1
|
Saeed S, la Cour Poulsen L, Visnovska T, Hoffmann A, Ghosh A, Wolfrum C, Rønningen T, Dahl MB, Wang J, Cayir A, Mala T, Kristinsson JA, Svanevik M, Hjelmesæth J, Hertel JK, Blüher M, Valderhaug TG, Böttcher Y. Chromatin landscape in paired human visceral and subcutaneous adipose tissue and its impact on clinical variables in obesity. EBioMedicine 2025; 114:105653. [PMID: 40118008 PMCID: PMC11976249 DOI: 10.1016/j.ebiom.2025.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Obesity is a global health challenge and adipose tissue exhibits distinct depot-specific characteristics impacting differentially on the risk of metabolic comorbidities. METHODS Here, we integrate chromatin accessibility (ATAC-seq) and gene expression (RNA-seq) data from intra-individually paired human subcutaneous (SAT) and omental visceral adipose tissue (OVAT) samples to unveil depot-specific regulatory mechanisms. FINDINGS We identified twice as many depot-specific differentially accessible regions (DARs) in OVAT compared to SAT. SAT-specific regions showed enrichment for adipose tissue enhancers involving genes controlling extracellular matrix organization and metabolic processes. In contrast, OVAT-specific regions showed enrichment in promoters linked to genes associated with cardiomyopathies. Moreover, OVAT-specific regions were enriched for bivalent transcription start site and repressive chromatin states, suggesting a "lingering" regulatory state. Motif analysis identified CTCF and BACH1 as most significantly enriched motifs in SAT and OVAT-specific DARs, respectively. Distinct gene sets correlated with important clinical variables of obesity, fat distribution measures, as well as insulin, glucose, and lipid metabolism. INTERPRETATION We provide an integrated analysis of chromatin accessibility and transcriptional profiles in paired human SAT and OVAT samples, offering new insights into the regulatory landscape of adipose tissue and highlighting depot-specific mechanisms in obesity pathogenesis. FUNDING SS received EU-Scientia postdoctoral Fellowship and project funding from the European Union's Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie Grant, (agreement No. 801133). LlCP and TR were supported by Helse Sør-Øst grants to Y.B (ID 2017079, ID 278908). MB received funding from grants from the DFG (German Research Foundation)-Projekt number 209933838-SFB 1052 (project B1) and by Deutsches Zentrum für Diabetesforschung (DZD, Grant: 82DZD00601).
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | | - Tina Visnovska
- EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany.
| | - Adhideb Ghosh
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland.
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland.
| | - Torunn Rønningen
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| | - Mai Britt Dahl
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Junbai Wang
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Akin Cayir
- EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| | - Tom Mala
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| | - Jon A Kristinsson
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| | - Marius Svanevik
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway.
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway.
| | - Jens Kristoffer Hertel
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany; Department of Medicine, University of Leipzig, Leipzig, Germany.
| | | | - Yvonne Böttcher
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
2
|
Ariyanto EF, Wijaya I, Pradian ZA, Bhaskara APM, Lastialno MP, Rahman PHA, Bashari MH, Oktavia N, Putra MIP, Pratiwi YS, Heryaman H, Dhianawaty D. Aaptamine Inhibits Lipid Accumulation and Pparg and Slc2a4 Expression While Maintaining the Methylation of the Pparg Promoter During 3T3-L1 Adipocyte Differentiation. J Exp Pharmacol 2025; 17:159-168. [PMID: 40130029 PMCID: PMC11932118 DOI: 10.2147/jep.s511866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/08/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose Excessive adipogenesis plays a role in the development of obesity and related metabolic disorders. Aaptamine is an alkaloid compound that has been proven to have various effects, however, no studies have yet investigated its effects on adipogenesis. This study aims to examine whether aaptamine inhibits lipid accumulation and Pparg and Slc2a4, two important genes in adipogenesis, mRNA expression, and increases the methylation of the Pparg promoter. This study strengthens the insights regarding these genes regulation, with future research potentially expanding to other adipogenic regulators for a broader perspective. Methods The effects of aaptamine (0 µM, 25 µM and 50 µM) were investigated in 3T3-L1 preadipocytes. The adipocytes were differentiated using a medium containing 3-isobutyl-1-methylxanthine, dexamethasone, and insulin. Cell viability was evaluated by the MTT assay, gene expression was analyzed by RT-qPCR, and lipid accumulation was determined using Oil Red O staining. Pyrosequencing was performed to measure the methylation of the Pparg promoter region. Results Aaptamine treatment significantly dose-dependently decreased lipid accumulation and inhibited Pparg and Slc2a4 mRNA expression. However, there were no significant differences in the methylation level of the Pparg promoter. Conclusion Aaptamine inhibits lipid accumulation and Pparg and Slc2a4 mRNA expression while maintaining the methylation level of the Pparg promoter during 3T3-L1 adipocyte differentiation.
Collapse
Affiliation(s)
- Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ibnu Wijaya
- Undergraduate Program of Medical Doctor, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Zaky Alif Pradian
- Undergraduate Program of Medical Doctor, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | | | | | | | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Nandina Oktavia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhammad Iman Pratama Putra
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran - Hasan Sadikin General Hospitale, Bandung, Indonesia
| | - Yuni Susanti Pratiwi
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Henhen Heryaman
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Diah Dhianawaty
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
3
|
Willmer T, Mabasa L, Sharma J, Muller CJF, Johnson R. Blood-Based DNA Methylation Biomarkers to Identify Risk and Progression of Cardiovascular Disease. Int J Mol Sci 2025; 26:2355. [PMID: 40076974 PMCID: PMC11900213 DOI: 10.3390/ijms26052355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Non-communicable diseases (NCDs) are the leading cause of death worldwide, with cardiovascular disease (CVD) accounting for half of all NCD-related deaths. The biological onset of CVD may occur long before the development of clinical symptoms, hence the urgent need to understand the molecular alterations underpinning CVD, which would facilitate intervention strategies to prevent or delay the onset of the disease. There is evidence to suggest that CVD develops through a complex interplay between genetic, lifestyle, and environmental factors. Epigenetic modifications, including DNA methylation, serve as proxies linking genetics and the environment to phenotypes and diseases. In the past decade, a growing list of studies has implicated DNA methylation in the early events of CVD pathogenesis. In this regard, screening for these epigenetic marks in asymptomatic individuals may assist in the early detection of CVD and serve to predict the response to therapeutic interventions. This review discusses the current literature on the relationship between blood-based DNA methylation alterations and CVD in humans. We highlight a set of differentially methylated genes that show promise as candidates for diagnostic and prognostic CVD biomarkers, which should be prioritized and replicated in future studies across additional populations. Finally, we discuss key limitations in DNA methylation studies, including genetic diversity, interpatient variability, cellular heterogeneity, study confounders, different methodological approaches used to isolate and measure DNA methylation, sample sizes, and cross-sectional study design.
Collapse
Affiliation(s)
- Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Jyoti Sharma
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa 3886, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| |
Collapse
|
4
|
Jilo DD, Abebe BK, Wang J, Guo J, Li A, Zan L. Long non-coding RNA (LncRNA) and epigenetic factors: their role in regulating the adipocytes in bovine. Front Genet 2024; 15:1405588. [PMID: 39421300 PMCID: PMC11484070 DOI: 10.3389/fgene.2024.1405588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the involvement of long non-coding RNAs (lncRNAs) and epigenetic processes in bovine adipocytes can provide valuable new insights into controlling adipogenesis in livestock. Long non-coding RNAs have been associated with forming chromatin loops that facilitate enhancer-promoter interactions during adipogenesis, as well as regulating important adipogenic transcription factors like C/EBPα and PPARγ. They significantly influence gene expression regulation at the post-transcriptional level and are extensively researched for their diverse roles in cellular functions. Epigenetic modifications such as chromatin reorganization, histone alterations, and DNA methylation subsequently affect the activation of genes related to adipogenesis and the progression of adipocyte differentiation. By investigating how fat deposition is epigenetically regulated in beef cattle, scientists aim to unravel molecular mechanisms, identify key regulatory genes and pathways, and develop targeted strategies for modifying fat deposition to enhance desirable traits such as marbling and meat tenderness. This review paper delves into lncRNAs and epigenetic factors and their role in regulating bovine adipocytes while focusing on their potential as targets for genetic improvement to increase production efficiency. Recent genomics advancements, including molecular markers and genetic variations, can boost animal productivity, meeting global demands for high-quality meat products. This review establishes a foundation for future research on understanding regulatory networks linked to lncRNAs and epigenetic changes, contributing to both scholarly knowledge advancement and practical applications within animal agriculture.
Collapse
Affiliation(s)
- Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Bule Hora University, Bule Hora, Ethiopia
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Bardhi O, Palmer BF, Clegg DJ. The evolutionary impact and influence of oestrogens on adipose tissue structure and function. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220207. [PMID: 37482787 PMCID: PMC10363706 DOI: 10.1098/rstb.2022.0207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Oestrogens are sex steroid hormones that have gained prominence over the years owing to their crucial roles in human health and reproduction functions which have been preserved throughout evolution. One of oestrogens actions, and the focus of this review, is their ability to determine adipose tissue distribution, function and adipose tissue 'health'. Body fat distribution is sexually dimorphic, affecting males and females differently. These differences are also apparent in the development of the metabolic syndrome and other chronic conditions where oestrogens are critical. In this review, we summarize the different molecular mechanisms, pathways and resulting pathophysiology which are a result of oestrogens actions in and on adipose tissues. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Olgert Bardhi
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Biff F. Palmer
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deborah J. Clegg
- Vice President for Research, Texas Tech Health Sciences Center, El Paso, TX 75390, USA
| |
Collapse
|
6
|
Hughson BN. The Glucagon-Like Adipokinetic Hormone in Drosophila melanogaster - Biosynthesis and Secretion. Front Physiol 2021; 12:710652. [PMID: 35002748 PMCID: PMC8733639 DOI: 10.3389/fphys.2021.710652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic homeostasis requires the precise regulation of circulating sugar titers. In mammals, homeostatic control of circulating sugar titers requires the coordinated secretion and systemic activities of glucagon and insulin. Metabolic homeostasis is similarly regulated in Drosophila melanogaster through the glucagon-like adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). In flies and mammals, glucagon and AKH are biosynthesized in and secreted from specialized endocrine cells. KATP channels borne on these cells respond to fluctuations in circulating glucose titers and thereby regulate glucagon secretion. The influence of glucagon in the pathogenesis of type 2 diabetes mellitus is now recognized, and a crucial mechanism that regulates glucagon secretion was reported nearly a decade ago. Ongoing efforts to develop D. melanogaster models for metabolic syndrome must build upon this seminal work. These efforts make a critical review of AKH physiology timely. This review focuses on AKH biosynthesis and the regulation of glucose-responsive AKH secretion through changes in CC cell electrical activity. Future directions for AKH research in flies are discussed, including the development of models for hyperglucagonemia and epigenetic inheritance of acquired metabolic traits. Many avenues of AKH physiology remain to be explored and thus present great potential for improving the utility of D. melanogaster in metabolic research.
Collapse
Affiliation(s)
- Bryon N. Hughson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Feng Y, Cirera S, Taşöz E, Liu Y, Olsen LH, Christoffersen BØ, Pedersen HD, Ludvigsen TP, Kirk RK, Schumacher-Petersen C, Deng Y, Fredholm M, Gao F. Diet-Dependent Changes of the DNA Methylome Using a Göttingen Minipig Model for Obesity. Front Genet 2021; 12:632859. [PMID: 33777102 PMCID: PMC7991730 DOI: 10.3389/fgene.2021.632859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Environmental factors can influence obesity by epigenetic mechanisms. The aim of this study was to investigate obesity-related epigenetic changes and the potential for reversal of these changes in the liver of Göttingen minipigs subjected to diet interventions. Methods: High-throughput liquid hybridization capture-based bisulfite sequencing (LHC-BS) was used to quantify the methylation status of gene promotor regions in liver tissue in three groups of male castrated Göttingen minipigs: a standard chow group (SD, N = 7); a group fed high fat/fructose/cholesterol diet (FFC, N = 10) and a group fed high fat/fructose/cholesterol diet during 7 months and reversed to standard diet for 6 months (FFC/SD, N = 12). Expression profiling by qPCR of selected metabolically relevant genes was performed in liver tissue from all pigs. Results: The pigs in the FFC diet group became morbidly obese. The FFC/SD diet did not result in a complete reversal of the body weight to the same weight as in the SD group, but it resulted in reversal of all lipid related metabolic parameters. Here we identified widespread differences in the patterning of cytosine methylation of promoters between the different feeding groups. By combining detection of differentially methylated genes with a rank-based hypergeometric overlap algorithm, we identified 160 genes showing differential methylation in corresponding promoter regions in the FFC diet group when comparing with both the SD and FFC/SD groups. As expected, this differential methylation under FFC diet intervention induced de-regulation of several metabolically-related genes involved in lipid/cholesterol metabolism, inflammatory response and fibrosis generation. Moreover, five genes, of which one is a fibrosis-related gene (MMP9), were still perturbed after diet reversion. Conclusion: Our findings highlight the potential of exploring diet-epigenome interactions for treatment of obesity.
Collapse
Affiliation(s)
- Y Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - S Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - E Taşöz
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Y Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - L H Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - H D Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark.,Medical Evaluation & Biostatistics, Danish Medicines Agency, Copenhagen, Denmark
| | - T P Ludvigsen
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - R K Kirk
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - C Schumacher-Petersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Y Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - M Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - F Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
8
|
Guo X, Puttabyatappa M, Domino SE, Padmanabhan V. Developmental programming: Prenatal testosterone-induced changes in epigenetic modulators and gene expression in metabolic tissues of female sheep. Mol Cell Endocrinol 2020; 514:110913. [PMID: 32562712 PMCID: PMC7397566 DOI: 10.1016/j.mce.2020.110913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance and tissue-specific changes in insulin sensitivity with liver and muscle manifesting insulin resistance accompanied by inflammatory, oxidative and lipotoxic state. In contrast, visceral (VAT) and subcutaneous (SAT) adipose tissues are insulin sensitive in spite of VAT manifesting changes in inflammatory and oxidative state. We hypothesized that prenatal T-induced changes in tissue-specific insulin resistance arise from disrupted lipid storage and metabolism gene expression driven by changes in DNA and histone modifying enzymes. Changes in gene expression were assessed in liver, muscle and 4 adipose (VAT, SAT, epicardiac [ECAT] and perirenal [PRAT]) depots collected from control and prenatal T-treated female sheep. Prenatal T-treatment increased lipid droplet and metabolism genes PPARA and PLIN1 in liver, SREBF and PLIN1 in muscle and showed a trend for decrease in PLIN2 in PRAT. Among epigenetic modifying enzymes, prenatal T-treatment increased expression of 1) DNMT1 in liver and DNMT3A in VAT, PRAT, muscle and liver; 2) HDAC1 in ECAT, HDAC2 in muscle with decrease in HDAC3 in VAT; 3) EP300 in VAT and ECAT; and 4) KDM1A in VAT with increases in liver histone acetylation. Increased lipid storage and metabolism genes in liver and muscle are consistent with lipotoxicity in these tissues with increased histone acetylation likely contributing to increased liver PPARA. These findings are suggestive that metabolic defects in prenatal T-treated sheep may arise from changes in key genes mediated, in part, by tissue-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, 3rd Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | | | - Steven E Domino
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, USA.
| |
Collapse
|
9
|
Margină D, Ungurianu A, Purdel C, Tsoukalas D, Sarandi E, Thanasoula M, Tekos F, Mesnage R, Kouretas D, Tsatsakis A. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4135. [PMID: 32531935 PMCID: PMC7312944 DOI: 10.3390/ijerph17114135] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
The lifestyle adopted by most people in Western societies has an important impact on the propensity to metabolic disorders (e.g., diabetes, cancer, cardiovascular disease, neurodegenerative diseases). This is often accompanied by chronic low-grade inflammation, driven by the activation of various molecular pathways such as STAT3 (signal transducer and activator of transcription 3), IKK (IκB kinase), MMP9 (matrix metallopeptidase 9), MAPK (mitogen-activated protein kinases), COX2 (cyclooxigenase 2), and NF-Kβ (nuclear factor kappa-light-chain-enhancer of activated B cells). Multiple intervention studies have demonstrated that lifestyle changes can lead to reduced inflammation and improved health. This can be linked to the concept of real-life risk simulation, since humans are continuously exposed to dietary factors in small doses and complex combinations (e.g., polyphenols, fibers, polyunsaturated fatty acids, etc.). Inflammation biomarkers improve in patients who consume a certain amount of fiber per day; some even losing weight. Fasting in combination with calorie restriction modulates molecular mechanisms such as m-TOR, FOXO, NRF2, AMPK, and sirtuins, ultimately leads to significantly reduced inflammatory marker levels, as well as improved metabolic markers. Moving toward healthier dietary habits at the individual level and in publicly-funded institutions, such as schools or hospitals, could help improving public health, reducing healthcare costs and improving community resilience to epidemics (such as COVID-19), which predominantly affects individuals with metabolic diseases.
Collapse
Affiliation(s)
- Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine EINuM, 00198 Rome , Italy
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Aristidis Tsatsakis
- Department Forensic Sciences and Toxicology, University of Crete, Faculty of Medicine, 71003 Heraklion, Greece
| |
Collapse
|
10
|
Fan R, You M, Toney AM, Kim J, Giraud D, Xian Y, Ye F, Gu L, Ramer-Tait AE, Chung S. Red Raspberry Polyphenols Attenuate High-Fat Diet-Driven Activation of NLRP3 Inflammasome and its Paracrine Suppression of Adipogenesis via Histone Modifications. Mol Nutr Food Res 2019; 64:e1900995. [PMID: 31786828 DOI: 10.1002/mnfr.201900995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Indexed: 12/28/2022]
Abstract
SCOPE The authors aim to investigate the mechanisms by which red raspberry (RR) polyphenolic fractions regulate obesity and inflammation with an emphasis on the crosstalk between adipose tissue macrophages (ATM) and adipocyte progenitors. METHODS AND RESULTS C57BL/6 male mice are fed either a high-fat (HF) diet or an HF diet supplemented with a RR polyphenolic fraction from whole fruit, pulp, or seed. Supplementation with pulp significantly increases energy expenditure and reduces HF-diet-induced obesity and insulin resistance. The pulp, and to a lesser extent, whole polyphenols, decreases the recruitment of ATM, activation of the nod-like receptor protein 3 (NLRP3) inflammasome, and adipocyte hypertrophy, which is associated with epigenetic modulation of adipogenesis (e.g., H3K27Ac, H3K9Ac). Results from an IL-1β reporter assay in J774 macrophages recapitulate the inhibitory role of RR polyphenols on NLRP3 inflammasome activation. Using conditioned media from macrophages, it is demonstrated that RR polyphenols reverse the IL-1β-mediated epigenetic suppression of H3K27Ac in adipocyte progenitor cells. CONCLUSIONS RR polyphenols from pulp and whole fruit serve as an inhibitor for NLRP3 inflammasome activation and an epigenetic modifier to regulate adipogenesis, which confers resistance against diet-induced obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Rong Fan
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Mikyoung You
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Ashley M Toney
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Judy Kim
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - David Giraud
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Yibo Xian
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Feng Ye
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611, USA
| | - Liwei Gu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| |
Collapse
|
11
|
Wróblewski A, Strycharz J, Świderska E, Drewniak K, Drzewoski J, Szemraj J, Kasznicki J, Śliwińska A. Molecular Insight into the Interaction between Epigenetics and Leptin in Metabolic Disorders. Nutrients 2019; 11:nu11081872. [PMID: 31408957 PMCID: PMC6723573 DOI: 10.3390/nu11081872] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022] Open
Abstract
Nowadays, it is well-known that the deregulation of epigenetic machinery is a common biological event leading to the development and progression of metabolic disorders. Moreover, the expression level and actions of leptin, a vast adipocytokine regulating energy metabolism, appear to be strongly associated with epigenetics. Therefore, the aim of this review was to summarize the current knowledge of the epigenetic regulation of leptin as well as the leptin-induced epigenetic modifications in metabolic disorders and associated phenomena. The collected data indicated that the deregulation of leptin expression and secretion that occurs during the course of metabolic diseases is underlain by a variation in the level of promoter methylation, the occurrence of histone modifications, along with miRNA interference. Furthermore, leptin was proven to epigenetically regulate several miRNAs and affect the activity of the histone deacetylases. These epigenetic modifications were observed in obesity, gestational diabetes, metabolic syndrome and concerned various molecular processes like glucose metabolism, insulin sensitivity, liver fibrosis, obesity-related carcinogenesis, adipogenesis or fetal/early postnatal programming. Moreover, the circulating miRNA profiles were associated with the plasma leptin level in metabolic syndrome, and miRNAs were found to be involved in hypothalamic leptin sensitivity. In summary, the evidence suggests that leptin is both a target and a mediator of epigenetic changes that develop in numerous tissues during metabolic disorders.
Collapse
Affiliation(s)
- Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland.
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Karolina Drewniak
- Student Scientific Society of the Civilization Diseases, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland.
| |
Collapse
|
12
|
Hosseini E, Shahhoseini M, Afsharian P, Karimian L, Ashrafi M, Mehraein F, Afatoonian R. Role of epigenetic modifications in the aberrant CYP19A1 gene expression in polycystic ovary syndrome. Arch Med Sci 2019; 15:887-895. [PMID: 31360184 PMCID: PMC6657255 DOI: 10.5114/aoms.2019.86060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/23/2017] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION In this study, the global DNA methylation, histone acetylation and methylation levels of cumulus cells (CCs) in infertile polycystic ovary syndrome (PCOS) patients and the correlation of these epigenetic modifications with the expression of the ovarian aromatase gene (as an important marker in the etiology of PCOS) were investigated. MATERIAL AND METHODS A cross-sectional study was conducted on 24 patients (12 PCOS patients and 12 healthy women), who underwent ovarian stimulation. Nucleosome ELISA was performed, in order to identify the global occupancy level of Mecp2 (as a marker of DNA methylation) and H3K9me2/H3K9ac as histone modification markers in chromatin fractions obtained from CCs. The CYP19A1 gene expression was measured by qRT-PCR. The level of DNA incorporation of MeCP2, histone modification markers and binding of estrogen receptor β (ERβ) to CYP19A1 regulatory sequences were examined by ChIP-QPCR assay. RESULTS The data demonstrate a significant increase in global occupancy levels of MeCP2 and H3K9ac markers and a decrease of H3K9me2 to chromatin in CCs of PCOS patients vs. control group. Furthermore, CYP19A1 gene expression, and the incorporation of H3K9ac in PII, PI.3, and PI.4 promoters of CYP19A1 in PCOS, were higher than those of controls. Also, significant hypomethylation of H3K9 at PII and DNA hypomethylated at PII and PI.3 promoters and differential binding of ERβ to three promoters were observed in PCOS patients (p < 0.05). CONCLUSIONS Aromatase expression can be affected by epigenetic modifications and differential ERβ binding to the proximal CYP19A1 promoters. These mechanisms may be involved in the enhanced aromatase transcription during ovarian stimulation in PCOS patients.
Collapse
Affiliation(s)
- Elham Hosseini
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Obstetrics and Gynecology, IVF Clinic, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Shahhoseini
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Afsharian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Karimian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahnaz Ashrafi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fereshteh Mehraein
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Afatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Xi Z, Fang L, Xu J, Li B, Zuo Z, Lv L, Wang C. Exposure to Aroclor 1254 persistently suppresses the functions of pancreatic β-cells and deteriorates glucose homeostasis in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:822-830. [PMID: 30953944 DOI: 10.1016/j.envpol.2019.03.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 05/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that have been shown to be related to the occurrence of type 2 diabetes mellitus (T2DM). Nevertheless, it is necessary to further explore the development of T2DM caused by PCBs and its underlying mechanisms. In the present study, 21-day-old C57BL/6 male mice were orally treated with Aroclor 1254 (0.5, 5, 50 or 500 μg kg-1) once every three days. After exposure for 66 d, the mice showed impaired glucose tolerance, 13% and 14% increased fasting serum insulin levels (FSIL), and 63% and 69% increases of the pancreatic β-cell mass in the 50 and 500 μg kg-1 groups, respectively. After stopping exposure for 90 d, treated mice returned to normoglycemia and normal FSIL. After re-exposure of these recovered mice to Aroclor 1254 for 30 d, fasting plasma glucose showed 15%, 28% and 16% increase in the 5, 50 and 500 μg kg-1 treatments, FSIL exhibited 35%, 27%, 30% and 32% decrease in the 0.5, 5, 50 or 500 μg kg-1 groups respectively, and there was no change in pancreatic β-cell mass. Transcription of the pancreatic insulin gene (Ins2) was significantly down-regulated in the 50 and 500 μg kg-1 groups, while DNA-methylation levels were simultaneously increased in the Ins2 promoter during the course of exposure, recovery and re-exposure. Reduced insulin levels were initially rescued by a compensative increase in β-cell mass. However, β-cell mass eventually failed to make sufficient levels of insulin, resulting in significant increases in fasting blood glucose, and indicating the development of T2DM.
Collapse
Affiliation(s)
- Zhihui Xi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jing Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Bingshui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Liangju Lv
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
14
|
Zheng Z, Liu J. GDNF-ADSCs-APG embedding enhances sciatic nerve regeneration after electrical injury in a rat model. J Cell Biochem 2019; 120:14971-14985. [PMID: 31062403 DOI: 10.1002/jcb.28759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022]
Abstract
The pluripotency of adipose-derived stem cells (ADSCs) makes them appropriate for tissue repair and wound healing. Owing to the repair properties of autologous platelet-rich gel (APG), which is based on easily accessible blood platelets, its clinical use has been increasingly recognized by physicians. The aim of this study was to investigate the effect of combined treatment with ADSCs and APG on sciatic nerve regeneration after electrical injury. To facilitate the differentiation of ADSCs, glial cell line-derived neurotrophic factor (GDNF) was overexpressed in ADSCs by lentivirus transfection. GDNF-ADSCs were mingled with APG gradient concentrations, and in vitro, cell proliferation and differentiation were examined with 5-ethynyl-2'-deoxyuridine staining and immunofluorescence. A rat model was established by exposing the sciatic nerve to an electrical current of 220 V for 3 seconds. Rat hind-limb motor function and sciatic nerve regeneration were subsequently evaluated. Rat ADSCs were characterized by high expression of CD90 and CD105, with scant expression of CD34 and CD45. We found that GDNF protein expression in ADSCs was elevated after Lenti-GDNF transfection. In GDNF-ADSCs-APG cultures, GDNF was increasingly produced while tissue growth factor-β was reduced as incubation time was increased. ADSC proliferation was augmented and neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) expression were upregulated in GDNF-ADSCs-APG. In addition, limb motor function and nerve axon growth were improved after GDNF-ADSCs-APG treatment. In conclusion, our study demonstrates the combined effect of ADSCs and APG in peripheral nerve regeneration and may lead to treatments that benefit patients with electrical injuries.
Collapse
Affiliation(s)
- Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
An T, Zhang J, Lv B, Liu Y, Huang J, Lian J, Wu Y, Gao S, Jiang G. Salvianolic acid B plays an anti-obesity role in high fat diet-induced obese mice by regulating the expression of mRNA, circRNA, and lncRNA. PeerJ 2019; 7:e6506. [PMID: 30842902 PMCID: PMC6397762 DOI: 10.7717/peerj.6506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Adipose tissue plays a central role in obesity-related metabolic diseases such as type 2 diabetes. Salvianolic acid B (Sal B), a water-soluble ingredient derived from Salvia miltiorrhiza, has been shown to reduce obesity and obesity-related metabolic diseases by suppressing adipogenesis. However, the role of Sal B in white adipose tissue (WAT) is not yet clear. Methods Illumina Hiseq 4000 was used to study the effects of Sal B on the expression of long non-coding RNA (lncRNA) and circular RNA (circRNA) in epididymal white adipose tissue induced by a high fat diet in obese mice. Results RNA-Seq data showed that 234 lncRNAs, 19 circRNAs, and 132 mRNAs were differentially expressed in WAT under Sal B treatment. The up-regulated protein-coding genes in WAT of the Sal B-treated group were involved in the insulin resistance pathway, while the down-regulated genes mainly participated in the IL-17 signaling pathway. Other pathways may play an important role in the formation and differentiation of adipose tissue, such as B cell receptor signaling. Analysis of the lncRNA–mRNA network provides potential targets for lncRNAs in energy metabolism. We speculate that Sal B may serve as a potential therapeutic approach for obesity.
Collapse
Affiliation(s)
- Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, China
| | - Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Liu
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Juan Lian
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxiang Wu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Naidoo V, Naidoo M, Ghai M. Cell- and tissue-specific epigenetic changes associated with chronic inflammation in insulin resistance and type 2 diabetes mellitus. Scand J Immunol 2018; 88:e12723. [PMID: 30589455 DOI: 10.1111/sji.12723] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycaemia, which can cause micro- and macrovascular complications. Chronic inflammation may be the cause and result of T2DM, and its related complications as an imbalance between pro- and anti-inflammatory cytokines can affect immune functions. Apart from genetic changes occurring within the body resulting in inflammation in T2DM, epigenetic modifications can modify gene expression in response to environmental cues such as an unhealthy diet, lack of exercise and obesity. The most widely studied epigenetic modification, DNA methylation (DNAm), regulates gene expression and may manipulate inflammatory genes to increase or decrease inflammation associated with T2DM. This review explores the studies related to epigenetic changes, more specifically DNAm, associated with chronic inflammation in T2DM, at both the cell and tissue levels. Studying epigenetic alterations during inflammatory response, as a result of genetic and environmental signals, creates opportunities for the development of "early detection/relative risk" tests to aid in prevention of T2DM. Understanding inflammation in T2DM at the gene level in inflammation-associated cells and tissues may provide further insight for the development of specific therapeutic targets for the disorder.
Collapse
Affiliation(s)
- Velosha Naidoo
- Department of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Merusha Naidoo
- Department of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
de Oliveira Y, Lima RPA, Luna RCP, Monteiro MGCA, da Silva CSO, do Nascimento RAF, de Farias Lima KQ, Andrade E Silva AH, de Lima Ferreira FEL, de Toledo Vianna RP, de Moraes RM, de Oliveira NFP, de Almeida ATC, Silva AS, da Silva Diniz A, de Carvalho Costa MJ, da Conceição Rodrigues Gonçalves M. Decrease of the DNA methylation levels of the ADRB3 gene in leukocytes is related with serum folate in eutrophic adults. J Transl Med 2018; 16:152. [PMID: 29866117 PMCID: PMC5987450 DOI: 10.1186/s12967-018-1529-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background DNA methylation has been evidenced as a potential epigenetic mechanism related to various candidate genes to development of obesity. Therefore, the objective of this study was to evaluate the DNA methylation levels of the ADRB3 gene by body mass index (BMI) in a representative adult population, besides characterizing this population as to the lipid profile, oxidative stress and food intake. Methods This was a cross-sectional population-based study, involving 262 adults aged 20–59 years, of both genders, representative of the East and West regions of the municipality of João Pessoa, Paraíba state, Brazil, in that were evaluated lifestyle variables and performed nutritional, biochemical evaluation and DNA methylation levels of the ADRB3 gene using high resolution melting method. The relationship between the study variables was performed using analyses of variance and multiple regression models. All results were obtained using the software R, 3.3.2. Results From the stratification of categories BMI, was observed a difference in the average variables values of age, waist-to-height ratio, waist-to-hip ratio, waist circumference, triglycerides and intake of trans fat, which occurred more frequently between the categories “eutrophic” and “obesity”. From the multiple regression analysis in the group of eutrophic adults, it was observed a negative relationship between methylation levels of the ADRB3 gene with serum levels of folic acid. However, no significant relation was observed among lipid profile, oxidative stress and food intake in individuals distributed in the three categories of BMI. Conclusions A negative relationship was demonstrated between methylation levels of the ADRB3 gene in eutrophic adults individuals with serum levels of folic acid, as well as with the independent gender of BMI, however, was not observed relation with lipid profile, oxidative stress and variables of food intake. Regarding the absence of relationship with methylation levels of the ADRB3 gene in the categories of overweight, mild and moderate obesity, the answer probably lies in the insufficient amount of body fat to initiate inflammatory processes and oxidative stress with a direct impact on methylation levels, what is differently is found most of the times in exacerbated levels in severe obesity. Electronic supplementary material The online version of this article (10.1186/s12967-018-1529-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohanna de Oliveira
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil.
| | - Raquel Patrícia Ataíde Lima
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Rafaella Cristhine Pordeus Luna
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Mussara Gomes Cavalcanti Alves Monteiro
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Cássia Surama Oliveira da Silva
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Rayner Anderson Ferreira do Nascimento
- Center of Exact Sciences and Nature (Centro de Ciências Exatas e da Natureza), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Keylha Querino de Farias Lima
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Ana Hermínia Andrade E Silva
- Departament of Statistics, Center of Exact Sciences and Nature (Centro de Ciências Exatas e da Natureza), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Flávia Emília Leite de Lima Ferreira
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Rodrigo Pinheiro de Toledo Vianna
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Ronei Marcos de Moraes
- Departament of Statistics, Center of Exact Sciences and Nature (Centro de Ciências Exatas e da Natureza), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Naila Francis Paulo de Oliveira
- Departament of Molecular Biology, Center of Exact Sciences and Nature (Centro de Ciências Exatas e da Natureza), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Aléssio Tony Cavalcanti de Almeida
- Department of Economics, Center for Applied Social Sciences (Centro de Ciências Sociais Aplicadas), Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Alexandre Sérgio Silva
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Alcides da Silva Diniz
- Departament of Nutrition, Health Sciences Center (Centro de Ciências da Saúde), Federal University of Pernambuco (Universidade Federal de Pernambuco), Recife, Brazil
| | - Maria José de Carvalho Costa
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| | - Maria da Conceição Rodrigues Gonçalves
- Health Sciences Center (Centro de Ciências da Saúde), Departament of Nutrition, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Brazil
| |
Collapse
|
18
|
Epigenetic Modifications Linked to T2D, the Heritability Gap, and Potential Therapeutic Targets. Biochem Genet 2018; 56:553-574. [DOI: 10.1007/s10528-018-9863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
|
19
|
Willmer T, Johnson R, Louw J, Pheiffer C. Blood-Based DNA Methylation Biomarkers for Type 2 Diabetes: Potential for Clinical Applications. Front Endocrinol (Lausanne) 2018; 9:744. [PMID: 30564199 PMCID: PMC6288427 DOI: 10.3389/fendo.2018.00744] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes (T2D) is a leading cause of death and disability worldwide. It is a chronic metabolic disorder that develops due to an interplay of genetic, lifestyle, and environmental factors. The biological onset of the disease occurs long before clinical symptoms develop, thus the search for early diagnostic and prognostic biomarkers, which could facilitate intervention strategies to prevent or delay disease progression, has increased considerably in recent years. Epigenetic modifications represent important links between genetic, environmental and lifestyle cues and increasing evidence implicate altered epigenetic marks such as DNA methylation, the most characterized and widely studied epigenetic mechanism, in the pathogenesis of T2D. This review provides an update of the current status of DNA methylation as a biomarker for T2D. Four databases, Scopus, Pubmed, Cochrane Central, and Google Scholar were searched for studies investigating DNA methylation in blood. Thirty-seven studies were identified, and are summarized with respect to population characteristics, biological source, and method of DNA methylation quantification (global, candidate gene or genome-wide). We highlight that differential methylation of the TCF7L2, KCNQ1, ABCG1, TXNIP, PHOSPHO1, SREBF1, SLC30A8, and FTO genes in blood are reproducibly associated with T2D in different population groups. These genes should be prioritized and replicated in longitudinal studies across more populations in future studies. Finally, we discuss the limitations faced by DNA methylation studies, which include including interpatient variability, cellular heterogeneity, and lack of accounting for study confounders. These limitations and challenges must be overcome before the implementation of blood-based DNA methylation biomarkers into a clinical setting. We emphasize the need for longitudinal prospective studies to support the robustness of the current findings of this review.
Collapse
Affiliation(s)
- Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- *Correspondence: Tarryn Willmer
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
20
|
Sun P, Liu L, Chen J, Chen Y, Shi L, Imam MU, Chen Y, Pei X, Xu Y, Guo Y, Ping Z, Fu X. The polymorphism of rs266729 in adiponectin gene and type 2 diabetes mellitus: A Meta-Analysis. Medicine (Baltimore) 2017; 96:e8745. [PMID: 29381968 PMCID: PMC5708967 DOI: 10.1097/md.0000000000008745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genome-wide association studies and meta-analyses indicate that the polymorphism of rs266729 in adiponectin gene increases the risk of type 2 diabetes mellitus (T2DM); however, these study methods have not been able to identify the underlying genetic effect on the development of T2DM. A genetic model-free approach was conducted to determine the underlying genetic model of inheritance of T2DM because of rs266729 in adiponectin gene.We searched available studies on the association between the rs266729 in adiponectin gene and T2DM in accordance with the inclusion and exclusion criteria. Based on the information extracted from the studies, generalized odds ratio value (GOR) was used to evaluate whether the rs266729 polymorphism was a risk factor for T2DM. The parameter λ was calculated to estimate the genetic model, which was defined as the quotient of natural logarithm odds ratio of GC to CC divided by the natural logarithm odds ratio of GG to CC. Finally, binary logistic regression analysis was used to calculate the genetic effect of rs266729 on T2DM.Data from 7 studies were included in this meta-analysis. The total number of subjects was 12,323, comprising 5,948 cases and 6,395 controls. Mean (standard deviation) age of cases was 59.50 (11.53), and that of the controls was 53.80 (11.65), whereas the proportion of male was 40.9 and 50.0%, respectively. GOR was 1.13 (1.02, 1.25) and λ was 0.47 (0.29, 0.64). The result of logistic regression indicated that the G allele influenced the development of T2DM in the additive model, whereas the genetic effect was 1.13 (1.06, 1.19). Sources of control populations were the cause of between-study heterogeneity; nonetheless, there was no publication bias among studies.The G allele of rs266729 in adiponectin gene increases the risk of T2DM through an additive genetic model with an effect of 1.13 (1.06, 1.19).
Collapse
Affiliation(s)
- Panpan Sun
- Department of Biostatistics and Epidemiology, College of Public Health
| | - Li Liu
- Department of Histology and Embryology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxin Chen
- Department of Histology and Embryology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuansi Chen
- Department of Histology and Embryology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Litong Shi
- Department of Histology and Embryology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Yanzi Chen
- Department of Biostatistics and Epidemiology, College of Public Health
| | - Xiaoting Pei
- Department of Biostatistics and Epidemiology, College of Public Health
| | - Yiping Xu
- Department of Biostatistics and Epidemiology, College of Public Health
| | - Yaxin Guo
- Department of Histology and Embryology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiguang Ping
- Department of Biostatistics and Epidemiology, College of Public Health
| | - Xiaoli Fu
- Department of Biostatistics and Epidemiology, College of Public Health
| |
Collapse
|