1
|
Chuang YT, Yen CY, Chien TM, Chang FR, Wu KC, Tsai YH, Shiau JP, Chang HW. Natural products modulate phthalate-associated miRNAs and targets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117015. [PMID: 39265265 DOI: 10.1016/j.ecoenv.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Phthalates are widespread and commonly used plasticizers that lead to adverse health effects. Several natural products provide a protective effect against phthalates. Moreover, microRNAs (miRNAs) are regulated by natural products and phthalates. Therefore, miRNAs' impacts and potential targets may underlie the mechanism of phthalates. However, the relationship between phthalate-modulated miRNAs and phthalate protectors derived from natural products is poorly understood and requires further supporting information. In this paper, we review the adverse effects and potential targets of phthalates on reproductive systems as well as cancer and non-cancer responses. Information on natural products that attenuate the adverse effects of phthalates is retrieved through a search of Google Scholar and the miRDB database. Moreover, information on miRNAs that are upregulated or downregulated in response to phthalates is collected, along with their potential targets. The interplay between phthalate-modulated miRNAs and natural products is established. Overall, this review proposes a straightforward pathway showing how phthalates modulate different miRNAs and targets and cause adverse effects, which are partly attenuated by several natural products, thereby providing a direction for investigating the natural product-miRNA-target axis against phthalate-induced effects.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung 900392, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan.
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
2
|
Wu Q, Yao J, Xiao M, Zhang X, Zhang M, Xi X. Targeting Nrf2 signaling pathway: new therapeutic strategy for cardiovascular diseases. J Drug Target 2024; 32:874-883. [PMID: 38753446 DOI: 10.1080/1061186x.2024.2356736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, with oxidative stress (OS) identified as a primary contributor to their onset and progression. Given the elevated incidence and mortality rates associated with CVDs, there is an imperative need to investigate novel therapeutic strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), ubiquitously expressed in the cardiovascular system, has emerged as a promising therapeutic target for CVDs due to its role in regulating OS and inflammation. This review aims to delve into the mechanisms and actions of the Nrf2 pathway, highlighting its potential in mitigating the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Qi Wu
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Jiangting Yao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengyun Xiao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Xiawei Zhang
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengxiao Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xinting Xi
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| |
Collapse
|
3
|
Fu Y, Zhang S, Yue Q, An Z, Zhao M, Zhao C, Sun X, Li K, Li B, Zhao L, Su L. The preventative effects of Lactococcus Lactis metabolites against LPS-induced sepsis. Front Microbiol 2024; 15:1404652. [PMID: 39086654 PMCID: PMC11288810 DOI: 10.3389/fmicb.2024.1404652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Sepsis is a syndrome of organ dysfunction caused by a dysregulated host response to infection and septic shock. Currently, antibiotic therapy is the standard treatment for sepsis, but it can lead to drug resistance. The disturbance of the gut microbiota which is affected by sepsis could lead to the development of organ failure. It is reported that probiotics could shape the gut microbiota, potentially controlling a variety of intestinal diseases and promoting whole-body health. Methods In this study, we evaluated the preventive effects of intra- and extracellular products of probiotics on sepsis. The extracellular products of Lactococcus lactis (L. lactis) were identified through the in vivo cell experiments. The preventive effect and mechanism of L. lactis extracellular products on mouse sepsis were further explored through HE staining, mouse survival rate measurement, chip analysis, etc. Results L. lactis extracellular products increase cell survival and significantly reduce inflammatory factors secreted in a cellular sepsis model. In in vivo experiments in mice, our samples attenuated sepsis-induced pulmonary edema and inflammatory infiltrates in the lungs of mice, and reduced mortality and inflammatory factor levels within the serum of mice. Finally, the mechanism of sepsis prevention by lactic acid bacteria is suggested. Extracellular products of L. lactis could effectively prevent sepsis episodes. Discussion In animal experiments, we reported that extracellular products of L. lactis can effectively prevent sepsis, and preliminarily discussed the pathological mechanism, which provides more ideas for the prevention of sepsis. In the future, probiotics may be considered a new way to prevent sepsis.
Collapse
Affiliation(s)
- Yue Fu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Minghan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chen Zhao
- Shandong Baoyuan Biotechnology Co., Ltd., Jinan, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kunlun Li
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
| | - Baojun Li
- Shandong Baoyuan Biotechnology Co., Ltd., Jinan, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Shandong Baoyuan Biotechnology Co., Ltd., Jinan, China
- Shengsheng Xiangrong Biotechnology (Shandong) Co., Ltd., Jinan, China
| |
Collapse
|
4
|
Kim CH, Kim HY, Nah SY, Choi YK. The effects of Korean Red Ginseng on heme oxygenase-1 with a focus on mitochondrial function in pathophysiologic conditions. J Ginseng Res 2023; 47:615-621. [PMID: 37720574 PMCID: PMC10499582 DOI: 10.1016/j.jgr.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 09/19/2023] Open
Abstract
Korean Red Ginseng (KRG) plays a key role in heme oxygenase (HO)-1 induction under physical and moderate oxidative stress conditions. The transient and mild induction of HO-1 is beneficial for cell protection, mitochondrial function, regeneration, and intercellular communication. However, chronic HO-1 overexpression is detrimental in severely injured regions. Thus, in a chronic pathological state, diminishing HO-1-mediated ferroptosis is beneficial for a therapeutic approach. The molecular mechanisms by which KRG protects various cell types in the central nervous system have not yet been established, especially in terms of HO-1-mediated mitochondrial functions. Therefore, in this review, we discuss the multiple roles of KRG in the regulation of astrocytic HO-1 under pathophysiological conditions. More specifically, we discuss the role of the KRG-mediated astrocytic HO-1 pathway in regulating mitochondrial functions in acute and chronic neurodegenerative diseases as well as physiological conditions.
Collapse
Affiliation(s)
- Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Republic of Korea
| | - Hahn Young Kim
- Department of Neurology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Yi JM, Hyun JW. Korean Red Ginseng Attenuates Particulate Matter-Induced Senescence of Skin Keratinocytes. Antioxidants (Basel) 2023; 12:1516. [PMID: 37627511 PMCID: PMC10451201 DOI: 10.3390/antiox12081516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Skin is a direct target of fine particulate matter (PM2.5), as it is constantly exposed. Herein, we investigate whether Korean red ginseng (KRG) can inhibit PM2.5-induced senescence in skin keratinocytes. PM2.5-treated human keratinocyte cell lines and normal human epidermal keratinocytes showed characteristics of cellular senescence, including flat and enlarged forms; however, KRG suppressed them in both cell types. Moreover, while cells exposed to PM2.5 showed a higher level of p16INK4A expression (a senescence inducer), KRG inhibited its expression. Epigenetically, KRG decreased the expression of the ten-eleven translocation (TET) enzyme, a DNA demethylase induced by PM2.5, and increased the expression of DNA methyltransferases suppressed by PM2.5, resulting in the decreased methylation of the p16INK4A promoter region. Additionally, KRG decreased the expression of mixed-lineage leukemia 1 (MLL1), a histone methyltransferase, and histone acetyltransferase 1 (HAT1) induced by PM2.5. Contrastingly, KRG increased the expression of the enhancer of zeste homolog 2, a histone methyltransferase, and histone deacetyltransferase 1 reduced by PM2.5. Furthermore, KRG decreased TET1, MLL1, and HAT1 binding to the p16INK4A promoter, corresponding with the decreased mRNA expression of p16INK4A. These results suggest that KRG exerts protection against the PM2.5-induced senescence of skin keratinocytes via the epigenetic regulation of p16INK4A.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; (K.A.K.); (M.J.P.); (P.D.S.M.F.); (H.M.U.L.H.)
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; (K.A.K.); (M.J.P.); (P.D.S.M.F.); (H.M.U.L.H.)
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea;
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; (K.A.K.); (M.J.P.); (P.D.S.M.F.); (H.M.U.L.H.)
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
6
|
Zhang Q, Liu J, Duan H, Li R, Peng W, Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res 2022; 34:43-63. [PMID: 35024180 PMCID: PMC8655139 DOI: 10.1016/j.jare.2021.06.023] [Citation(s) in RCA: 453] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Recently, Nrf2/HO-1 has received extensive attention as the main regulatory pathway of intracellular defense against oxidative stress and is considered an ideal target for alleviating endothelial cell (EC) injury. Objectives This paper aimed to summarized the natural monomers/extracts that potentially exert protective effects against oxidative stress in ECs. Methods A literature search was carried out regarding our topic with the keywords of “atherosclerosis” or “Nrf2/HO-1” or “vascular endothelial cells” or “oxidative stress” or “Herbal medicine” or “natural products” or “natural extracts” or “natural compounds” or “traditional Chinese medicines” based on classic books of herbal medicine and scientific databases including Pubmed, SciFinder, Scopus, the Web of Science, GoogleScholar, BaiduScholar, and others. Then, we analyzed the possible molecular mechanisms for different types of natural compounds in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. In addition, perspectives for possible future studies are discussed. Results These agents with protective effects against oxidative stress in ECs mainly include phenylpropanoids, flavonoids, terpenoids, and alkaloids. Most of these agents alleviate cell apoptosis in ECs due to oxidative stress, and the mechanisms are related to Nrf2/HO-1 signaling activation. However, despite continued progress in research on various aspects of natural agents exerting protective effects against EC injury by activating Nrf2/HO-1 signaling, the development of new drugs for the treatment of atherosclerosis (AS) and other CVDs based on these agents will require more detailed preclinical and clinical studies. Conclusion Our present paper provides updated information of natural agents with protective activities on ECs against oxidative stress by activating Nrf2/HO-1. We hope this review will provide some directions for the further development of novel candidate drugs from natural agents for the treatment of AS and other CVDs.
Collapse
Key Words
- 7-HMR, (−)-7(S)-hydroxymatairesinol
- ADH, andrographolide
- AGE, advanced glycation end product
- AMP, Athyrium Multidentatum
- APV, aqueous extracts of Prunella Vulgaris
- ARE, antioxidant reaction elements
- AS, atherosclerosis
- ASD-IV, Astragaloside IV
- ASP, Angelica sinensis polysaccharide
- ASTP, Astragalus polysacharin
- Akt, protein kinase B
- Ang, Angiotensin
- ApoE, apolipoprotein E
- Atherosclerosis
- BAECs, bovine artery endothelial cells
- BBR, Berberine
- BITC, benzyl isothiocyanate
- C3G, Cyanidin-3-O-glucoside
- CINM, Cinnamaldehyde
- CNC, Cap'n'collar
- CREB, cAMP-response element binding protein
- CVDs, cardiovascular diseases
- CVRF, cardiovascular risk factors
- DMY, Dihydromyricetin
- ECC, (−)-Epicatechin
- ECs, endothelial cells
- EGCG, epigallocatechin-3-O-gallate
- ERK, extracellular regulated protein kinases
- ET, endothelin
- EXS, Xanthoceras sorbifolia
- FFA, Fatty Acids
- GPx, Glutathione peroxidase
- GSD Rg1, Ginsenoside Rg1
- GTE, Ganoderma tsugae extracts
- Gau A, Glaucocalyxin A
- HAMS, human anthocyanin medicated serum
- HG, high glucose
- HIF-1, Hypoxia-inducible factor 1
- HO-1, heme oxygenase
- HUVECs, human umbilical vein endothelial cells
- HXC, Huoxue capsule
- Hcy, Homocysteine
- Herbal medicine
- ICAM, intercellular adhesion molecule
- IL, interleukin
- KGRE, extracts of KGR
- KRG, Korean red ginseng
- Keap1, kelch-like epichlorohydrin-related proteins
- LWDH, Liuwei-Dihuang pill
- MA, maslinic acid
- MAPKK, mitogen-activated protein kinase kinase
- MAPKs, mitogen-activated protein kinases
- MCGA3, 3-O-caffeoyl-1-methylquinic acid
- MCP-1, monocyte chemotactic protein 1
- MMPs, matrix metalloproteinases
- Molecular mechanism
- NAF, Nepeta Angustifolia
- NF-κB, nuclear factor kappa-B
- NG, naringenin
- NQO1, NAD(P)H: quinone oxidoreductase
- Nrf2, nuclear factor erythroid-2 related factor 2
- Nrf2/HO-1 signaling
- OA, Oleanolic acid
- OMT, Oxymatrine
- OX-LDL, oxidized low density lipoprotein
- Oxidative stress
- PA, Palmitate
- PAA, Pachymic acid
- PAI-1, plasminogen activator Inhibitor-1
- PEITC, phenethyl isocyanate
- PI3K, phosphatidylinositol 3 kinase
- PKC, protein kinase C
- PT, Pterostilbene
- RBPC, phenolic extracts derived from rice bran
- ROS, reactive oxygen species
- SAL, Salidroside
- SFN, sulforaphane
- SMT, Samul-Tang Tang
- SOD, superoxide dismutase
- Sal B, salvianolic acid B
- SchB, Schisandrin B
- TCM, traditional Chinese medicine
- TNF, tumor necrosis factor
- TXA2, Thromboxane A2
- TrxR1, thioredoxin reductase-1
- US, uraemic serum
- VA, Vanillic acid
- VCAM, vascular cell adhesion molecule
- VEC, vascular endothelial cells
- VEI, vascular endothelial injury
- Vascular endothelial cells
- XAG, xanthoangelol
- XXT, Xueshuan Xinmaining Tablet
- Z-Lig, Z-ligustilide
- eNOS, endothelial NO synthase
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| |
Collapse
|
7
|
Jung E, Pyo MK, Kim J. Pectin-Lyase-Modified Ginseng Extract and Ginsenoside Rd Inhibits High Glucose-Induced ROS Production in Mesangial Cells and Prevents Renal Dysfunction in db/db Mice. Molecules 2021; 26:molecules26020367. [PMID: 33445772 PMCID: PMC7828230 DOI: 10.3390/molecules26020367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetes increases the incidence rate of chronic renal disease. Pectin-lyase-modified ginseng (GS-E3D), with enhanced ginsenoside Rd content, has been newly developed. In this study, renal protective roles of GS-E3D in type-2 diabetic db/db mice were investigated. The generation of reactive oxygen species (ROS) induced by high glucose (25 mM) was reduced by ES-E3D (75%) and ginsenoside Rd (60%). Diabetic db/db mice received 100 or 250 mg/kg/day of GS-E3D daily via oral gavage for 6 weeks. Albuminuria and urinary 8-hydroxy-2'-deoxyguanosine (8-OhdG, an oxidative stress marker) levels were increased in db/db mice and the levels recovered after GS-E3D treatment. In renal tissues, TUNEL-positive cells were decreased after GS-E3D treatment, and the increased apoptosis-related protein expressions were restored after GS-E3D treatment. Therefore, GS-E3D has a potent protective role in diabetes-induced renal dysfunction through antioxidative and antiapoptotic activities. These results may help patients to select a dietary supplement for diabetes when experiencing renal dysfunction.
Collapse
Affiliation(s)
- Eunsoo Jung
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea;
| | - Mi-kyung Pyo
- International Ginseng and Herb Research Institute, 25 Insamgwangjang-ro, Geumsan-eup, Geumsan-gun 32724, Chungcheongnam-do, Korea;
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea
- Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Correspondence: ; Tel.: +82-63-270-4032; Fax: +82-63-270-4025
| |
Collapse
|
8
|
Kim TH, Kim JY, Bae J, Kim YM, Won MH, Ha KS, Kwon YG, Kim YM. Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway. J Ginseng Res 2020; 45:344-353. [PMID: 33841015 PMCID: PMC8020293 DOI: 10.1016/j.jgr.2020.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/05/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
Abstract
Background Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, South Korea
| | - Jieun Bae
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, South Korea
| | - Young-Mi Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| |
Collapse
|
9
|
Li B, Nasser M, Masood M, Adlat S, Huang Y, Yang B, Luo C, Jiang N. Efficiency of Traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2020; 126:110074. [DOI: 10.1016/j.biopha.2020.110074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/09/2023] Open
|
10
|
Carota G, Raffaele M, Sorrenti V, Salerno L, Pittalà V, Intagliata S. Ginseng and heme oxygenase-1: The link between an old herb and a new protective system. Fitoterapia 2019; 139:104370. [PMID: 31629872 DOI: 10.1016/j.fitote.2019.104370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023]
Abstract
Ginseng is an ancient herb, belonging to Asian traditional medicine, that has been considered as a restorative to enhance vitality for centuries. It has been demonstrated that the antioxidant action of ginseng may be mediated through activation of different cellular signaling pathways involving the heme oxygenase (HO) system. Several compounds derived from ginseng have been studied for their potential role in brain, heart and liver protection, and the Nrf2 pathway seems to be the most affected by these natural molecules to exert this effect. Ginseng is also popularly used in cancer patients therapy for the demonstrated capability to defend tissues from chemotherapy-induced damage. Reported results suggest that the effect of ginseng is primarily associated with ROS scavenging, mainly exerted through the activation of Nrf2 pathway, and the consequent induction of HO-1 levels. This review aims to discuss the connection between the antioxidant properties of ginseng and the activation of the HO system, as well as to outline novel therapeutic applications of this medicinal plant to human health.
Collapse
Affiliation(s)
- Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
11
|
Chung YH, Jeong SA, Choi HS, Ro S, Lee JS, Park JK. Protective effects of ginsenoside Rg2 and astaxanthin mixture against UVB-induced DNA damage. Anim Cells Syst (Seoul) 2018; 22:400-406. [PMID: 30533262 PMCID: PMC6282468 DOI: 10.1080/19768354.2018.1523806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/03/2022] Open
Abstract
Ultraviolet B (UVB) radiation induces skin damage, skin matrix degradation, and wrinkle formation through photochemical reaction and oxidative stress. Therefore, protecting the skin from UVB can prevent skin aging. In this study, we investigated the effects of a mixture (RA) of Rg2, a ginsenoside, and astaxanthin, an antioxidant, on the responses of HaCaT cells exposed to UVB (700 J/m2). The cells were incubated for 24 h after UVB exposure and cell viability was determined by MTT assay. UVB decreased cell viability by 60% compared to that of untreated control cells, whereas RA increased cell viability in a concentration-dependent manner, and this increase was significantly higher than that in the single treatment groups. Further, UVB increased the levels of DNA lesions such as cyclobutane pyrimidine dimer (CPD) and 8-hydroxyguanine (8-OHdG). Conversely, RA decreased both CPD and 8-OHdG levels in a concentration-dependent manner. UVB exposure also increased phosphorylation of ataxia-telangiectasia mutated (ATM) protein kinase and p53 and subsequently increased the levels of GADD45α, p21, and matrix metalloproteinases (MMPs)-3, -9, and -13. Additionally, UVB exposure decreased the level of COL1A1. However, RA treatment decreased the levels of p-ATM, p-p53, GADD45α, p21, MMP-3, -9, and -13 and increased the level of COL1A1 in a concentration-dependent manner. These results suggest that RA reduces UVB-induced cytotoxicity and genotoxicity through up-regulation of DNA repair via the combined effects of Rg2 and astaxanthin.
Collapse
Affiliation(s)
- Yu Heon Chung
- Research Institute for Basic Science and Division of Biological Science, Wonkwang University, Iksan, Korea
| | - Seul A. Jeong
- Research Institute for Basic Science and Division of Biological Science, Wonkwang University, Iksan, Korea
| | - Hyun Seok Choi
- Research Institute for Basic Science and Division of Biological Science, Wonkwang University, Iksan, Korea
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Jung Sup Lee
- Department of Biomedical Science, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju, Republic of Korea
| | - Jong Kun Park
- Research Institute for Basic Science and Division of Biological Science, Wonkwang University, Iksan, Korea
| |
Collapse
|
12
|
Mancuso C, Santangelo R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem Toxicol 2017; 107:362-372. [PMID: 28698154 PMCID: PMC7116968 DOI: 10.1016/j.fct.2017.07.019] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
The use of Panax ginseng and Panax quinquefolius in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Over the past few years, extensive preclinical and clinical evidence in the scientific literature worldwide has supported the beneficial effects of P. ginseng and P. quinquefolius in significant central nervous system, metabolic, infectious and neoplastic diseases. There has been growing research on ginseng because of its favorable pharmacokinetics, including the intestinal biotransformation which is responsible for the processing of ginsenosides - contained in the roots or extracts of ginseng - into metabolites with high pharmacological activity and how such principles act on numerous cell targets. The aim of this review is to provide a simple and extensive overview of the pharmacokinetics and pharmacodynamics of P. ginseng and P. quinquefolius, focusing on the clinical evidence which has shown particular effectiveness in specific diseases, such as dementia, diabetes mellitus, respiratory infections, and cancer. Furthermore, the review will also provide data on toxicological factors to support the favorable safety profile of these medicinal plants.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy.
| | - Rosaria Santangelo
- Institute of Microbiology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
13
|
Kim CS, Jo K, Kim JS, Pyo MK, Kim J. GS-E3D, a new pectin lyase-modified red ginseng extract, inhibited diabetes-related renal dysfunction in streptozotocin-induced diabetic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:430. [PMID: 28851327 PMCID: PMC5576329 DOI: 10.1186/s12906-017-1925-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/14/2017] [Indexed: 01/15/2023]
Abstract
Background GS-E3D is a newly developed pectin lyase-modified red ginseng extract. The purpose of this study was to investigate the therapeutic effects of GS-E3D on diabetes-related renal dysfunction in streptozotocin-induced diabetic rats. Method GS-E3D (25, 50, and 100 mg/kg body weight per day) was administered for 6 weeks. The levels of blood glucose and hemoglobin A1c, and of urinary albumin, 8-hydroxy-2′-deoxyguanosine (8-OHdG), and advanced glycation end-products (AGEs) were determined. Kidney histopathology, renal accumulation of AGEs, and expression of α-smooth muscle actin (α-SMA) were also examined. Results Administration of GS-E3D for 6 weeks reduced urinary levels of albumin, 8-OHdG, and AGEs in diabetic rats. Mesangial expansion, renal accumulation of AGEs, and enhanced α-SMA expression were significantly inhibited by GS-E3D treatment. Oral administration of GS-E3D dose-dependently improved all symptoms of diabetic nephropathy by inhibiting renal accumulation of AGEs and oxidative stress. Conclusion The results of this study indicate that the use of GS-E3D as a food supplement may provide effective treatment of diabetes-induced renal dysfunction.
Collapse
|
14
|
Liu C, Huang Y. Chinese Herbal Medicine on Cardiovascular Diseases and the Mechanisms of Action. Front Pharmacol 2016; 7:469. [PMID: 27990122 PMCID: PMC5130975 DOI: 10.3389/fphar.2016.00469] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are the principal cause of death worldwide. The potentially serious adverse effects of therapeutic drugs lead to growing awareness of the role of Chinese herbal medicine in the treatment of cardiovascular diseases. Chinese herbal medicine has been widely used in many countries especially in China from antiquity; however, the mechanisms by which herbal medicine acts in the prevention and treatment of cardiovascular diseases are far from clear. In this review, we briefly describe the characteristics of Chinese herbal medicine by comparing with western medicine. Then we summarize the formulae and herbs/natural products applied in the clinic and animal studies being sorted according to the specific cardiovascular diseases. Most importantly, we elaborate the existing investigations into mechanisms by which herbal compounds act at the cellular levels, including vascular smooth muscle cells, endothelial cells, cardiomyocytes and immune cells. Future research should focus on well-designed clinic trial, in-depth mechanic study, investigations on side effects of herbs and drug interactions. Studies on developing new agents with effectiveness and safety from traditional Chinese medicine is a promising way for prevention and treatment of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Cuiqing Liu
- Department of Preventive Medicine, Basic Medical College, Zhejiang Chinese Medical University Hangzhou, China
| | - Yu Huang
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
15
|
Cheng Z, Li L. Ginsenoside Rg3 ameliorates lipopolysaccharide-induced acute lung injury in mice through inactivating the nuclear factor-κB (NF-κB) signaling pathway. Int Immunopharmacol 2016; 34:53-59. [PMID: 26921732 DOI: 10.1016/j.intimp.2016.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 01/06/2023]
|
16
|
Induction of Thioredoxin Reductase 1 by Korean Red Ginseng Water Extract Regulates Cytoprotective Effects on Human Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:972040. [PMID: 26236385 PMCID: PMC4510250 DOI: 10.1155/2015/972040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
Korean Red Ginseng is a popular herbal medicine and is widely used in many food products. KRG has biological benefits related to vascular diseases including diabetes, hypertension, atherosclerosis, and other cardiac diseases and KRG has antioxidant and anti-hyperlipidemic actions. KRG decreases the level of oxidative stress and suppresses proinflammatory cytokines and cell adhesion molecules, thus protecting endothelial dysfunction. Mammalian Thioredoxin reductase 1 is an NADPH-dependent selenoprotein, essential for antioxidant defense and DNA synthesis and repair, that regulates the redox system by modulating redox-sensitive transcription factors and thiol-containing proteins. Here, we show that KRG water extract increases the expression of TrxR1 in human umbilical vein endothelial cells via the p38 and PKC-δ signaling pathways. The induction of TrxR1 expression by KRG was confirmed by Western blot analysis and reverse transcription polymerase chain reaction. However, the increase in TrxR1 expression was abolished by specific silencing of the p38 and PKC-δ genes. In addition, we demonstrated that auranofin, a TrxR1 inhibitor, weakens the protective effect of KRG against H2O2-induced cell death as measured by the terminal transferase dUTP nick end labeling assay. These results suggest that KRG may have protective effects in vascular diseases by upregulating TrxR1 in endothelial cells, thereby inhibiting the generation of reactive oxygen species and cell death.
Collapse
|
17
|
Yayeh T, Im EJ, Kwon TH, Roh SS, Kim S, Kim JH, Hong SB, Cho JY, Park NH, Rhee MH. Hemeoxygenase 1 partly mediates the anti-inflammatory effect of dieckol in lipopolysaccharide stimulated murine macrophages. Int Immunopharmacol 2014; 22:51-8. [PMID: 24953853 DOI: 10.1016/j.intimp.2014.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/12/2014] [Accepted: 06/06/2014] [Indexed: 11/24/2022]
Abstract
Eisenia bicyclis is edible brown algae recognized as a rich source of bioactive derivatives mainly phlorotannins reported for their anti-oxidant properties. Of all phlorotannins identified so far, dieckol has shown the most potent effect in anti-inflammatory, radical scavenging and neuroprotective functions. However, whether dieckol up-regulates hemeoxygenase 1 (HO-1) and this mediates its anti-inflammatory effect in murine macrophages remains poorly understood. Dieckol (12.5-50 μM) inhibited nitric oxide production and attenuated inducible nitric oxide synthase, phospho (p)-PI-3K, p-Akt, p-IKK-α/β, p-IκB-α and nuclear p-NF-κBp65 protein expressions, and NF-κB transcriptional activity in LPS (0.1 μg/ml) stimulated murine macrophages. On the other hand, dieckol up-regulated HO-1 which partly mediated its anti-inflammatory effect in murine macrophages. Thus, dieckol appeared to be a potential therapeutic agent against inflammation through HO-1 up-regulation.
Collapse
Affiliation(s)
- Taddesse Yayeh
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Eun Ju Im
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Tae-Hyung Kwon
- Department of Research & Development, Gyeongbuk Institute for Marine Bio-Industry, Uljin 767-813, Republic of Korea; Food Science and Biotechnology Major, Andong National University, Andong 760-749, Republic of Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Suk Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Seung-Bok Hong
- Department of Clinical Laboratory Science, Chungbuk Health and Science University, Chungbuk 363-794, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Nyun-Ho Park
- Department of Research & Development, Gyeongbuk Institute for Marine Bio-Industry, Uljin 767-813, Republic of Korea.
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
18
|
Son GW, Kim GD, Yang H, Park HR, Park YS. Alteration of gene expression profile by melatonin in endothelial cells. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8204-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Microarray analysis of gene expression in 3-methylcholanthrene-treated human endothelial cells. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0003-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Choi K, Yoon J, Lim HK, Ryoo S. Korean red ginseng water extract restores impaired endothelial function by inhibiting arginase activity in aged mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:95-101. [PMID: 24757370 PMCID: PMC3994309 DOI: 10.4196/kjpp.2014.18.2.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease is the prime cause of morbidity and mortality and the population ages that may contribute to increase in the occurrence of cardiovascular disease. Arginase upregulation is associated with impaired endothelial function in aged vascular system and thus may contribute to cardiovascular disease. According to recent research, Korean Red Ginseng water extract (KRGE) may reduce cardiovascular disease risk by improving vascular system health. The purpose of this study was to examine mechanisms contributing to age-related vascular endothelial dysfunction and to determine whether KRGE improves these functions in aged mice. Young (10±3 weeks) and aged (55±5 weeks) male mice (C57BL/6J) were orally administered 0, 10, or 20 mg/mouse/day of KRGE for 4 weeks. Animals were sacrificed and the aortas were removed. Endothelial arginase activity, nitric oxide (NO) generation and reactive oxygen species (ROS) production, endothelial nitric oxide synthase (eNOS) coupling, vascular tension, and plasma peroxynitrite production were measured. KRGE attenuated arginase activity, restored nitric oxide (NO) generation, reduced ROS production, and enhanced eNOS coupling in aged mice. KRGE also improved vascular tension in aged vessels, as indicated by increased acetylcholine-induced vasorelaxation and improved phenylephrine-stimulated vasoconstriction. Furthermore, KRGE prevented plasma peroxynitrite formation in aged mice, indicating reduced lipid peroxidation. These results suggest KRGE exerts vasoprotective effects by inhibiting arginase activity and augmenting NO signaling and may be a useful treatment for age-dependent vascular diseases.
Collapse
Affiliation(s)
- Kwanhoon Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea
| | - Jeongyeon Yoon
- Department of Biology, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea
| | - Sungwoo Ryoo
- Department of Biology, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
21
|
Lee SE, Park YS. Gene expression profiling of human umbilical vein endothelial cells exposed to myricetin. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Lee SE, Park YS. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells. J Ginseng Res 2013; 38:34-9. [PMID: 24558308 PMCID: PMC3915333 DOI: 10.1016/j.jgr.2013.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022] Open
Abstract
Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other α,β-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an α,β-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin V-propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
23
|
Oh CT, Park JI, Jung YR, Joo YA, Shin DH, Cho HJ, Ahn SM, Lim YH, Park CK, Hwang JS. Inhibitory effect of Korean Red Ginseng on melanocyte proliferation and its possible implication in GM-CSF mediated signaling. J Ginseng Res 2013; 37:389-400. [PMID: 24235857 PMCID: PMC3825854 DOI: 10.5142/jgr.2013.37.389] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022] Open
Abstract
Korean Red Ginseng (KRG) has been reported to exert anticancer, anti-oxidant, and anti-inflammatory effects. However, there has been no report on the effect of KRG on skin pigmentation. In this study, we investigated the inhibitory effect of KRG on melanocyte proliferation. KRG extract (KRGE) at different concentrations had no effect on melanin synthesis in melan-A melanocytes. Saponin of KRG (SKRG) inhibited melanin content to 80% of the control at 100 ppm. Keratinocyte-derived factors induced by UV-irradiation were reported to stimulate melanogenesis, differentiation, proliferation, and dendrite formation. In this study, treatment of melan-A melanocytes with conditioned media from UV-irradiated SP-1 keratinocytes increased melanocyte proliferation. When UV-irradiated SP-1 keratinocytes were treated with KRGE or SKRG, the increase of melanocyte proliferation by the conditioned media was blocked. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was produced and released from UV-irradiated keratinocytes. This factor has been reported to be involved in regulating the proliferation and differentiation of epidermal melanocytes. In this study, GM-CSF was significantly increased in SP-1 keratinocytes by UVB irradiation (30 mJ/cm(2)), and the proliferation of melan-A melanocytes increased significantly by GM-CSF treatment. In addition, the proliferative effect of keratinocyte-conditioned media on melan-A melanocytes was blocked by anti-GM-CSF treatment. KRGE or SKRG treatment decreased the expression of GM-CSF in SP-1 keratinocytes induced by UVB irradiation. These results demonstrate that UV irradiation induced GM-CSF expression in keratinocytes and KRGE or SKRG inhibited its expression. Therefore, KRG could be a good candidate for regulating UV-induced melanocyte proliferation.
Collapse
Affiliation(s)
- Chang Taek Oh
- Department of Genetic Engineering, College of Life Science, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ryu DS, Yang H, Lee SE, Park CS, Jin YH, Park YS. Crotonaldehyde induces heat shock protein 72 expression that mediates anti-apoptotic effects in human endothelial cells. Toxicol Lett 2013; 223:116-23. [DOI: 10.1016/j.toxlet.2013.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
|
25
|
Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7302-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Adenosine dialdehyde suppresses MMP-9-mediated invasion of cancer cells by blocking the Ras/Raf-1/ERK/AP-1 signaling pathway. Biochem Pharmacol 2013; 86:1285-300. [PMID: 23994169 DOI: 10.1016/j.bcp.2013.08.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 12/14/2022]
Abstract
Adenosine dialdehyde (AdOx) inhibits transmethylation by the accumulation of S-adenosylhomocysteine (SAH), a negative feedback inhibitor of methylation, through the suppression of SAH hydrolase (SAHH). In this study, we aimed to determine the regulatory effect of AdOx on cancer invasion by using three different cell lines: MDA-MB-231, MCF-7, and U87. The invasive capacity of these cells in the presence (MCF-7) or absence (MDA-MB-231 and U87) of phorbal 12-myristate 13-acetate (PMA) was strongly decreased by AdOx treatment. Furthermore, the expression, secretion, and activation of matrix metalloproteinase (MMP)-9, a critical enzyme regulating cell invasion, in these cells were diminished by AdOx treatment. AdOx strongly suppressed AP-1-mediated luciferase activity and, in parallel, reduced the translocation of c-Fos and c-Jun into the nucleus. AdOx was shown to block a series of upstream AP-1 activation signaling complexes composed of extracellular signal-related kinase (ERK), mitogen-activated protein ERK kinase (MEK)1/2, Raf-1, and Ras, as assessed by measuring the levels of the phosphorylated and membrane-translocated forms. Furthermore, we found that suppression of SAHH by siRNA and 3-deazaadenosine, knock down of isoprenylcysteine carboxyl methyltransferase (ICMT), and treatment with SAH showed inhibitory patterns similar to those of AdOx. Therefore, our data suggest that AdOx is capable of targeting the methylation reaction regulated by SAHH and ICMT and subsequently downregulating MMP-9 expression and decreasing invasion of cancer cells through inhibition of the Ras/Raf-1/ERK/AP-1 pathway.
Collapse
|
27
|
Hemeoxygenase-1 mediates an adaptive response to spermidine-induced cell death in human endothelial cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:238734. [PMID: 23983896 PMCID: PMC3747394 DOI: 10.1155/2013/238734] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 12/30/2022]
Abstract
Spermidine (SPD) is a ubiquitous polycation that is commonly distributed in living organisms. Intracellular levels of SPD are tightly regulated, and SPD controls cell proliferation and death. However, SPD undergoes oxidation in the presence of serum, producing aldehydes, hydrogen peroxide, and ammonia, which exert cytotoxic effect on cells. Hemeoxygenase-1 (HO-1) is thought to have a protective effect against oxidative stress. Upregulation of HO-1 in endothelial cells is considered to be beneficial in the cardiovascular disease. In the present study, we demonstrate that the ubiquitous polyamine, SPD, induces HO-1 in human umbilical vein endothelial cells (HUVECs). SPD-induced HO-1 expression was examined by Western blot and reverse transcription-polymerase chain reaction (RT-PCR). Involvement of reactive oxygen species, serum amine oxidase, PI3K/Akt signaling pathway, and transcription factor Nrf2 in the induction of HO-1 by SPD was also investigated. Furthermore, small interfering RNA knockdown of Nrf2 or HO-1 and treatment with the specific HO-1 inhibitor ZnPP exhibited a noteworthy increase of death of SPD-stimulated HUVECs. In conclusion, these results suggest that SPD induces PI3K/Akt-Nrf2-mediated HO-1 expression in human endothelial cells, which may have a role in cytoprotection of the cells against oxidative stress-induced death.
Collapse
|
28
|
Lee SE, Park YS. The role of antioxidant enzymes in adaptive responses to environmental toxicants in vascular disease. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0013-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Yang H, Kim GD, Park HR, Park YS. Comparative mRNA and microRNA expression profiling of methylglyoxal-exposed human endothelial cells. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Shin W, Yoon J, Oh GT, Ryoo S. Korean red ginseng inhibits arginase and contributes to endotheliumdependent vasorelaxation through endothelial nitric oxide synthase coupling. J Ginseng Res 2013; 37:64-73. [PMID: 23717158 PMCID: PMC3659627 DOI: 10.5142/jgr.2013.37.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 01/27/2023] Open
Abstract
Korean red ginseng water extract (KG-WE) has known beneficial effects on the cardiovascular system via inducting nitric oxide (NO) production in endothelium. Endothelial arginase inhibits the activity of endothelial nitric oxide synthase (eNOS) by substrate depletion, thereby reducing NO bioavailability and contributing to vascular diseases including hypertension, aging, and atherosclerosis. In the present study, we demonstrate that KG-WE inhibits arginase activity and negatively regulates NO production and reactive oxygen species generation in endothelium. This is associated with increased dimerization of eNOS without affecting the protein expression levels of either arginase or eNOS. In a vascular tension assay, when aortas isolated from wild type mice were incubated with KG-WE, NO-dependent enhanced vasorelaxation was observed. Furthermore, KG-WE administered via by drinking water to atherogenic model mice being fed high cholesterol diet improved impaired vascular function. Taken together, these results suggest that KG-WE may exert vasoprotective effects through augmentation of NO signaling by inhibiting arginase. Therefore, KG-WE may be useful in the treatment of vascular diseases derived from endothelial dysfunction, such as atherosclerosis.
Collapse
Affiliation(s)
- Woosung Shin
- Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | |
Collapse
|
31
|
Cho A, Roh YS, Uyangaa E, Park S, Kim JW, Lim KH, Kwon J, Eo SK, Lim CW, Kim B. Protective effects of red ginseng extract against vaginal herpes simplex virus infection. J Ginseng Res 2013; 37:210-8. [PMID: 23717174 PMCID: PMC3659631 DOI: 10.5142/jgr.2013.37.210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Numerous studies have suggested that Korean red ginseng (KRG) extract has various immune modulatory activities both in vivo and in vitro. In this study, we used a mouse model to examine the effects of orally administered KRG extract on immunity against herpes simplex virus (HSV). Balb/c mice were administered with 100, 200, and 400 mg/kg oral doses of KRG extract for 10 d and then vaginally infected with HSV. We found that KRG extract rendered recipients more resistant against HSV vaginal infection and further systemic infection, including decreased clinical severity, increased survival rate, and accelerated viral clearance. Such results appeared to be mediated by increased vaginal IFN-γ secretion. Moreover, increased mRNA expression of IFN-γ, granzyme B, and Fas-ligand was identified in the iliac lymph node and vaginal tracts of KRG extract treated groups (200 and 400 mg/kg). These results suggest that the activities of local natural killer cells were promoted by KRG extract consumption and that KRG may be an attractive immune stimulator for helping hosts overcome HSV infection.
Collapse
Affiliation(s)
- Ara Cho
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
An integrated analysis of microRNA and mRNA expression in salvianolic acid B-treated human umbilical vein endothelial cells. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0001-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Kim JH, Lee YG, Yoo S, Oh J, Jeong D, Song WK, Yoo BC, Rhee MH, Park J, Cha SH, Hong S, Cho JY. Involvement of Src and the actin cytoskeleton in the antitumorigenic action of adenosine dialdehyde. Biochem Pharmacol 2013; 85:1042-56. [DOI: 10.1016/j.bcp.2013.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/28/2012] [Accepted: 01/18/2013] [Indexed: 01/06/2023]
|
34
|
Yang H, Lee SE, Lee S, Cho JJ, Ahn HJ, Park CS, Park YS. Integrated analysis of miRNA and mRNA reveals that acrolein modulates GPI anchor biosynthesis in human primary endothelial cells. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7103-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Radical scavenging activity-based and AP-1-targeted anti-inflammatory effects of lutein in macrophage-like and skin keratinocytic cells. Mediators Inflamm 2013; 2013:787042. [PMID: 23533312 PMCID: PMC3606807 DOI: 10.1155/2013/787042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/10/2013] [Indexed: 01/08/2023] Open
Abstract
Lutein is a naturally occurring carotenoid with antioxidative, antitumorigenic, antiangiogenic, photoprotective, hepatoprotective, and neuroprotective properties. Although the anti-inflammatory effects of lutein have previously been described, the mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, in the present study, we aimed to investigate the regulatory activity of lutein in the inflammatory responses of skin-derived keratinocytes or macrophages and to elucidate the mechanism of its inhibitory action. Lutein significantly reduced several skin inflammatory responses, including increased expression of interleukin-(IL-) 6 from LPS-treated macrophages, upregulation of cyclooxygenase-(COX-) 2 from interferon-γ/tumor necrosis-factor-(TNF-) α-treated HaCaT cells, and the enhancement of matrix-metallopeptidase-(MMP-) 9 level in UV-irradiated keratinocytes. By evaluating the intracellular signaling pathway and the nuclear transcription factor levels, we determined that lutein inhibited the activation of redox-sensitive AP-1 pathway by suppressing the activation of p38 and c-Jun-N-terminal kinase (JNK). Evaluation of the radical and ROS scavenging activities further revealed that lutein was able to act as a strong anti-oxidant. Taken together, our findings strongly suggest that lutein-mediated AP-1 suppression and anti-inflammatory activity are the result of its strong antioxidative and p38/JNK inhibitory activities. These findings can be applied for the preparation of anti-inflammatory and cosmetic remedies for inflammatory diseases of the skin.
Collapse
|
36
|
Removal of Lead Ions from Ginseng Ethanol Extracts by Dynamic Adsorption in a Fixed-bed Column. Chin J Chem Eng 2013. [DOI: 10.1016/s1004-9541(13)60472-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Yu T, Moh SH, Kim SB, Yang Y, Kim E, Lee YW, Cho CK, Kim KH, Yoo BC, Cho JY, Yoo HS. HangAmDan-B, an ethnomedicinal herbal mixture, suppresses inflammatory responses by inhibiting Syk/NF-κB and JNK/ATF-2 pathways. J Med Food 2012; 16:56-65. [PMID: 23256447 DOI: 10.1089/jmf.2012.2374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HangAmDan-B (HAD-B) is a powdered mixture of eight ethnopharmacologically characterized folk medicines that is prescribed for solid masses and cancers in Korea. In view of the finding that macrophage-mediated inflammation is a pathophysiologically important phenomenon, we investigated whether HAD-B modulates inflammatory responses and explored the associated molecular mechanisms. The immunomodulatory activity of HAD-B in toll-like receptor-activated macrophages induced by lipopolysaccharide (LPS) was assessed by measuring nitric oxide (NO) and prostaglandin E(2) (PGE(2)) levels. To identify the specific transcription factors (such as nuclear factor [NF]-κB and signaling enzymes) targeted by HAD-B, biochemical approaches, including kinase assays and immunoblot analysis, were additionally employed. HAD-B suppressed the production of PGE(2) and NO in LPS-activated macrophages in a dose-dependent manner. Furthermore, the extract ameliorated HCl/EtOH-induced gastritis symptoms. Moreover, HAD-B significantly inhibited LPS-induced mRNA expression of inducible NO synthase and cyclooxygenase (COX)-2. Interestingly, marked inhibition of NF-κB and activating transcription factor was observed in the presence of HAD-B. Data from direct kinase assays and immunoblot analysis showed that HAD-B suppresses activation of the upstream signaling cascade involving spleen tyrosine kinase, Src, p38, c-Jun N-terminal kinase, and transforming growth factor β-activated kinase 1. Finally, kaempferol, but not quercetin or resveratrol was identified as a bioactive compound in HAD-B. Therefore, our results suggest that HAD-B possesses anti-inflammatory activity that contributes to its anticancer property.
Collapse
Affiliation(s)
- Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012; 2012:512926. [PMID: 23209344 PMCID: PMC3504478 DOI: 10.1155/2012/512926] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/28/2012] [Indexed: 12/28/2022] Open
Abstract
Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.
Collapse
|
39
|
Li Z, Li J, Gu L, Zhang D, Wang Y, Sung C. Ginsenosides Rb
1
and Rd Regulate Proliferation of Mature Keratinocytes Through Induction of p63 Expression in Hair Follicles. Phytother Res 2012; 27:1095-101. [DOI: 10.1002/ptr.4828] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/24/2012] [Accepted: 07/30/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Zheng Li
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| | - Jing‐Jie Li
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| | - Li‐Juan Gu
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| | - Dong‐Liang Zhang
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| | - Yun‐Bo Wang
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| | - Chang‐Keun Sung
- Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University Daejeon 305‐764 South Korea
| |
Collapse
|
40
|
Differentially-expressed genes associated with glycophosphatidylinositol (GPI)-anchored proteins by diabetes-related toxic substances in human endothelial cells. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6309-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Yayeh T, Hong M, Jia Q, Lee YC, Kim HJ, Hyun E, Kim TW, Rhee MH. Pistacia chinensisInhibits NO Production and Upregulates HO-1 Induction via PI-3K/Akt Pathway in LPS Stimulated Macrophage Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:1085-97. [DOI: 10.1142/s0192415x12500802] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pistacia chinensis has been used for various purposes in China including as an understock for grafting Pistacia vera. However, little attention was given to its health promoting effects. Therefore, in this study, we investigated the effect of Pistacia chinensis methanolic extract (PCME) containing resorcinol class of phenolic lipids on pro-inflammatory mediators and heme oxygenase-1(HO-1) in lipopolysaccharide stimulated RAW264.7 cells. While PCME (2.5–10 μg/ml) inhibited mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and interleukin (IL)-6, it up-regulated HO-1 expression. Likewise, PCME inhibited iNOS protein expression, but not COX-2, and reduced nitric oxide (NO) release. Moreover, Phosphorylated c-Jun N-terminal Kinase (JNK) was attenuated dose-dependently in PCME pre-treated RAW264.7 cells. In addition, PCME up-regulated HO-1 protein expression was diminished by pre-treatment of PI-3K inhibitor. Furthermore, nuclear factor erythroid 2 related factor 2 (Nrf2) repressor was attenuated time-dependently during PCME treatment. Taken together, our study showed (for the first time) that PCME inhibited NO production and up-regulated HO-1 induction via PI-3K/Akt pathway, suggesting the role of Pistacia chinensis as potential sources of anti-inflammatory and antioxidant natural compounds.
Collapse
Affiliation(s)
- Taddesse Yayeh
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine and Stem Cell Research Therapeutic Institute, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Mei Hong
- School of Life Unigen Inc., Cheonan, Chungnam 330-863, Republic of Korea
| | - Qi Jia
- School of Life Unigen Inc., Cheonan, Chungnam 330-863, Republic of Korea
| | - Young-Chul Lee
- School of Life Unigen Inc., Cheonan, Chungnam 330-863, Republic of Korea
| | - Hyun-Jin Kim
- School of Life Unigen Inc., Cheonan, Chungnam 330-863, Republic of Korea
| | - Eujin Hyun
- School of Life Unigen Inc., Cheonan, Chungnam 330-863, Republic of Korea
| | - Tae-Wan Kim
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine and Stem Cell Research Therapeutic Institute, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine and Stem Cell Research Therapeutic Institute, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
42
|
Lee SE, Yang H, Jeong SI, Jin YH, Park CS, Park YS. Induction of heme oxygenase-1 inhibits cell death in crotonaldehyde-stimulated HepG2 cells via the PKC-δ-p38-Nrf2 pathway. PLoS One 2012; 7:e41676. [PMID: 22848562 PMCID: PMC3405012 DOI: 10.1371/journal.pone.0041676] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/24/2012] [Indexed: 12/22/2022] Open
Abstract
Background Crotonaldehyde, an alpha, beta-unsaturated aldehyde present in cigarette smoke, is an environmental pollutant and a product of lipid peroxidation. It also produces adverse effects to humans and is considered as a risk factor for various diseases. Heme oxygenase-1 (HO-1) plays important roles in protecting cells against oxidative stress as a prime cellular defense mechanism. However, HO-1 may be associated with cell proliferation and resistance to apoptosis in cancer cells. The aim of this study was to examine the effects of HO-1 induction on cell survival in crotonaldehyde-stimulated human hepatocellular carcinoma (HepG2) cells. Methods To investigate the signaling pathway involved in crotonaldehyde-induced HO-1 expression, we compared levels of inhibition efficiency of specific inhibitors and specific small interfering RNAs (siRNAs) of several kinases. The cell-cycle and cell death was measured by FACS and terminal dUTP nick-end labeling (TUNEL) staining. Results Treatment with crotonaldehyde caused a significant increase in nuclear translocation of NF-E2 related factor (Nrf2). Treatment with inhibitors of the protein kinase C-δ (PKC-δ) and p38 pathways resulted in obvious blockage of crotonaldehyde-induced HO-1 expression. Furthermore, treatment with HO-1 siRNA and the specific HO-1 inhibitor zinc-protoporphyrin produced an increase in the G0/G1 phase of the cell cycle in crotonaldehyde-stimulated HepG2 cells. Conclusions Taken together, the results support an anti-apoptotic role for HO-1 in crotonaldehyde-stimulated human hepatocellular carcinoma cells and provide a mechanism by which induction of HO-1 expression via PKC-δ–p38 MAPK–Nrf2 pathway may promote tumor resistance to oxidative stress.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hana Yang
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong Il Jeong
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Ho Jin
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Cheung-Seog Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
43
|
Jeong SI, Lee SE, Yang H, Park CS, Cho JJ, Park YS. MicroRNA microarray analysis of human umbilical vein endothelial cells exposed to benzo(a)pyrene. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6212-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Lee SE, Jeong SI, Yang H, Jeong SH, Jang YP, Park CS, Kim J, Park YS. Extract of Salvia miltiorrhiza (Danshen) induces Nrf2-mediated heme oxygenase-1 expression as a cytoprotective action in RAW 264.7 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:541-548. [PMID: 22155388 DOI: 10.1016/j.jep.2011.11.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/15/2011] [Accepted: 11/27/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danshen (Salvia miltiorrhiza) is widely used in traditional herbal medicines for relief of a variety of symptoms related to complications arising from vascular diseases such as hypertension, diabetes, and atherosclerosis. Induction of heme oxygenase-1 (HO-1) expression protects against oxidative stress-induced cell damage, which plays an important role in cytoprotection in a variety of pathological models. MATERIALS AND METHODS In the present study, we investigated the effect of Danshen on the up-regulation of HO-1, an inducible and cytoprotective enzyme in RAW 264.7 macrophages. Molecular mechanisms underlying the effects, especially protective effects, was elucidated by analyzing the activation of transcription factors and their upstream signalling, and by evaluating the inhibitory effect of HO-1 on ROS production. RESULTS Danshen induced HO-1 mRNA expression and protein production, and nuclear translocation of NF-E2-related factor 2 in RAW 264.7 macrophages. Pharmacological inhibitors of PI3K/Akt and MEK1 attenuated HO-1 induction in Danshen-stimulated RAW 264.7 macrophages. Furthermore, Danshen pretreatment reduced intracellular production of reactive oxygen species after stimulation with hydrogen peroxide; this effect was reversed by the HO-1 inhibitor ZnPP. CONCLUSION Danshen induced HO-1 expression through PI3K/Akt-MEK1-Nrf2 pathway and reduced intracellular production of reactive oxygen species via induction of HO-1 expression. The results support a role of HO-1 in the cytoprotective effect of Danshen.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|