1
|
Deng Y, Wang J, Wang R, Wang Y, Shu X, Wang P, Chen C, Zhang F. Limosilactobacillus fermentum TY-S11 ameliorates hypercholesterolemia via promoting cholesterol excretion and regulating gut microbiota in high-cholesterol diet-fed apolipoprotein E-deficient mice. Heliyon 2024; 10:e32059. [PMID: 38882320 PMCID: PMC11180314 DOI: 10.1016/j.heliyon.2024.e32059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Hypercholesterolemia is a metabolic disease characterized by elevated cholesterol level in the blood, which is a risk factor for many diseases. Probiotic intervention may be one of the ways to improve hypercholesterolemia. In this study, three strains with better cholesterol removal ability were selected from 60 strains of lactic acid bacteria, and were orally administered to apolipoprotein E-deficient mice on a high-cholesterol diet. Among the three strains, only Limosilactobacillus fermentum TY-S11, which was isolated from the intestine of a longevity person, significantly improved serum and liver lipid levels in hypercholesterolemic mice. Further study found that L. fermentum TY-S11 promoted the excretion of cholesterol in the feces and inhibited the absorption of cholesterol in the small intestine. As for gut microbiota, the results showed that L. fermentum TY-S11 not only prevented the reduction of diversity caused by high-cholesterol diet, but also increased the contents of short-chain fatty acids in feces. These results confirmed the ameliorative effect of L. fermentum TY-S11 on hypercholesterolemia.
Collapse
Affiliation(s)
- Yadan Deng
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Yuying Wang
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Xi Shu
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Chong Chen
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Feng Zhang
- Key Laboratory of Conservation, Exploration and Utilization of Southwest Characteristic Bacterial Germplasm Resources, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| |
Collapse
|
2
|
Jalali S. Effects of high intensity interval vs. low intensity continuous training on LXRβ, ABCG5 and ABCG8 genes expression in male wistar rats. ARYA ATHEROSCLEROSIS 2024; 20:27-33. [PMID: 40103624 PMCID: PMC11913460 DOI: 10.48305/arya.2024.42635.2961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/20/2024] [Indexed: 03/20/2025]
Abstract
BACKGROUND Liver X receptors (LXR) play an essential role in the regulation of cholesterol metabolism, and their activation increases ABCG5 and ABCG8 gene expression for the improvement of cholesterol excretion from the body during reverse cholesterol transport (RCT). The aim of this study was to investigate the effects of high-intensity interval (HIT) and low-intensity continuous (LIT) trainings on gene expression of these substances after a high-fat diet in Wistar rats. METHODS Fifteen male Wistar rats were divided into 3 groups: control group (n = 5), HIT exercise group (n = 5), and LIT exercise group (n = 5). All groups were fed a high-fat diet for 13 weeks, and the HIT and LIT groups performed the specific training program. The expression of LXRβ, ABCG5, and ABCG8 genes was measured after the training period. RESULTS Data analysis showed significantly higher levels of LXRβ, ABCG5, and ABCG8 gene expression in the HIT and LIT groups compared to the control group (P ≤ 0.05). CONCLUSION HIT and LIT trainings after a high-fat diet have beneficial effects on RCT, preventing heart attacks. Additionally, HIT training may have a greater effect on cholesterol excretion during the reverse cholesterol transport mechanism than LIT.
Collapse
Affiliation(s)
- Sediqeh Jalali
- Department of Biology, Payam Noor University, Tehran, Iran
| |
Collapse
|
3
|
Huang Z, Zhou RR. Mechanism for FXR to regulate bile acid and glycolipid metabolism to improve NAFLD. Shijie Huaren Xiaohua Zazhi 2023; 31:797-807. [DOI: 10.11569/wcjd.v31.i19.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease, with liver metabolic disorders as major pathological changes, manifested as abnormal lipid accumulation, liver cell oxidative stress, etc., but its etiology is still unclear. The farnesol X receptor (FXR) is a major bile acid receptor in the "gut-liver axis", via which FXR regulates metabolism and affects the pathophysiological status of various substances through different pathways, thus contributing to the occurrence and development of NAFLD. Therefore, FXR has become a potential therapeutic target for NAFLD. This article reviews the relationship between FXR regulation of bile acid, glucose, and lipid metabolism through the "gut-liver axis" and the occurrence and development of NAFLD, to provide new insights and clues for further research about FXR-based pharmaceutical treatments.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Rong-Rong Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
4
|
Endocytosis of LXRs: Signaling in liver and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:347-375. [PMID: 36631198 DOI: 10.1016/bs.pmbts.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are among one of the major transcriptional factors that induces gene regulation in the nucleus. Liver X receptor (LXR) is a transcription factor which regulates essential lipid homeostasis in the body including fatty acid, cholesterol and phospholipid synthesis. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer is activated by either of the ligand binding on LXR or RXR. The promoter region of the gene which is targeted by LXR is bound to the response element of LXR. The activators bind to the heterodimer once the corepressor is dissociated. The cellular process such as endocytosis aids in intracellular trafficking and endosomal formation in transportation of molecules for essential signaling within the cell. LXR isotypes play a crucial role in maintaining lipid homeostasis by regulating the level of cholesterol. In the liver, the deficiency of LXRα can alter the normal physiological conditions depicting the symptoms of various cardiovascular and liver diseases. LXR can degrade low density lipoprotein receptors (LDLR) by the signaling of LXR-IDOL through endocytic trafficking in lipoprotein uptake. Various gene expressions associated with cholesterol level and lipid synthesis are regulated by LXR transcription factor. With its known diversified ligand binding, LXR is capable of regulating expression of various specific genes responsible for the progression of autoimmune diseases. The agonists and antagonists of LXR stand to be an important factor in transcription of the ABC family, essential for high density lipoprotein (HDL) formation. Endocytosis and signaling mechanism of the LXR family is broad and complex despite their involvement in cellular growth and proliferation. Here in this chapter, we aimed to emphasize the master regulation of LXR activation, regulators, and their implications in various metabolic activities especially in lipid homeostasis. Furthermore, we also briefed the significant role of LXR endocytosis in T cell immune regulation and a variety of human diseases including cardiovascular and neuroadaptive.
Collapse
|
5
|
Bideyan L, López Rodríguez M, Priest C, Kennelly JP, Gao Y, Ferrari A, Rajbhandari P, Feng AC, Tevosian SG, Smale ST, Tontonoz P. Hepatic GATA4 regulates cholesterol and triglyceride homeostasis in collaboration with LXRs. Genes Dev 2022; 36:1129-1144. [PMID: 36522129 PMCID: PMC9851399 DOI: 10.1101/gad.350145.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022]
Abstract
GATA4 is a transcription factor known for its crucial role in the development of many tissues, including the liver; however, its role in adult liver metabolism is unknown. Here, using high-throughput sequencing technologies, we identified GATA4 as a transcriptional regulator of metabolism in the liver. GATA4 expression is elevated in response to refeeding, and its occupancy is increased at enhancers of genes linked to fatty acid and lipoprotein metabolism. Knocking out GATA4 in the adult liver (Gata4LKO) decreased transcriptional activity at GATA4 binding sites, especially during feeding. Gata4LKO mice have reduced plasma HDL cholesterol and increased liver triglyceride levels. The expression of a panel of GATA4 binding genes involved in hepatic cholesterol export and triglyceride hydrolysis was down-regulated in Gata4LKO mice. We further demonstrate that GATA4 collaborates with LXR nuclear receptors in the liver. GATA4 and LXRs share a number of binding sites, and GATA4 was required for the full transcriptional response to LXR activation. Collectively, these results show that hepatic GATA4 contributes to the transcriptional control of hepatic and systemic lipid homeostasis.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Maykel López Rodríguez
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Christina Priest
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - John P Kennelly
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, USA
| | - Sergei G Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32610, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| |
Collapse
|
6
|
Zhang H, Lianto P, Li W, Xu M, Moore JB, Thorne JL. Associations between liver X receptor polymorphisms and blood lipids: A systematic review and meta-analysis. Steroids 2022; 185:109057. [PMID: 35679909 DOI: 10.1016/j.steroids.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/07/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022]
Abstract
Genetic susceptibility to dyslipidaemia remains incompletely understood. The liver X receptors (LXRs), members of the nuclear receptor superfamily of ligand dependent transcription factors, are homeostatic regulators of lipid metabolism. Multiple single nucleotide polymorphisms (SNPs)have been identified previously in the coding and regulatory regions of the LXRs. The aim of this systematic review and meta-analysis was to summarise associations between SNPs of LXRs (α and β isoforms) with blood lipid and lipoprotein traits. Five databases (PubMed, Ovid Embase, Scopus, Web of Science, and the Cochrane Library) were systematically searched for population-based studies that assessed associations between one or more blood lipid/lipoprotein traits and LXR SNPs. Of seventeen articles included in the qualitative synthesis, ten were eligible for meta-analysis. Nine LXRα SNPs and five LXRβ SNPs were identified, and the three most studied LXRα SNPs were quantitatively summarised. Carriers of the minor allele A of LXRα rs12221497 (-115G>A) had higher triglyceride levels than GG homozygotes (0.13 mmol/L; 95%CI: [0.03, 0.23], P = 0.01). Heterozygote carriers of LXRα rs2279238 (297C/T) had higher total cholesterol levels (0.12 mmol/L; (95%CI: [0.01, 0.23], P = 0.04) than either CC or TT homozygotes. For LXRα rs11039155 (-6G>A), no significant differences in blood levels of either triglyceride (P = 0.39) or HDL-C (P = 0.98) were detected between genotypes in meta-analyses. In addition, there were no strong associations for other SNPs of LXRα and LXRβ. This study provides the evidence of an association between LXRα, but not LXRβ, SNPs and blood-lipid traits. Systematic review registration: PROSPERO No. CRD42021246158.
Collapse
Affiliation(s)
- Huifeng Zhang
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; Clinical Nutrition Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Priscilia Lianto
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Weiming Li
- Clinical Nutrition Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Mengfan Xu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - J Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - James L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
7
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Kajani S, Curley S, O'Reilly ME, Yin X, Dillon ET, Guo W, Nilaweera KN, Brennan L, Roche HM, McGillicuddy FC. Sodium salicylate rewires hepatic metabolic pathways in obesity and attenuates IL-1β secretion from adipose tissue - implications for obesity-impaired reverse cholesterol transport. Mol Metab 2021; 56:101425. [PMID: 34954383 PMCID: PMC8762459 DOI: 10.1016/j.molmet.2021.101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction High-fat diet (HFD)-induced obesity impairs clearance of cholesterol through the Reverse Cholesterol Transport (RCT) pathway, with downregulation in hepatic expression of cholesterol and bile acid transporters, namely ABCG5/8 and ABCB11, and reduced high-density lipoprotein (HDL) cholesterol efflux capacity (CEC). In the current study, we hypothesized that the development of hepatosteatosis, secondary to adipose-tissue dysfunction, contributes to obesity-impaired RCT and that such effects could be mitigated using the anti-inflammatory drug sodium salicylate (NaS). Materials and methods C57BL/6J mice, fed HFD ± NaS or low-fat diet (LFD) for 24 weeks, underwent glucose and insulin tolerance testing. The 3H-cholesterol movement from macrophage-to-feces was assessed in vivo. HDL-CEC was determined ex vivo. Cytokine secretion from adipose-derived stromal vascular fraction (SVF) cells was measured ex vivo. Liver and HDL proteins were determined by mass spectrometry and analyzed using Ingenuity Pathway Analysis. Results NaS delayed HFD-induced weight gain, abrogated priming of pro-IL-1β in SVFs, attenuated insulin resistance, and prevented steatohepatitis (ectopic fat accumulation in the liver). Prevention of hepatosteatosis coincided with increased expression of PPAR-alpha/beta-oxidation proteins with NaS and reduced expression of LXR/RXR-induced proteins including apolipoproteins. The latter effects were mirrored within the HDL proteome in circulation. Despite remarkable protection shown against steatosis, HFD-induced hypercholesterolemia and repression of the liver-to-bile cholesterol transporter, ABCG5/8, could not be rescued with NaS. Discussions and conclusions The cardiometabolic health benefits of NaS may be attributed to the reprogramming of hepatic metabolic pathways to increase fatty acid utilization in the settings of nutritional overabundance. Reduced hepatic cholesterol levels, coupled with reduced LXR/RXR-induced proteins, may underlie the lack of rescue of ABCG5/8 expression with NaS. This remarkable protection against HFD-induced hepatosteatosis did not translate to improvements in cholesterol homeostasis. Sodium salicylate (NaS) initially delays weight-gain in mice fed high-fat diet (HFD) - catch-up evident in weeks 12–24. NaS prevents HFD-induced insulin resistance, hepatosteatosis and pro-IL-1β priming in adipose tissue even upon weight-gain. Hepatic expression of proteins involved in beta oxidation, oxidative phosphorylation and TCA cycle upregulated with NaS. Hepatic expression of LXR/RXR proteins eg. apolipoproteins reduced with NaS; these effects were mirrored in HDL proteome. NaS failed to improve HFD-impaired Reverse Cholesterol Transport or hypercholesterolemia despite preventing hepatosteatosis.
Collapse
Affiliation(s)
- Sarina Kajani
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Sean Curley
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Marcella E O'Reilly
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Xiaofei Yin
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | | | - Weili Guo
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Kanishka N Nilaweera
- Teagasc Food Research Centre; VistaMilk Research Centre, Moorepark, Fermoy, Ireland
| | - Lorraine Brennan
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Helen M Roche
- Diabetes Complications Research Centre; UCD Conway Institute; Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science; UCD Institute of Food and Health
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health.
| |
Collapse
|
9
|
Lang A, Isigkeit L, Schubert-Zsilavecz M, Merk D. The Medicinal Chemistry and Therapeutic Potential of LRH-1 Modulators. J Med Chem 2021; 64:16956-16973. [PMID: 34839661 DOI: 10.1021/acs.jmedchem.1c01663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ligand-activated transcription factor liver receptor homologue 1 (LRH-1, NR5A2) is involved in the regulation of metabolic homeostasis, including cholesterol and glucose balance. Preliminary evidence points to therapeutic potential of LRH-1 modulation in diabetes, hepatic diseases, inflammatory bowel diseases, atherosclerosis, and certain cancers, but because of a lack of suitable ligands, pharmacological control of LRH-1 has been insufficiently studied. Despite the availability of considerable structural knowledge on LRH-1, only a few ligand chemotypes have been developed, and potent, selective, and bioavailable tools to explore LRH-1 modulation in vivo are lacking. In view of the therapeutic potential of LRH-1 in prevalent diseases, improved chemical tools are needed to probe the beneficial and adverse effects of pharmacological LRH-1 modulation in sophisticated preclinical models and to further elucidate the receptor's molecular function.
Collapse
Affiliation(s)
- Alisa Lang
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | | | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
10
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
11
|
The Susceptibility to Diet-Induced Atherosclerosis Is Exacerbated with Aging in C57B1/6 Mice. Biomedicines 2021; 9:biomedicines9050487. [PMID: 33946646 PMCID: PMC8146644 DOI: 10.3390/biomedicines9050487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022] Open
Abstract
The anti-atherogenic activity of HDL is mainly due to their capacity to mediate reverse cholesterol transport (RCT). However, it is not clear to what extent this activity is affected by aging or pro-atherogenic conditions. Three and 24-month-old C57Bl/6 mice were fed an atherogenic diet (high fat, high cholesterol) for 12 weeks. The aged mice displayed a significant reduction in the capacity of HDL to mediate RCT (29.03%, p < 0.0006). Interestingly, the atherogenic diet significantly stimulated the RCT process in both young and aged mice (241% and 201%, respectively, p < 0.01). However, despite this, significant amounts of cholesterol accumulated in the aortas of mice fed an atherogenic diet as compared to regular chow. The accumulation of cholesterol was more marked in the aortas of aged mice (110% increase, p < 0.002). ABCA1 and ABCG1 protein expression on macrophages decreased significantly (52 to 37% reduction, p < 0.002), whereas their expression on hepatic cells increased significantly (up to 590% for ABCA1 and 116% for ABCG1, p < 0.002). On the other hand, SR-BI protein expression on hepatic cells decreased significantly (42.85%, p < 0.0001). ABCG5, ABCG8, and CYP7a protein expression on hepatic cells was also higher in mice fed an atherogenic diet. The increase was age-dependent for both ABCG5 and ABCG8. Our results suggest that the susceptibility to diet-induced atherosclerosis is exacerbated with aging and is a consequence of the dysregulation of the expression levels of membrane cholesterol transporters.
Collapse
|
12
|
Kim H, Yang WS, Htwe KM, Lee MN, Kim YD, Yoon KD, Lee BH, Lee S, Cho JY. Dipterocarpus tuberculatus Roxb. Ethanol Extract Has Anti-Inflammatory and Hepatoprotective Effects In Vitro and In Vivo by Targeting the IRAK1/AP-1 Pathway. Molecules 2021; 26:molecules26092529. [PMID: 33926126 PMCID: PMC8123704 DOI: 10.3390/molecules26092529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.
Collapse
Affiliation(s)
- Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (W.S.Y.)
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (W.S.Y.)
| | - Khin Myo Htwe
- Popa Mountain Park, Forest Department, Kyaukpadaung Township, Mandalay Division, Kyaukpadaung 05241, Myanmar;
| | - Mi-Nam Lee
- Department of Hospitality and Culinary, Ansan University, Ansan 15318, Korea;
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon 200-702, Korea;
| | - Ki Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea;
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea;
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea;
- Correspondence: (S.L.); (J.Y.C.); Tel.: +82-32-590-7265 (S.L.); +82-31-290-7868 (J.Y.C.); Fax: +82-32-590-7472 (S.L.); +82-31-290-7870 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (W.S.Y.)
- Correspondence: (S.L.); (J.Y.C.); Tel.: +82-32-590-7265 (S.L.); +82-31-290-7868 (J.Y.C.); Fax: +82-32-590-7472 (S.L.); +82-31-290-7870 (J.Y.C.)
| |
Collapse
|
13
|
Ahmed MO, Byrne RE, Pazderska A, Segurado R, Guo W, Gunness A, Frizelle I, Sherlock M, Ahmed KS, McGowan A, Moore K, Boran G, McGillicuddy FC, Gibney J. HDL particle size is increased and HDL-cholesterol efflux is enhanced in type 1 diabetes: a cross-sectional study. Diabetologia 2021; 64:656-667. [PMID: 33169205 DOI: 10.1007/s00125-020-05320-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS The prevalence of atherosclerosis is increased in type 1 diabetes despite normal-to-high HDL-cholesterol levels. The cholesterol efflux capacity (CEC) of HDL is a better predictor of cardiovascular events than static HDL-cholesterol. This cross-sectional study addressed the hypothesis that impaired HDL function contributes to enhanced CVD risk within type 1 diabetes. METHODS We compared HDL particle size and concentration (by NMR), total CEC, ATP-binding cassette subfamily A, member 1 (ABCA1)-dependent CEC and ABCA1-independent CEC (by determining [3H]cholesterol efflux from J774-macrophages to ApoB-depleted serum), and carotid intima-media thickness (CIMT) in 100 individuals with type 1 diabetes (37.6 ± 1.2 years; BMI 26.9 ± 0.5 kg/m2) and 100 non-diabetic participants (37.7 ± 1.1 years; 27.1 ± 0.5 kg/m2). RESULTS Compared with non-diabetic participants, total HDL particle concentration was lower (mean ± SD 31.01 ± 8.66 vs 34.33 ± 8.04 μmol/l [mean difference (MD) -3.32 μmol/l]) in participants with type 1 diabetes. However, large HDL particle concentration was greater (9.36 ± 3.98 vs 6.99 ± 4.05 μmol/l [MD +2.37 μmol/l]), resulting in increased mean HDL particle size (9.82 ± 0.57 vs 9.44 ± 0.56 nm [MD +0.38 nm]) (p < 0.05 for all). Total CEC (14.57 ± 2.47%CEC/4 h vs 12.26 ± 3.81%CEC/4 h [MD +2.31%CEC/4 h]) was greater in participants with type 1 diabetes relative to non-diabetic participants. Increased HDL particle size was independently associated with increased total CEC; however, following adjustment for this in multivariable analysis, CEC remained greater in participants with type 1 diabetes. Both components of CEC, ABCA1-dependent (6.10 ± 2.41%CEC/4 h vs 5.22 ± 2.57%CEC/4 h [MD +0.88%CEC/4 h]) and ABCA1-independent (8.47 ± 1.79% CEC/4 h vs 7.05 ± 1.76% CEC/4 h [MD +1.42% CEC/4 h]) CEC, were greater in type 1 diabetes but the increase in ABCA1-dependent CEC was less marked and not statistically significant in multivariable analysis. CIMT was increased in participants with type 1 diabetes but in multivariable analysis it was only associated negatively with age and BMI. CONCLUSIONS/INTERPRETATION HDL particle size but not HDL-cholesterol level is independently associated with enhanced total CEC. HDL particle size is greater in individuals with type 1 diabetes but even after adjusting for this, total and ABCA1-independent CEC are enhanced in type 1 diabetes. Further studies are needed to understand the mechanisms underlying these effects, and whether they help attenuate progression of atherosclerosis in this high-risk group. Graphical abstract.
Collapse
Affiliation(s)
- Mohamad O Ahmed
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Rachel E Byrne
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Agnieszka Pazderska
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Ricardo Segurado
- School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Weili Guo
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Anjuli Gunness
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Isolda Frizelle
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Mark Sherlock
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Khalid S Ahmed
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Anne McGowan
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Kevin Moore
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Gerard Boran
- Department of Chemical Pathology, Tallaght University Hospital, Dublin, Ireland
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - James Gibney
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
14
|
Mammalian ABCG-transporters, sterols and lipids: To bind perchance to transport? Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158860. [PMID: 33309976 DOI: 10.1016/j.bbalip.2020.158860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Members of the ATP binding cassette (ABC) transporter family perform a critical function in maintaining lipid homeostasis in cells as well as the transport of drugs. In this review, we provide an update on the ABCG-transporter subfamily member proteins, which include the homodimers ABCG1, ABCG2 and ABCG4 as well as the heterodimeric complex formed between ABCG5 and ABCG8. This review focusses on progress made in this field of research with respect to their function in health and disease and the recognised transporter substrates. We also provide an update on post-translational regulation, including by transporter substrates, and well as the involvement of microRNA as regulators of transporter expression and activity. In addition, we describe progress made in identifying structural elements that have been recognised as important for transport activity. We furthermore discuss the role of lipids such as cholesterol on the transport function of ABCG2, traditionally thought of as a drug transporter, and provide a model of potential cholesterol binding sites for ABCG2.
Collapse
|
15
|
Nakano Y, Komiya C, Shimizu H, Mishima H, Shiba K, Tsujimoto K, Ikeda K, Kashimada K, Dateki S, Yoshiura KI, Ogawa Y, Yamada T. A case of ezetimibe-effective hypercholesterolemia with a novel heterozygous variant in ABCG5. Endocr J 2020; 67:1099-1105. [PMID: 32641618 DOI: 10.1507/endocrj.ej20-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sitosterolemia is caused by homozygous or compound heterozygous gene mutations in either ATP-binding cassette subfamily G member 5 (ABCG5) or 8 (ABCG8). Since ABCG5 and ABCG8 play pivotal roles in the excretion of neutral sterols into feces and bile, patients with sitosterolemia present elevated levels of serum plant sterols and in some cases also hypercholesterolemia. A 48-year-old woman was referred to our hospital for hypercholesterolemia. She had been misdiagnosed with familial hypercholesterolemia at the age of 20 and her serum low-density lipoprotein cholesterol (LDL-C) levels had remained about 200-300 mg/dL at the former clinic. Although the treatment of hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors was ineffective, her serum LDL-C levels were normalized by ezetimibe, a cholesterol transporter inhibitor. We noticed that her serum sitosterol and campesterol levels were relatively high. Targeted analysis sequencing identified a novel heterozygous ABCG5 variant (c.203A>T; p.Ile68Asn) in the patient, whereas no mutations were found in low-density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 (PCSK9), or Niemann-Pick C1-like intracellular cholesterol transporter 1 (NPC1L1). While sitosterolemia is a rare disease, a recent study has reported that the incidence of loss-of-function mutation in the ABCG5 or ABCG8 gene is higher than we thought at 1 in 220 individuals. The present case suggests that serum plant sterol levels should be examined and ezetimibe treatment should be considered in patients with hypercholesterolemia who are resistant to HMG-CoA reductase inhibitors.
Collapse
Affiliation(s)
- Yujiro Nakano
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Chikara Komiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hitomi Shimizu
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaski 852-8501, Japan
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Kumiko Shiba
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kazutaka Tsujimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kenji Ikeda
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sumito Dateki
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaski 852-8501, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
16
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Curley S, Gall J, Byrne R, Yvan‐Charvet L, McGillicuddy FC. Metabolic Inflammation in Obesity—At the Crossroads between Fatty Acid and Cholesterol Metabolism. Mol Nutr Food Res 2020; 65:e1900482. [DOI: 10.1002/mnfr.201900482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Sean Curley
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| | - Julie Gall
- University of Nice Unité Mixte de Recherce (UMR) Institut National de la Santé et de la Recherche Médicale U1065 062104 Nice Cedex 3 France
| | - Rachel Byrne
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| | - Laurent Yvan‐Charvet
- University of Nice Unité Mixte de Recherce (UMR) Institut National de la Santé et de la Recherche Médicale U1065 062104 Nice Cedex 3 France
| | - Fiona C. McGillicuddy
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| |
Collapse
|
18
|
Fan N, Meng K, Zhang Y, Hu Y, Li D, Gao Q, Wang J, Li Y, Wu S, Cui Y. The effect of ursodeoxycholic acid on the relative expression of the lipid metabolism genes in mouse cholesterol gallstone models. Lipids Health Dis 2020; 19:158. [PMID: 32615989 PMCID: PMC7333299 DOI: 10.1186/s12944-020-01334-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many studies indicate that gallstone formation has genetic components. The abnormal expression of lipid-related genes could be the basis for particular forms of cholesterol gallstone disease. The aim of this study was to obtain insight into lipid metabolism disorder during cholesterol gallstone formation and to evaluate the effect of ursodeoxycholic acid (UDCA) on the improvement of bile lithogenicity and its potential influence on the transcription of lipid-related genes. METHODS Gallstone-susceptible mouse models were induced by feeding with a lithogenic diet (LD) for 8 weeks. Bile and liver tissues were obtained from these mouse models after 0, 4 and 8 weeks. Bile lipids were measured enzymatically, and the cholesterol saturation index (CSI) was calculated to evaluate the bile lithogenicity by using Carey's critical tables. Real-time polymerase chain reaction (RT-PCR) was used to detect the mRNA expression levels of farnesoid X receptor (FXR), liver X receptor (LXR), adenosine triphosphate-binding cassette subfamily G member 5/8 (ABCG5/8), cholesterol 7-α hydroxylase (CYP7A1), oxysterol 7-α hydroxylase (CYP7B1), sterol 27-α hydroxylase (CYP27A1), peroxisome proliferator-activated receptor alpha (PPAR-α) and adenosine triphosphate-binding cassette subfamily B member 11 (ABCB11). RESULTS The rate of gallstone formation was 100% in the 4-week group but only 30% in the UDCA-treated group. The UDCA-treated group had a significantly lower CSI compared with other groups. Of special note, the data on the effects of UDCA showed higher expression levels of ABCG8, ABCB11 and CYP27A1, as well as lower expression levels of LXR and PPAR-α, compared to the model control group. CONCLUSIONS UDCA exhibits tremendously potent activity in restraining lipid accumulation, thus reversing the lithogenic effect and protecting hepatocytes from serious pathological damage. The abnormal expression of ABCG8, CYP7A1, CYP27A1, LXR and PPAR-α might lead to high lithogenicity of bile. These results are helpful in exploring new lipid metabolism pathways and potential targets for the treatment of cholesterol stones and for providing some basis for the study of the pathogenesis and genetic characteristics of cholelithiasis. Research on the mechanism of UDCA in improving lipid metabolism and bile lithogenicity may be helpful for clinical treatment and for reducing the incidence of gallstones.
Collapse
Affiliation(s)
- Ning Fan
- Beichen Chinese Medicine Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, 436 Jingjin Road, Beichen District, Tianjin, 300400, China
| | - Ke Meng
- Department of Obstetrics and Gynecology, General Hospital of Tianjin Medical University, 154 AnShan Road, HePing District, Tianjin, 300052, China
| | - Yuqing Zhang
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin, 300100, China
| | - Yong Hu
- Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Donghua Li
- Institute of Acute Abdomen in Integrative Medicine, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin, 300100, China
| | - Qiaoying Gao
- Institute of Acute Abdomen in Integrative Medicine, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin, 300100, China
| | - Jianhua Wang
- Beichen Chinese Medicine Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, 436 Jingjin Road, Beichen District, Tianjin, 300400, China
| | - Yanning Li
- Beichen Chinese Medicine Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, 436 Jingjin Road, Beichen District, Tianjin, 300400, China
| | - Shangwei Wu
- Institute of Acute Abdomen in Integrative Medicine, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin, 300100, China
| | - Yunfeng Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin, 300100, China.
| |
Collapse
|
19
|
Hiebl V, Schachner D, Ladurner A, Heiss EH, Stangl H, Dirsch VM. Caco-2 Cells for Measuring Intestinal Cholesterol Transport - Possibilities and Limitations. Biol Proced Online 2020; 22:7. [PMID: 32308567 PMCID: PMC7149936 DOI: 10.1186/s12575-020-00120-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background The human Caco-2 cell line is a common in vitro model of the intestinal epithelial barrier. As the intestine is a major interface in cholesterol turnover and represents a non-biliary pathway for cholesterol excretion, Caco-2 cells are also a valuable model for studying cholesterol homeostasis, including cholesterol uptake and efflux. Currently available protocols are, however, either sketchy or not consistent among different laboratories. Our aim was therefore to generate a collection of optimized protocols, considering the different approaches of the different laboratories and to highlight possibilities and limitations of measuring cholesterol transport with this cell line. Results We developed comprehensive and quality-controlled protocols for the cultivation of Caco-2 cells on filter inserts in a single tight monolayer. A cholesterol uptake as well as a cholesterol efflux assay is described in detail, including suitable positive controls. We further show that Caco-2 cells can be efficiently transfected for luciferase reporter gene assays in order to determine nuclear receptor activation, main transcriptional regulators of cholesterol transporters (ABCA1, ABCB1, ABCG5/8, NPC1L1). Detection of protein and mRNA levels of cholesterol transporters in cells grown on filter inserts can pose challenges for which we highlight essential steps and alternative approaches for consideration. A protocol for viability assays with cells differentiated on filter inserts is provided for the first time. Conclusions The Caco-2 cell line is widely used in the scientific community as model for the intestinal epithelium, although with highly divergent protocols. The herein provided information and protocols can be a common basis for researchers intending to use Caco-2 cells in the context of cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Verena Hiebl
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Daniel Schachner
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Herbert Stangl
- 2Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
20
|
O'Reilly ME, Lenighan YM, Dillon E, Kajani S, Curley S, Bruen R, Byrne R, Heslin AM, Moloney AP, Roche HM, McGillicuddy FC. Conjugated Linoleic Acid and Alpha Linolenic Acid Improve Cholesterol Homeostasis in Obesity by Modulating Distinct Hepatic Protein Pathways. Mol Nutr Food Res 2020; 64:e1900599. [DOI: 10.1002/mnfr.201900599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/11/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Marcella E. O'Reilly
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Yvonne M. Lenighan
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Eugene Dillon
- Mass Spectrometry ResourceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Sarina Kajani
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Sean Curley
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Robyn Bruen
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Rachel Byrne
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Aoibhin Moore Heslin
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Aidan P. Moloney
- TeagascAnimal & Grassland Research and Innovation Centre Meath Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Institute of Food and HealthUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Fiona C. McGillicuddy
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| |
Collapse
|
21
|
ABCG5/G8: a structural view to pathophysiology of the hepatobiliary cholesterol secretion. Biochem Soc Trans 2020; 47:1259-1268. [PMID: 31654053 PMCID: PMC6824678 DOI: 10.1042/bst20190130] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
The ABCG5/G8 heterodimer is the primary neutral sterol transporter in hepatobiliary and transintestinal cholesterol excretion. Inactivating mutations on either the ABCG5 or ABCG8 subunit cause Sitosterolemia, a rare genetic disorder. In 2016, a crystal structure of human ABCG5/G8 in an apo state showed the first structural information on ATP-binding cassette (ABC) sterol transporters and revealed several structural features that were observed for the first time. Over the past decade, several missense variants of ABCG5/G8 have been associated with non-Sitosterolemia lipid phenotypes. In this review, we summarize recent pathophysiological and structural findings of ABCG5/G8, interpret the structure-function relationship in disease-causing variants and describe the available evidence that allows us to build a mechanistic view of ABCG5/G8-mediated sterol transport.
Collapse
|
22
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
23
|
Genes Potentially Associated with Familial Hypercholesterolemia. Biomolecules 2019; 9:biom9120807. [PMID: 31795497 PMCID: PMC6995538 DOI: 10.3390/biom9120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
This review addresses the contribution of some genes to the phenotype of familial hypercholesterolemia. At present, it is known that the pathogenesis of this disease involves not only a pathological variant of low-density lipoprotein receptor and its ligands (apolipoprotein B, proprotein convertase subtilisin/kexin type 9 or low-density lipoprotein receptor adaptor protein 1), but also lipids, including sphingolipids, fatty acids, and sterols. The genetic cause of familial hypercholesterolemia is unknown in 20%–40% of the cases. The genes STAP1 (signal transducing adaptor family member 1), CYP7A1 (cytochrome P450 family 7 subfamily A member 1), LIPA (lipase A, lysosomal acid type), ABCG5 (ATP binding cassette subfamily G member 5), ABCG8 (ATP binding cassette subfamily G member 8), and PNPLA5 (patatin like phospholipase domain containing 5), which can cause aberrations of lipid metabolism, are being evaluated as new targets for the diagnosis and personalized management of familial hypercholesterolemia.
Collapse
|
24
|
Choi E, Kim MY, Cho JY. Anti-inflammatory activities of Canarium subulatum Guillaumin methanol extract operate by targeting Src and Syk in the NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111848. [PMID: 30951845 DOI: 10.1016/j.jep.2019.111848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Canarium subulatum Guillaumin is an herbal medicinal plant native to Southeast Asia. Ethnopharmacological evidence suggests that plants of the genus Canarium cure a variety of inflammatory diseases. AIM OF THE STUDY The pharmacological mechanisms of C. subulatum Guillaumin remain poorly understood. In this study, we investigate inflammatory mechanisms and target molecules using C. subulatum Guillaumin methanol extract (Cs-ME) in inflammatory reactions managed by macrophages. MATERIALS AND METHODS To identify the anti-inflammatory activities of Cs-ME, lipopolysaccharide (LPS)-stimulated macrophages and a murine HCl/EtOH-induced gastritis model were chosen. The luciferase reporter gene assay, Western blot analysis, overexpression strategy, and the cellular thermal shift assay (CETSA) were employed to investigate the molecular mechanisms and target enzymes of Cs-ME. The active ingredients of this extract were also determined by HPLC. RESULTS Released levels of nitric oxide (NO) and mRNA expression levels of iNOS and IL-6 were downregulated by Cs-ME without exhibiting cytotoxicity. This extract inhibited MyD88-induced promoter activity and the nuclear translocation of nuclear factor (NF)-κB. Moreover, we found that Cs-ME reduced the phosphorylation of NF-κB upstream signaling molecules including IκBα, IKKα/β, Src, and Syk in LPS-stimulated macrophage-like RAW264.7 cells. The results of Western blot and CETSA confirmed that Src and Syk are anti-inflammatory targets of Cs-ME. In addition, orally injected Cs-ME alleviated HCl/EtOH-induced gastric ulcers in mice. HPLC analysis indicated that quercetin, luteolin, and kaempferol are major active components of this extract with anti-inflammatory activity. CONCLUSIONS Cs-ME exhibits anti-inflammatory effects in vitro and in vivo by targeting Src and Syk in the NF-κB signaling pathway. Consequently, Cs-ME could be developed as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
25
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
26
|
Patel SB, Graf GA, Temel RE. ABCG5 and ABCG8: more than a defense against xenosterols. J Lipid Res 2018; 59:1103-1113. [PMID: 29728459 DOI: 10.1194/jlr.r084244] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
The elucidation of the molecular basis of the rare disease, sitosterolemia, has revolutionized our mechanistic understanding of how dietary sterols are excreted and how cholesterol is eliminated from the body. Two proteins, ABCG5 and ABCG8, encoded by the sitosterolemia locus, work as obligate dimers to pump sterols out of hepatocytes and enterocytes. ABCG5/ABCG8 are key in regulating whole-body sterol trafficking, by eliminating sterols via the biliary tree as well as the intestinal tract. Importantly, these transporters keep xenosterols from accumulating in the body. The sitosterolemia locus has been genetically associated with lipid levels and downstream atherosclerotic disease, as well as formation of gallstones and the risk of gallbladder cancer. While polymorphic variants raise or lower the risks of these phenotypes, loss of function of this locus leads to more dramatic phenotypes, such as premature atherosclerosis, platelet dysfunction, and thrombocytopenia, and, perhaps, increased endocrine disruption and liver dysfunction. Whether small amounts of xenosterol exposure over a lifetime cause pathology in normal humans with polymorphic variants at the sitosterolemia locus remains largely unexplored. The purpose of this review will be to summarize the current state of knowledge, but also highlight key conceptual and mechanistic issues that remain to be explored.
Collapse
Affiliation(s)
- Shailendra B Patel
- Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati, Cincinnati, OH 45219
| | - Gregory A Graf
- Department of Pharmaceutical Sciences and Saha Cardiovascular Research Center and University of Kentucky, Lexington, KY 40536
| | - Ryan E Temel
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
27
|
Fan W, Zhang XL, Shi P, Li J, Wang CZ, Li DF, Zhu XY. Effects of dietary alfalfa saponins on laying performance, egg cholesterol concentration, and ATP-binding cassette transporters G5 and G8 expression in laying hens. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1454323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wenna Fan
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Xian-lei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Pengfei Shi
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Jia Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Cheng-zhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - De-feng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Xiao-yan Zhu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| |
Collapse
|
28
|
Panneerselvam S, Packirisamy RM, Bobby Z, Elizabeth Jacob S, Sridhar MG. Soy isoflavones ( Glycine max ) ameliorate hypertriglyceridemia and hepatic steatosis in high fat-fed ovariectomized Wistar rats (an experimental model of postmenopausal obesity). J Nutr Biochem 2016; 38:57-69. [DOI: 10.1016/j.jnutbio.2016.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/23/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
|
29
|
Hossen MJ, Cho JY, Kim D. PDK1 in NF-κB signaling is a target of Xanthium strumarium methanolic extract-mediated anti-inflammatory activities. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:251-260. [PMID: 27286918 DOI: 10.1016/j.jep.2016.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/29/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xanthium strumarium L. (Asteraceae) has traditionally been used to treat bacterial infections, nasal sinusitis, urticaria, arthritis, chronic bronchitis and rhinitis, allergic rhinitis, edema, lumbago, and other ailments. However, the molecular mechanisms by which this plant exerts its anti-inflammatory effects are poorly characterized. Here we studied the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Xs-ME) and validated its pharmacological targets. MATERIALS AND METHODS To evaluate the anti-inflammatory activity of Xs-ME, we employed lipopolysaccharide (LPS)-treated macrophages and an HCl/EtOH-induced mouse model of gastritis. We also used HPLC to identify the potentially active anti-inflammatory components of this extract. The molecular mechanisms of its anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. RESULTS The production of nitric oxide (NO) and prostaglandin E2 (PGE2) were both suppressed by Xs-ME. Moreover, orally administered Xs-ME ameliorated HCl/EtOH-induced gastric lesions. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signaling events upstream of NF-κB translocation, such as phosphorylation of AKT and the formation of PDK1-AKT signaling complexes, were also inhibited by Xs-ME. Moreover, Xs-ME suppressed the enzymatic activity of PDK1. Additionally, PDK1-induced luciferase activity and Akt phosphorylation were both inhibited by Xs-ME. We also identified the polyphenol resveratrol as a likely active anti-inflammatory component in Xs-ME that targets PDK1. CONCLUSION Xs-ME exerts anti-inflammatory activity in vitro and in vivo by inhibiting PDK1 kinase activity and blocking signaling to its downstream transcription factor, NF-κB.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Animal Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daewon Kim
- Laboratory of Bio-informatics, Department of Multimedia Engineering, Dankook University, Republic of Korea.
| |
Collapse
|
30
|
Lee ES, Seo HJ, Back SS, Han SH, Jeong YJ, Lee JW, Choi SY, Han K. Transcriptional regulation of Niemann-Pick C1-like 1 gene by liver receptor homolog-1. BMB Rep 2016; 48:513-8. [PMID: 25739390 PMCID: PMC4641235 DOI: 10.5483/bmbrep.2015.48.9.253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Indexed: 11/30/2022] Open
Abstract
Factors that modulate cholesterol levels have major impacts on cardiovascular disease. Niemann-Pick C1-like 1 (NPC1L1) functions as a sterol transporter mediating intestinal cholesterol absorption and counter-balancing hepatobiliary cholesterol excretion. The liver receptor homolog 1 (LRH-1) had been shown to regulate genes involved in hepatic lipid metabolism and reverse cholesterol transport. To study whether human NPC1L1 gene is regulated transcriptionally by LRH-1, we have analyzed evolutionary conserved regions (ECRs) in HepG2 cells. One ECR was found to be responsive to the LRH-1. Through deletion studies, LRH-1 response element was identified and the binding of LRH-1 was demonstrated by EMSA and ChIP assays. When SREBP2, one of several transcription factors which had been shown to regulate NPC1L1 gene, was co-expressed with LRH-1, synergistic transcriptional activation resulted. In conclusion, we have identified LRH-1 response elements in NPC1L1 gene and propose that LRH-1 and SREBP may play important roles in regulating NPC1L1 gene. [BMB Reports 2015; 48(9): 513-518]
Collapse
Affiliation(s)
- Eui Sup Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Hyun Jung Seo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Su Sun Back
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Seung Ho Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Yeon Ji Jeong
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Jin Wook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Kyuhyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| |
Collapse
|
31
|
Hossen MJ, Hong YD, Baek KS, Yoo S, Hong YH, Kim JH, Lee JO, Kim D, Park J, Cho JY. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng. J Ginseng Res 2016; 41:43-51. [PMID: 28123321 PMCID: PMC5223069 DOI: 10.1016/j.jgr.2015.12.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/24/2015] [Indexed: 12/24/2022] Open
Abstract
Background BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-β (TRIF), to measure the activation of nuclear factor (NF)-κB and interferon regulatory factor 3 (IRF3). Results BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-β and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-κB (p50 and p65). This extract inhibited the upregulation of NF-κB-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of κB (IκBα) kinase (IKKβ), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-κB pathway by blocking IKKβ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/IKKβ/TBK1 overexpression strategy. Conclusion Overall, our data suggest that the suppression of IKKβ and TBK1, which mediate transcriptional regulation of NF-κB and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea; Department of Animal Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Yong Deog Hong
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Sulgi Yoo
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Yo Han Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jeong-Oog Lee
- Bio-inspired Aerospace Information Laboratory, Department of Aerospace Information Engineering, Konkuk University, Seoul, Korea
| | - Donghyun Kim
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Junseong Park
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
32
|
Wang Y, Su K, Sabeva NS, Ji A, van der Westhuyzen DR, Foufelle F, Gao X, Graf GA. GRP78 rescues the ABCG5 ABCG8 sterol transporter in db/db mice. Metabolism 2015; 64:1435-43. [PMID: 26365598 PMCID: PMC4609626 DOI: 10.1016/j.metabol.2015.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/31/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Mice lacking leptin (ob/ob) or its receptor (db/db) are obese, insulin resistant, and have reduced levels of biliary cholesterol due, in part, to reduced levels of hepatic G5G8. Chronic leptin replacement restores G5G8 abundance and increases biliary cholesterol concentrations, but the molecular mechanisms responsible for G5G8 regulation remain unclear. In the current study, we used a series of mouse models to address potential mechanisms for leptin-mediated regulation of G5G8. METHODS AND RESULTS We acutely replaced leptin in ob/ob mice and deleted hepatic leptin receptors in lean mice. Neither manipulation altered G5G8 abundance or biliary cholesterol. Similarly, hepatic vagotomy had no effect on G5G8. Alternatively, G5G8 may be decreased in ob/ob and db/db mice due to ER dysfunction, the site of G5G8 complex assembly. Overexpression of the ER chaperone GRP78 using an adenoviral vector restores ER function and reduces steatosis in ob/ob mice. Therefore, we determined if AdGRP78 could rescue G5G8 in db/db mice. As in ob/ob mice, AdGRP78 reduced expression of lipogenic genes and plasma triglycerides in the db/db strain. Both G5 and G8 protein levels increased as did total biliary cholesterol, but in the absence of changes in G5 or G8 mRNAs. The increase in G5G8 was associated with increases in a number of proteins, including the ER lectin chaperone, calnexin, a key regulator of G5G8 complex assembly. CONCLUSIONS Leptin signaling does not directly regulate G5G8 abundance. The loss of G5G8 in mice harboring defects in the leptin axis is likely associated with compromised ER function.
Collapse
Affiliation(s)
- Yuhuan Wang
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Kai Su
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Nadezhda S Sabeva
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, USA
| | - Ailing Ji
- Department of Internal Medicine and Molecular, University of Kentucky, Lexington, KY, USA; Department of Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Deneys R van der Westhuyzen
- Graduate Center for Nutritional Sciences, Saha Cardiovascular Research Center and Barnstable Brown Kentucky Diabetes and Obesity Center, Lexington, KY, USA; Department of Internal Medicine and Molecular, University of Kentucky, Lexington, KY, USA; Department of Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Fabienne Foufelle
- INSERM, UMR-S 872, Centre de Recherches des Cordeliers, 15 rue de L'école de Médecine, Paris, France
| | - Xia Gao
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Gregory A Graf
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA; Graduate Center for Nutritional Sciences, Saha Cardiovascular Research Center and Barnstable Brown Kentucky Diabetes and Obesity Center, Lexington, KY, USA.
| |
Collapse
|
33
|
Hossen MJ, Kim MY, Kim JH, Cho JY. AP-1-Targeted Inhibition of Macrophage Function and Lipopolysaccharide/D-Galactosamine-Induced Hepatitis by Phyllanthus acidus Methanolic Extract. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1137-58. [PMID: 26381032 DOI: 10.1142/s0192415x15500652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Traditionally, Phyllanthus acidus (Phyllanthaceae) has been used for the treatment of rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Recently, we showed that a methanol extract of Phyllanthaceae (Pa-ME) has a potent anti-inflammatory activity in RAW264.7 cells and strongly ameliorates HCl / EtOH -induced gastric ulcers in mice by targeting the Src/Syk of NF-κB. In the present study, we explored the molecular mechanism of Pa-ME on the AP-1 activation pathway and evaluated its potential hepatoprotective effects. To do this, we employed lipopolysaccharide (LPS)-stimulated RAW264.7 cells and U937 cells and an LPS/D-galactosamine (D- GaIN )-induced acute hepatitis mouse model. We utilized a multitude of assays, including immunoblotting analysis, reporter gene assays, and mRNA expression analysis, to determine the effect of Pa-ME on the AP-1 pathway. Pa-ME strikingly suppressed the production of LPS-induced pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, Pa-ME also strongly inhibited activator protein-1 (AP-1) activation and mitogen-activated protein kinase (MAPK) phosphorylation in LPS-stimulated RAW264.7 macrophages cells and the U937 monocyte like human cell line. Moreover, pre-treatment with Pa-ME exhibited strong hepatoprotective and curative effects in an LPS/D-Gal-induced mouse hepatitis model as evidenced by a decrease in elevated serum AST and ALT levels and the amelioration of histological damage. Taken together, our data suggest that Pa-ME might play a crucial ethnopharmacological role as a hepatoprotective herbal remedy by suppressing MAPK signaling and the activity of the downstream transcription factor AP-1.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.,Department of Animal Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Mi-Yeon Kim
- School of Systems Biological Science, Soongsil University, Seoul 156-743, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
34
|
Hossen MJ, Jeon SH, Kim SC, Kim JH, Jeong D, Sung NY, Yang S, Baek KS, Kim JH, Yoon DH, Song WO, Yoon KD, Cho SH, Lee S, Kim JH, Cho JY. In vitro and in vivo anti-inflammatory activity of Phyllanthus acidus methanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:217-228. [PMID: 25839115 DOI: 10.1016/j.jep.2015.03.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus acidus (L.) Skeels (Phyllanthaceae) has traditionally been used to treat gastric trouble, rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Despite this widespread use, the pharmacological activities of this plant and their molecular mechanisms are poorly understood. Therefore, we evaluated the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Pa-ME) and validated its pharmacological targets. MATERIALS AND METHODS Lipopolysaccharide (LPS)-treated macrophages, an HCl/EtOH-induced gastritis model, and an acetic acid-injected capillary permeability mouse model were employed to evaluate the anti-inflammatory activity of Pa-ME. Potentially active anti-inflammatory components of this extract were identified by HPLC. The molecular mechanisms of the anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. RESULTS Pa-ME suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and prevented morphological changes in LPS-treated RAW264.7 cells. Moreover, both HCl/EtOH-induced gastric damage and acetic acid-triggered vascular permeability were restored by orally administered Pa-ME. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signalling events upstream of NF-κB translocation, such as phosphorylation of Src and Syk and formation of Src/Syk signalling complexes, were also inhibited by Pa-ME. The enzymatic activities of Src and Syk were also suppressed by Pa-ME. Moreover, Src-induced and Syk-induced luciferase activity and p85/Akt phosphorylation were also inhibited by Pa-ME. Of the identified flavonoids, kaempferol and quercetin were revealed as partially active anti-inflammatory components in Pa-ME. CONCLUSION Pa-ME exerts anti-inflammatory activity in vitro and in vivo by suppressing Src, Syk, and their downstream transcription factor, NF-κB.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea; Department of Animal Science, Patuakhali Science and Technology University, Bangladesh
| | - Sung Ho Jeon
- Department of Life Science Hallym University, Chuncheon 200-702, Republic of Korea
| | - Seung Cheol Kim
- Division of Gynecologic Oncology Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital College of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sungjae Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jun Ho Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chuncheon 220-700, Republic of Korea
| | - Won O Song
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Sang-Ho Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
35
|
Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice. Sci Rep 2015; 5:10512. [PMID: 26015368 PMCID: PMC4444975 DOI: 10.1038/srep10512] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022] Open
Abstract
We have previously observed that knockout of Niemann-Pick C1-Like 1 (NPC1L1), a cholesterol transporter essential for intestinal cholesterol absorption, reduces the output of dry stool in mice. As the food intake remains unaltered in NPC1L1-knockout (L1-KO) mice, we hypothesized that NPC1L1 deficiency may alter the gut microbiome to reduce stool output. Consistently, here we demonstrate that the phyla of fecal microbiota differ substantially between L1-KO mice and their wild-type controls. Germ-free (GF) mice have reduced stool output. Inhibition of NPC1L1 by its inhibitor ezetimibe reduces stool output in specific pathogen-free (SPF), but not GF mice. In addition, we show that GF versus SPF mice have reduced intestinal absorption and increased fecal excretion of cholesterol, particularly after treatment with ezetimibe. This negative balance of cholesterol in GF mice is associated with reduced plasma and hepatic cholesterol, and likely caused by reduced expression of NPC1L1 and increased expression of ABCG5 and ABCG8 in small intestine. Expression levels of other genes in intestine and liver largely reflect a state of cholesterol depletion and a decrease in intestinal sensing of bile acids. Altogether, our findings reveal a broad role of microbiota in regulating whole-body cholesterol homeostasis and its response to a cholesterol-lowering drug, ezetimibe.
Collapse
|
36
|
Stein S, Schoonjans K. Molecular basis for the regulation of the nuclear receptor LRH-1. Curr Opin Cell Biol 2015; 33:26-34. [DOI: 10.1016/j.ceb.2014.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
|
37
|
Hossen MJ, Kim SC, Son YJ, Baek KS, Kim E, Yang WS, Jeong D, Park JG, Kim HG, Chung WJ, Yoon K, Ryou C, Lee SY, Kim JH, Cho JY. AP-1-Targeting Anti-Inflammatory Activity of the Methanolic Extract of Persicaria chinensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:608126. [PMID: 25878717 PMCID: PMC4386570 DOI: 10.1155/2015/608126] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/22/2015] [Accepted: 03/02/2015] [Indexed: 11/24/2022]
Abstract
In traditional Chinese medicine, Persicaria chinensis L. has been prescribed to cure numerous inflammatory disorders. We previously analyzed the bioactivity of the methanol extract of this plant (Pc-ME) against LPS-induced NO and PGE2 in RAW264.7 macrophages and found that it prevented HCl/EtOH-induced gastric ulcers in mice. The purpose of the current study was to explore the molecular mechanism by which Pc-ME inhibits activator protein- (AP-) 1 activation pathway and mediates its hepatoprotective activity. To investigate the putative therapeutic properties of Pc-ME against AP-1-mediated inflammation and hepatotoxicity, lipopolysaccharide- (LPS-) stimulated RAW264.7 and U937 cells, a monocyte-like human cell line, and an LPS/D-galactosamine- (D-GalN-) induced acute hepatitis mouse model were employed. The expression of LPS-induced proinflammatory cytokines including interleukin- (IL-) 1β, IL-6, and tumor necrosis factor-α (TNF-α) was significantly diminished by Pc-ME. Moreover, Pc-ME reduced AP-1 activation and mitogen-activated protein kinase (MAPK) phosphorylation in both LPS-stimulated RAW264.7 cells and differentiated U937 cells. Additionally, we highlighted the hepatoprotective and curative effects of Pc-ME pretreated orally in a mouse model of LPS/D-GalN-intoxicated acute liver injury by demonstrating the significant reduction in elevated serum AST and ALT levels and histological damage. Therefore, these results strongly suggest that Pc-ME could function as an antihepatitis remedy suppressing MAPK/AP-1-mediated inflammatory events.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Department of Animal Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Seung Cheol Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital College of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon 540-742, Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae Gwang Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Han Gyung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Woo-Jae Chung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Keejung Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Sang Yeol Lee
- Department of Life Science, Gachon University, Sungnam 461-701, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
38
|
Park D, Park H, Kim Y, Kim H, Jeoung D. HDAC3 acts as a negative regulator of angiogenesis. BMB Rep 2015; 47:227-32. [PMID: 24286308 PMCID: PMC4163891 DOI: 10.5483/bmbrep.2014.47.4.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/06/2013] [Accepted: 08/07/2014] [Indexed: 12/31/2022] Open
Abstract
Histone deacetylase-3 (HDAC3) is involved in cellular proliferation, apoptosis and transcriptional repression. However, the role of HDAC3 in angiogenesis remains unknown. HDAC3 negatively regulated the expression of angiogenic factors, such as VEGF and plasminogen activator inhibitor-1 (PAI-1). HDAC3 showed binding to promoter sequences of PAI-1. HDAC3 activity was necessary for the expression regulation of PAI-1 by HDAC3. VEGF decreased the expression of HDAC3, and the down-regulation of HDAC3 enhanced endothelial cell tube formation. HDAC3 negatively regulated tumor-induced angiogenic potential. We show the novel role of HDAC3 as a negative regulator of angiogenesis. [BMB Reports 2014; 47(4): 227-232]
Collapse
Affiliation(s)
- Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyunmi Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyuna Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
39
|
Park H, Kim Y, Park D, Jeoung D. Nuclear localization signal domain of HDAC3 is necessary and sufficient for the expression regulation of MDR1. BMB Rep 2015; 47:342-7. [PMID: 24286324 PMCID: PMC4163870 DOI: 10.5483/bmbrep.2014.47.6.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 12/29/2022] Open
Abstract
Histone acetylation/deacetylation has been known to be associated with the transcriptional regulation of various genes. The role of histone deacetylase-3 in the expression regulation of MDR1 was investigated. The expression level of HDAC3 showed an inverse relationship with the expression level of MDR1. Wild-type HDAC3, but not catalytic mutant HDAC3S424A, negatively regulated the expression of MDR1. Wild-type HDAC3, but not catalytic mutant HDAC3S424A, showed binding to the promoter sequences of HDAC3. HDAC3 regulated the expression level, and the binding of Ac-H3K9/14 and Ac-H4K16 around the MDR1 promoter sequences. The nuclear localization signal domain of HDAC3 was necessary, and sufficient for the binding of HDAC3 to the MDR1 promoter sequences and for conferring sensitivity to microtubule-targeting drugs. [BMB Reports 2014; 47(6): 342-347]
Collapse
Affiliation(s)
- Hyunmi Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701, Korea
| | - Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701, Korea
| | - Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701, Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701, Korea
| |
Collapse
|
40
|
Guetg A, Mariotta L, Bock L, Herzog B, Fingerhut R, Camargo SMR, Verrey F. Essential amino acid transporter Lat4 (Slc43a2) is required for mouse development. J Physiol 2015; 593:1273-89. [PMID: 25480797 DOI: 10.1113/jphysiol.2014.283960] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/25/2014] [Indexed: 12/23/2022] Open
Abstract
Amino acid (AA) uniporter Lat4 (Slc43a2) mediates facilitated diffusion of branched-chain AAs, methionine and phenylalanine, although its physiological role and subcellular localization are not known. We report that Slc43a2 knockout mice were born at expected Mendelian frequency but displayed an ∼10% intrauterine growth retardation and low amniotic fluid AAs, suggesting defective transplacental transport. Postnatal growth was strongly reduced, with premature death occurring within 9 days such that further investigations were made within 3 days of birth. Lat4 immunofluorescence showed a strong basolateral signal in the small intestine, kidney proximal tubule and thick ascending limb epithelial cells of wild-type but not Slc43a2 null littermates and no signal in liver and skeletal muscle. Experiments using Xenopus laevis oocytes demonstrated that Lat4 functioned as a symmetrical low affinity uniporter with a K₀.₅ of ∼5 mm for both in- and efflux. Plasma AA concentration was decreased in Slc43a2 null pups, in particular that of non-essential AAs alanine, serine, histidine and proline. Together with an increased level of plasma long chain acylcarnitines and a strong alteration of liver gene expression, this indicates malnutrition. Attempts to rescue pups by decreasing the litter size or by nutrients injected i.p. did not succeed. Radioactively labelled leucine but not lysine given per os accumulated in the small intestine of Slc43a2null pups, suggesting the defective transcellular transport of Lat4 substrates. In summary, Lat4 is a symmetrical uniporter for neutral essential AAs localizing at the basolateral side of (re)absorbing epithelia and is necessary for early nutrition and development.
Collapse
Affiliation(s)
- Adriano Guetg
- Institute of Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Hossen MJ, Baek KS, Kim E, Yang WS, Jeong D, Kim JH, Kweon DH, Yoon DH, Kim TW, Kim JH, Cho JY. In vivo and in vitro anti-inflammatory activities of Persicaria chinensis methanolic extract targeting Src/Syk/NF-κB. JOURNAL OF ETHNOPHARMACOLOGY 2015; 159:9-16. [PMID: 25446596 DOI: 10.1016/j.jep.2014.10.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Persicaria chinensis L. (Polygonaceae) [also synonym as Polygonum chimnense L.] has been used as Chinese traditional medicine to treat ulcer, eczema, stomach ache, and various inflammatory skin diseases. Due to no molecular pharmacological evidence of this anti-inflammatory herbal plant, we investigated the inhibitory mechanisms and target proteins contributing to the anti-inflammatory responses of the plant by using its methanolic extract (Pc-ME). MATERIALS AND METHODS We used lipopolysaccharide (LPS)-treated macrophages and a murine HCl/EtOH-induced gastritis model to evaluate the anti-inflammatory activity of Pc-ME. HPLC analysis was employed to identify potential active components of this extract. Molecular approaches including kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes were used to confirm target enzymes. RESULTS Pc-ME inhibited LPS-induced nitric oxide and prostaglandin E2 release by RAW264.7 macrophages and ameliorated HCl/EtOH-induced gastric ulcers in mice. The nuclear translocation of NF-κB (p65 and p50) was suppressed by Pc-ME. Phosphorylation of Src and Syk, their kinase activities, and formation of the signaling complex of these proteins were repressed by Pc-ME. Phosphorylation of p85 and Akt induced by Src or Syk overexpression was blocked by Pc-ME. In the mouse gastritis model, orally administered Pc-ME suppressed the increased phosphorylation of IκBα, Αkt, Src, and Syk. Caffeic acid, kaempferol, and quercetin, identified as major anti-inflammatory components of Pc-ME by HPLC, displayed strong nitric oxide inhibitory activity in LPS-treated macrophages. CONCLUSION Pc-ME might play a pivotal ethnopharmacologic role as an anti-inflammatory herbal medicine by targeting Syk and Src kinases and their downstream transcription factor NF-κB.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea; Department of Animal Science, Patuakhali Science and Technology University, Bangladesh
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jun Ho Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chucheon 220-700, Republic of Korea
| | - Tae Woong Kim
- Department of Biochemistry, Kangwon National University, Chucheon 220-700, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
42
|
Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol 2015; 224:113-179. [PMID: 25522987 DOI: 10.1007/978-3-319-09665-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion, Crete, 71110, Greece,
| | | | | | | |
Collapse
|
43
|
Dung TTM, Lee J, Kim E, Yoo BC, Ha VT, Kim Y, Yoon DH, Hong S, Baek KS, Sung NY, Kim TW, Kim JH, Cho JY. Anti-inflammatory Activities of Gouania leptostachya
Methanol Extract and its Constituent Resveratrol. Phytother Res 2014; 29:381-92. [DOI: 10.1002/ptr.5262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/05/2014] [Accepted: 10/25/2014] [Indexed: 11/09/2022]
Affiliation(s)
- To Thi Mai Dung
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Jongsung Lee
- Department of Dermatological Health Management; Eulji University; Seongnam 461-713 Korea
| | - Eunji Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Byong Chul Yoo
- Research Institute and Hospital; National Cancer Center; Goyang 410-769 Republic of Korea
| | - Van Thai Ha
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Yong Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Deok Hyo Yoon
- Department of Biochemistry; Kangwon National University; Chuncehon 200-701 Korea
| | - Sungyoul Hong
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Tae Woong Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
- Department of Biochemistry; Kangwon National University; Chuncehon 200-701 Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine; Chonbuk National University; Jeonju 561-756 Korea
| | - Jae Youl Cho
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| |
Collapse
|
44
|
Dietrich CG, Geier A. Effect of drug transporter pharmacogenetics on cholestasis. Expert Opin Drug Metab Toxicol 2014; 10:1533-51. [PMID: 25260651 DOI: 10.1517/17425255.2014.963553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The liver is the central place for the metabolism of drugs and other xenobiotics. In the liver cell, oxidation and conjugation of compounds take place, and at the same time, bile formation helps in extrusion of these compounds via the biliary route. A large number of transporters are responsible for drug uptake into the liver cell and excretion into bile or efflux to the sinusoidal blood. AREAS COVERED Genetic variants of these transporters and their transactivators contribute to changes in drug handling and are also responsible for cholestatic syndromes of different severity. This review summarizes the current knowledge regarding the influence of these genetic changes. The review covers progressive hereditary cholestatic syndromes as well as recurrent or transient cholestatic syndromes such as drug-induced liver injury, intrahepatic cholestasis of pregnancy, and benign recurrent intrahepatic cholestasis. EXPERT OPINION Polymorphisms in transporter genes are frequent. For clinically relevant cholestatic syndromes, it often requires a combination of genetic variants or acquired triggers such as pregnancy or drug treatment. In combination with other pathogenetic aspects, genetic variants in drug transporters may contribute to our understanding of not only cholestatic diseases such as primary sclerosing cholangitis or primary biliary cirrhosis, but also the natural course of chronic liver disease in general.
Collapse
|
45
|
Yang Y, Lee J, Rhee MH, Yu T, Baek KS, Sung NY, Kim Y, Yoon K, Kim JH, Kwak YS, Hong S, Kim JH, Cho JY. Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions. J Ginseng Res 2014; 39:61-8. [PMID: 25535478 PMCID: PMC4268567 DOI: 10.1016/j.jgr.2014.06.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/01/2014] [Accepted: 06/07/2014] [Indexed: 12/24/2022] Open
Abstract
Background Korean Red Ginseng (KRG) is a representative traditional herbal medicine with many different pharmacological properties including anticancer, anti-atherosclerosis, anti-diabetes, and anti-inflammatory activities. Only a few studies have explored the molecular mechanism of KRG-mediated anti-inflammatory activity. Methods We investigated the anti-inflammatory mechanisms of the protopanaxadiol saponin fraction (PPD-SF) of KRG using in vitro and in vivo inflammatory models. Results PPD-SF dose-dependently diminished the release of inflammatory mediators [nitric oxide (NO), tumor necrosis factor-α, and prostaglandin E2], and downregulated the mRNA expression of their corresponding genes (inducible NO synthase, tumor necrosis factor-α, and cyclooxygenase-2), without altering cell viability. The PPD-SF-mediated suppression of these events appeared to be regulated by a blockade of p38, c-Jun N-terminal kinase (JNK), and TANK (TRAF family member-associated NF-kappa-B activator)-binding kinase 1 (TBK1), which are linked to the activation of activating transcription factor 2 (ATF2) and interferon regulatory transcription factor 3 (IRF3). Moreover, this fraction also ameliorated HCl/ethanol/-induced gastritis via suppression of phospho-JNK2 levels. Conclusion These results strongly suggest that the anti-inflammatory action of PPD-SF could be mediated by a reduction in the activation of p38-, JNK2-, and TANK-binding-kinase-1-linked pathways and their corresponding transcription factors (ATF2 and IRF3).
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jongsung Lee
- Department of Dermatological Health Management, Eulji University, Seongnam, Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Keejung Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Yi-Seong Kwak
- Ginseng Corporation Central Research Institute, Daejeon, Korea
| | - Sungyoul Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju, Korea
- Corresponding author. Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 567 Baekje-daero, Jeonju 561-756, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
- Corresponding author. Department of Genetic Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 440-746, Korea.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW To provide an update on recent advances made in our mechanistic and pathophysiological understanding of the rare human disease Sitosterolemia, the role of ABCG5/ABCG8 in sterol trafficking and how newer data implicate a more wider role in the body. RECENT FINDINGS Sitosterolemia is caused by a genetic defect of sterolins (ABCG5/ABCG8) mapped to the STSL locus. Polymorphic variations in STSL have been linked to lipid levels and gallstone disease in whites. Newer studies now link this locus to a more diverse ethnic group for gallstone disease, susceptibility to biliary cancer, and show variants that alter sterolin function. Intriguingly, carriers of a mutant allele seem to show protection against carotid wall disease. Although the 'promoter' region of the STSL is minimal, regulatory regions responsive to liver X receptor have remained elusive, but no longer; two intronic regions in ABCG8 have now been identified. Xenosterol accumulation leads to loss of abdominal fat, infertility, and premature death. Xenosterol accumulation in mouse platelet membranes leads to platelet hyperactivation, increased microparticle formation, and reduced αIIbβ3 surface expression. In humans, phytosterols may promote liver injury in parenteral nutrition-associated liver disease. SUMMARY Progress in understanding sterolin function is beginning to show that xenosterols can be toxic and are involved on pathogenesis, and the role of ABCG5/ABCG8 may extend into other metabolic processes by altering intracellular sterol metabolism.
Collapse
Affiliation(s)
- Shailendra B Patel
- aClement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA bDivision of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
47
|
Yu XH, Qian K, Jiang N, Zheng XL, Cayabyab FS, Tang CK. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin Chim Acta 2014; 428:82-8. [DOI: 10.1016/j.cca.2013.11.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 12/23/2022]
|
48
|
Zheng R, Rebolledo-Jaramillo B, Zong Y, Wang L, Russo P, Hancock W, Stanger BZ, Hardison RC, Blobel GA. Function of GATA factors in the adult mouse liver. PLoS One 2013; 8:e83723. [PMID: 24367609 PMCID: PMC3867416 DOI: 10.1371/journal.pone.0083723] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 11/24/2022] Open
Abstract
GATA transcription factors and their Friend of Gata (FOG) cofactors control the development of diverse tissues. GATA4 and GATA6 are essential for the expansion of the embryonic liver bud, but their expression patterns and functions in the adult liver are unclear. We characterized the expression of GATA and FOG factors in whole mouse liver and purified hepatocytes. GATA4, GATA6, and FOG1 are the most prominently expressed family members in whole liver and hepatocytes. GATA4 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) identified 4409 occupied sites, associated with genes enriched in ontologies related to liver function, including lipid and glucose metabolism. However, hepatocyte-specific excision of Gata4 had little impact on gross liver architecture and function, even under conditions of regenerative stress, and, despite the large number of GATA4 occupied genes, resulted in relatively few changes in gene expression. To address possible redundancy between GATA4 and GATA6, both factors were conditionally excised. Surprisingly, combined Gata4,6 loss did not exacerbate the phenotype resulting from Gata4 loss alone. This points to the presence of an unusually robust transcriptional network in adult hepatocytes that ensures the maintenance of liver function.
Collapse
Affiliation(s)
- Rena Zheng
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Boris Rebolledo-Jaramillo
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yiwei Zong
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Pierre Russo
- Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Wayne Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, Department of Cell and Developmental Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|