the tracking and tracing of bacterial contaminants. Unlike techniques such as multilocus sequence typing (MLST) and pulsed-field gel electrophoresis, MLVA did not emerge as a standardized subtyping method for Listeria monocytogenes, and as a result, there is no reference database of virulent or food-associated MLVA subtypes as there is for MLST-based clonal complexes (CCs). Having previously shown the close congruence of a 5-loci MLVA scheme with MLST, a predictive model was created using the XGBoost machine learning (ML) technique, which enabled the prediction of CCs from MLVA patterns with ∼85% (±4%) accuracy. As well as validating the model on existing data, a straightforward update protocol was simulated for if and when previously unseen subtypes might arise. This article illustrates how ML techniques can be applied with elementary coding skills to add value to previous-generation molecular subtyping data in-built food processing environments.
Collapse
Affiliation(s)
- Nicholas Andrews
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, and School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, and School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Patrick Wall
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, and School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - James F Buckley
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, and School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, and School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
28
|
Reis JO, Teixeira LAC, Cunha-Neto A, Castro VS, Figueiredo EES. Listeria monocytogenes in beef: a hidden risk. Res Microbiol 2024; 175:104215. [PMID: 38830563 DOI: 10.1016/j.resmic.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Listeria monocytogenes in beef receives less attention compared to other pathogens such as Salmonella and Escherichia coli. To address this gap, we conducted a literature review focusing on the presence of L. monocytogenes in beef. This review encompasses the pathogenic mechanisms, routes of contamination, prevalence rates, and the laws and regulations employed in various countries. Our findings reveal a prevalence of L. monocytogenes in beef and beef products ranging from 2.5% to 59.4%. Notably, serotype 4b was most frequently isolated in cases of beef contamination during food processing, with the skinning and evisceration stages identified as critical points of contamination.
Collapse
Affiliation(s)
- Jaqueline Oliveira Reis
- Department of Zootechny and Agronomy, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil
| | | | - Adelino Cunha-Neto
- Faculty of Nutrition, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil
| | - Vinicius Silva Castro
- Department of Zootechny and Agronomy, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil; Faculty of Nutrition, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil
| | - Eduardo E S Figueiredo
- Department of Zootechny and Agronomy, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil; Faculty of Nutrition, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil.
| |
Collapse
|
29
|
Popović N, Veljović K, Radojević D, Brdarić E, Stevanović D, Živković M, Kojić M. Insight into the Probiogenomic Potential of Enterococcus faecium BGPAS1-3 and Application of a Potent Thermostable Bacteriocin. Foods 2024; 13:2637. [PMID: 39200563 PMCID: PMC11353538 DOI: 10.3390/foods13162637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
This study aimed to investigate the probiogenomic features of artisanal bacteriocin-producing Enterococcus faecium BGPAS1-3 and the use of the improved pMALc5HisEk expression vector for overexpressing class II bacteriocins and the application of purified bacteriocin 31 in a milk model as a preservative against L. monocytogenes. The BGPAS1-3 strain was isolated from traditional fresh soft cheese manufactured in households on a small scale in rural locations surrounding Pale Mountain City in Bosnia and Herzegovina. The whole-genome sequencing approach and bioinformatics analyses revealed that the strain BGPAS1-3 was non-pathogenic to humans. The presence of bacteriocin operons suggested the ability of the isolate to suppress the growth of pathogens. Coding regions for three maturated bacteriocins (bacteriocin 31, bacteriocin 32, and enterocin P) produced by BGPAS1-3 were amplified and expressed in Escherichia coli ER2523 using the pMALc5HisEk system. All three bacteriocins were successfully overexpressed and purified after enterokinase cleavage but showed different antimicrobial activity. Bacteriocin 31 showed significantly stronger antimicrobial activity compared with bacteriocin 32. It was the only one that proved to be suitable for use as a food preservative against L. monocytogenes in a milk model.
Collapse
Affiliation(s)
- Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Emilija Brdarić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Dušan Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (D.R.); (E.B.); (D.S.); (M.Ž.)
- Department of Research and Development, Institute of Virology, Vaccines, and Sera “Torlak”, Vojvode Stepe 458, 11152 Belgrade, Serbia
| |
Collapse
|
30
|
Yoon Y, Seo YS, Cho M. Assessment of elimination efficacy on foodborne pathogenic microbes and foulant precipitates using phytic acid and sulfamic acid. CHEMOSPHERE 2024; 362:142706. [PMID: 38936490 DOI: 10.1016/j.chemosphere.2024.142706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
This research investigated the comparative efficacy of sulfamic acid (SA) and phytic acid (PA), both individually and in combination, for treating potential foodborne pathogens and pre-formed foulants. Pathogens studied included Listeria monocytogenes, E. coli DH5α, Salmonella typhimurium, Staphylococcus aureus, and vegetative Bacillus cereus, in suspended aqueous solutions, as well as Pseudomonas aeruginosa biofilm on quartz glass surfaces. Inactivation kinetics for Listeria monocytogenes revealed concentration-dependent rate constants (k) of 6.6(±0.2) × 10-6 M and 2.8(±0.1) × 10-8 M for single treatments of SA and PA, respectively, and ranged from 6.9(±0.3) to 50.7(±2.3) × 10-6 M for combined treatments with PA pre-treatment concentrations of 75-758 μM. Observable cellular abnormalities in Listeria monocytogenes, such as membrane vesiculation, chelation, cellular disruption, biomolecule leakage, and lipid peroxidation, were identified after exposure to PA or SA, either individually or in combination. The optimized combined treatment of PA and SA achieved significant removal (i.e., >3-log; 99.9%) of potential foodborne pathogens under simulated food-washing process conditions. Additionally, over 90% descaling efficacy was observed for pre-formed foulants such as CaCO3 precipitates and Pseudomonas aeruginosa biofilm on quartz glass surfaces with the combined treatment. These findings provide novel insights into the versatile utility of PA and SA for optimizing combinational water disinfection systems and addressing (in)organic foulant scaling on surfaces in the food processing industry.
Collapse
Affiliation(s)
- Younggun Yoon
- GwangJu Institute, 55, Jingoksandanjungang-ro, Gwangsan-gu, Gwangju, 62465, Republic of Korea; Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| | - Young-Seok Seo
- R&D Center, Sanigen Co, Ltd., Iksan, 54576, Republic of Korea
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
31
|
Daza Prieto B, Pietzka A, Martinovic A, Ruppitsch W, Zuber Bogdanovic I. Surveillance and genetic characterization of Listeria monocytogenes in the food chain in Montenegro during the period 2014-2022. Front Microbiol 2024; 15:1418333. [PMID: 39149205 PMCID: PMC11324475 DOI: 10.3389/fmicb.2024.1418333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Listeria monocytogenes is an ubiquitous foodborne pathogen that represents a serious threat to public health and the food industry. Methods In this study Whole Genome Sequencing (WGS) was used to characterize 160 L. monocytogenes isolates obtained from 22,593 different food sources in Montenegro during the years 2014-2022. Results Isolates belonged to 21 different clonal complexes (CCs), 22 sequence types (STs) and 73 core genome multilocus sequence types (cgMLST) revealing a high diversity. The most prevalent STs were ST8 (n = 29), ST9 (n = 31), ST121 (n = 19) and ST155 (n = 20). All isolates carried virulence genes (VGs), 111 isolates carried mobile genetic elements (MGEs) (ranging from 1 to 7 MGEs) and 101 isolates carried plasmids (ranging from 1 to 3 plasmids). All isolates carried the intrinsic resistance genes fosX and lin. None of the isolates carried acquired antimicrobial resistance genes (ARGs). Discussion/conclusion Continuous monitoring and surveillance of L. monocytogenes is needed for improving and ameliorating the public health.
Collapse
Affiliation(s)
- Beatriz Daza Prieto
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Ariane Pietzka
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Aleksandra Martinovic
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Ivana Zuber Bogdanovic
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
- Diagnostic Veterinary Laboratory, Podgorica, Montenegro
| |
Collapse
|
32
|
Rolon ML, Voloshchuk O, Bartlett KV, LaBorde LF, Kovac J. Multi-species biofilms of environmental microbiota isolated from fruit packing facilities promoted tolerance of Listeria monocytogenes to benzalkonium chloride. Biofilm 2024; 7:100177. [PMID: 38304489 PMCID: PMC10832383 DOI: 10.1016/j.bioflm.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Listeria monocytogenes may survive and persist in food processing environments due to formation of complex multi-species biofilms of environmental microbiota that co-exists in these environments. This study aimed to determine the effect of selected environmental microbiota on biofilm formation and tolerance of L. monocytogenes to benzalkonium chloride in formed biofilms. The studied microbiota included bacterial families previously shown to co-occur with L. monocytogenes in tree fruit packing facilities, including Pseudomonadaceae, Xanthomonadaceae, Microbacteriaceae, and Flavobacteriaceae. Biofilm formation ability and the effect of formed biofilms on the tolerance of L. monocytogenes to benzalkonium chloride was measured in single- and multi-family assemblages. Biofilms were grown statically on polystyrene pegs submerged in a R2A broth. Biofilm formation was quantified using a crystal violet assay, spread-plating, confocal laser scanning microscopy, and its composition was assessed using amplicon sequencing. The concentration of L. monocytogenes in biofilms was determined using the most probable number method. Biofilms were exposed to the sanitizer benzalkonium chloride, and the death kinetics of L. monocytogenes were quantified using a most probable number method. A total of 8, 8, 6, and 3 strains of Pseudomonadaceae, Xanthomonadaceae, Microbacteriaceae, and Flavobacteriaceae, respectively, were isolated from the environmental microbiota of tree fruit packing facilities and were used in this study. Biofilms formed by Pseudomonadaceae, Xanthomonadaceae, and all multi-family assemblages had significantly higher concentration of bacteria, as well as L. monocytogenes, compared to biofilms formed by L. monocytogenes alone. Furthermore, multi-family assemblage biofilms increased the tolerance of L. monocytogenes to benzalkonium chloride compared to L. monocytogenes mono-species biofilms and planktonic multi-family assemblages. These findings suggest that L. monocytogenes control strategies should focus not only on assessing the efficacy of sanitizers against L. monocytogenes, but also against biofilm-forming microorganisms that reside in the food processing built environment, such as Pseudomonadaceae or Xanthomonadaceae.
Collapse
Affiliation(s)
- M. Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Katelyn V. Bartlett
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Luke F. LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
33
|
Silva A, Silva V, Gomes JP, Coelho A, Batista R, Saraiva C, Esteves A, Martins Â, Contente D, Diaz-Formoso L, Cintas LM, Igrejas G, Borges V, Poeta P. Listeria monocytogenes from Food Products and Food Associated Environments: Antimicrobial Resistance, Genetic Clustering and Biofilm Insights. Antibiotics (Basel) 2024; 13:447. [PMID: 38786175 PMCID: PMC11118052 DOI: 10.3390/antibiotics13050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Listeria monocytogenes, a foodborne pathogen, exhibits high adaptability to adverse environmental conditions and is common in the food industry, especially in ready-to-eat foods. L. monocytogenes strains pose food safety challenges due to their ability to form biofilms, increased resistance to disinfectants, and long-term persistence in the environment. The aim of this study was to evaluate the presence and genetic diversity of L. monocytogenes in food and related environmental products collected from 2014 to 2022 and assess antibiotic susceptibility and biofilm formation abilities. L. monocytogenes was identified in 13 out of the 227 (6%) of samples, 7 from food products (meat preparation, cheeses, and raw milk) and 6 from food-processing environments (slaughterhouse-floor and catering establishments). All isolates exhibited high biofilm-forming capacity and antibiotic susceptibility testing showed resistance to several classes of antibiotics, especially trimethoprim-sulfamethoxazole and erythromycin. Genotyping and core-genome clustering identified eight sequence types and a cluster of three very closely related ST3 isolates (all from food), suggesting a common contamination source. Whole-genome sequencing (WGS) analysis revealed resistance genes conferring resistance to fosfomycin (fosX), lincosamides (lin), fluoroquinolones (norB), and tetracycline (tetM). In addition, the qacJ gene was also detected, conferring resistance to disinfecting agents and antiseptics. Virulence gene profiling revealed the presence of 92 associated genes associated with pathogenicity, adherence, and persistence. These findings underscore the presence of L. monocytogenes strains in food products and food-associated environments, demonstrating a high virulence of these strains associated with resistance genes to antibiotics, but also to disinfectants and antiseptics. Moreover, they emphasize the need for continuous surveillance, effective risk assessment, and rigorous control measures to minimize the public health risks associated to severe infections, particularly listeriosis outbreaks. A better understanding of the complex dynamics of pathogens in food products and their associated environments can help improve overall food safety and develop more effective strategies to prevent severe health consequences and economic losses.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
- Animal and Veterinary Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Anabela Coelho
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Rita Batista
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Cristina Saraiva
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Alexandra Esteves
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ângela Martins
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Lara Diaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain (L.M.C.)
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
34
|
Ma X, Chen J, Zwietering MH, Abee T, Den Besten HMW. Stress resistant rpsU variants of Listeria monocytogenes can become underrepresented due to enrichment bias. Int J Food Microbiol 2024; 416:110680. [PMID: 38522149 DOI: 10.1016/j.ijfoodmicro.2024.110680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Population heterogeneity is an important component of the survival mechanism of Listeria monocytogenes, leading to cells in a population with diverse stress resistance levels. We previously demonstrated that several ribosomal gene rpsU mutations enhanced the stress resistance of L. monocytogenes and lowered the growth rate at 30 °C and lower temperatures. This study investigated whether these switches in phenotypes could result in a bias in strain detection when standard enrichment-based procedures are applied to a variety of strains. Detailed growth kinetics analysis of L. monocytogenes strains were performed, including the LO28 wild type (WT) and rpsU variants V14 and V15, during two commonly used enrichment-based procedures described in the ISO 11290-1:2017 and the U.S. Food and Drug Administration Bacteriological Analytical Manual (BAM). WT had a higher growth rate than the variants during the enrichment processes. Co-culture growth kinetics predictions for WT and rpsU variants showed that the detection chances of the rpsU mutants were reduced from ∼52 % to less than ∼13 % and ∼ 3 % during ISO and BAM enrichment, respectively, which were further validated through subsequent qPCR experiments. Higher heat stress resistance of rpsU variants did not lead to faster recovery during enrichment after heat treatment, and different pre-culturing temperatures before heat treatment did not significantly affect the growth kinetics of the WT and rpsU variants. Additionally, post-enrichment isolation procedures involving streaking on selective agar plates did not show preferences for isolating WT or rpsU variants nor affect the detection chance of rpsU variants. The difference in detection chance suggests that the selective enrichment procedures inadequately represent the genotypic diversity present in a sample. Hence, the enrichment bias during the L. monocytogenes isolation procedure may contribute to the observed underrepresentation of the rpsU mutation among L. monocytogenes isolates deposited in publicly available genome databases. The underrepresentation of rpsU mutants in our findings suggests that biases introduced by standard isolation and enrichment procedures could inadvertently skew our understanding of genetic diversity when relying on public databases.
Collapse
Affiliation(s)
- Xuchuan Ma
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jingjie Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Heidy M W Den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
35
|
Bolten S, Lott TT, Ralyea RD, Gianforte A, Trmcic A, Orsi RH, Martin NH, Wiedmann M. Intensive Environmental Sampling and Whole Genome Sequence-based Characterization of Listeria in Small- and Medium-sized Dairy Facilities Reveal Opportunities for Simplified and Size-appropriate Environmental Monitoring Strategies. J Food Prot 2024; 87:100254. [PMID: 38417482 DOI: 10.1016/j.jfp.2024.100254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Small- and medium-sized dairy processing facilities (SMDFs) may face unique challenges with respect to controlling Listeria in their processing environments, e.g., due to limited resources. The aim of this study was to implement and evaluate environmental monitoring programs (EMPs) for Listeria control in eight SMDFs in a ∼1-year longitudinal study; this included a comparison of pre-operation (i.e., after cleaning and sanitation and prior to production) and mid-operation (i.e., at least 4 h into production) sampling strategies. Among 2,072 environmental sponge samples collected across all facilities, 272 (13%) were positive for Listeria. Listeria prevalence among pre- and mid-operation samples (15% and 17%, respectively), was not significantly different. Whole genome sequencing (WGS) performed on select isolates to characterize Listeria persistence patterns revealed repeated isolation of closely related Listeria isolates (i.e., ≤20 high-quality single nucleotide polymorphism [hqSNP] differences) in 5/8 facilities over >6 months, suggesting Listeria persistence and/or reintroduction was relatively common among the SMDFs evaluated here. WGS furthermore showed that for 41 sites where samples collected pre- and mid-operation were positive for Listeria, Listeria isolates obtained were highly related (i.e., ≤10 hqSNP differences), suggesting that pre-operation sampling alone may be sufficient and more effective for detecting sites of Listeria persistence. Importantly, our data also showed that only 1/8 of facilities showed a significant decrease in Listeria prevalence over 1 year, indicating continued challenges with Listeria control in at least some SMDFs. We conclude that options for simplified Listeria EMPs (e.g., with a focus on pre-operation sampling, which allows for more rapid identification of likely persistence sites) may be valuable for improved Listeria control in SMDFs.
Collapse
Affiliation(s)
- Samantha Bolten
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA; Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Timothy T Lott
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Robert D Ralyea
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Anika Gianforte
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Aljosa Trmcic
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Nicole H Martin
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Cucić S, Ells T, Guri A, Kropinski AM, Khursigara CM, Anany H. Degradation of Listeria monocytogenes biofilm by phages belonging to the genus Pecentumvirus. Appl Environ Microbiol 2024; 90:e0106223. [PMID: 38315006 PMCID: PMC10952537 DOI: 10.1128/aem.01062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024] Open
Abstract
Listeria monocytogenes is a pathogenic foodborne bacterium that is a significant cause of mortality associated with foodborne illness and causes many food recalls attributed to a bacteriological cause. Their ability to form biofilms contributes to the persistence of Listeria spp. in food processing environments. When growing as biofilms, L. monocytogenes are more resistant to sanitizers used in the food industry, such as benzalkonium chloride (BAC), as well as to physical stresses like desiccation and starvation. Lytic phages of Listeria are antagonistic to a broad range of Listeria spp. and may, therefore, have utility in reducing the occurrence of Listeria-associated food recalls by preventing food contamination. We screened nine closely related Listeria phages, including the commercially available Listex P100, for host range and ability to degrade microtiter plate biofilms of L. monocytogenes ATCC 19111 (serovar 1/2a). One phage, CKA15, was selected and shown to rapidly adsorb to its host under conditions relevant to applying the phage in dairy processing environments. Under simulated dairy processing conditions (SDPC), CKA15 caused a 2-log reduction in Lm19111 biofilm bacteria. This work supports the biosanitation potential of phage CKA15 and provides a basis for further investigation of phage-bacteria interactions in biofilms grown under SDPC. IMPORTANCE Listeria monocytogenes is a pathogenic bacterium that is especially dangerous for children, the elderly, pregnant women, and immune-compromised people. Because of this, the food industry takes its presence in their plants seriously. Food recalls due to L. monocytogenes are common with a high associated economic cost. In food-processing plants, Listeria spp. typically reside in biofilms, which are structures produced by bacteria that shield them from environmental stressors and are often attached to surfaces. The significance of our work is that we show a bacteriophage-a virus-infecting bacteria-can reduce Listeria counts by two orders of magnitude when the bacterial biofilms were grown under simulated dairy processing conditions. This work provides insights into how phages may be tested and used to develop biosanitizers that are effective but are not harmful to the environment or human health.
Collapse
Affiliation(s)
- Stevan Cucić
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Tim Ells
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada
| | - Anilda Guri
- Gay Lea Foods Co-operative, Research and Development Centre, Hamilton, Ontario, Canada
| | - Andrew M. Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
37
|
Jung J, Young I, Sekercioglu F. Descriptive analysis of the most common types of food safety infractions at ready-to-eat meat processing plants in Ontario, Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1499-1510. [PMID: 37306113 DOI: 10.1080/09603123.2023.2223487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Food safety inspections of meat processing plants and abattoirs that process ready-to-eat (RTE) meats have identified a lack of compliance with good manufacturing practices. This study was undertaken to identify common food safety infractions in the RTE meat processing sector in Ontario through an analysis of historical audit records. A total of 376,457 audit item results were evaluated across 912 unique audits of 204 different RTE meat plants. A nearly two-thirds overall item pass rate (64.4%; n = 242,478) was identified. Across all other risk categories, the highest rates of infractions were observed in the "maintenance of premises, equipment and utensils" (56.7%; n = 750). The overall item pass rate was higher in free-standing meat processing plants than abattoirs, while pass rates gradually decreased across the study period. The results of this study have identified key areas for improvement in future inspection, audit and outreach with RTE meat processing plants.
Collapse
Affiliation(s)
- Jiin Jung
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Ian Young
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Fatih Sekercioglu
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Hussaini IM, Oyewole OA, Sulaiman MA, Dabban AI, Sulaiman AN, Tarek R. Microbial anti-biofilms: types and mechanism of action. Res Microbiol 2024; 175:104111. [PMID: 37844786 DOI: 10.1016/j.resmic.2023.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/18/2023]
Abstract
Biofilms have been recognized as a serious threat to public health as it protects microbes from antimicrobials, immune defence mechanisms, chemical treatments and nutritional stress. Biofilms are also a source of concern in industries and water treatment because their presence compromises the integrity of equipment. To overcome these problems, it is necessary to identify novel anti-biofilm compounds. Products of microorganisms have been identified as promising broad-spectrum anti-biofilm agents. These natural products include biosurfactants, antimicrobial peptides, enzymes and bioactive compounds. Anti-biofilm products of microbial origin are chemically diverse and possess a broad spectrum of activities against biofilms. The objective of this review is to give an overview of the different types of microbial anti-biofilm products and their mechanisms of action.
Collapse
Affiliation(s)
| | - Oluwafemi Adebayo Oyewole
- Department of Microbiology, School of Life Sciences, Federal University of Technology, Minna, Nigeria; African Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria.
| | | | | | - Asmau Nna Sulaiman
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Reham Tarek
- Department of Biotechnology, Cairo University, Egypt
| |
Collapse
|
39
|
Gana J, Gcebe N, Moerane R, Ngoshe YB, Tshuma T, Moabelo K, Adesiyun AA. A comparative study on the occurrence, genetic characteristics, and factors associated with the distribution of Listeria species on cattle farms and beef abattoirs in Gauteng Province, South Africa. Trop Anim Health Prod 2024; 56:88. [PMID: 38409615 PMCID: PMC10896870 DOI: 10.1007/s11250-024-03934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
These cross-sectional studies reported the occurrence, genetic characteristics, and factors associated with the distribution of Listeria species on cattle farms and beef abattoirs in Gauteng Province, South Africa. A total of 328 samples (faeces, feeds, silage, and drinking water) were collected from 23 cattle farms (communal, cow-calf, and feedlot), and 262 samples (faeces, carcass swabs, and effluents) from 8 beef abattoirs (low throughput and high throughput) were processed using standard bacteriological and molecular methods to detect Listeria species. The factors associated with the prevalence of Listeria species were investigated, and multiplex polymerase chain reaction (mPCR) was used to determine Listeria species, the pathogenic serogroups, and the carriage of eight virulence-associated genes by Listeria monocytogenes. The overall prevalence of Listeria species in cattle farms was 14.6%, comprising Listeria innocua (11.3%), Listeria monocytogenes (3.4%), Listeria welshimeri (0.0%) compared with 11.1%, comprising Listeria innocua (5.7%), Listeria monocytogenes (4.6%), Listeria welshimeri (0.8%) for beef abattoirs. Of the three variables (area, type of farm/abattoir, and sample type) investigated, only the sample types at abattoirs had a significant (P < 0.001) effect on the prevalence of L. innocua and L. welshimeri. The frequency of distribution of the serogroups based on 11 L. monocytogenes isolated from farms was 72.7% and 27.3% for the serogroup 1/2a-3a and 4b-4d-4e, respectively, while for the 12 L. monocytogenes isolates recovered from abattoirs, it was 25%, 8.3%, 50% and 16.7% for the serogroup 1/2a-3a, 1/2b-3b, 1/2c-3c, and 4b-4d-4e respectively (P < 0.05). All (100%) isolates of L. monocytogenes from the farms and abattoirs were positive for seven virulence genes (hlyA, inlB, plcA, iap, inlA, inlC, and inlJ). The clinical and food safety significance of the findings cannot be ignored.
Collapse
Affiliation(s)
- J Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
- Department of Agricultural Education, Federal College of Education, P.M.B. 39, Kontagora, Niger State, Nigeria
| | - N Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria, South Africa
| | - R Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Y B Ngoshe
- Epidemiology Section, Department of Production Animal Studies, Epidemiology Section, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - T Tshuma
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - K Moabelo
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - A A Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
- Department of Paraclinical Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
40
|
Yu T, Jiang X, Xu X, Xu P, Qiu S, Yin J, Hamilton DP, Jiang X. Cross-Phosphorylation between AgrC Histidine Kinase and the Noncognate Response Regulator Lmo1172 in Listeria monocytogenes under Benzalkonium Chloride Stress. Microorganisms 2024; 12:392. [PMID: 38399796 PMCID: PMC10891604 DOI: 10.3390/microorganisms12020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Benzalkonium chloride (BC) is widely used for disinfection in the food industry. However, Listeria monocytogenes strains with resistance to BC have been reported recently. In L. monocytogenes, the Agr communication system consists of a membrane-bound peptidase AgrB, a precursor peptide AgrD, a histidine kinase (HK) AgrC, and a response regulator (RR) AgrA. Our previous study showed that the agr genes are significantly upregulated by BC adaptation. This study aimed to investigate the role of the Agr system in BC resistance in L. monocytogenes. Our results showed that the Agr system was involved in BC resistance. However, a direct interaction between BC and AgrC was not observed, nor between BC and AgrA. These results indicated that BC could induce the Agr system via an indirect action. Both AgrBD and AgrC were required for growth under BC stress. Nevertheless, when exposed to BC, the gene deletion mutant ∆agrA strain exhibited better growth performance than its parental strain. The RR Lmo1172 played a role in BC resistance in the ∆agrA strain, suggesting that Lmo1172 may be an alternative to AgrA in the phosphotransfer pathway. Phosphorylation of Lmo1172 by AgrC was observed in vitro. The cognate HK Lmo1173 of Lmo1172 was not involved in BC stress, regardless of whether it was as the wild-type or the ∆agrA mutant strain. Our evidence suggests that the HK AgrC cross-phosphorylates its noncognate RR Lmo1172 to cope with BC stress when the cognate RR AgrA is absent. In vivo, further studies will be required to detect phosphotransfer of AgrC/AgrA and AgrC/Lmo1172.
Collapse
Affiliation(s)
- Tao Yu
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
- Australian Rivers Institute, Griffith University, Brisbane, QLD 4111, Australia;
| | - Xiaojie Jiang
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
| | - Xiaobo Xu
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
| | - Ping Xu
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
| | - Shuxing Qiu
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Medical College, Xinxiang University, Xinxiang 453003, China; (S.Q.); (J.Y.)
| | - Junlei Yin
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Medical College, Xinxiang University, Xinxiang 453003, China; (S.Q.); (J.Y.)
| | - David P. Hamilton
- Australian Rivers Institute, Griffith University, Brisbane, QLD 4111, Australia;
| | - Xiaobing Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
41
|
Lake FB, Chen J, van Overbeek LS, Baars JJP, Abee T, den Besten HMW. Biofilm formation and desiccation survival of Listeria monocytogenes with microbiota on mushroom processing surfaces and the effect of cleaning and disinfection. Int J Food Microbiol 2024; 411:110509. [PMID: 38101188 DOI: 10.1016/j.ijfoodmicro.2023.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Microbial multispecies communities consisting of background microbiota and Listeria monocytogenes could be established on materials used in food processing environments. The presence, abundance and diversity of the strains within these microbial multispecies communities may be affected by mutual interactions and differences in resistance towards regular cleaning and disinfection (C&D) procedures. Therefore, this study aimed to characterize the growth and diversity of a L. monocytogenes strain cocktail (n = 6) during biofilm formation on polyvinyl chloride (PVC) and stainless steel (SS) without and with the presence of a diverse set of background microbiota (n = 18). L. monocytogenes and background microbiota strains were isolated from mushroom processing environments and experiments were conducted in simulated mushroom processing environmental conditions using mushroom extract as growth medium and ambient temperature (20 °C) as culturing temperature. The L. monocytogenes strains applied during monospecies biofilm incubation formed biofilms on both PVC and SS coupons, and four cycles of C&D treatment were applied with a chlorinated alkaline cleaning agent and a disinfection agent based on peracetic acid and hydrogen peroxide. After each C&D treatment, the coupons were re-incubated for two days during an incubation period for 8 days in total, and C&D resulted in effective removal of biofilms from SS (reduction of 4.5 log CFU/cm2 or less, resulting in counts below detection limit of 1.5 log CFU/cm2 after every C&D treatment), while C&D treatments on biofilms formed on PVC resulted in limited reductions (reductions between 1.2 and 2.4 log CFU/cm2, which equals a reduction of 93.7 % and 99.6 %, respectively). Incubation of the L. monocytogenes strains with the microbiota during multispecies biofilm incubation led to the establishment of L. monocytogenes in the biofilm after 48 h incubation with corresponding high L. monocytogenes strain diversity in the multispecies biofilm on SS and PVC. C&D treatments removed L. monocytogenes from multispecies biofilm communities on SS (reduction of 3.5 log CFU/cm2 or less, resulting in counts below detection limit of 1.5 log CFU/cm2 after every C&D treatment), with varying dominance of microbiota species during different C&D cycles. However, C&D treatments of multispecies biofilm on PVC resulted in lower reductions of L. monocytogenes (between 0.2 and 2.4 log CFU/cm2) compared to single species biofilm, and subsequent regrowth of L. monocytogenes and stable dominance of Enterobacteriaceae and Pseudomonas. In addition, planktonic cultures of L. monocytogenes were deposited and desiccated on dry surfaces without and with the presence of planktonic background microbiota cultures. The observed decline of desiccated cell counts over time was faster on SS compared to PVC. However, the application of C&D resulted in counts below the detection limit of 1.7 log CFU/coupon on both surfaces (reduction of 5.9 log CFU/coupon or less). This study shows that L. monocytogenes is able to form single and multispecies biofilms on PVC with high strain diversity following C&D treatments. This highlights the need to apply more stringent C&D regime treatments for especially PVC and similar surfaces to efficiently remove biofilm cells from food processing surfaces.
Collapse
Affiliation(s)
- Frank B Lake
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Jingjie Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Center for Life Sciences, Yunnan University, Kunming 650091, China
| | - Leo S van Overbeek
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| | - Johan J P Baars
- Plant Breeding, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
42
|
Ekonomou SI, Boziaris IS. Fate of osmotically adapted and biofilm Listeria monocytogenes cells after exposure to salt, heat, and liquid smoke, mimicking the stresses induced during the processing of hot smoked fish. Food Microbiol 2024; 117:104392. [PMID: 37919014 DOI: 10.1016/j.fm.2023.104392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
The study aimed to investigate the response of osmotically adapted and detached biofilm Listeria monocytogenes cells following sequential stresses that occur during the processing of hot smoking, such as heating and smoke application. Thermal resistance of L. monocytogenes was significantly affected by previous osmotic adaptation of the cells. D60oC-values of osmotically adapted L. monocytogenes cells were significantly higher than control cells. The osmotically adapted and subsequently heat-injured cells were more resistant to PALCAM and less resistant to TSAYE with 5.00% NaCl (TSAYE/NaCl) than control cells. Detached biofilm cells were more thermotolerant and less resistant to PALCAM and TSAYE/NaCl than control cells. The sequential effect of smoking against heat-treated (60 °C, 20 min) and osmotically adapted or detached L. monocytogenes biofilm cells was investigated using two liquid smoke extracts (L9 and G6). L9 led to significantly higher reductions (>3.00-Log CFU) compared to G6. The heat-treated, detached biofilm cells revealed resistance to L9, presumably due to metabolic downregulation and physical protection by the extracellular polymeric substances (EPS). These data highlight the potential of the food industry to make informed decisions for using safe heat treatments during hot smoking to effectively inactivate L. monocytogenes and maintain rigorous environmental sanitation practices to control biofilm cells.
Collapse
Affiliation(s)
- S I Ekonomou
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446, Volos, Greece
| | - I S Boziaris
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446, Volos, Greece.
| |
Collapse
|
43
|
Shimojima Y, Kanai Y, Moriyama T, Arakawa S, Tamura Y, Morita Y. Analysis of Alternative Methods of Environmental Monitoring for Listeria in Food Production Facilities. J Food Prot 2024; 87:100214. [PMID: 38182093 DOI: 10.1016/j.jfp.2023.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Validated alternative test methodologies may be used in place of culture-based methods recommended for environmental monitoring programs (EMPs) for Listeria in food production facilities. In order to help guide decisions on which testing method to use to simplify Listeria EMP implementation in food production facilities, alternative methods were compared to the culture-based method in actual EMPs for Listeria. Seventy-two samples collected from two facilities of souzai production businesses that use meat and meat products as ingredients, one facility of processed meat product production business, and one facility of processed meat product and souzai production business were applied to EMPs for Listeria using the culture-based method, 3MTM Molecular Detection System (MDS), and InSite L. mono Glo (InSite). The kappa coefficient in MDS was 0.65 for Listeria monocytogenes and 0.74 for Listeria spp., both of which were deemed substantial compared with the culture-based method. The kappa coefficient in InSite was -0.01 for L. monocytogenes and 0.50 for Listeria spp., which indicated poor and moderate reproducibility, respectively. When the medium of InSite was smeared on agar medium, 7 of the 19 samples tested positive only for Listeria spp. (negative for L. monocytogenes) but L. monocytogenes was cultured, indicating that the sensitivity of detecting L. monocytogenes via fluorescence may be low. MDS was considered a useful alternative for both L. monocytogenes and Listeria spp. as targets, and InSite was not possible as a substitute for detecting L. monocytogenes; however, it is considered a helpful alternative method for detecting Listeria spp. EMPs for Listeria often target Listeria spp. as an indicator of L. monocytogenes. The alternative methods studied in this study are rapid, simple, and useful in EMPs for Listeria. However, the data in this study were a comparatively small sample set and impacted by variability, so more robust comparisons are desirable in the future.
Collapse
Affiliation(s)
- Yukako Shimojima
- Department of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Yuji Kanai
- Neogen Japan, 1-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | | | - Sayoko Arakawa
- Sagamihara City Hall, 2-11-15 Chuo, Chuo-ku, Sagamihara-shi, Kanagawa 252-5277, Japan
| | - Yumi Tamura
- Sagamihara City Institute of Public Health, 2-11-15 Chuo, Chuo-ku, Sagamihara-shi, Kanagawa 252-5277, Japan
| | - Yukio Morita
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| |
Collapse
|
44
|
Møretrø T, Wagner E, Heir E, Langsrud S, Fagerlund A. Genomic analysis of Listeria monocytogenes CC7 associated with clinical infections and persistence in the food industry. Int J Food Microbiol 2024; 410:110482. [PMID: 37977076 DOI: 10.1016/j.ijfoodmicro.2023.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Listeria monocytogenes clonal complex 7 (CC7), belonging to lineage II, is the most common subtype among clinical listeriosis isolates in Norway, and is also commonly found in Norwegian food industry and outdoor environments. In the present study, the relative prevalence of CCs among clinical isolates of L. monocytogenes in European countries during 2010-2015 was determined. Then, phylogenomic and comparative genomic analyses was performed for 115 Norwegian and 255 international reference genomes from various sources, to examine potential explanations underlying the high prevalence of CC7 among Norwegian listeriosis cases. Selected isolates were also compared using in vitro virulence assays. The results showed a high relative prevalence of CC7 in clinical isolates from Norway and the neighboring Nordic countries Sweden and Finland. In contrast to in most other European countries, lineage II dominated among clinical isolates in these countries. Phylogenetic analysis of the 370 CC7 isolates separated the genomes into four clades, with the majority of Norwegian isolates (69 %) clustered in one of these clades, estimated to have diverged from the other clades around year 1830. The Norwegian isolates within this clade were widely distributed in different habitats; several (poultry) meat processing factories, a salmon processing plant, in nature, farms, and slugs, and among human clinical isolates. In particular, one pervasive CC7 clone was found across three poultry processing plants and one salmon processing plant, and also included three clinical isolates. All analysed CC7 isolates harbored the same set of 72 genes involved in both general and specific stress responses. Divergence was observed for plasmid-encoded genes including genes conferring resistance against arsenic (Tn554-arsCBADR), cadmium (cadA1C1 and cadA2C2), and the biocide benzalkonium chloride (bcrABC). No significant difference in prevalence of these genes was seen between isolates from different habitats or sources. Virulence attributes were highly conserved among the CC7 isolates. In vitro virulence studies of five representative CC7 isolates revealed a virulence potential that, in general, was not significantly lower than that of the control strain EGDe, with isolate-dependent differences that could not be correlated with genetic determinants. The study shows that CC7 is widespread in Norway, and that a pervasive CC7 clone was present in food processing plants. The study highlights the importance of CC7 and lineage II strains in causing listeriosis and shows that more research is needed to understand the reasons behind geographical differences in CC prevalence.
Collapse
Affiliation(s)
- Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway.
| | - Eva Wagner
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Annette Fagerlund
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| |
Collapse
|
45
|
Tirloni E, Centorotola G, Pomilio F, Torresi M, Bernardi C, Stella S. Listeria monocytogenes in ready-to-eat (RTE) delicatessen foods: Prevalence, genomic characterization of isolates and growth potential. Int J Food Microbiol 2024; 410:110515. [PMID: 38064894 DOI: 10.1016/j.ijfoodmicro.2023.110515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
This study investigated Listeria monocytogenes prevalence and count in 132 ready-to-eat (RTE) delicatessen samples belonging to different categories (starters with/without mayonnaise pasta/rice-based courses, meat/fish-based main courses) produced by an Italian industry. Whole Genome Sequencing characterized the isolates to map the pathogen circulation. Moreover, the growth potential of L. monocytogenes in the most contaminated product was investigated by a challenge test. L. monocytogenes was detected in 23 samples, giving an estimated prevalence of 17.4 %. Starters with mayonnaise showed a very high prevalence (56.7 %), showing the role of the sauce in the diffusion of the pathogen within the plant. A total of 49 isolates were obtained; they belonged to two different serogroups, IIb and IIa, and were related to two clonal complexes (CCs) and sequence types (STs) (CC288-ST330 and CC121-ST717), suggesting the possible persistence and circulation of the pathogen within the plant. The results of the challenge test showed a limited ability to grow in the selected product thanks to the presence of lactic microflora.
Collapse
Affiliation(s)
- E Tirloni
- Department of Veterinary Medicine and Animal Sciences, University of Milan, via dell'Università 6, 26900 Lodi, Italy.
| | - G Centorotola
- IZSAM, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, Teramo 64100, Italy
| | - F Pomilio
- IZSAM, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, Teramo 64100, Italy
| | - M Torresi
- IZSAM, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, Teramo 64100, Italy
| | - C Bernardi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, via dell'Università 6, 26900 Lodi, Italy
| | - S Stella
- Department of Veterinary Medicine and Animal Sciences, University of Milan, via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
46
|
Martín-Miguélez JM, Robledo J, Martín I, Castaño C, Delgado J, Córdoba JJ. Biocontrol of L. monocytogenes with Selected Autochthonous Lactic Acid Bacteria in Raw Milk Soft-Ripened Cheese under Different Water Activity Conditions. Foods 2024; 13:172. [PMID: 38201200 PMCID: PMC10779163 DOI: 10.3390/foods13010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The effect of selected autochthonous Lactic Acid Bacteria (LAB) against Listeria monocytogenes was evaluated in two elaborations of soft-ripened cheese performed under high and low relative humidity (RH) elaborations, to achieve aw ranging from 0.97 to 0.94 in ripened cheeses. Two selected autochthonous strains of Lacticaseibacillus casei 31 and 116 were used. In each elaboration, 8 batches were physicochemically and microbiologically evaluated throughout the ripening process. The aw and pH decreased during ripening to final values ranging from 0.944 to 0.972 aw and 5.0 to 5.3 pH, respectively. LAB was the only microbial group that increased throughout the ripening in high and low RH elaborations. In batches that were uninoculated with LAB strains, L. monocytogenes was either maintained at the initial inoculation level or showed a slight reduction by the end of the ripening process. However, in LAB-inoculated batches in the two elaborations, steady decreases of L. monocytogenes were observed throughout maturation. L. casei 31 alone or in combination with strain 116 provoked reductions of 2 to 4 log CFU/g in L. monocytogenes over 60 days of ripening, which could be enough as a strategy for biocontrol to deal with the usual contamination by L. monocytogenes during cheese processing.
Collapse
Affiliation(s)
- José M. Martín-Miguélez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (J.M.M.-M.); (I.M.); (C.C.); (J.D.)
| | - Jurgen Robledo
- Laboratorio Hidromante S.L., C. Isaac Peral, 15. Pol. Ind. Sepes, 10600 Plasencia, Spain;
| | - Irene Martín
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (J.M.M.-M.); (I.M.); (C.C.); (J.D.)
| | - Cristina Castaño
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (J.M.M.-M.); (I.M.); (C.C.); (J.D.)
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (J.M.M.-M.); (I.M.); (C.C.); (J.D.)
| | - Juan J. Córdoba
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (J.M.M.-M.); (I.M.); (C.C.); (J.D.)
| |
Collapse
|
47
|
Mohammad ZH, Ahmad F. Nanocoating and its application as antimicrobials in the food industry: A review. Int J Biol Macromol 2024; 254:127906. [PMID: 37935295 DOI: 10.1016/j.ijbiomac.2023.127906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Nanocoatings are ultra-thin layers on the nanoscale (<100 nm) that are deposited on the substrate to improve their properties and functionality. These nanocoatings provide significant advantages compared to traditional coating, including stain resistance, antimicrobial and antioxidant activities, odor control and delivery of active agents, and liquid repellence properties. In the food industry, nanocoating is widely used in the food packaging sector. In this regard, nanocoating offers antimicrobials and antioxidant properties to active food packaging by incorporating active bioactive compounds into materials used in already existing packaging. The application of nanocoating is applied to these kinds of food packaging with nano coating to improve shelf life, safety, and quality of food packaging. In smart/intelligent packaging, the active packaging coating is promising food packaging, which is designed by releasing preservatives and nanocoating as an antimicrobial, antifungal, antioxidant, barrier coating, and self-cleaning food contact surfaces. In addition, nanocoating can be used for food contact surfaces, kitchen utensils, and food processing equipment to create antimicrobial, antireflective, and dirt-repellent properties. These are critical properties for food processing, especially for meat and dairy processing facilities, which can reduce biofilm formation and prevent cross-contamination. Recently, appreciable growth in the development of the application of nanocoating as edible films for coating food products has emerged to improve food safety issues. In this regard, much scientific research in the area of nanocoating fruits and vegetables, and other food products was performed to address food safety issues. Hence, this promising technology can be a great addition to the agricultural and food industries. Thus, this review addresses the most relevant information about this technology and the applications of nanocoating in the food industry.
Collapse
Affiliation(s)
- Zahra H Mohammad
- Conrad N. Hilton College of Hotel and Restaurant Management, University of Houston, Houston, TX 77204-3028, USA
| | - Faizan Ahmad
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
48
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
49
|
Bardsley CA, Orsi RH, Clark S, Murphy CM, McEntire JC, Wiedmann M, Strawn LK. Role of Whole Genome Sequencing in Assessing Resident and Transient Listeria monocytogenes in a Produce Packinghouse. J Food Prot 2024; 87:100201. [PMID: 38036175 DOI: 10.1016/j.jfp.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Whole genome sequencing (WGS) is a powerful tool that may be used to assist in identifying Listeria contamination sources and movement within environments, and to assess persistence. This study investigated sites in a produce packinghouse where Listeria had been historically isolated; and aimed to characterize dispersal patterns and identify cases of transient and resident Listeria. Environmental swab samples (n = 402) were collected from 67 sites at two time-points on three separate visits. Each sample was tested for Listeria, and Listeria isolates were characterized by partial sigB sequencing to determine species and allelic type (AT). Representative isolates from the three most common L. monocytogenes ATs (n = 79) were further characterized by WGS. Of the 144 Listeria species positive samples (35.8%), L. monocytogenes was the most prevalent species. L. monocytogenes was often coisolated with another species of Listeria. WGS identified cases of sporadic and continued reintroduction of L. monocytogenes from the cold storages into the packinghouse and demonstrated cases of L. monocytogenes persistence over 2 years in cold storages, drains, and on a forklift. Nine distinct clusters were found in this study. Two clusters showed evidence of persistence. Isolates in these two clusters (N = 11, with one historical isolate) were obtained predominantly and over multiple samplings from cold storages, with sporadic movement to sites in the packing area, suggesting residence in cold storages with opportunistic dispersal within the packinghouse. The other seven clusters demonstrated evidence of transient Listeria, as isolation was sporadic over time and space during the packing season. Our data provide important insights into likely L. monocytogenes harborage points and transfer in a packinghouse, which is key to root cause analysis. While results support Listeria spp. as a suitable indicator organism for environmental monitoring surveys, findings were unable to establish a specific species as an index organism for L. monocytogenes. Findings also suggest long-term persistence with substantial SNP diversification, which may assist in identifying potential contamination sources and implementing control measures.
Collapse
Affiliation(s)
- Cameron A Bardsley
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Shelley Clark
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Claire M Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
50
|
Mejía L, Espinosa-Mata E, Freire AL, Zapata S, González-Candelas F. Listeria monocytogenes, a silent foodborne pathogen in Ecuador. Front Microbiol 2023; 14:1278860. [PMID: 38179446 PMCID: PMC10764610 DOI: 10.3389/fmicb.2023.1278860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can produce serious, even fatal, infections. Among other foods, it can be found in unpasteurized dairy and ready-to-eat products. Surveillance of L. monocytogenes is of great interest since sources of infection are difficult to determine due to the long incubation period, and because the symptoms of listeriosis are similar to other diseases. We performed a genomic study of L. monocytogenes isolated from fresh cheeses and clinical samples from Ecuador. Sixty-five isolates were evaluated and sequenced, 14 isolates from cheese samples and 20 from clinical listeriosis cases from the National Institute of National Institute of Public Health Research, and 31 isolates from artisanal cheese samples from 8 provinces. All isolates exhibited heterogeneous patterns of the presence of pathogenicity islands. All isolates exhibited at least 4 genes from LIPI-1, but all references (26 L. monocytogenes closed genomes available in the NCBI database) showed the complete island, which encompasses 5 genes but is present in only two Ecuadorian isolates. Most isolates lacked gene actA. Genes from LIPI-2 were absent in all isolates. LIPI-3 and LIPI-4 were present in only a few references and isolates. With respect to the stress survival islets, our samples either presented SSI-1 or SSI-F2365, except for one isolate that presented SSI-F2365 and also one gene from SSI-1. None of the samples presented SSI-2. The predominant ST (sequence type) was ST2 (84.62% 55/65), and the only ST found in food (93.33% 42/45) and clinical samples (65% 13/20). Isolates were not grouped according to their sampling origin, date, or place in a phylogenetic tree obtained from the core alignment. The presence of ST2 in food and clinical samples, with high genomic similarity, suggests a foodborne infection risk linked to the consumption of fresh cheeses in Ecuador.
Collapse
Affiliation(s)
- Lorena Mejía
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
| | - Estefanía Espinosa-Mata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ana Lucía Freire
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sonia Zapata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
- CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain
| |
Collapse
|