1
|
Honjo MN, Emura N, Kamitani M, Kudoh H. Cold suppresses virus accumulation and alters the host transcriptomic response in the turnip mosaic virus-Arabidopsis halleri system. PLANT & CELL PHYSIOLOGY 2025; 66:596-615. [PMID: 39829324 PMCID: PMC12085085 DOI: 10.1093/pcp/pcaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Since plant viruses cause lifelong infections, virus-plant interactions are exposed to large temperature fluctuations in evergreen perennials. In such circumstances, virus-plant interactions are expected to change significantly between the warm and cold seasons. However, few studies have investigated the effects of cold temperatures on virus-plant interactions. Here, we show that in a persistent infection system of the turnip mosaic virus (TuMV)-Arabidopsis halleri, cold temperatures lead to slow viral replication/spreading within the host, attenuated host symptoms, and cold-specific transcriptomic responses. Many differentially expressed genes (DEGs) were detected between virus-inoculated and mock-inoculated plants under warm and cold conditions; however, the sets of DEGs and response timings were temperature-dependent. At cold temperatures, the expression of photosynthesis-related genes decreased in the early stages of infection. However, it recovered to the same level as that in uninfected plants in the later stages. In contrast, the transcriptomic changes under warm conditions suggest that viral infections cause auxin signaling disruption. These responses coincided with the inhibition of host growth. We identified 6 cold- and 38 warm-specific DEGs, which changed their expression in response to TuMV infection under more than half of the conditions for either cold or warm temperatures. Further validation of the putative relationships between transcriptomic and phenotypic responses of the host is required. Our findings on temperature-dependent host responses at both symptomatic and transcriptomic levels help us understand how warm and cold temperatures affect virus-plant interactions in seasonal environments.
Collapse
Affiliation(s)
- Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
| | - Naoko Emura
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
- Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Mari Kamitani
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
- CiRA Foundation, Kyoto University, Shogoin kawahara-cho 53, Sakyo-ku, Kyoto 606-8397, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
| |
Collapse
|
2
|
Hinshaw C, López-Uribe MM, Rosa C. Plant Virus Impacts on Yield and Plant-Pollinator Interactions Are Phylogenetically Modulated Independently of Domestication in Cucurbita spp. PHYTOPATHOLOGY 2024; 114:2182-2191. [PMID: 38842916 DOI: 10.1094/phyto-08-23-0270-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Plant defenses are conserved among closely related species, but domestication can alter host genotypes through artificial selection with potential losses in host defenses. Therefore, both domestication and host phylogenetic structure may influence plant virus infection outcomes. Here, we examined the association of phylogeny and domestication with the fitness of infected plants. We inoculated three pairs of domesticated and wild/noncultivated squash (Cucurbita spp.) with a combination of two viruses commonly found to coinfect cucurbits, zucchini yellow mosaic virus and squash mosaic virus, and recorded fitness traits related to flowers, pollination, fruit, and seed viability in the field over 2 separate years. In an additional field experiment, we recorded the relative abundance of both viruses via RT-qPCR. We found a gradient of susceptibility across the six tested lineages, and phylogenetic structure, but not domestication, contributed to differences in infection outcomes and impacts on several fitness traits, including fruit number, fruit weight, and germination. Plant virus infection also impacted the quantity and quality of floral rewards and visitation rates of specialist bee pollinators. There were no detectable differences in viral load between the six host taxa for either virus individually or the ratio of zucchini yellow mosaic virus to squash mosaic virus. Our results highlight the importance of phylogenetic structure in predicting host susceptibility to disease across wild and domesticated plants and the ability of several hosts to maintain fitness in the field despite infection. Broader consequences of plant pathogens for beneficial insects, such as pollinators, should also be considered in future research.
Collapse
Affiliation(s)
- Chauncy Hinshaw
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA
| | | | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
3
|
Hu WC, Tsai JC, Cheng HW, Huang CH, Raja JAJ, Chang FY, Chen CC, Chiang CH, Yeh SD. The Fifth Residue of the Coat Protein of Turnip Mosaic Virus Is Responsible for Long-Distance Movement in a Local-Lesion Host and Aphid Transmissibility in a Systemic Host. PHYTOPATHOLOGY 2024; 114:1689-1700. [PMID: 38451704 DOI: 10.1094/phyto-08-23-0287-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
HC-Pro and coat protein (CP) genes of a potyvirus facilitate cell-to-cell movement and are involved in the systemic movement of the viruses. The interaction between HC-Pro and CP is mandatory for aphid transmission. Two turnip mosaic virus (TuMV) isolates, RC4 and YC5, were collected from calla lily plants in Taiwan. The virus derived from the infectious clone pYC5 cannot move systemically in Chenopodium quinoa plants and loses aphid transmissibility in Nicotiana benthamiana plants, like the initially isolated virus. Sequence analysis revealed that two amino acids, P5 and A206, of YC5 CP uniquely differ from RC4 and other TuMV strains. Recombination assay and site-directed mutagenesis revealed that the fifth residue of leucine (L) at the N-terminal region of the CP (TuMV-RC4), rather than proline (P) (TuMV-YC5), is critical to permit the systemic spread in C. quinoa plants. Moreover, the single substitution mutant YC5-CPP5L became aphid transmissible, similar to RC4. Fluorescence microscopy revealed that YC5-GFP was restricted in the petioles of inoculated leaves, whereas YC5-CPP5L-GFP translocated through the petioles of inoculated leaves, the main stem, and the petioles of the upper uninoculated leaves of C. quinoa plants. In addition, YC5-GUS was blocked at the basal part of the petiole connecting to the main stem of the inoculated C. quinoa plants, whereas YC5-CPP5L-GFP translocated to the upper leaves. Thus, a single amino acid, the residue L5 at the N-terminal region right before the 6DAG8 motif, is critical for the systemic translocation ability of TuMV in a local lesion host and for aphid transmissibility in a systemic host.
Collapse
Affiliation(s)
- Wen-Chi Hu
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jui-Chi Tsai
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hao-Wen Cheng
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Hao Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Joseph A J Raja
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Fang-Yu Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Chih Chen
- Plant Pathology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung 41362, Taiwan
| | - Chu-Hui Chiang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shyi-Dong Yeh
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Park TS, Min DJ, Park JS, Hong JS. The N-Terminal Region of Cucumber Mosaic Virus 2a Protein Is Involved in the Systemic Infection in Brassica juncea. PLANTS (BASEL, SWITZERLAND) 2024; 13:1001. [PMID: 38611534 PMCID: PMC11013781 DOI: 10.3390/plants13071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Brassica juncea belongs to the Brassicaceae family and is used as both an oilseed and vegetable crop. As only a few studies have reported on the cucumber mosaic virus (CMV) in B. juncea, we conducted this study to provide a basic understanding of the B. juncea and CMV interactions. B. juncea-infecting CMV (CMV-Co6) and non-infecting CMV (CMV-Rs1) were used. To identify the determinants of systemic infection in B. juncea, we first constructed infectious clones of CMV-Co6 and CMV-Rs1 and used them as pseudo-recombinants. RNA2 of CMV was identified as an important determinant in B. juncea because B. juncea were systemically infected with RNA2-containing pseudo-recombinants; CMV-Co6, R/6/R, and R/6/6 were systemically infected B. juncea. Subsequently, the amino acids of the 2a and 2b proteins were compared, and a chimeric clone was constructed. The chimeric virus R/6Rns/R6cp, containing the C-terminal region of the 2a protein of CMV-Rs1, still infects B. juncea. It is the 2a protein that determines the systemic CMV infection in B. juncea, suggesting that conserved 160G and 214A may play a role in systemic CMV infection in B. juncea.
Collapse
Affiliation(s)
| | | | | | - Jin-Sung Hong
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (T.-S.P.); (D.-J.M.); (J.-S.P.)
| |
Collapse
|
5
|
Sharma V, Mohammed SA, Devi N, Vats G, Tuli HS, Saini AK, Dhir YW, Dhir S, Singh B. Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress. STRESS BIOLOGY 2024; 4:10. [PMID: 38311681 PMCID: PMC10838894 DOI: 10.1007/s44154-023-00126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/22/2023] [Indexed: 02/06/2024]
Abstract
In the ecosphere, plants interact with environmental biotic and abiotic partners, where unbalanced interactions can induce unfavourable stress conditions. Abiotic factors (temperature, water, and salt) are primarily required for plants healthy survival, and any change in their availability is reflected as a stress signal. In certain cases, the presence of infectious pathogens such as viruses, bacteria, fungi, protozoa, nematodes, and insects can also create stress conditions in plants, leading to the emergence of disease or deficiency symptoms. While these symptoms are often typical of abiotic or biotic stress, however, there are instances where they can intensify under specific conditions. Here, we primarily summarize the viral interactions with plants during abiotic stress to understand how these associations are linked together during viral pathogenesis. Secondly, focus is given to the beneficial effects of root-associated symbiotic bacteria in fulfilling the basic needs of plants during normal as well as abiotic stress conditions. The modulations of plant functional proteins, and their occurrence/cross-talk, with pathogen (virus) and symbiont (bacteria) molecules are also discussed. Furthermore, we have highlighted the biochemical and systematic adaptations that develop in plants due to bacterial symbiosis to encounter stress hallmarks. Lastly, directions are provided towards exploring potential rhizospheric bacteria to maintain plant-microbes ecosystem and manage abiotic stress in plants to achieve better trait health in the horticulture crops.
Collapse
Affiliation(s)
- Vasudha Sharma
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Shakeel A Mohammed
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Nisha Devi
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Gourav Vats
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Hardeep S Tuli
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Yashika W Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Sunny Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Bharat Singh
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
6
|
Khan LU, Cao X, Zhao R, Tan H, Xing Z, Huang X. Effect of temperature on yellow leaf disease symptoms and its associated areca palm velarivirus 1 titer in areca palm ( Areca catechu L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1023386. [PMID: 36311112 PMCID: PMC9615470 DOI: 10.3389/fpls.2022.1023386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Yellow leaf disease (YLD) has been a major limiting factor threatening areca palm commonly known as betel palm (Areca catechu L.) plantations in Hainan, China. The YLD disease is closely associated with areca palm velarivirus 1 (APV1), which belongs to the family Closteroviridae. YLD-affected betel palms show more serious yellowing symptoms in winter than in summer based on anecdotal observations. In the present work, the underlying mechanism was investigated. We first observed that the severity of YLD symptoms was closely related with the APV1 viral titer determined by qRT-PCR and ELISA under natural conditions. To further investigate whether temperature plays a key role in APV1 accumulation, the areca palm seedlings were artificially inoculated with APV1-positive mealybugs (Ferrisia virgata) and then cultivated under controlled conditions. According to our results, the YLD symptoms severity in inoculated seedlings were closely associated with temperature, e.g., severest symptoms at low temperature (16/22 ± 2°C, night/day), severer symptoms at room temperature (24/26 ± 2°C, night/day), while moderate symptoms at high temperature (27/34 ± 2°C, night/day). The qRT-PCR and ELISA results showed that APV1 titer accumulates significantly abundant at low temperature as compared to high and room temperatures. In conclusion, this is the first report about the temperature effects on the symptoms severity of YLD and APV1 titer, which may have important implications for the epidemiology of YLD.
Collapse
|
7
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Tsai WA, Brosnan CA, Mitter N, Dietzgen RG. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures. STRESS BIOLOGY 2022; 2:37. [PMID: 37676437 PMCID: PMC10442010 DOI: 10.1007/s44154-022-00058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 09/08/2023]
Abstract
Global food production is at risk from many abiotic and biotic stresses and can be affected by multiple stresses simultaneously. Virus diseases damage cultivated plants and decrease the marketable quality of produce. Importantly, the progression of virus diseases is strongly affected by changing climate conditions. Among climate-changing variables, temperature increase is viewed as an important factor that affects virus epidemics, which may in turn require more efficient disease management. In this review, we discuss the effect of elevated temperature on virus epidemics at both macro- and micro-climatic levels. This includes the temperature effects on virus spread both within and between host plants. Furthermore, we focus on the involvement of molecular mechanisms associated with temperature effects on plant defence to viruses in both susceptible and resistant plants. Considering various mechanisms proposed in different pathosystems, we also offer a view of the possible opportunities provided by RNA -based technologies for virus control at elevated temperatures. Recently, the potential of these technologies for topical field applications has been strengthened through a combination of genetically modified (GM)-free delivery nanoplatforms. This approach represents a promising and important climate-resilient substitute to conventional strategies for managing plant virus diseases under global warming scenarios. In this context, we discuss the knowledge gaps in the research of temperature effects on plant-virus interactions and limitations of RNA-based emerging technologies, which should be addressed in future studies.
Collapse
Affiliation(s)
- Wei-An Tsai
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Christopher A Brosnan
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ralf G Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
9
|
Bergès SE, Vile D, Yvon M, Masclef D, Dauzat M, van Munster M. Water deficit changes the relationships between epidemiological traits of Cauliflower mosaic virus across diverse Arabidopsis thaliana accessions. Sci Rep 2021; 11:24103. [PMID: 34916537 PMCID: PMC8677750 DOI: 10.1038/s41598-021-03462-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
Changes in plant abiotic environments may alter plant virus epidemiological traits, but how such changes actually affect their quantitative relationships is poorly understood. Here, we investigated the effects of water deficit on Cauliflower mosaic virus (CaMV) traits (virulence, accumulation, and vectored-transmission rate) in 24 natural Arabidopsis thaliana accessions grown under strictly controlled environmental conditions. CaMV virulence increased significantly in response to water deficit during vegetative growth in all A. thaliana accessions, while viral transmission by aphids and within-host accumulation were significantly altered in only a few. Under well-watered conditions, CaMV accumulation was correlated positively with CaMV transmission by aphids, while under water deficit, this relationship was reversed. Hence, under water deficit, high CaMV accumulation did not predispose to increased horizontal transmission. No other significant relationship between viral traits could be detected. Across accessions, significant relationships between climate at collection sites and viral traits were detected but require further investigation. Interactions between epidemiological traits and their alteration under abiotic stresses must be accounted for when modelling plant virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Sandy E Bergès
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | - Michel Yvon
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Diane Masclef
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
10
|
Ahamedemujtaba V, Atheena PV, Bhat AI, Krishnamurthy KS, Srinivasan V. Symptoms of piper yellow mottle virus in black pepper as influenced by temperature and relative humidity. Virusdisease 2021; 32:305-313. [PMID: 34423100 DOI: 10.1007/s13337-021-00686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 11/26/2022] Open
Abstract
Masking of symptoms in winter and their re-appearance in black pepper (Piper nigrum L.) infected with piper yellow mottle virus (PYMoV) in summer is common, especially on new flushes that appear after pre-monsoon showers. Plants of nineteen cultivars of black pepper infected with PYMoV but without any visible symptoms were grown in a polyhouse under natural conditions and in a greenhouse under controlled conditions from January 2019 to January 2020. The number of plants expressing symptoms in the polyhouse increased gradually from 1% during the 3rd standard meteorological week (SMW) (16 January) to 41% during the 21st SMW (22 May), when the afternoon temperature was 30-40 °C and relative humidity (RH) was 75-93%, but began declining thereafter until the 53rd SMW (1 January), when the afternoon temperature was 30-36 °C and RH was 65-86%. The proportion of plants expressing symptoms varied with the cultivar. However, in the greenhouse, in which temperature and RH were maintained at approximately 26 °C and 80%, respectively, not more than 2% of the plants expressed symptoms. The number of symptomatic plants was positively correlated to maximum temperature (T Max) and maximum relative humidity (RH Max) in the afternoon. Based on this observation, a model for predicting the percentage of symptomatic plants was developed using stepwise regression analysis. Plants at the two sites did not differ significantly in the concentration of virus (virus titre) but differed significantly in the content of total carbohydrates, lipid peroxidase, and phenols. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00686-3.
Collapse
Affiliation(s)
- V Ahamedemujtaba
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - P V Atheena
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - A I Bhat
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - K S Krishnamurthy
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| | - V Srinivasan
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala 673 012 India
| |
Collapse
|
11
|
HTS-Based Diagnostics of Sugarcane Viruses: Seasonal Variation and Its Implications for Accurate Detection. Viruses 2021; 13:v13081627. [PMID: 34452491 PMCID: PMC8402784 DOI: 10.3390/v13081627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/26/2023] Open
Abstract
Rapid global germplasm trade has increased concern about the spread of plant pathogens and pests across borders that could become established, affecting agriculture and environment systems. Viral pathogens are of particular concern due to their difficulty to control once established. A comprehensive diagnostic platform that accurately detects both known and unknown virus species, as well as unreported variants, is playing a pivotal role across plant germplasm quarantine programs. Here we propose the addition of high-throughput sequencing (HTS) from total RNA to the routine quarantine diagnostic workflow of sugarcane viruses. We evaluated the impact of sequencing depth needed for the HTS-based identification of seven regulated sugarcane RNA/DNA viruses across two different growing seasons (spring and fall). Our HTS analysis revealed that viral normalized read counts (RPKM) was up to 23-times higher in spring than in the fall season for six out of the seven viruses. Random read subsampling analyses suggested that the minimum number of reads required for reliable detection of RNA viruses was 0.5 million, with a viral genome coverage of at least 92%. Using an HTS-based total RNA metagenomics approach, we identified all targeted viruses independent of the time of the year, highlighting that higher sequencing depth is needed for the identification of DNA viruses.
Collapse
|
12
|
R-BPMV-Mediated Resistance to Bean pod mottle virus in Phaseolus vulgaris L. Is Heat-Stable but Elevated Temperatures Boost Viral Infection in Susceptible Genotypes. Viruses 2021; 13:v13071239. [PMID: 34206842 PMCID: PMC8310253 DOI: 10.3390/v13071239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
In the context of climate change, elevated temperature is a major concern due to the impact on plant–pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant–virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes. In this work, we focused on the R-BPMV gene, a major resistance gene against Bean pod mottle virus in Phaseolus vulgaris. We inoculated different BPMV constructs in order to study the behavior of the R-BPMV-mediated resistance at normal (20 °C) and elevated temperatures (constant 25, 30, and 35 °C). Our results show that R-BPMV mediates a temperature-dependent phenotype of resistance from hypersensitive reaction at 20 °C to chlorotic lesions at 35 °C in the resistant genotype BAT93. BPMV is detected in inoculated leaves but not in systemic ones, suggesting that the resistance remains heat-stable up to 35 °C. R-BPMV segregates as an incompletely dominant gene in an F2 population. We also investigated the impact of elevated temperature on BPMV infection in susceptible genotypes, and our results reveal that elevated temperatures boost BPMV infection both locally and systemically in susceptible genotypes.
Collapse
|
13
|
Differential Tropism in Roots and Shoots of Resistant and Susceptible Cassava ( Manihot esculenta Crantz) Infected by Cassava Brown Streak Viruses. Cells 2021; 10:cells10051221. [PMID: 34067728 PMCID: PMC8156387 DOI: 10.3390/cells10051221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Cassava brown streak disease (CBSD) is a destructive disease of cassava in Eastern and Central Africa. Because there was no source of resistance in African varieties to provide complete protection against the viruses causing the disease, we searched in South American germplasm and identified cassava lines that did not become infected with the cassava brown streak viruses. These findings motivated further investigations into the mechanism of virus resistance. We used RNAscope® in situ hybridization to localize cassava brown streak virus in cassava germplasm lines that were highly resistant (DSC 167, immune) or that restricted virus infections to stems and roots only (DSC 260). We show that the resistance in those lines is not a restriction of long-distance movement but due to preventing virus unloading from the phloem into parenchyma cells for replication, thus restricting the virus to the phloem cells only. When DSC 167 and DSC 260 were compared for virus invasion, only a low CBSV signal was found in phloem tissue of DSC 167, indicating that there is no replication in this host, while the presence of intense hybridization signals in the phloem of DSC 260 provided evidence for virus replication in companion cells. In neither of the two lines studied was there evidence of virus replication outside the phloem tissues. Thus, we conclude that in resistant cassava lines, CBSV is confined to the phloem tissues only, in which virus replication can still take place or is arrested.
Collapse
|
14
|
Alcaide C, Sardanyés J, Elena SF, Gómez P. Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evol 2021; 7:veab017. [PMID: 33815829 PMCID: PMC8007957 DOI: 10.1093/ve/veab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Environmental conditions can affect viral accumulation, virulence and adaptation, which have implications in the disease outcomes and efficiency of control measures. Concurrently, mixed viral infections are relevant in plants, being their epidemiology shaped by within-host virus–virus interactions. However, the extent in which the combined effect of variations in abiotic components of the plant ecological niche and the prevalence of mixed infections affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections and show that isolates of two strains of Pepino mosaic potexvirus coexisted in tomato plants in a temperature-dependent continuum between neutral and antagonistic interactions. After a long-term infection, the mutational analysis of the evolved viral genomes revealed strain-specific single-nucleotide polymorphisms that were modulated by the interaction between the type of infection and temperature. These results suggest that the temperature is an ecological driver of virus-virus interactions, with an effect on the genetic diversity of individual viruses that are co-infecting an individual host. This research provides insights into the effect that changes in host growth temperatures might have on the evolutionary dynamics of viral populations in mixed infections.
Collapse
Affiliation(s)
- Cristina Alcaide
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
- Dynamical Systems and Computational Virology Associated Unit Instituto de Biología Integrativa de Sistemas (I2SysBio) - CRM, Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Santiago F Elena
- I2SysBio, CSIC-Universitat de València, Paterna, 46980 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
- Corresponding author: E-mail:
| |
Collapse
|
15
|
Amari K, Huang C, Heinlein M. Potential Impact of Global Warming on Virus Propagation in Infected Plants and Agricultural Productivity. FRONTIERS IN PLANT SCIENCE 2021; 12:649768. [PMID: 33868349 PMCID: PMC8045756 DOI: 10.3389/fpls.2021.649768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/03/2021] [Indexed: 05/14/2023]
Abstract
The increasing pace of global warming and climate instability will challenge the management of pests and diseases of cultivated plants. Several reports have shown that increases in environmental temperature can enhance the cell-to-cell and systemic propagation of viruses within their infected hosts. These observations suggest that earlier and longer periods of warmer weather may cause important changes in the interaction between viruses and their host's plants, thus posing risks of new viral diseases and outbreaks in agriculture and the wild. As viruses target plasmodesmata (PD) for cell-to-cell spread, these cell wall pores may play yet unknown roles in the temperature-sensitive regulation of intercellular communication and virus infection. Understanding the temperature-sensitive mechanisms in plant-virus interactions will provide important knowledge for protecting crops against diseases in a warmer climate.
Collapse
|
16
|
Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthomé R. Fight hard or die trying: when plants face pathogens under heat stress. THE NEW PHYTOLOGIST 2021; 229:712-734. [PMID: 32981118 DOI: 10.1111/nph.16965] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
In their natural environment, plants are exposed to biotic or abiotic stresses that occur sequentially or simultaneously. Plant responses to these stresses have been studied widely and have been well characterised in simplified systems involving single plant species facing individual stress. Temperature elevation is a major abiotic driver of climate change and scenarios have predicted an increase in the number and severity of epidemics. In this context, here we review the available data on the effect of heat stress on plant-pathogen interactions. Considering 45 studies performed on model or crop species, we discuss the possible implications of the optimum growth temperature of plant hosts and pathogens, mode of stress application and temperature variation on resistance modulations. Alarmingly, most identified resistances are altered under temperature elevation, regardless of the plant and pathogen species. Therefore, we have listed current knowledge on heat-dependent plant immune mechanisms and pathogen thermosensory processes, mainly studied in animals and human pathogens, that could help to understand the outcome of plant-pathogen interactions under elevated temperatures. Based on a general overview of the mechanisms involved in plant responses to pathogens, and integrating multiple interactions with the biotic environment, we provide recommendations to optimise plant disease resistance under heat stress and to identify thermotolerant resistance mechanisms.
Collapse
Affiliation(s)
- Henri Desaint
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- SYNGENTA Seeds, Sarrians, 84260, France
| | - Nathalie Aoun
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | | | - Fabrice Roux
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
17
|
van Munster M. Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 2020; 12:E216. [PMID: 32075208 PMCID: PMC7077179 DOI: 10.3390/v12020216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/05/2023] Open
Abstract
Plants regularly encounter abiotic constraints, and plant response to stress has been a focus of research for decades. Given increasing global temperatures and elevated atmospheric CO2 levels and the occurrence of water stress episodes driven by climate change, plant biochemistry, in particular, plant defence responses, may be altered significantly. Environmental factors also have a wider impact, shaping viral transmission processes that rely on a complex set of interactions between, at least, the pathogen, the vector, and the host plant. This review considers how abiotic stresses influence the transmission and spread of plant viruses by aphid vectors, mainly through changes in host physiology status, and summarizes the latest findings in this research field. The direct effects of climate change and severe weather events that impact the feeding behaviour of insect vectors as well as the major traits (e.g., within-host accumulation, disease severity and transmission) of viral plant pathogens are discussed. Finally, the intrinsic capacity of viruses to react to environmental cues in planta and how this may influence viral transmission efficiency is summarized. The clear interaction between biotic (virus) and abiotic stresses is a risk that must be accounted for when modelling virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Manuella van Munster
- INRA, UMR385, CIRAD TA-A54K, Campus International de Baillarguet, CEDEX 05, 34398 Montpellier, France
| |
Collapse
|
18
|
Shopan J, Liu C, Hu Z, Zhang M, Yang J. Identification of eukaryotic translation initiation factors and the temperature-dependent nature of Turnip mosaic virus epidemics in allopolyploid Brassica juncea. 3 Biotech 2020; 10:75. [PMID: 32051808 PMCID: PMC6987279 DOI: 10.1007/s13205-020-2058-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/06/2020] [Indexed: 11/24/2022] Open
Abstract
Eukaryotic translation initiation factors (eIFs) are essential protein complexes involved in the translation of mRNA into proteins. These initiation factors are generally used as targets in the control of plant RNA virus infections. In the present study, we identified a total 190 eIFs, clustered phylogenetically into 40 distinct subfamilies in the allopolyploid Brassica juncea. Extensive evolutionary duplications of the eIFs in B. juncea suggest their increased genetic diversity and wide adaptability. The induction of expressions in some of the eIFs after inoculation against Turnip mosaic virus (TuMV) provided candidate targets to be used in the control of viral infections. In addition, the expression profiles of eIFs under different temperatures suggested that the TuMV epidemic was temperature dependent. The eIFs expressions suggested that the systemic viral infections were more acute in plants grown between 20 °C and 28 °C. In addition, our results revealed that new subgroups of eIFs, eIF2β, eIF2α, eIF2Bβ, EF1A, and PABP could be represented as targets for antiviral strategies in B. juncea. In summary, our findings would be helpful in studying the complex mechanisms of eIF-mediated, temperature-dependent RNA virus control in B. juncea.
Collapse
Affiliation(s)
- Jannat Shopan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Chang Liu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058 China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058 China
| |
Collapse
|
19
|
Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME JOURNAL 2019; 14:506-518. [PMID: 31664159 PMCID: PMC6976672 DOI: 10.1038/s41396-019-0519-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 11/08/2022]
Abstract
Persistent infection, wherein a pathogen is continually present in a host individual, is widespread in virus–host systems. However, little is known regarding how seasonal environments alter virus–host interaction during such metastability. We observed a lineage-to-lineage infection of the host plant Arabidopsis halleri with Turnip mosaic virus for 3 years without severe damage. Virus dynamics and virus–host interactions within hosts were highly season dependent. Virus accumulation in the newly formed leaves was temperature dependent and was suppressed during winter. Transcriptome analyses suggested that distinct defence mechanisms, i.e. salicylic acid (SA)-dependent resistance and RNA silencing, were predominant during spring and autumn, respectively. Transcriptomic difference between infected and uninfected plants other than defence genes appeared transiently only during autumn in upper leaves. However, the virus preserved in the lower leaves is transferred to the clonal offspring of the host plants during spring. In the linage-to-linage infection of the A. halleri–TuMV system, both host clonal reproduction and virus transmission into new clonal rosettes are secured during the winter–spring transition. How virus and host overwinter turned out to be critical for understanding a long-term virus–host interaction within hosts under temperate climates, and more generally, understanding seasonality provides new insight into ecology of plant viruses.
Collapse
|
20
|
Sevik MA. Viruses infecting cool season crops in the northern Turkey. AN ACAD BRAS CIENC 2019; 91:e20180224. [PMID: 31365647 DOI: 10.1590/0001-3765201920180224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022] Open
Abstract
Virus diseases of cool season vegetable crops (mainly cabbage, white and red head cabbage, broccoli, kale, radish, rocket salad, garden cress, and turnip) were surveyed in Bafra Plain, Turkey during winter 2017, and 2018. Leaf samples were collected from different species of the Brassicaceae family showing mosaic, mottling, necrotic spots, malformation, and chlorosis symptoms. These samples were tested for the presence of Cauliflower mosaic virus (CaMV), Cucumber mosaic virus (CMV), Beet western yellows virus (BWYV), Radish mosaic virus (RaMV), Turnip mosaic virus (TuMV), Turnip yellow mosaic virus (TYMV), and Turnip yellows virus (TuYV) by biological and serological methods. A total of 455 samples were collected from cole crop fields and tested for the seven viruses by double-antibody sandwich ELISA using specific polyclonal antibodies. According to the results, out of these, 7 % of the samples were infected by at least one of these viruses. TuMV was the most prevalent virus detected in cole crops. TuMV, CaMV, and CMV were detected in 3 %, 2 %, and 2 % of infected samples, respectively, and the infection rate of these three viruses changed significantly among Brassica species.
Collapse
Affiliation(s)
- Mehmet A Sevik
- Department of Plant Protection, Faculty of Agriculture, University of Ondokuz Mayis, 55139, Atakum, Samsun, Turkey
| |
Collapse
|
21
|
Shrestha D, McAuslane HJ, Ebert TA, Cervantes FA, Adkins ST, Smith HA, Dufault N, Webb SE. Assessing the Temporal Effects of Squash vein yellowing virus Infection on Settling and Feeding Behavior of Bemisia tabaci (MEAM1) (Hemiptera: Aleyrodidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5489312. [PMID: 31087083 PMCID: PMC6516432 DOI: 10.1093/jisesa/iez036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Insect vector behavior and biology can be affected by pathogen-induced changes in the physiology and morphology of the host plant. Herein, we examined the temporal effects of Squash vein yellowing virus (family Potyviridae, genus Ipomovirus) infection on the settling, oviposition preference, and feeding behavior of its whitefly vector, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1 (MEAM1), formerly known as B. tabaci biotype B. Settling and oviposition behavioral choice assays were conducted on pairs of infected and mock-inoculated watermelon (Citrullus lanatus (Thunb) Matsum and Nakai) (Cucurbitales: Cucurbitaceae) at 5-6 days post inoculation (DPI) and 10-12 DPI. Electropenetrography, or electrical penetration graph (both abbreviated EPG), was used to assess differences in feeding behaviors of whitefly on mock-inoculated, 5-6 and 10-12 DPI infected watermelon plants. Whiteflies showed no preference in settling or oviposition on the infected and mock-inoculated plants at 5-6 DPI. However, at 10-12 DPI, whiteflies initially settled on infected plants but then preference of settling shifted to mock-inoculated plants after 8 h. Only at 10-12 DPI, females laid significantly more eggs on mock-inoculated plants than infected plants. EPG revealed no differences in whitefly feeding behaviors among mock-inoculated, 5-6 DPI infected and 10-12 DPI infected plants. The results highlighted the need to examine plant disease progression and its effect on vector behavior and performance, which could play a crucial role in Squash vein yellowing virus spread.
Collapse
Affiliation(s)
- Deepak Shrestha
- Entomology and Nematology Department, University of Florida, Gainesville, FL
| | - Heather J McAuslane
- Entomology and Nematology Department, University of Florida, Gainesville, FL
| | - Timothy A Ebert
- UF/IFAS, Citrus Research and Education Center, Lake Alfred, FL
| | - Felix A Cervantes
- Product Development North America, Bayer CropScience LP, Land O’Lakes, FL
| | - Scott T Adkins
- USDA, Agricultural Research Service, U. S. Horticultural Research Laboratory, Fort Pierce, FL
| | - Hugh A Smith
- UF/IFAS, Gulf Coast Research and Education Center, Wimauma, FL
| | - Nicholas Dufault
- Department of Plant Pathology, University of Florida, Fifield Hall, Gainesville, FL
| | - Susan E Webb
- Entomology and Nematology Department, University of Florida, Gainesville, FL
| |
Collapse
|
22
|
Rubio B, Cosson P, Caballero M, Revers F, Bergelson J, Roux F, Schurdi-Levraud V. Genome-wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (TuMV) interactions in the field. THE NEW PHYTOLOGIST 2019; 221:2026-2038. [PMID: 30282123 DOI: 10.1111/nph.15507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/18/2018] [Indexed: 05/12/2023]
Abstract
The genetic architecture of plant response to viruses has often been studied in model nonnatural pathosystems under controlled conditions. There is an urgent need to elucidate the genetic architecture of the response to viruses in a natural setting. A field experiment was performed in each of two years. In total, 317 Arabidopsis thaliana accessions were inoculated with its natural Turnip mosaic virus (TuMV). The accessions were phenotyped for viral accumulation, frequency of infected plants, stem length and symptoms. Genome-wide association mapping was performed. Arabidopsis thaliana exhibits extensive natural variation in its response to TuMV in the field. The underlying genetic architecture reveals a more quantitative picture than in controlled conditions. Ten genomic regions were consistently identified across the two years. RTM3 (Restricted TEV Movement 3) is a major candidate for the response to TuMV in the field. New candidate genes include Dead box helicase 1, a Tim Barrel domain protein and the eukaryotic translation initiation factor eIF3b. To our knowledge, this study is the first to report the genetic architecture of quantitative response of A. thaliana to a naturally occurring virus in a field environment, thereby highlighting relevant candidate genes involved in plant virus interactions in nature.
Collapse
Affiliation(s)
- Bernadette Rubio
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Patrick Cosson
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Mélodie Caballero
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Frédéric Revers
- INRA, UMR 1202 BIOGECO, Université de Bordeaux, 69 Route d'Arcachon, 33612, Cestas Cedex, France
| | - Joy Bergelson
- Ecology & Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Fabrice Roux
- LIPM, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Valérie Schurdi-Levraud
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| |
Collapse
|
23
|
Choi KS, del Toro F, Tenllado F, Canto T, Chung BN. A Model to Explain Temperature Dependent Systemic Infection of Potato Plants by Potato virus Y. THE PLANT PATHOLOGY JOURNAL 2017; 33:206-211. [PMID: 28381967 PMCID: PMC5378441 DOI: 10.5423/ppj.nt.06.2016.0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 05/04/2023]
Abstract
The effect of temperature on the rate of systemic infection of potatoes (Solanum tuberosum L. cv. Chu-Baek) by Potato virus Y (PVY) was studied in growth chambers. Systemic infection of PVY was observed only within the temperature range of 16°C to 32°C. Within this temperature range, the time required for a plant to become infected systemically decreased from 14 days at 20°C to 5.7 days at 28°C. The estimated lower thermal threshold was 15.6°C and the thermal constant was 65.6 degree days. A systemic infection model was constructed based on experimental data, using the infection rate (Lactin-2 model) and the infection distribution (three-parameter Weibull function) models, which accurately described the completion rate curves to systemic infection and the cumulative distributions obtained in the PVY-potato system, respectively. Therefore, this model was useful to predict the progress of systemic infections by PVY in potato plants, and to construct the epidemic models.
Collapse
Affiliation(s)
- Kyung San Choi
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63240,
Korea
| | - Francisco del Toro
- Biological Research Center, Spanish Council for Scientific Research (CIB-CSIC), Madrid 28040,
Spain
| | - Francisco Tenllado
- Biological Research Center, Spanish Council for Scientific Research (CIB-CSIC), Madrid 28040,
Spain
| | - Tomas Canto
- Biological Research Center, Spanish Council for Scientific Research (CIB-CSIC), Madrid 28040,
Spain
| | - Bong Nam Chung
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63240,
Korea
- Corresponding author. Phone) +82-64-741-2580, FAX) +82-64-749-2066, E-mail)
| |
Collapse
|
24
|
Abstract
Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity.
Collapse
Affiliation(s)
- R A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, WA, Australia; Department of Agriculture and Food Western Australia, South Perth, WA, Australia.
| |
Collapse
|