1
|
Hosseini A, Sheibani M, Valipour M. Exploring the Therapeutic Potential of BBB-Penetrating Phytochemicals With p38 MAPK Modulatory Activity in Addressing Oxidative Stress-Induced Neurodegenerative Disorders, With a Focus on Alzheimer's Disease. Phytother Res 2024; 38:5598-5625. [PMID: 39300812 DOI: 10.1002/ptr.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/17/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Oxidative stress plays an important role in the occurrence of neurodegenerative diseases. Previous studies indicate a strong connection between oxidative stress, inappropriate activation of the p38 MAPK signaling pathway, and the pathogenesis of neurodegenerative diseases. Although antioxidant therapy is a valid strategy to alleviate these problems, the most important limitation of this approach is the ineffectiveness of drug administration due to the limited permeability of the BBB. Therefore, BBB-penetrating p38 MAPK modulators with proper antioxidant capacity could be useful in preventing/reducing the complications of neurodegenerative disorders. The current manuscript aims to review the therapeutic capabilities of some recently reviewed naturally occurring p38 MAPK inhibitors in the management of neurodegenerative problems such as Alzheimer's disease. In data collection, we tried to use more recent studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so on, but no specific time frame was considered due to the nature of the study. Our evaluations indicate that natural compounds tanshinones, protoberberines, pinocembrin, osthole, rhynchophylline, oxymatrine, schisandrin, piperine, paeonol, ferulic acid, 6-gingerol, obovatol, and trolox have significant potential for use as supplements/adjuvants in the reduction of neurodegenerative-related problems. Our findings emphasize the usefulness of BBB-penetrating phytochemicals with p38 MAPK modulatory activity as potential therapeutic options against neurodegenerative disorders. Of course, the proper use of these compounds depends on considering their toxicity/safety profile and pharmacokinetic characteristics as well as the clinical conditions of users.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Damigos G, Zacharaki EI, Zerva N, Pavlopoulos A, Chatzikyrkou K, Koumenti A, Moustakas K, Pantos C, Mourouzis I, Lourbopoulos A. Machine learning based analysis of stroke lesions on mouse tissue sections. J Cereb Blood Flow Metab 2022; 42:1463-1477. [PMID: 35209753 PMCID: PMC9274860 DOI: 10.1177/0271678x221083387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An unbiased, automated and reliable method for analysis of brain lesions in tissue after ischemic stroke is missing. Manual infarct volumetry or by threshold-based semi-automated approaches is laborious, and biased to human error or biased by many false -positive and -negative data, respectively. Thereby, we developed a novel machine learning, atlas-based method for fully automated stroke analysis in mouse brain slices stained with 2% Triphenyltetrazolium-chloride (2% TTC), named "StrokeAnalyst", which runs on a user-friendly graphical interface. StrokeAnalyst registers subject images on a common spatial domain (a novel mouse TTC- brain atlas of 80 average mathematical images), calculates pixel-based, tissue-intensity statistics (z-scores), applies outlier-detection and machine learning (Random-Forest) models to increase accuracy of lesion detection, and produces volumetry data and detailed neuroanatomical information per lesion. We validated StrokeAnalyst in two separate experimental sets using the filament stroke model. StrokeAnalyst detects stroke lesions in a rater-independent and reproducible way, correctly detects hemispheric volumes even in presence of post-stroke edema and significantly minimizes false-positive errors compared to threshold-based approaches (false-positive rate 1.2-2.3%, p < 0.05). It can process scanner-acquired, and even smartphone-captured or pdf-retrieved images. Overall, StrokeAnalyst surpasses all previous TTC-volumetry approaches and increases quality, reproducibility and reliability of stroke detection in relevant preclinical models.
Collapse
Affiliation(s)
- Gerasimos Damigos
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece.,Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | - Evangelia I Zacharaki
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | - Nefeli Zerva
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Pavlopoulos
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Chatzikyrkou
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Argyro Koumenti
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Constantinos Pantos
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Lourbopoulos
- Department of Pharmacology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany.,Neurointensive Care Unit, Schoen Klinik Bad Aibling, Germany
| |
Collapse
|
3
|
Huang X, Jin L, Deng H, Wu D, Shen QK, Quan ZS, Zhang CH, Guo HY. Research and Development of Natural Product Tanshinone I: Pharmacology, Total Synthesis, and Structure Modifications. Front Pharmacol 2022; 13:920411. [PMID: 35903340 PMCID: PMC9315943 DOI: 10.3389/fphar.2022.920411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Salvia miltiorrhiza (S. miltiorrhiza), which has been used for thousands of years to treat cardiovascular diseases, is a well-known Chinese medicinal plant. The fat-soluble tanshinones in S. miltiorrhiza are important biologically active ingredients including tanshinone I, tanshinone IIA, dihydrotanshinone, and cryptotanshinone. Tanshinone I, a natural diterpenoid quinone compound widely used in traditional Chinese medicine, has a wide range of biological effects including anti-cancer, antioxidant, neuroprotective, and anti-inflammatory activities. To further improve its potency, water solubility, and bioavailability, tanshinone I can be used as a platform for drug discovery to generate high-quality drug candidates with unique targets and enhanced drug properties. Numerous derivatives of tanshinone I have been developed and have contributed to major advances in the identification of new drugs to treat human cancers and other diseases and in the study of related molecular mechanisms. This review focuses on the structural modification, total synthesis, and pharmacology of tanshinone I. We hope that this review will help understanding the research progress in this field and provide constructive suggestions for further research on tanshinone I.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong-Yan Guo
- *Correspondence: Chang-hao Zhang, ; Hong-Yan Guo,
| |
Collapse
|
4
|
Laminarin Alleviates the Ischemia/Reperfusion Injury in PC12 Cells via Regulation of PTEN/PI3K/AKT Pathway. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/9999339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the protective effect of laminarin on PC12 cells damaged by oxygen glucose deprivation/reoxygenation (OGD/R) and its molecular mechanism. Methods. PC12 cells in the logarithmic phase were randomly divided into the control group, OGD/R group, and OGD/R+laminarin (0.5, 2.5, and 5 μg/ml) group. CCK-8 activity assay kit was used to detect cell viability. ELISA kit was performed to examine the levels of proinflammatory factors (TNF-α, IL-1β, and IL-6) and oxidative stress markers (ROS, LDH, and MPO). In addition, flow cytometry was employed to determine cell cycle and apoptosis. The expression of cell proliferation-related proteins (PCNA and Ki67), apoptosis-related proteins (Bcl-2, Bax, and Caspase-3), and PTEN/PI3K/AKT pathway-related proteins was evaluated by Western blot. Results. Compared with the control group, the cell viability was decreased significantly in the OGD/R group. CCK-8 results showed that laminarin could attenuate the damage of PC12 cell viability induced by OGD/R in a concentration-dependent manner. Meanwhile, the highest concentration of 5 μg/ml laminarin could significantly promote the viability of PC12 cells and the expression of PCNA and Ki67 than the OGD/R group. Additionally, ELISA assays showed that laminarin significantly inhibited the expression of proinflammatory factors (TNF-α, IL-1β, and IL-6) and the levels of oxidative stress markers (ROS, LDH, and MPO). Flow cytometry results demonstrated that laminarin promoted the cell cycle. And laminin upregulated the expression of apoptotic protein Bcl-2, while downregulated the expression of apoptotic proteins Bax and Caspase-3. Finally, laminarin significantly suppressed the expression of PTEN and facilitated the expression of PI3K and p-AKT compared to the OGD/R group. Conclusion. Laminarin could alleviate the OGD/R-induced PC12 cell neuronal injury via promoting cell activity and cycle and inhibiting inflammation, oxidative stress, and apoptosis. The mechanism may be related to the downregulation of PTEN protein and the activation of the PI3K/AKT pathway.
Collapse
|
5
|
Sheida A, Taghavi T, Shafabakhsh R, Ostadian A, Razaghi Bahabadi Z, Khaksary Mahabady M, Hamblin MR, Mirzaei H. Potential of natural products in the treatment of myocardial infarction: focus on molecular mechanisms. Crit Rev Food Sci Nutr 2022; 63:5488-5505. [PMID: 34978223 DOI: 10.1080/10408398.2021.2020720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although conventional drugs are widely used in the prevention and treatment of cardiovascular disease (CVD), they are being used less frequently due to concerns about possible side effects over the long term. There has been a renewed research interest in medicinal plant products, and their role in protecting the cardiovascular system and treating CVD, which are now being considered as potential alternatives to modern drugs. The most important mechanism causing damage to the myocardium after heart attack and reperfusion, is increased levels of free radicals and oxidative stress. Therefore, treatment approaches often focus on reducing free radicals or enhancing antioxidant defense mechanism. It has been previously reported that bioactive natural products can protect the heart muscle in myocardial infarction (MI). Since these compounds are readily available in fruits and vegetables, they could prevent the risk of MI if they are consumed daily. Although the benefits of a healthy diet are well known, many scientific studies have focused on whether pure natural compounds can prevent and treat MI. In this review we summarize the effects of curcumin, resveratrol, quercitin, berberine, and tanshinone on MI and CVD, and focus on their proposed molecular mechanisms of action.
Collapse
Affiliation(s)
- Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Liu J, Wang F, Sheng P, Xia Z, Jiang Y, Yan BC. A network-based method for mechanistic investigation and neuroprotective effect on treatment of tanshinone Ⅰ against ischemic stroke in mouse. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113923. [PMID: 33617968 DOI: 10.1016/j.jep.2021.113923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanshinone-Ⅰ (TSNⅠ), a member of the mainly active components of Salvia miltiorrhiza Bunge (Dan Shen), which is widely used for the treatment for modern clinical diseases including cardiovascular and cerebrovascular diseases, has been reported to show the properties of anti-oxidation, anti-inflammation, neuroprotection and other pharmacological actions. However, whether TSNⅠ can improve neuron survival and neurological function against transient focal cerebral ischemia (tMCAO) in mice is still a blank field. AIM OF THE STUDY This study aims to investigate the neuroprotective effects of TSNⅠ on ischemic stroke (IS) induced by tMCAO in mice and explore the potential mechanism of TSNⅠ against IS by combining network pharmacology approach and experimental verification. MATERIALS AND METHODS In this study, the pivotal candidate targets of TSNⅠ against IS were screened by network pharmacology firstly. Enrichment analysis and molecular docking of those targets were performed to identify the possible mechanism of TSNⅠ against IS. Afterwards, experiments were carried out to further verify the mechanism of TSNⅠ against IS. The infarct volume and neurological deficit were evaluated by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Longa respectively. Immunohistochemistry was used to observe neuronal death in the hippocampus and cortical regions by detecting the change of NeuN. The predicting pathways of signaling-related proteins were assessed by Western blot in vitro and in vivo experiments. RESULTS In vivo, TSNⅠ was found to dose-dependently decrease mice's cerebral infarct volume induced by tMCAO. In vitro, pretreatment with TSNⅠ could increase cell viability of HT-22 cell following oxygen-glucose deprivation (OGD/R). Moreover, the results showed that 125 candidate targets were identified, Protein kinase B (AKT) signaling pathway was significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and mitogen-activated protein kinases 1 (MAPK1) and AKT1 could be bound to TSNⅠ more firmly by molecular docking analysis, which implies that TSNⅠ may play a role in neuroprotection through activating AKT and MAPK signaling pathways. Meanwhile, TSNⅠ was confirmed to significantly protect neurons from injury induced by IS through activating AKT and MAPK signaling pathways. CONCLUSION In conclusion, our study clarifies that the mechanism of TSNⅠ against IS might be related to AKT and MAPK signaling pathways, which may provide the basic evidence for further development and utilization of TSNⅠ.
Collapse
Affiliation(s)
- Jiajia Liu
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Fuxing Wang
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Peng Sheng
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Zihao Xia
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Yunyao Jiang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, 100084, PR China
| | - Bing Chun Yan
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
7
|
Subedi L, Gaire BP. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol Res 2021; 169:105661. [PMID: 33971269 DOI: 10.1016/j.phrs.2021.105661] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|
9
|
Yuan Y, Wu C, Ling EA. Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Curr Pharm Des 2020; 25:2375-2393. [PMID: 31584369 DOI: 10.2174/1381612825666190722114248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore
| |
Collapse
|
10
|
Wu D, Huo M, Chen X, Zhang Y, Qiao Y. Mechanism of tanshinones and phenolic acids from Danshen in the treatment of coronary heart disease based on co-expression network. BMC Complement Med Ther 2020; 20:28. [PMID: 32020855 PMCID: PMC7076864 DOI: 10.1186/s12906-019-2712-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background The tanshinones and phenolic acids in Salvia miltiorrhiza (also named Danshen) have been confirmed for the treatment of coronary heart disease (CHD), but the action mechanisms remain elusive. Methods In the current study, the co-expression protein interaction network (Ce-PIN) was used to illustrate the differences between the tanshinones and phenolic acids of Danshen in the treatment of CHD. By integrating the gene expression profile data and protein-protein interactions (PPIs) data, the Ce-PINs of tanshinones and phenolic acids were constructed. Then, the Ce-PINs were analyzed by gene ontology enrichment analyzed based on the optimal algorithm. Results It turned out that Danshen is able to treat CHD by regulating the blood circulation, immune response and lipid metabolism. However, phenolic acids may regulate the blood circulation by Extracellular calcium-sensing receptor (CaSR), Endothelin-1 receptor (EDNRA), Endothelin-1 receptor (EDNRB), Kininogen-1 (KNG1), tanshinones may regulate the blood circulation by Guanylate cyclase soluble subunit alpha-1 (GUCY1A3) and Guanylate cyclase soluble subunit beta-1 (GUCY1B3). In addition, both the phenolic acids and tanshinones may regulate the immune response or inflammation by T-cell surface glycoprotein CD4 (CD4), Receptor-type tyrosine-protein phosphatase C (PTPRC). Conclusion Through the same targets of the same biological process and different targets of the same biological process, the tanshinones and phenolic acids synergistically treat coronary heart disease.
Collapse
Affiliation(s)
- Dongxue Wu
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Mengqi Huo
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Xi Chen
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Yanling Zhang
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China.
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China.
| |
Collapse
|
11
|
Fei F, Su N, Li X, Fei Z. Neuroprotection mediated by natural products and their chemical derivatives. Neural Regen Res 2020; 15:2008-2015. [PMID: 32394948 PMCID: PMC7716029 DOI: 10.4103/1673-5374.282240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuronal injuries can lead to various diseases such as neurodegenerative diseases, stroke, trauma, ischemia and, more specifically, glaucoma and optic neuritis. The cellular mechanisms that regulate neuronal death include calcium influx and calcium overload, excitatory amino acid release, oxidative stress, inflammation and microglial activation. Much attention has been paid to the effective prevention and treatment of neuroprotective drugs by natural products. This review summarizes the neuroprotective aspects of natural products, extracted from Panax ginseng, Camellia sinensis, soy and some other plants, and some of their chemical derivatives. Their antioxidative and anti-inflammatory action and their inhibition of apoptosis and microglial activation are assessed. This will provide new directions for the development of novel drugs and strategies to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Fei
- Department of Ophthalmology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ning Su
- Department of Radiation Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
12
|
Wu Y, Zhang B, Kebebe D, Guo L, Guo H, Li N, Pi J, Qi D, Guo P, Liu Z. Preparation, optimization and cellular uptake study of tanshinone I nanoemulsion modified with lactoferrin for brain drug delivery. Pharm Dev Technol 2019; 24:982-991. [DOI: 10.1080/10837450.2019.1621897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yumei Wu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Lili Guo
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hong Guo
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Nan Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jiaxin Pi
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Dongli Qi
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Pan Guo
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
13
|
Wang S, Lin H, Cong W. Chinese Medicines Improve Perimenopausal Symptoms Induced by Surgery, Chemoradiotherapy, or Endocrine Treatment for Breast Cancer. Front Pharmacol 2019; 10:174. [PMID: 30930771 PMCID: PMC6428993 DOI: 10.3389/fphar.2019.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
The application of surgery, chemoradiotherapy, and endocrine treatment successfully increases survival rates of breast cancer patients. However, perimenopausal symptoms, the main side effects of these treatments, often afflict patients and reduce their quality of life. Perimenopausal symptoms include vasomotor symptoms, sleep problems, arthromuscular symptoms, and osteoporosis. Currently, there are no satisfactory treatments for perimenopausal symptoms that result from these treatments. Therefore, alternative and complementary therapies including herbal medicines represented by Chinese medicines (CMs), acupuncture, massage, and psychotherapy are increasingly being expected and explored. In this paper, we review the effects and potentials of several CM formulae, along with some active ingredients or fractions from CMs, Chinese herbal extracts, and other herbal medicines, which have drawn attention for improving perimenopausal symptoms in breast cancer patients. We also elaborate their possible mechanisms. Moreover, further studies for evaluation of standardized clinical efficacy should be scientifically well-designed and continuously performed to investigate the efficacy and mechanisms of CMs for perimenopausal symptoms due to breast cancer therapy. The safety and value of estrogen-containing CMs for breast cancer should also be clarified.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hongsheng Lin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Comparative study of the effects of Danhong injection with different doses on ischemic stroke: A substudy of hospital-based Danhong injection registry. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30992-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Herbal Compounds Play a Role in Neuroprotection through the Inhibition of Microglial Activation. J Immunol Res 2018; 2018:9348046. [PMID: 29850641 PMCID: PMC5932434 DOI: 10.1155/2018/9348046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
Since microglia possess both neuroprotective and neurotoxic potential, they play a crucial role in the central nervous system (CNS). Excessive microglial activation induces inflammation-mediated neuronal damage and degeneration. At present, numerous herbal compounds are able to suppress neurotoxicity via inhibiting microglial activation. Therefore, many researchers focus on pharmacological inhibitors of microglial activation to ameliorate neurodegenerative disorders. Further work should concentrate on the exploration of new herbal compounds, which characteristically inhibit microglial neurotoxicity, rather than modulating neuroprotection alone. In this review, we summarize these herbal compounds, which in the past several years have been shown to exert potential neuroprotective activity by inhibiting microglial activation. The therapeutic targets and pharmacological mechanisms of these compounds have also been discussed.
Collapse
|
16
|
Martinez B, Peplow PV. Neuroprotection by immunomodulatory agents in animal models of Parkinson's disease. Neural Regen Res 2018; 13:1493-1506. [PMID: 30127102 PMCID: PMC6126123 DOI: 10.4103/1673-5374.237108] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease for which the characteristic motor symptoms emerge after an extensive loss of dopamine containing neurons. The cell bodies of these neurons are present in the substantia nigra, with the nerve terminals being in the striatum. Both innate and adaptive immune responses may contribute to dopaminergic neurodegeneration and disease progression is potentially linked to these. Studies in the last twenty years have indicated an important role for neuroinflammation in PD through degeneration of the nigrostriatal dopaminergic pathway. Characteristic of neuroinflammation is the activation of brain glial cells, principally microglia and astrocytes that release various soluble factors. Many of these factors are proinflammatory and neurotoxic and harmful to nigral dopaminergic neurons. Recent studies have identified several different agents with immunomodulatory properties that protected dopaminergic neurons from degeneration and death in animal models of PD. All of the agents were effective in reducing the motor deficit and alleviating dopaminergic neurotoxicity and, when measured, preventing the decrease of dopamine upon being administered therapeutically after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 6-hydroxydopamine, rotenone-lesioning or delivery of adeno-associated virus-α-synuclein to the ventral midbrain of animals. Some of these agents were shown to exert an anti-inflammatory action, decrease oxidative stress, and reduce lipid peroxidation products. Activation of microglia and astrocytes was also decreased, as well as infiltration of T cells into the substantia nigra. Pretreatment with fingolimod, tanshinoine I, dimethyl fumarate, thalidomide, or cocaine- and amphetamine-regulated transcript peptide as a preventive strategy ameliorated motor deficits and nigral dopaminergic neurotoxicity in brain-lesioned animals. Immunomodulatory agents could be used to treat patients with early clinical signs of the disease or potentially even prior to disease onset in those identified as having pre-disposing risk, including genetic factors.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, CA; Department of Medicine, St. Georges University School of Medicine, Grenada; Department of Physics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Dai C, Liu Y, Dong Z. Tanshinone I alleviates motor and cognitive impairments via suppressing oxidative stress in the neonatal rats after hypoxic-ischemic brain damage. Mol Brain 2017; 10:52. [PMID: 29137683 PMCID: PMC5686905 DOI: 10.1186/s13041-017-0332-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022] Open
Abstract
Neonatal hypoxia-ischemia is one of the main reasons that cause neuronal damage and neonatal death. Several studies have shown that tanshinone I (TsI), one of the major ingredients of Danshen, exerts potential neuroprotective effect in adult mice exposed to permanent left cerebral ischemia. However, it is unclear whether administration of TsI has neuroprotective effect on neonatal hypoxic-ischemic brain damage (HIBD), and if so, the potential mechanisms also remain unclear. Here, we reported that treatment with TsI (5 mg/kg, i.p.) significantly alleviated the deficits of myodynamia and motor functions as well as the spatial learning and memory in the rat model of HIBD. These behavioral changes were accompanied by a significant decrease in the number of neuronal loss in the CA1 area of hippocampus. Moreover, ELISA assay showed that TsI significantly increased the production of antioxidants including total antioxidant capacity (T-AOC), glutathione (GSH), total superoxide dismutase (T-SOD) and catalase (CAT), and reduced the production of pro-oxidants including hydrogen peroxide (H2O2), total nitric oxide synthase (T-NOS) and inducible nitric oxide synthase (iNOS). Taken together, these results indicate that TsI presents potential neuroprotection against neuronal damage via exerting significantly antioxidative activity and against pro-oxidant challenge, thereby ameliorating hypoxia-ischemia-induced motor and cognitive impairments in the neonatal rats, suggesting that TsI may be a potential therapeutic agent against HIBD.
Collapse
Affiliation(s)
- Chunfang Dai
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Yannan Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China. .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China. .,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
18
|
Quality Evaluation and Chemical Markers Screening of Salvia miltiorrhiza Bge. (Danshen) Based on HPLC Fingerprints and HPLC-MS n Coupled with Chemometrics. Molecules 2017; 22:molecules22030478. [PMID: 28304365 PMCID: PMC6155183 DOI: 10.3390/molecules22030478] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/05/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023] Open
Abstract
Danshen, the dried root of Salvia miltiorrhiza Bge., is a widely used commercially available herbal drug, and unstable quality of different samples is a current issue. This study focused on a comprehensive and systematic method combining fingerprints and chemical identification with chemometrics for discrimination and quality assessment of Danshen samples. Twenty-five samples were analyzed by HPLC-PAD and HPLC-MSn. Forty-nine components were identified and characteristic fragmentation regularities were summarized for further interpretation of bioactive components. Chemometric analysis was employed to differentiate samples and clarify the quality differences of Danshen including hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis. Consistent results were that the samples were divided into three categories which reflected the difference in quality of Danshen samples. By analyzing the reasons for sample classification, it was revealed that the processing method had a more obvious impact on sample classification than the geographical origin, it induced the different content of bioactive compounds and finally lead to different qualities. Cryptotanshinone, trijuganone B, and 15,16-dihydrotanshinone I were screened out as markers to distinguish samples by different processing methods. The developed strategy could provide a reference for evaluation and discrimination of other traditional herbal medicines.
Collapse
|
19
|
Tanshinones and mental diseases: from chemistry to medicine. Rev Neurosci 2016; 27:777-791. [DOI: 10.1515/revneuro-2016-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 11/15/2022]
Abstract
AbstractThe prevalence of mental diseases, especially neurodegenerative disorders, is ever-increasing, while treatment options for such disorders are limited and insufficient. In this scarcity of available medication, it is a feasible strategy to search for potential drugs among natural compounds, such as those found in plants. One such plant source is the root of Chinese sage, Salvia miltiorrhiza Bunge (Labiatae), which contains several compounds reported to possess neuroprotective activities. The most important of these compounds are tanshinones, which have been reported to possess ameliorative activity against a myriad of mental diseases such as Alzheimer’s disease, cerebral ischemia/reperfusion injury, and glioma, along with promoting neuronal differentiation and manifesting antinociceptive and anticonvulsant outcomes. This review offers a critical evaluation of the utility of tanshinones to treat mental illnesses, and sheds light on the underlying mechanisms through which these naturally occurring compounds confer neuroprotection.
Collapse
|
20
|
Zhu Y, Zeng Y, He C, Jiang S, Zhou L, Huang Y, Qiang C, Jiang Y. Effects of a Cardiotonic Medicine, Danshen Pills, on Cognitive Ability and Expression of PSD-95 in a Vascular Dementia Rat Model. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Tanshinone I Attenuates the Effects of a Challenge with H 2O 2 on the Functions of Tricarboxylic Acid Cycle and Respiratory Chain in SH-SY5Y Cells. Mol Neurobiol 2016; 54:7858-7868. [PMID: 27848206 DOI: 10.1007/s12035-016-0267-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/30/2016] [Indexed: 12/24/2022]
Abstract
Tanshinone I (T-I; C18H12O3) is a cytoprotective molecule. T-I has been viewed as an antioxidant and anti-inflammatory agent exerting neuroprotective actions in several experimental models. Nonetheless, the mechanisms underlying the beneficial effects of T-I in mammalian cells are not completely understood yet. Mitochondrial dysfunction has been associated with several neurodegenerative diseases which remain uncured. Therefore, there is increasing interest in compounds that may be used in the prevention or treatment of those pathologies. Since T-I presents an antioxidant capacity, we investigated here whether and how this compound would prevent mitochondrial impairment in SH-SY5Y cells exposed to hydrogen peroxide (H2O2), which has been involved in the triggering of deleterious effects in several experimental models mimicking neurodegenerative processes. We found that a pretreatment with T-I at 2.5 μM for 2 h suppressed the pro-oxidant effects of H2O2 on mitochondrial membranes. Furthermore, T-I prevented the H2O2-elicited inhibition of the tricarboxylic acid (TCA) cycle enzymes (aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase) and of the mitochondrial complexes I and V. T-I also abrogated the mitochondrial depolarization and the mitochondrial failure to produce ATP in cells exposed to H2O2. T-I upregulated the levels of reduced glutathione (GSH) in the mitochondria of SH-SY5Y cells. T-I induced mitochondrial protection, at least in part, by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), because silencing of Nrf2 by using small interference RNA (SiRNA) blocked these effects. Therefore, T-I afforded mitochondrial protection (involving both redox and bioenergetics-related aspects) against H2O2 through the activation of Nrf2.
Collapse
|
22
|
Fu B, Guo S, Yu X, Chang H, Wang W. Astragalus Salvia Granules to Benefit the Qi (Qishen Yiqi Keli) protects H9C2 cardiomyocytes by suppressing oxidative stress. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2016. [DOI: 10.1016/j.jtcms.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Chang CC, Lee YC, Lin CC, Chang CH, Chiu CD, Chou LW, Sun MF, Yen HR. Characteristics of traditional Chinese medicine usage in patients with stroke in Taiwan: A nationwide population-based study. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:311-321. [PMID: 27090345 DOI: 10.1016/j.jep.2016.04.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke has been the leading causes of death worldwide. Traditional Chinese medicine (TCM) has been used for stoke patients for thousands of years. This study aimed to investigate TCM usage and prescription patterns in stroke patients in Taiwan. MATERIALS AND METHODS We analyzed a random sample of one million individuals representing the 23 million enrollees selected from the National Health Insurance Research Database in Taiwan. Demographic characteristics, TCM usage, prescription patterns and mortality rate among stroke patients were analyzed. RESULTS We identified 23,816 patients who were newly diagnosed with stroke between 2001 and 2009 by their diagnostic codes (ICD-9-CM 430-438). Among them, 4302 patients had hemorrhagic stroke while 19,514 patients had ischemic stroke. Overall, 12% of the stroke patients (n=2862) were TCM users. The median interval between stroke onset to the first TCM consultation is 12.2 months. Among the TCM users, more than half (52.7%) of the patients received both Chinese herbal remedies and acupuncture/traumatology treatment. Bu-yang-huan-wu-tang and Dan-shen (Radix Salviae Miltiorrhizae; Salvia miltiorrhiza Bunge) was the most commonly prescribed Chinese herbal formula and single herb, respectively. TCM users had a higher incidence rate ratio in myalgia, myositis, fasciitis and insomnia than non-TCM users. Mental disorders such as anxiety and depression are common in both TCM and non-TCM users. Comparing with the non-TCM users, the TCM users had a lower mortality rate (adjusted hazard ratios were 0.44 in overall stroke, 0.50 in ischemic stroke and 0.25 in hemorrhagic stroke). CONCLUSION Adjunctive TCM use may reduce the risk of mortality rate among stroke patients. Bu-yang-huan-wu-tang and Dan-shen are the most common prescribed Chinese herbal formula and single herb for stroke patients, respectively. Future study investigating the anti-inflammatory and neuroprotective efficacy of Bu-yang-huan-wu-tang and Dan-shen in stroke is warranted.
Collapse
Affiliation(s)
- Chia-Chi Chang
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan; Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yu-Chen Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 404, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan.
| | - Che-Chen Lin
- Health Data Management Office, China Medical University Hospital, Taichung 404, Taiwan.
| | - Chin-Hsien Chang
- Department of Traditional Chinese Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| | - Cheng-Di Chiu
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; School of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Li-Wei Chou
- Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 404, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan; School of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung 404, Taiwan.
| | - Mao-Feng Sun
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 404, Taiwan; School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Hung-Rong Yen
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan; Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 404, Taiwan; School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
24
|
Su CY, Ming QL, Rahman K, Han T, Qin LP. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med 2016; 13:163-82. [PMID: 25835361 DOI: 10.1016/s1875-5364(15)30002-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Bunge (SM) is a very popular medicinal plant that has been extensively applied for many years to treat various diseases, especially coronary heart diseases and cerebrovascular diseases, either alone or in combination with other Chinese plant-based medicines. Although a large number of studies on SM have been performed, they are scattered across a variety of publications. The present review is an up-to-date summary of the published scientific information about the traditional uses, chemical constituents, pharmacological effects, side effects, and drug interactions with SM, in order to lay the foundation for further investigations and better utilization of SM. SM contains diverse chemical components including diterpenoid quinones, hydrophilic phenolic acids, and essential oils. Many pharmacological studies have been done on SM during the last 30 years, focusing on the cardiovascular and cerebrovascular effects, and the antioxidative, neuroprotective, antifibrotic, anti-inflammatory, and antineoplastic activities. The research results strongly support the notion that SM has beneficial therapeutic properties and has a potential of being an effective adaptogenic remedy.
Collapse
Affiliation(s)
- Chun-Yan Su
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, China
| | - Qian-Liang Ming
- Department of Pharmacognosy, School of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
25
|
Cai Y, Zhang W, Chen Z, Shi Z, He C, Chen M. Recent insights into the biological activities and drug delivery systems of tanshinones. Int J Nanomedicine 2016; 11:121-30. [PMID: 26792989 PMCID: PMC4708214 DOI: 10.2147/ijn.s84035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza), have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI), tanshinone IIA (TNIIA), and cryptotanshinone (CPT). However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications.
Collapse
Affiliation(s)
- Yuee Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Wenji Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Zirong Chen
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | - Zhi Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| |
Collapse
|
26
|
Feng F, Feng Y, Liu Z, Li WH, Wang WC, Wu ZD, Lv Z. Effects of albendazole combined with TSII-A (a Chinese herb compound) on optic neuritis caused by Angiostrongylus cantonensis in BALB/c mice. Parasit Vectors 2015; 8:606. [PMID: 26608105 PMCID: PMC4660773 DOI: 10.1186/s13071-015-1214-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
Background Angiostrongylus cantonensis (A. cantonensis) infection can lead to optic neuritis, retinal inflammation, damage to ganglion cells, demyelination of optic nerve and visual impairment. Combined therapy of albendazole and dexamethasone is a common treatment for the disease in the clinic, but it plays no role in vision recovery. Therefore, it has been necessary to explore alternative therapies to treat this disease. Previous studies reported the neuro-productive effects of two constituents of Danshen (a Chinese herb)-tanshinone II-A (TSII-A) and cryptotanshinone (CPT), and this study aims to evaluate the impacts of TSII-A or CPT combined with albendazole on optic neuritis caused by A. cantonensis infection in a murine model. Methods To assess the effects of TSII-A or CPT combined with albendazole on optic neuritis due to the infection, mice were divided into six groups, including the normal control group, infection group and four treatment groups (albendazole group, albendazole combined with dexamethasone group, albendazole combined with CPT group and albendazole combined with TSII-A group). The infection group and treatment groups were infected with A. cantonensisand the treatment groups received interventions from 14 dpi (days post infection), respectively. At 21 dpi, the visual acuity of mice in each group was examined by visual evoked potential (VEP). The pathologic alteration of the retina and optic nerve were observed by hematoxylin and eosin (H&E) staining and transmission electronic microscopy (TEM). Results Infection of A. cantonensis caused prolonged VEP latency, obvious inflammatory cell infiltration in the retina, damaged retinal ganglions and retinal swelling, followed by optic nerve fibre demyelination and a decreasing number of axons at 21 dpi. In treatment groups, albendazole could not alleviate the above symptoms; albendazole combined with dexamethasone lessened the inflammation of the retina, but was futile for the other changes; however, albendazole combined with CPT and albendazole combined with TSII-A showed obvious effects on the recovery of prolonged VEP latency, destruction and reduction of ganglion cells, optic nerve demyelination and axon loss. Compared with albendazole-CPT compound, albendazole combined with TSII-A was more effective. Conclusions The current study demonstrates that albendazole combined with TSII-A plays a more effective role in treating optic neuritis caused by A. cantonensis in mice than with dexamethasone, as applied in conventional treatment, indicating that albendazole combined with TSII-A might be an alternate therapy for this parasitic disease in the clinic.
Collapse
Affiliation(s)
- Feng Feng
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| | - Ying Feng
- Histology and Embryology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhen Liu
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| | - Wei-Hua Li
- Zhongshan Ophthalmic Center, SunYat-sen University, Guangzhou, 510080, China.
| | - Wen-Cong Wang
- Zhongshan Ophthalmic Center, SunYat-sen University, Guangzhou, 510080, China.
| | - Zhong-Dao Wu
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| | - Zhiyue Lv
- Parasitology Department of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Jing X, Wei X, Ren M, Wang L, Zhang X, Lou H. Neuroprotective Effects of Tanshinone I Against 6-OHDA-Induced Oxidative Stress in Cellular and Mouse Model of Parkinson's Disease Through Upregulating Nrf2. Neurochem Res 2015; 41:779-86. [PMID: 26537816 DOI: 10.1007/s11064-015-1751-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/01/2015] [Accepted: 10/27/2015] [Indexed: 01/01/2023]
Abstract
In this study, we investigated whether tanshinone I (T-I) has therapeutic effects in cellular and animal model of Parkinson's disease (PD), and explore its possible mechanism. For this purpose, human neuroblastoma SH-SY5Y cells were cultured and exposed to 100 μM 6-hydroxydopamine (6-OHDA) in the absence or presence of T-I (1, 2.5 and 5 μM). The results revealed that 6-OHDA-induced cell death was reduced by T-I pretreatment as measured by MTT assay, lactate dehydrogenase release and flow cytomety analysis of cell apoptosis. The increase in the reactive oxygen species caused by 6-OHDA treatment was also attenuated by T-I in SH-SY5Y cells. T-I pretreatment was also shown to result in an increase in nuclear factor erythroid-2-related factor 2 (Nrf2) protein levels and its transcriptional activity as well as the upregulation of Nrf2-dependent genes encoding the antioxidant enzymes heme oxygenase-1, glutathione cysteine ligase regulatory subunit and glutathione cysteine ligase modulatory subunit in SH-SY5Y cells. Moreover, in the in vivo experiment, T-I treatment significantly attenuated 6-OHDA-induced striatal oxidative stress and ameliorated dopaminergic neurotoxicity in 6-OHDA-lesioned mice, as evidenced by western blot analysis of tyrosine hydroxylase (TH) and TH immunostaining of dopaminergic neurons in the substantia nigra and the striatum. Taken together, the results suggest that T-I may be beneficial for the treatment of neurodegenerative diseases like PD.
Collapse
Affiliation(s)
- Xu Jing
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, 250012, China
| | - Xinbing Wei
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Manru Ren
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Lingtian Wang
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Xiumei Zhang
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Haiyan Lou
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
28
|
Abstract
Tanshinone IIA is a pharmacologically active compound isolated from Danshen (Salvia miltiorrhiza), a traditional Chinese herbal medicine for the management of cardiac diseases and other disorders. But its underlying molecular mechanisms of action are still unclear. The present investigation utilized a data mining approach based on network pharmacology to uncover the potential protein targets of Tanshinone IIA. Network pharmacology, an integrated multidisciplinary study, incorporates systems biology, network analysis, connectivity, redundancy, and pleiotropy, providing powerful new tools and insights into elucidating the fine details of drug-target interactions. In the present study, two separate drug-target networks for Tanshinone IIA were constructed using the Agilent Literature Search (ALS) and STITCH (search tool for interactions of chemicals) methods. Analysis of the ALS-constructed network revealed a target network with a scale-free topology and five top nodes (protein targets) corresponding to Fos, Jun, Src, phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), and mitogen-activated protein kinase kinase 1 (MAP2K1), whereas analysis of the STITCH-constructed network revealed three top nodes corresponding to cytochrome P450 3A4 (CYP3A4), cytochrome P450 A1 (CYP1A1), and nuclear factor kappa B1 (NFκB1). The discrepancies were probably due to the differences in the divergent computer mining tools and databases employed by the two methods. However, it is conceivable that all eight proteins mediate important biological functions of Tanshinone IIA, contributing to its overall drug-target network. In conclusion, the current results may assist in developing a comprehensive understanding of the molecular mechanisms and signaling pathways of in a simple, compact, and visual manner.
Collapse
Affiliation(s)
- Shao-Jun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo 315100, China.
| |
Collapse
|
29
|
Wang S, Jing H, Yang H, Liu Z, Guo H, Chai L, Hu L. Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:247-255. [PMID: 25666429 DOI: 10.1016/j.jep.2015.01.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/23/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Salviae Miltiorrhizae, known as Danshen, is a well-known traditional Chinese herb which has been used extensively for the treatment of various diseases, including cardiovascular and cerebrovascular disease and neurodegenerative diseases for thousands of years. Tanshinone I is one of major bioactive flavonoids of Radix Salviae Miltiorrhizae. Modulation of microglial over-reaction may represent a therapeutic target to alleviate the progression of neurodegenerative diseases. Here, we tested the effect of Tanshinone I on neuro-inflammation and whether it can provide neuroprotection through inhibition of neuro-inflammation. MATERIALS AND METHODS The effects of Tanshinone I on the production and/or mRNA expression of pro-inflammatory and anti-inflammatory factors in lipopolysaccharide(LPS)-induced BV-2 microglia cells were tested by Griess reaction, enzyme-linked immunosorbent assay (Elisa) or real time polymerase chain reaction. Activation of nuclear factor κ B (NF-κB) was measured by the nuclear translocation p65 and DNA binding activity. A model of Parkinson׳s disease was established by treatment of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6 mice. The effect of Tanshinone I on the behavioral changes, dopamine and its metabolites levels, expression of tyrosine hydroxylase (TH) and IBA-1, production of cytokines in the midbrain were investigated by the rotarod test, high-performance liquid chromatography (HPLC)-ECD, immunohistochemistry and Elisa. 1-methyl-4-phenylpyridinium (MPP+) concentration was tested by HPLC. Liver toxicity was determined by biochemical assay and histochemistry. RESULTS We found that the productions and/or expressions of several pro-inflammatory M1 factors such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 were highly suppressed by Tanshinone I in LPS-induced microglia. Interestingly, it did not affect the enhancement of expression of some anti-inflammatory M2 microglia markers, including IL-10, IL-1 receptor antagonist (IL-1Ra) and Cox-2. But it could significantly inhibit LPS-induced granulocyte colony-stimulating factor (G-CSF) expression. Tanshinone I could also inhibit LPS-induced NF-κB activation in microglia. Furthermore, it improved motor functions, normalized striatal neurotransmitters, and provided dopaminergic neuronal protection in MPTP-intoxicated mice. In vivo results also indicated that Tanshinone I could modulate MPTP-induced microglial activation, attenuated the increase of TNF-α, reserved the increase of IL-10 concentrain of MPTP-intoxicated mice. Tanshinone I does not alter MPTP toxic metabolite (MPP+) concentration. Oral administration of Tanshinone I at 10mg/kg daily for 2 weeks did not show liver toxicity. CONCLUSIONS Tanshinone I selectively suppressed pro-inflammatory M1 genes expression in activated microglia, interestingly, partially reserved anti-inflammatory M2 genes expression. It also could provide neuroprotection in a mouse model of Parkinson׳s disease. These data indicated that Tanshinone I could make the most of the beneficial side and minimize the detrimental side of activated microglia simultaneously, and provide neuroprotection by modulating the immune response of microglia.
Collapse
Affiliation(s)
- Shaoxia Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Haoran Jing
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hongyun Yang
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hong Guo
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Lijuan Chai
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Limin Hu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
30
|
Yu H, Yao L, Zhou H, Qu S, Zeng X, Zhou D, Zhou Y, Li X, Liu Z. Neuroprotection against Aβ25–35-induced apoptosis by Salvia miltiorrhiza extract in SH-SY5Y cells. Neurochem Int 2014; 75:89-95. [DOI: 10.1016/j.neuint.2014.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/09/2014] [Accepted: 06/04/2014] [Indexed: 12/30/2022]
|