1
|
Elkattan HH, Elsisi AE, El-Lakkany NM. Gossypol enhances ponatinib's cytotoxicity against human hepatocellular carcinoma cells by involving cell cycle arrest, p-AKT/LC3II/p62, and Bcl2/caspase-3 pathways. Toxicol Rep 2025; 14:101856. [PMID: 39802605 PMCID: PMC11719416 DOI: 10.1016/j.toxrep.2024.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Abstract
Despite significant breakthroughs in frontline cancer research and chemotherapy for hepatocellular carcinoma (HCC), many of the suggested drugs have high toxic side effects and resistance, limiting their clinical utility. Exploring potential therapeutic targets or novel combinations with fewer side effects is therefore crucial in combating this dreadful disease. The current study aims to use a novel combination of ponatinib and gossypol against the HepG2 cell line. Cell survival, FGF19/FGFR4, apoptotic and autophagic cell death, and synergistic drug interactions were assessed in response to increasing concentrations of ponatinib and/or gossypol treatment. Research revealed that ponatinib (1.25-40 μM) and gossypol (2.5-80 μM) reduced the viability of HepG2 cells in a way that was dependent on both time and dose. Ponatinib's anti-proliferation effectiveness was improved synergistically by gossypol and was associated with a rise in apoptotic cell death, cell cycle blockage during the G0/G1 phase, and suppression of the FGF19/FGFR4 axis. Furthermore, the ponatinib/gossypol combination lowered Bcl-2 and p-Akt while increasing active caspase-3, Beclin-1, p62, and LC3II. This combination, however, had no harm on normal hepatocytes. Overall, gossypol enhanced ponatinib's anticancer effects in HCC cells. Notably, this new combination appears to be potential adjuvant targeted chemotherapy, a discovery that warrants more clinical investigation, in the management of patients with HCC.
Collapse
Affiliation(s)
- Hadeel H. Elkattan
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Alaa E. Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Naglaa M. El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| |
Collapse
|
2
|
Yan JJ, Wang YY, Shi ZY, Ding YY, Wen HQ, Wu MP, Sun SC, Cai YF, Zhang Y. SIRT5 modulates mitochondria function via mitophagy and antioxidant mechanisms to facilitate oocyte maturation in mice. Int J Biol Macromol 2025; 306:141488. [PMID: 40015402 DOI: 10.1016/j.ijbiomac.2025.141488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Mitochondrial homeostasis, closely associated with mitophagy and antioxidant mechanisms, is essential for proper meiotic spindle assembly and chromosome segregation during oocyte maturation. SIRT5, known to modulate mitochondrial function under various conditions, has been shown to impact oocyte quality when inhibited, however, the precise mechanisms linking SIRT5 to mitochondrial homeostasis during meiotic progression remain unclear. In this study, we demonstrate that SIRT5 localizes predominantly at the periphery of the meiotic spindle and is enriched on chromosomes during oocyte maturation. Inhibition of SIRT5 led to significant meiotic defects, including disrupted spindle organization and chromosome misalignment. These defects were associated with increased histone acetylation, which impaired kinetochore-microtubule attachments. Moreover, SIRT5 inhibition resulted in mitochondrial dysfunction, subsequently elevating ROS levels and triggering oxidative stress, which further exacerbated meiotic abnormalities. Mechanistically, SIRT5 inhibition disrupted the balance of Parkin-dependent mitophagy by inducing ULK phosphorylation. Additionally, it activated the PI3K/Akt signaling pathway, which increased NADPH consumption and reduced GSH levels. Collectively, these findings reveal that SIRT5 plays dual roles in maintaining mitochondrial homeostasis during oocyte maturation: (1) by regulating Parkin-dependent mitophagy to prevent excessive mitochondrial clearance, and (2) by preserving the NADPH/GSH antioxidant system to ensure redox balance. These insights provide potential targets for improving oocyte quality and addressing mitochondrial dysfunction-related reproductive disorders in females.
Collapse
Affiliation(s)
- Jing-Jing Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Yu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Yu Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Yuan Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Quan Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Ping Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya-Fei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Blasiak J, Pawlowska E, Helotera H, Ionov M, Derwich M, Kaarniranta K. Potential of autophagy in subretinal fibrosis in neovascular age-related macular degeneration. Cell Mol Biol Lett 2025; 30:54. [PMID: 40307700 PMCID: PMC12044759 DOI: 10.1186/s11658-025-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease that can lead to legal blindness and vision loss. In its advanced stages, it is classified into dry and neovascular AMD. In neovascular AMD, the formation of new blood vessels disrupts the structure of the retina and induces an inflammatory response. Treatment for neovascular AMD involves antibodies and fusion proteins targeting vascular endothelial growth factor A (VEGFA) and its receptors to inhibit neovascularization and slow vision loss. However, a fraction of patients with neovascular AMD do not respond to therapy. Many of these patients exhibit a subretinal fibrotic scar. Thus, retinal fibrosis may contribute to resistance against anti-VEGFA therapy and the cause of irreversible vision loss in neovascular AMD patients. Retinal pigment epithelium cells, choroidal fibroblasts, and retinal glial cells are crucial in the development of the fibrotic scar as they can undergo a mesenchymal transition mediated by transforming growth factor beta and other molecules, leading to their transdifferentiation into myofibroblasts, which are key players in subretinal fibrosis. Autophagy, a process that removes cellular debris and contributes to the pathogenesis of AMD, regardless of its type, may be stimulated by epithelial-mesenchymal transition and later inhibited. The mesenchymal transition of retinal cells and the dysfunction of the extracellular matrix-the two main aspects of fibrotic scar formation-are associated with impaired autophagy. Nonetheless, the causal relationship between autophagy and subretinal fibrosis remains unknown. This narrative/perspective review presents information on neovascular AMD, subretinal fibrosis, and autophagy, arguing that impaired autophagy may be significant for fibrosis-related resistance to anti-VEGFA therapy in neovascular AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402, Plock, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Hanna Helotera
- Department of Ophthalmology, University of Eastern Finland, 70210, Kuopio, Finland
| | - Maksim Ionov
- Faculty of Health Sciences, Mazovian Academy in Plock, 09-402, Plock, Poland
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210, Kuopio, Finland
| |
Collapse
|
4
|
Lufrano D, Gong C, Cecarini V, Cuccioloni M, Bonfili L, Sturaro C, Bettegazzi B, Ruzza C, Perelló M, Angeletti M, Eleuteri AM. An Insight into Neuronal Processing of Ghrelin: Effects of a Bioactive Ghrelin Derivative on Proteolytic Pathways and Mitophagy. Mol Neurobiol 2025:10.1007/s12035-025-04976-5. [PMID: 40285938 DOI: 10.1007/s12035-025-04976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Protein homeostasis (proteostasis) is preserved by an orchestrated network of molecular mechanisms that regulate protein synthesis, folding, and degradation, ensuring cellular integrity and function. Proteostasis declines with age and is related to pathologies such as neurodegenerative diseases and cardiac disorders, which are accompanied by the accumulation of toxic protein aggregates. In this context, therapeutic strategies enhancing the two primary degradative systems involved in the cellular clearance of those abnormal proteins, namely ubiquitin-proteasome system and autophagy-lysosomal pathway, represent a promising approach to counteract the collapse of proteostasis in such pathological conditions. In this work, we explored the processing of ghrelin, a pleiotropic peptide hormone linked to energy metabolism and higher brain functions, which is reported to modulate the protein degradative mechanisms. According to our data, ghrelin is processed by serine hydrolases secreted into the conditioned medium of SH-SY5Y neuroblastoma cell line, commonly used in neurotoxicology and neuroscience research. Ghrelin processing leads to the formation of a shorter peptide (ghrelin(1-11)) that stimulates both the cell proteasome system and autophagy-lysosomal pathway, encompassing the selective autophagy of mitochondria. Our findings suggest that ghrelin processing may contribute to the maintenance of neuronal proteostasis.
Collapse
Affiliation(s)
- Daniela Lufrano
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional La Plata (UNLP), CONICET, B1900 AVW, La Plata, Argentina.
| | - Chunmei Gong
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Medical University, 571199, Haikou, China
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Chiara Sturaro
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | | | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Mario Perelló
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de La Provincia de Buenos Aires (CIC-PBA), B1906 APM, La Plata, Argentina
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
5
|
Chen Z, Wang J, Lu B, Meng W, Zhu Y, Jiang Q, Gao D, Ma Z, Zeng H, Chen J, Liu S, Wang Z, Jia K. Reduction of microRNA-221 in BVDV infection enhances viral replication by targeting the ATG7-mediated autophagy pathway. Ir Vet J 2025; 78:10. [PMID: 40176193 PMCID: PMC11963565 DOI: 10.1186/s13620-025-00286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/06/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Bovine viral diarrhoea (BVD), a condition triggered by bovine viral diarrhoea virus (BVDV), is recognized globally as a prevalent pathogen among ruminants and markedly affects the economics of animal husbandry. MicroRNAs, a class of small noncoding RNAs, play pivotal roles in regulating a myriad of biological processes.The ATG7-LC3 pathway, a canonical autophagy mechanism, is integral in defending against pathogenic invasion and maintaining cellular homeostasis. RESULTS In this study, we observed significant downregulation of bta-miR-221 in cells infected with BVDV. We further established that overexpression of bta-miR-221 markedly attenuated BVDV replication in Madin‒Darby bovine kidney (MDBK) cells. Through bioinformatics prediction analysis, we identified ATG7, an autophagy-related gene, as a direct downstream target of bta-miR-221. However, the intricate relationships among bta-miR-221, the ATG7-LC3 pathway, and BVDV infection remained unclear. Our study revealed that ATG7 expression was significantly elevated in BVDV-infected cells, whereas bta-miR-221 mimics repressed both endogenous and exogenous ATG7 expression. Following BVDV infection, we noted a decrease in LC3I expression, its conversion to LC3II, a significant increase in ATG7 expression, and a notable decrease in SQSTM1/p62 expression. By employing laser confocal microscopy and immunoprecipitation assays, we elucidated the regulation of the ATG7-LC3 pathway by bta-miR-221 in MDBK cells. Our findings recealed that BVDV infection enhanced the ATG7-LC3 interaction, inducing autophagy through the suppression of bta-miR-221 in MDBK cells. Consequently, bta-miR-221 emerged as a potent inhibitor of BVDV, impacting its proliferation and replication within the host. CONCLUSIONS This research sheds light on novel aspects of virus-host interactions and lays a foundation for the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Zihan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Baochun Lu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wenxin Meng
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Yufan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Qifeng Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Duo Gao
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Zihang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Huijuan Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Jinping Chen
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Shizhe Liu
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China.
| |
Collapse
|
6
|
Dagher DM, Zaghloul MS, Suddek GM. Modulation of AMPK/mTOR Autophagic Pathway Using Dapagliflozin Protects Against Cadmium-Induced Testicular and Renal Injury in Rats. J Biochem Mol Toxicol 2025; 39:e70257. [PMID: 40233265 DOI: 10.1002/jbt.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Cadmium is a widely distributed heavy metal found in the environment that poses serious hazards to human health. Dapagliflozin (DAPA), a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, exhibited antioxidant, antiapoptotic, and anti-inflammatory properties. Our data assessed the effect of DAPA against Cd-triggered renal and testicular impairment in rats, as well as the underlying mechanisms. Cd (30 mg/kg) and DAPA (5 and 10 mg/kg) were administrated by oral gavage to rats and continued for 21 days. DAPA attenuated Cd-triggered renal and testicular injury as shown by diminishing serum creatinine, BUN, and urinary total protein concentration in addition to increasing creatinine clearance, urinary creatinine, and serum testosterone. Moreover, it diminished renal and testicular histopathological alterations induced by Cd. DAPA stimulated the impaired autophagy flux as seen by significantly elevating the p-AMPK/total AMPK, decreasing p-mTOR/total mTOR ratios, and diminishing p62 & LC3 protein levels. Additionally, DAPA significantly lowered MDA content, increased GSH level and SOD activity. Moreover, it augmented the cytoprotective Nrf2/HO-1 signaling pathway. Furthermore, it attenuated renal and testicular apoptotic cell death via decreasing caspase-3 expression. Conclusion: Boosting autophagic events and combating oxidative stress and apoptosis by DAPA were engaged in alleviating Cd-induced renal and testicular impairment. This was accomplished by modulating the AMPK/mTOR and enhancing the Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Doha M Dagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Gakinya S, Nzioka AK, Mugo AG, Onyuma T, Ogutu J. Autophagy-related protein LC3β and its association with clinical-pathological characteristics, mismatch repair proteins and survival in colorectal carcinoma. Front Med (Lausanne) 2025; 12:1512127. [PMID: 40018347 PMCID: PMC11865083 DOI: 10.3389/fmed.2025.1512127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Autophagy is a metabolic process that serves to maintain cellular homeostasis as well as enable the cell to adapt to metabolic stress. In malignant cells, autophagy has been associated with drug resistance, metastasis and poor outcome. Colorectal carcinoma is a leading cause of cancer morbidity and mortality worldwide. The management and outcome are dependent on the tumor clinical and pathological characteristics. Autophagy is a potential therapeutic target as well as prognostic biomarker given its role in cancer pathogenesis. This study aimed at evaluating the autophagy status of colorectal carcinomas for tumors diagnosed at the Aga Khan University Hospital, Nairobi and establish its association with clinical-pathological characteristics including age, tumor location, tumor grade, tumor pathological stage, tumor nodal stage, tumor budding, tumor-infiltrating lymphocytes (TILs), Mismatch repair protein status (MMR), HER2 status and patient survival. Methods The study assessed the autophagy status of 114 colorectal carcinoma cases using immunohistochemistry for autophagy related protein LC3β. The clinical-pathological characteristics were determined by examining the medical records and evaluation of hematoxylin and eosin-stained slides. HER2 and MMR status were evaluated using immunohistochemistry. The treatment outcome was determined from the patient's records by checking for date of last visit or death. Results and discussion The mean age of patients in our study was 58years. There were more males 61.8% (n = 70) than females 38.6% (n = 44). Most of the patients had high pathological tumor stage of pT3 and pT4. Majority of the tumors showed intermediate tumor budding and weak tumor-infiltrating lymphocytes. The mismatch repair deficiency and HER2 overexpression were found in 14.9% (n = 17) and 2.6% (n = 3) of the cases respectively. LC3β was overexpressed in 36% (n = 41) of the cases and was significantly more common in females (p = 0.013). The LC3β status showed no significant association with age, tumor location, tumor grade, tumor stage, nodal stage, tumor budding, tumor-infiltrating lymphocytes, MMR status, HER2 status or patient survival. Future prospective studies are recommended to further explore the utility of autophagy as a prognostic and predictive biomarker.
Collapse
Affiliation(s)
- Samuel Gakinya
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | - Ancent K. Nzioka
- Department of Pathology, Kenyatta University Teaching, Referral and Research Hospital, Nairobi, Kenya
| | - Alex G. Mugo
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | - Timothy Onyuma
- Department of Pathology, Kenyatta National Hospital, Nairobi, Kenya
| | - James Ogutu
- Department of Microbiology, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
8
|
Smith EM, Coughlan ML, Maday S. Turning garbage into gold: Autophagy in synaptic function. Curr Opin Neurobiol 2025; 90:102937. [PMID: 39667255 PMCID: PMC11903044 DOI: 10.1016/j.conb.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Trillions of synapses in the human brain enable thought and behavior. Synaptic connections must be established and maintained, while retaining dynamic flexibility to respond to experiences. These processes require active remodeling of the synapse to control the composition and integrity of proteins and organelles. Macroautophagy (hereafter, autophagy) provides a mechanism to edit and prune the synaptic proteome. Canonically, autophagy has been viewed as a homeostatic process, which eliminates aged and damaged proteins to maintain neuronal survival. However, accumulating evidence suggests that autophagy also degrades specific cargoes in response to neuronal activity to impact neuronal transmission, excitability, and synaptic plasticity. Here, we will discuss the diverse roles, regulation, and mechanisms of neuronal autophagy in synaptic function and contributions from glial autophagy in these processes.
Collapse
Affiliation(s)
- Erin Marie Smith
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maeve Louise Coughlan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Aydemir D, Sonmez SC, Kisakurek ZB, Gozel M, Karslioglu MZ, Guleser UY, Sahin A, Hasanreisoglu M. Evidence of Mitophagy in Lens Capsule Epithelial Cells of Patients With Pseudoexfoliation Syndrome. J Glaucoma 2025; 34:114-120. [PMID: 39140812 DOI: 10.1097/ijg.0000000000002484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
PRCIS Alterations in the PTEN-induced kinase 1 (PINK)-mediated mitophagy pathway play an important role in pseudoexfoliation syndrome (PEX) disease. PURPOSE PEX is a condition in which aberrant fibrillary protein builds up in various components of the eye and other extraocular tissues. In this study, we aim to investigate the functionality of intracellular auto-degradative machinery-especially mitophagy-and related genes and proteins in PEX. MATERIALS AND METHODS Anterior lens capsules were obtained from cataract patients with and without PEX to constitute the PEX group and age-matched controls during microincision cataract surgery. PINK1-mediated mitophagy markers were evaluated on the transcriptional and translational level via reverse transcriptionquantitative polymerase chain reaction and immunohistochemistry analysis, respectively. RESULTS The lens epithelial cells of PEX patients were characterized by significantly higher PINK1 gene expression compared with that of the controls ( P <0.05). In terms of intensity of staining of expressed proteins, PINK1 ( P <0.05), Parkin ( P <0.01), and microtubule-associated protein 1A/1B-light chain 3 B ( P <0.01) were all statistically higher in PEX, compared with the controls. CONCLUSION Altered auto-degradative response-specifically mitophagy-is a component of increased oxidative stress in PEX patients. The role of this mechanism in emerging complications warrants further research.
Collapse
Affiliation(s)
- Dilara Aydemir
- Koç University Research Center for Translational Medicine, Koç University
| | | | | | - Merve Gozel
- Koç University Research Center for Translational Medicine, Koç University
| | | | - Umit Yasar Guleser
- Department of Ophthalmology, Koç University School of Medicine, Istanbul, Turkey
| | - Afsun Sahin
- Koç University Research Center for Translational Medicine, Koç University
- Department of Ophthalmology, Koç University School of Medicine, Istanbul, Turkey
| | - Murat Hasanreisoglu
- Koç University Research Center for Translational Medicine, Koç University
- Department of Ophthalmology, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
10
|
Lee SK, Park SW, Jang DJ, Lee JA. Mechanisms and roles of membrane-anchored ATG8s. Front Cell Dev Biol 2025; 13:1532050. [PMID: 39936034 PMCID: PMC11810923 DOI: 10.3389/fcell.2025.1532050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Autophagy-related protein 8 (ATG8) family proteins, including LC3 and GABARAP subfamilies, are pivotal in canonical autophagy, driving autophagosome formation, cargo selection, and lysosomal fusion. However, recent studies have identified non-canonical roles for lipidated ATG8 in processes such as LC3-associated phagocytosis (LAP), LC3-associated endocytosis (LANDO), and lipidated ATG8-mediated secretory autophagy. These pathways expand ATG8's functional repertoire in immune regulation, membrane repair, and pathogen clearance, as ATG8 becomes conjugated to single-membrane structures (e.g., phagosomes and lysosomes). This review examines the molecular mechanisms of ATG8 lipidation, focusing on its selective conjugation to phosphatidylethanolamine (PE) in autophagy and phosphatidylserine (PS) in CASM. We highlight LIR-based probes and LC3/GABARAP-specific deconjugases as critical tools that allow precise tracking and manipulation of ATG8 in autophagic and non-autophagic contexts. These advancements hold therapeutic promise for treating autophagy-related diseases, including cancer and neurodegenerative disorders, by targeting ATG8-driven pathways that maintain cellular homeostasis.
Collapse
Affiliation(s)
- Soo-Kyeong Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Republic of Korea
| | - Sang-Won Park
- Research Institute of Invertebrate Vector, Kyungpook National University, Sangju, Republic of Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju, Republic of Korea
| | - Jin-A. Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Liu J, Zhou S, Chen J, Lin H, Li Y, Zhang X, Chen S, Lv X, Zhao H. Nrf2 inhibition and NCOA4-mediated ferritinophagy activation synergistically exacerbated S-3'-hydroxy-7', 2', 4'-trimethoxyisoxane induced ferroptosis in lung cancer cells. Chem Biol Interact 2025; 406:111353. [PMID: 39681205 DOI: 10.1016/j.cbi.2024.111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
S-3'-hydroxy-7', 2', 4'-trimethoxyisoxane (ShtIX) is a novel isoflavane compound that exhibits significant anticancer activity against a variety of cancer cells. Our previous studies have confirmed that ShtIX induced ferroptosis by inhibiting Nr2/HO-1 pathway in non-small cell lung cancer (NSCLC) cells, both in vitro and vivo. Recent research has increasingly recognized ferroptosis as an autophagy-dependent form of cell death. However, it has not been previously explored whether ShtIX can activate autophagy during ferroptosis and its relationship with ferroptosis. In the present study, we discovered that ShtIX was able to trigger autophagy, and the activation of autophagy is essential for ShtIX-induced ferroptosis. These findings demonstrated that ShtIX induced an autophagy-dependent form of ferroptosis in NSCLC cells. Intriguingly, the autophagy triggered by ShtIX is independent of ferroptosis. Furthermore, our results indicated that ShtIX degraded ferritin through autophagy and promoted NCOA4-mediated ferritinophagy, which contributed significantly to ShtIX-induced ferroptosis in NSCLC cells. Additionally, the knockdown Nrf2 reinforced ShtIX-induced NCOA4-mediated ferritinophagy, while the inhibition of autophagy attenuated the suppressive effect of ShtIX on Nrf2 and HO-1. Taken together, our work uncovers a new mechanism by which ShtIX induced ferroptosis through inhibition the Nrf2 pathway and activation of NCOA4-mediated ferritinophagy in NSCLC cells. Targeting ferritinophagy to regulate ferroptosis offers a novel therapeutic strategy for the treatment of lung cancer with ShtIX.
Collapse
Affiliation(s)
- Jiaxin Liu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Songlin Zhou
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Jing Chen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Haiyan Lin
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Yang Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Xian Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China; Schools of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Shiting Chen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Xiaoyang Lv
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Huange Zhao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
12
|
Shaikh K, Bowman M, McCormick SM, Gao L, Zhang J, White J, Tawil J, Kapoor A, Arav-Boger R, Norbury CC, Harhaj EW. ZFAND6 promotes TRAF2-dependent mitophagy to restrain cGAS-STING signaling. iScience 2025; 28:111544. [PMID: 39811672 PMCID: PMC11731517 DOI: 10.1016/j.isci.2024.111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy. Consequently, mitochondrial DNA (mtDNA) is released into the cytoplasm, triggering the spontaneous expression of interferon-stimulated genes (ISGs) in a stimulator of interferon genes (STING) dependent manner, which leads to enhanced viral resistance. Mechanistically, ZFAND6 bridges a TRAF2-cIAP1 interaction and mediates the recruitment of TRAF2 to damaged mitochondria, which is required for the initiation of ubiquitin-dependent mitophagy. Our results suggest that ZFAND6 promotes the interactions of TRAF2 and cIAP1 and the clearance of damaged mitochondria by mitophagy to maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kashif Shaikh
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Melissa Bowman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah M. McCormick
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Linlin Gao
- Department of Microbiology and Immunology, The University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jesse White
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - John Tawil
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Arun Kapoor
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
13
|
Alahwany AM, Arisha AH, Abdelkhalek A, Khamis T, Miyasho T, Kirat D. Impact of Ultraviolet C Radiation on Male Fertility in Rats: Suppression of Autophagy, Stimulation of Gonadotropin-Inhibiting Hormone, and Alteration of miRNAs. Int J Mol Sci 2025; 26:316. [PMID: 39796171 PMCID: PMC11720531 DOI: 10.3390/ijms26010316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
While ultraviolet C (UVC) radiation has beneficial applications, it can also pose risks to living organisms. Nevertheless, a detailed assessment of UVC radiation's effects on mammalian male reproductive physiology, including the underlying mechanisms and potential protective strategies, has not yet been accomplished. This study aimed to examine the critical roles of oxidative stress, autophagy, reproductive hormonal axis, and microRNAs in UVC-induced reproductive challenges in male rats. Semen, biochemical, molecular, and in silico analyses revealed significant dysregulation of testicular steroidogenesis, impaired spermatogenesis, deteriorated sperm quality, and altered reproductive hormonal profiles, which ultimately lead to a decline in fertility in male rats exposed to UVC radiation. Our data indicated that the suppression of autophagy, stimulation of gonadotropin-inhibiting hormone (GnIH), and alteration of microRNAs serve as key mediators of UVC-induced stress effects in mammalian reproduction, potentially contributing to male infertility. Targeting these pathways, particularly through pretreatment with hesperidin (HES), offers a promising strategy to counteract UVC-induced male infertility. In conclusion, the present findings emphasize the importance of understanding the molecular mechanisms behind UVC-induced male infertility and offer valuable insights into the protective mechanisms and prospective role of HES in safeguarding male reproductive health.
Collapse
Affiliation(s)
- Ahmed Mohamed Alahwany
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt; (A.M.A.); (A.H.A.)
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt; (A.M.A.); (A.H.A.)
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Doaa Kirat
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
14
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
15
|
Lim RM, Lu A, Chuang BM, Anaraki C, Chu B, Halbrook CJ, Edinger AL. CARMIL1-AA selectively inhibits macropinocytosis while sparing autophagy. Mol Biol Cell 2025; 36:ar4. [PMID: 39602282 PMCID: PMC11742120 DOI: 10.1091/mbc.e24-09-0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Macropinocytosis is reported to fuel tumor growth and drug resistance by allowing cancer cells to scavenge extracellular macromolecules. However, accurately defining the role of macropinocytosis in cancer depends on our ability to selectively block this process. 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) is widely used to inhibit macropinocytosis but affects multiple Na+/H+ exchangers (NHE) that regulate cytoplasmic and organellar pH. Consistent with this, we report that EIPA slows proliferation to a greater extent than can be accounted for by macropinocytosis inhibition and triggers conjugation of ATG8 to single membranes (CASM). Knocking down only NHE1 would not avoid macropinocytosis-independent effects on pH. Moreover, contrary to published reports, NHE1 loss did not block macropinocytosis in multiple cell lines. Knocking down CARMIL1 with CRISPR-Cas9 editing limited macropinocytosis, but only by 50%. In contrast, expressing the CARMIL1-AA mutant inhibits macropinocytosis induced by a wide range of macropinocytic stimuli to a similar extent as EIPA. CARMIL1-AA expression did not inhibit proliferation, highlighting the shortcomings of EIPA as a macropinocytosis inhibitor. Importantly, autophagy, another actin dependent, nutrient-producing process, was not affected by CARMIL1-AA expression. In sum, constitutive or inducible CARMIL1-AA expression reduced macropinocytosis without affecting proliferation, RAC activation, or autophagy, other processes that drive tumor initiation and progression.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Alexa Lu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92617
| | - Brennan M. Chuang
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Cecily Anaraki
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA 92617
| | - Brandon Chu
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Christopher J. Halbrook
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA 92617
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868
| | - Aimee L. Edinger
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92617
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868
| |
Collapse
|
16
|
Basuony NS, Mohamed TM, Beltagy DM, Massoud AA, Elwan MM. Therapeutic Effects of Crocin Nanoparticles Alone or in Combination with Doxorubicin against Hepatocellular Carcinoma In vitro. Anticancer Agents Med Chem 2025; 25:194-206. [PMID: 39410891 DOI: 10.2174/0118715206327654240823074318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 02/25/2025]
Abstract
OBJECTIVE Crocin (CRO), the primary antioxidant in saffron, is known for its anticancer properties. However, its effectiveness in topical therapy is limited due to low bioavailability, poor absorption, and low physicochemical stability. This study aimed to prepare crocin nanoparticles (CRO-NPs) to enhance their pharmaceutical efficacy and evaluate the synergistic effects of Cro-NPs with doxorubicin (DOX) chemotherapy on two cell lines: human hepatocellular carcinoma cells (HepG2) and non-cancerous cells (WI38). METHODS CRO-NPs were prepared using the emulsion diffusion technique and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta potential, and Fourier transform infrared spectroscopy (FT-IR). Cell proliferation inhibition was assessed using the MTT assay for DOX, CRO, CRO-NPs, and DOX+CRO-NPs. Apoptosis and cell cycle were evaluated by flow cytometry, and changes in the expression of apoptotic gene (P53) and autophagic genes (ATG5 & LC3) were analyzed using real-time polymerase chain reaction. RESULTS TEM and SEM revealed that CRO-NPs exhibited a relatively spherical shape with an average size of 9.3 nm, and zeta potential analysis indicated better stability of CRO-NPs compared to native CRO. Significantly higher antitumor effects of CRO-NPs were observed against HepG2 cells (IC50 = 1.1 mg/ml and 0.57 mg/ml) compared to native CRO (IC50 = 6.1 mg/ml and 3.2 mg/ml) after 24 and 48 hours, respectively. Annexin-V assay on HepG2 cells indicated increased apoptotic rates across all treatments, with the highest percentage observed in CRO-NPs, accompanied by cell cycle arrest at the G2/M phase. Furthermore, gene expression analysis showed upregulation of P53, ATG5, and LC3 genes in DOX/CRO-NPs co-treatment compared to individual treatments. In contrast, WI38 cells exhibited greater sensitivity to DOX toxicity but showed no adverse response to CRONPs. CONCLUSION Although more in vivo studies in animal models are required to corroborate these results, our findings suggest that CRO-NPs can be a potential new anticancer agent for hepatocellular carcinoma. Moreover, they have a synergistic effect with DOX against HepG2 cells and mitigate the toxicity of DOX on normal WI38 cells.
Collapse
Affiliation(s)
- Noha S Basuony
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Department of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Doha M Beltagy
- Department of Biochemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ahmed A Massoud
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona M Elwan
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
17
|
Tamtaji Z, Sheikhsagha E, Behnam M, Nabavizadeh F, Shafiee Ardestani M, Rahmati-Dehkordi F, Aschner M, Mirzaei H, Tamtaji OR. Berberine and Lung Cancer: From Pure Form to Its Nanoformulations. Asia Pac J Clin Oncol 2024. [PMID: 39568275 DOI: 10.1111/ajco.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
Lung cancer is the most fatal cancer worldwide. The etiology of lung cancer has yet to be fully characterized. Smoking and air pollution are several risk factors for lung cancer. Berberine, an isoquinoline alkaloid, is an antihyperglycemic, antidepressant, antioxidative, anti-inflammatory, and anticancer compound. Evidence substantiates that berberine has antitumor effects, exerting its effects by targeting a variety of cellular and molecular processes, such as apoptosis, autophagy, cell cycle arrest, migration, and metastasis. Although the beneficial effects of berberine have been reported, some limitations including low bioavailability and absorption as well as poor aqueous solubility have hindered its clinical application. Nanotechnology and nanodelivery bioformulation approaches may bypass these limitations. In addition, the combination of berberine with other therapies has been shown to result in greater treatment efficacy for lung cancer. Herein, we summarize cellular and molecular pathways that are affected by berberine, its clinical efficacy upon various combinations, and the potential for nanotechnology in lung cancer therapy.
Collapse
Affiliation(s)
- Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Elham Sheikhsagha
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fatemeh Rahmati-Dehkordi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Omid R Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
18
|
Laude J, Scarsini M, Nef C, Bowler C. Evolutionary conservation and metabolic significance of autophagy in algae. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230368. [PMID: 39343016 PMCID: PMC11449223 DOI: 10.1098/rstb.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a highly conserved 'self-digesting' mechanism used in eukaryotes to degrade and recycle cellular components by enclosing them in a double membrane compartment and delivering them to lytic organelles (lysosomes or vacuoles). Extensive studies in plants have revealed how autophagy is intricately linked to essential aspects of metabolism and growth, in both normal and stress conditions, including cellular and organelle homeostasis, nutrient recycling, development, responses to biotic and abiotic stresses, senescence and cell death. However, knowledge regarding autophagic processes in other photosynthetic organisms remains limited. In this review, we attempt to summarize the current understanding of autophagy in algae from a metabolic, molecular and evolutionary perspective. We focus on the composition and conservation of the autophagy molecular machinery in eukaryotes and discuss the role of autophagy in metabolic regulation, cellular homeostasis and stress adaptation in algae. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Juliette Laude
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
- Université Paris Saclay , Gif-sur-Yvette 91190, France
| | - Matteo Scarsini
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| |
Collapse
|
19
|
Pizzimenti C, Fiorentino V, Ruggeri C, Franchina M, Ercoli A, Tuccari G, Ieni A. Autophagy Involvement in Non-Neoplastic and Neoplastic Endometrial Pathology: The State of the Art with a Focus on Carcinoma. Int J Mol Sci 2024; 25:12118. [PMID: 39596186 PMCID: PMC11594225 DOI: 10.3390/ijms252212118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy is a cellular process crucial for maintaining homeostasis by degrading damaged proteins and organelles. It is stimulated in response to stress, recycling nutrients and generating energy for cell survival. In normal endometrium, it suppresses tumorigenesis by preventing toxic accumulation and maintaining cellular homeostasis. It is involved in the cyclic remodelling of the endometrium during the menstrual cycle and contributes to decidualisation for successful pregnancy. Such a process is regulated by various signalling pathways, including PI3K/AKT/mTOR, AMPK/mTOR, and p53. Dysregulation of autophagy has been associated with benign conditions like endometriosis and endometrial hyperplasia but also with malignant neoplasms such as endometrial carcinoma. In fact, it has emerged as a crucial player in endometrial carcinoma biology, exhibiting a dual role in both tumour suppression and tumour promotion, providing nutrients during metabolic stress and allowing cancer cell survival. It also regulates cancer stem cells, metastasis and therapy resistance. Targeting autophagy is therefore a promising therapeutic strategy in endometrial carcinoma and potential for overcoming resistance to standard treatments. The aim of this review is to delve into the intricate details of autophagy's role in endometrial pathology, exploring its mechanisms, signalling pathways and potential therapeutic implications.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Vincenzo Fiorentino
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Chiara Ruggeri
- Section of Gynecology and Obstetrics, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.R.); (A.E.)
| | - Mariausilia Franchina
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Alfredo Ercoli
- Section of Gynecology and Obstetrics, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.R.); (A.E.)
| | - Giovanni Tuccari
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Antonio Ieni
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| |
Collapse
|
20
|
Boix-Montesinos P, Medel M, Malfanti A, Đorđević S, Masiá E, Charbonnier D, Carrascosa-Marco P, Armiñán A, Vicent MJ. Rational design of a poly-L-glutamic acid-based combination conjugate for hormone-responsive breast cancer treatment. J Control Release 2024; 375:193-208. [PMID: 39242032 DOI: 10.1016/j.jconrel.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer represents the most prevalent tumor type worldwide, with hormone-responsive breast cancer the most common subtype. Despite the effectiveness of endocrine therapy, advanced disease forms represent an unmet clinical need. While drug combination therapies remain promising, differences in pharmacokinetic profiles result in suboptimal ratios of free drugs reaching tumors. We identified a synergistic combination of bisdemethoxycurcumin and exemestane through drug screening and rationally designed star-shaped poly-L-glutamic acid-based combination conjugates carrying these drugs conjugated through pH-responsive linkers for hormone-responsive breast cancer treatment. We synthesized/characterized single and combination conjugates with synergistic drug ratios/loadings. Physicochemical characterization/drug release kinetics studies suggested that lower drug loading prompted a less compact conjugate conformation that supported optimal release. Screening in monolayer and spheroid breast cancer cell cultures revealed that combination conjugates possessed enhanced cytotoxicity/synergism compared to physical mixtures of single-drug conjugates/free drugs; moreover, a combination conjugate with the lowest drug loading outperformed remaining conjugates. This candidate inhibited proliferation-associated signaling, reduced inflammatory chemokine/exosome levels, and promoted autophagy in spheroids; furthermore, it outperformed a physical mixture of single-drug conjugates/free drugs regarding cytotoxicity in patient-derived breast cancer organoids. Our findings highlight the importance of rational design and advanced in vitro models for the selection of polypeptide-based combination conjugates.
Collapse
Affiliation(s)
- Paz Boix-Montesinos
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - María Medel
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Alessio Malfanti
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Snežana Đorđević
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Esther Masiá
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - David Charbonnier
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), IISCIII and CIEMAT, Madrid, Spain
| | - Paula Carrascosa-Marco
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain.
| | - María J Vicent
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
21
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
22
|
Al-Salam S, Hashmi S, Jagadeesh GS, Sudhadevi M, Awwad A, Nemmar A. Early Cardiac Ischemia-Reperfusion Injury: Interactions of Autophagy with Galectin-3 and Oxidative Stress. Biomedicines 2024; 12:2474. [PMID: 39595040 PMCID: PMC11591886 DOI: 10.3390/biomedicines12112474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Cardiovascular diseases are the leading cause of death worldwide, including the United Arab Emirates. Ischemia-reperfusion (IR) injury results in the death of cardiac myocytes that were viable immediately before myocardial reperfusion. We aim to investigate the role of galectin-3 (Gal-3) in autophagy during ischemia-reperfusion injuries. Methods: Male C57B6/J and Gal-3 knockout (KO) mice were used for the murine model of IR injury. Heart samples and serum were collected 24 h post-IR and were processed for immunohistochemical and immunofluorescent labeling and an enzyme-linked immunosorbent assay. Results: There was a significant increase in left ventricle (LV) concentrations of Gal-3 in Gal-3 wild-type mice compared to sham mice. There were significantly higher concentrations of LV autophagy proteins and phospho-AMPK in IR Gal-3 KO mice than in IR Gal-3 wild-type mice, compared to lower concentrations of LV phospho-mTOR and p62 in IR Gal-3 KO than in IR wild-type mice. Antioxidant activities were higher in the LVs of IR Gal-3 wild-type mice, while oxidative stress was higher in the LVs of IR Gal-3 KO mice. Conclusions: Our study supports the interaction of Gal-3 with autophagy proteins, oxidative stress, and antioxidant proteins and demonstrates that the absence of Gal-3 can enhance autophagy in the heart after IR injury.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (G.S.J.); (M.S.)
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Agha Khan University, Karachi City 74000, Pakistan;
| | - Govindan S. Jagadeesh
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (G.S.J.); (M.S.)
| | - Manjusha Sudhadevi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (G.S.J.); (M.S.)
| | - Aktham Awwad
- Department of Laboratory Medicine, Tawam Hospital, Al Ain P.O. Box 5674, United Arab Emirates;
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
23
|
Yang X, Zheng R, Zhang H, Ou Z, Wan S, Lin D, Yan J, Jin M, Tan J. Optineurin regulates motor and learning behaviors by affecting dopaminergic neuron survival in mice. Exp Neurol 2024; 383:115007. [PMID: 39428042 DOI: 10.1016/j.expneurol.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Optineurin (OPTN) is an autophagy receptor that participates in the degradation of damaged mitochondria, protein aggregates, and invading pathogens. OPTN is closely related to various types of neurodegenerative diseases. However, the role of OPTN in the central nervous system is unclear. Here, we found that OPTN dysregulation in the compact part of substantia nigra (SNc) led to motor and learning deficits in animal models. Knockdown of OPTN increased total and phosphorylated α-synuclein levels which induced microglial activation and dopaminergic neuronal loss in the SNc. Overexpression of OPTN can't reverse the motor and learning phenotypes. Mechanistic analysis revealed that upregulation of OPTN increased α-synuclein phosphorylation independent of its autophagy receptor activity, which further resulted in microglial activation and dopaminergic neuronal loss similar to OPTN downregulation. Our study uncovers the crucial role of OPTN in maintaining dopaminergic neuron survival and motor and learning functions which are disrupted in PD patients.
Collapse
Affiliation(s)
- Xianfei Yang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Ruoling Zheng
- Shantou Longhu People's Hospital, Shantou 515041, China
| | - Hongyao Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Zixian Ou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Sha Wan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Dongfeng Lin
- Shantou University Mental Health Center, Shantou University, Shantou 515063, China
| | - Jianguo Yan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China; Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
24
|
Zeng J, Cao J, Yang H, Wang X, Liu T, Chen Z, Shi F, Xu Z, Lin X. Overview of mechanism of electroacupuncture pretreatment for prevention and treatment of cardiovascular and cerebrovascular diseases. CNS Neurosci Ther 2024; 30:e14920. [PMID: 39361504 PMCID: PMC11448663 DOI: 10.1111/cns.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Cardio-cerebrovascular disease (CCVD) is a serious threat to huma strategy to prevent the occurrence and development of disease by giving electroacupuncture intervention before the disease occurs. EAP has been shown in many preclinical studies to relieve ischemic symptoms and improve damage from ischemia-reperfusion, with no comprehensive review of its mechanisms in cardiovascular disease yet. In this paper, we first systematically discussed the meridian and acupoint selection law of EAP for CCVD and focused on the progress of the mechanism of action of EAP for the prevention and treatment of CCVD. As a result, in preclinical studies, AMI and MCAO models are commonly used to simulate ischemic injury in CCVD, while MIRI and CI/RI models are used to simulate reperfusion injury caused by blood flow recovery after focal tissue ischemia. According to the meridian matching rules of EAP for CCVD, PC6 in the pericardial meridian is the most commonly used acupoint in cardiovascular diseases, while GV20 in the Du meridian is the most commonly used acupoint in cerebrovascular diseases. In terms of intervention parameters, EAP intervention generally lasts for 30 min, with acupuncture depths mostly between 1.5 and 5 mm, stimulation intensities mostly at 1 mA, and commonly used frequencies being low frequencies. In terms of molecular mechanisms, the key pathways of EAP in preventing and treating cardiovascular and cerebrovascular diseases are partially similar. EAP can play a protective role in cardiovascular and cerebrovascular diseases by promoting autophagy, regulating Ca2+ overload, and promoting vascular regeneration through anti-inflammatory reactions, antioxidant stress, and anti-apoptosis. Of course, both pathways involved have their corresponding specificities. When using EAP to prevent and treat cardiovascular diseases, it involves the metabolic pathway of glutamate, while when using EAP to prevent and treat cerebrovascular diseases, it involves the homeostasis of the blood-brain barrier and the release of neurotransmitters and nutritional factors. I hope these data can provide experimental basis and reference for the clinical promotion and application of EAP in CCVD treatment.
Collapse
Affiliation(s)
- Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Fangyuan Shi
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
25
|
Wu Q, Wang Y, Liu J, Guan X, Chang X, Liu Z, Liu R. Microtubules and cardiovascular diseases: insights into pathology and therapeutic strategies. Int J Biochem Cell Biol 2024; 175:106650. [PMID: 39237031 DOI: 10.1016/j.biocel.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microtubules, complex cytoskeletal structures composed of tubulin proteins in eukaryotic cells, have garnered recent attention in cardiovascular research. Investigations have focused on the post-translational modifications of tubulin, including acetylation and detyrosination. Perturbations in microtubule homeostasis have been implicated in various pathological processes associated with cardiovascular diseases such as heart failure, ischemic heart disease, and arrhythmias. Thus, elucidating the intricate interplay between microtubule dynamics and cardiovascular pathophysiology is imperative for advancing preventive and therapeutic strategies. Several natural compounds have been identified to potentially modulate microtubules, thereby exerting regulatory effects on cardiovascular diseases. This review synthesizes current literature to delineate the roles of microtubules in cardiovascular diseases and assesses the potential of natural compounds in microtubule-targeted therapies.
Collapse
Affiliation(s)
- Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
26
|
Devi CM, Deka K, Das AK, Talukdar A, Sola P. Recent Advances in Marine-Derived Nanoformulation for the Management of Glioblastoma. Mol Biotechnol 2024:10.1007/s12033-024-01287-3. [PMID: 39327380 DOI: 10.1007/s12033-024-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Glioma is the most common and aggressive type of central nervous system tumor as categorized by the World Health Organization. Glioblastoma (GBA), in general, exhibits a grim prognosis and short life expectancy, rarely exceeding 14 months. The dismal prognosis is primarily attributed to the development of chemoresistance to temozolomide, the primary therapeutic agent for GBA treatment. Hence, it becomes imperative to develop novel drugs with antitumor efficacy rooted in distinct mechanisms compared to temozolomide. The vast marine environment contains a wealth of naturally occurring compounds from the sea (known as marine-derived natural products), which hold promise for future research in the quest for new anticancer drugs. Ongoing advancements in anticancer pharmaceuticals have led to an upswing in the isolation and validation of numerous pioneering breakthroughs and improvements in anticancer therapeutics. Nonetheless, the availability of FDA-approved marine-derived anticancer drugs remains limited, owing to various challenges and constraints. Among these challenges, drug delivery is a prominent hurdle. This review delves into an alternative approach for delivering marine-derived drugs using nanotechnological formulations and their mechanism of action for treating GBA.
Collapse
Affiliation(s)
- Chanam Melody Devi
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Amit Kumar Das
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Apurba Talukdar
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Piyong Sola
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India.
| |
Collapse
|
27
|
Rahmati-Dehkordi F, Khanifar H, Zare-Hoseinabadi A, Dadgostar E, Jafarpour H, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Potential of Edaravone Dexborneol in the treatment of cerebral ischemia: focus on cell death-related signaling pathways. Mol Biol Rep 2024; 51:1007. [PMID: 39312062 DOI: 10.1007/s11033-024-09952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 02/06/2025]
Abstract
Cerebral ischemia has the highest global rate of morbidity and mortality. It occurs when a sudden occlusion develops in the arterial system, and consequently some parts of the brain are deprived from glucose and oxygen due to the cessation of blood flow. The ensuing reperfusion of the ischemic area results in a cascade of pathological alternations like neuronal apoptosis by producing excessive reactive oxygen species (ROS), oxidative stress and neuroinflammation. Edaravone Dexborneol is a novel agent, comprised of Edaravone and Dexborneol in a 4:1 ratio. It has documented neuroprotective effects against cerebral ischemia injury. Edaravone Dexborneol improves neurobehavioral and sensorimotor function, cognitive function, brain edema, and blood-brain barrier (BBB) integrity in experimental models. It at dosages ranging between 0.375 and 15 mg/kg (from immediately after ischemia until the 28th post-ischemic days) has shown neuroprotective effects in experimental models of cerebral ischemia by inhibiting cell death-signaling pathways. For example, it inhibits apoptosis by increasing Bcl2, and reducing Bax and caspase-3 expression. Edaravone Dexborneol also inhibits pyroptosis by attenuating NF-κB/NLRP3/GSDMD signaling, as well as ferroptosis by activating the Nrf-2/HO-1/GPX4 signaling pathway. It also inhibits autophagy by targeting PI3K/Akt/mTOR signaling pathway. Here, we provide a review on the impacts of Edaravone Dexborneol on cerebral ischemia.
Collapse
Affiliation(s)
- Fatemeh Rahmati-Dehkordi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hadi Khanifar
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Islamic Republic of Iran
| | - Alireza Zare-Hoseinabadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Hamed Jafarpour
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Omid Reza Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
28
|
Liu YP, He B, Wang WX, Pan WL, Jiao L, Yan JJ, Sun SC, Zhang Y. PKD regulates mitophagy to prevent oxidative stress and mitochondrial dysfunction during mouse oocyte maturation. Mitochondrion 2024; 78:101946. [PMID: 39147088 DOI: 10.1016/j.mito.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mitochondria play dominant roles in various cellular processes such as energy production, apoptosis, calcium homeostasis, and oxidation-reduction balance. Maintaining mitochondrial quality through mitophagy is essential, especially as its impairment leads to the accumulation of dysfunctional mitochondria in aging oocytes. Our previous research revealed that PKD expression decreases in aging oocytes, and its inhibition negatively impacts oocyte quality. Given PKD's role in autophagy mechanisms, this study investigates whether PKD regulates mitophagy to maintain mitochondrial function and support oocyte maturation. When fully grown oocytes were treated with CID755673, a potent PKD inhibitor, we observed meiosis arrest at the metaphase I stage, along with decreased spindle stability. Our results demonstrate an association with mitochondrial dysfunction, including reduced ATP production and fluctuations in Ca2+ homeostasis, which ultimately lead to increased ROS accumulation, stimulating oxidative stress-induced apoptosis and DNA damage. Further research has revealed that these phenomena result from PKD inhibition, which affects the phosphorylation of ULK, thereby reducing autophagy levels. Additionally, PKD inhibition leads to decreased Parkin expression, which directly and negatively affects mitophagy. These defects result in the accumulation of damaged mitochondria in oocytes, which is the primary cause of mitochondrial dysfunction. Taken together, these findings suggest that PKD regulates mitophagy to support mitochondrial function and mouse oocyte maturation, offering insights into potential targets for improving oocyte quality and addressing mitochondrial-related diseases in aging females.
Collapse
Affiliation(s)
- Ya-Ping Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bing He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Xin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Lin Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Jiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Jing Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
29
|
Knupp J, Chen YJ, Wang E, Arvan P, Tsai B. Sigma-1 receptor recruits LC3 mRNA to ER-associated omegasomes to promote localized LC3 translation enabling functional autophagy. Cell Rep 2024; 43:114619. [PMID: 39128005 PMCID: PMC11376464 DOI: 10.1016/j.celrep.2024.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Autophagosome formation initiated on the endoplasmic reticulum (ER)-associated omegasome requires LC3. Translational regulation of LC3 biosynthesis is unexplored. Here we demonstrate that LC3 mRNA is recruited to omegasomes by directly binding to the ER transmembrane Sigma-1 receptor (S1R). Cell-based and in vitro reconstitution experiments show that S1R interacts with the 3' UTR of LC3 mRNA and ribosomes to promote LC3 translation. Strikingly, the 3' UTR of LC3 is also required for LC3 protein lipidation, thereby linking the mRNA-3' UTR to LC3 function. An autophagy-defective S1R mutant responsible for amyotrophic lateral sclerosis cannot bind LC3 mRNA or induce LC3 translation. We propose a model wherein S1R de-represses LC3 mRNA via its 3' UTR at the ER, enabling LC3 biosynthesis and lipidation. Because several other LC3-related proteins use the same mechanism, our data reveal a conserved pathway for localized translation essential for autophagosome biogenesis with insights illuminating the molecular basis of a neurodegenerative disease.
Collapse
Affiliation(s)
- Jeffrey Knupp
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, 1135 Catherine Street, Ann Arbor, MI 48109 USA
| | - Yu-Jie Chen
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA
| | - Emily Wang
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA
| | - Peter Arvan
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1135 Catherine Street, Ann Arbor, MI 48109 USA; Division of Metabolism Endocrinology & Diabetes, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| | - Billy Tsai
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, 1135 Catherine Street, Ann Arbor, MI 48109 USA.
| |
Collapse
|
30
|
Xiao Q, Cruz G, Botham R, Fox SG, Yu A, Allen S, Morimoto RI, Kelly JW. HaloTag as a substrate-based macroautophagy reporter. Proc Natl Acad Sci U S A 2024; 121:e2322500121. [PMID: 39074281 PMCID: PMC11317570 DOI: 10.1073/pnas.2322500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Macroautophagy is a conserved cellular degradation pathway that, upon upregulation, confers resilience toward various stress conditions, including protection against proteotoxicity associated with neurodegenerative diseases, leading to cell survival. Monitoring autophagy regulation in living cells is important to understand its role in physiology and pathology, which remains challenging. Here, we report that when HaloTag is expressed within a cell of interest and reacts with tetramethylrhodamine (TMR; its ligand attached to a fluorophore), the rate of fluorescent TMR-HaloTag conjugate accumulation in autophagosomes and lysosomes, observed by fluorescence microscopy, reflects the rate of autophagy. Notably, we found that TMR-HaloTag conjugates were mainly degraded by the proteasome (~95%) under basal conditions, while lysosomal degradation (~10% upon pharmacological autophagy activation) was slow and incomplete, forming a degraded product that remained fluorescent within a SDS-PAGE gel, in agreement with previous reports that HaloTag is resistant to lysosomal degradation when fused to proteins of interest. Autophagy activation is distinguished from autophagy inhibition by the increased production of the degraded TMR-HaloTag band relative to the full-length TMR-HaloTag band as assessed by SDS-PAGE and by a faster rate of TMR-HaloTag conjugate lysosomal puncta accumulation as observed by fluorescence microscopy. Pharmacological proteasome inhibition leads to accumulation of TMR-HaloTag in lysosomes, indicating possible cross talk between autophagy and proteasomal degradation.
Collapse
Affiliation(s)
- Qiang Xiao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Gabrielle Cruz
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
- Department of Biology, State University of New York College at Fredonia, Fredonia, NY14063
| | - Rachel Botham
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Susan G. Fox
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL60208
| | - Anan Yu
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL60208
| | - Seth Allen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL60208
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
31
|
Guhe V, Tambekar A, Singh S. Computational and Experimental Approaches Towards Understanding the Role of ATG8 in Autophagy: A Therapeutic Paradigm in Leishmaniasis. Protein J 2024; 43:726-738. [PMID: 38980535 DOI: 10.1007/s10930-024-10213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
In the realm of parasitology, autophagy has emerged as a critical focal point, particularly in combating Leishmaniasis. Central to this endeavour is the recognition of the protein ATG8 as pivotal for the survival and infectivity of the parasitic organism Leishmania major, thereby making it a potential target for therapeutic intervention. Consequently, there is a pressing need to delve into the structural characteristics of ATG8 to facilitate the design of effective drugs. In this study, our efforts centered on the purification of ATG8 from Leishmania major, which enabled novel insights into its structural features through meticulous spectroscopic analysis. We aimed to comprehensively assess the stability and behaviour of ATG8 in the presence of various denaturants, including urea, guanidinium chloride, and SDS-based chemicals. Methodically, our approach included secondary structural analysis utilizing CD spectroscopy, which not only validated but also augmented computationally predicted structures of ATG8 reported in previous investigations. Remarkably, our findings unveiled that the purified ATG8 protein retained its folded conformation, exhibiting the anticipated secondary structure. Moreover, our exploration extended to the influence of lipids on ATG8 stability, yielding intriguing revelations. We uncovered a nuanced perspective suggesting that targeting both the lipid composition of Leishmania major and ATG8 could offer a promising strategy for future therapeutic approaches in combating leishmaniasis. Collectively, our study underscores the importance of understanding the structural intricacies of ATG8 in driving advancements towards the development of targeted therapies against Leishmaniasis, thereby providing a foundation for future investigations in this field.
Collapse
Affiliation(s)
- Vrushali Guhe
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, SP, 411007, India
| | - Anil Tambekar
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, SP, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, SP, 411007, India.
| |
Collapse
|
32
|
Corsetti G, Pasini E, Scarabelli TM, Romano C, Singh A, Scarabelli CC, Dioguardi FS. Importance of Energy, Dietary Protein Sources, and Amino Acid Composition in the Regulation of Metabolism: An Indissoluble Dynamic Combination for Life. Nutrients 2024; 16:2417. [PMID: 39125298 PMCID: PMC11313897 DOI: 10.3390/nu16152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
PURPOSE This paper aims to present a unique perspective that emphasizes the intricate interplay between energy, dietary proteins, and amino acid composition, underscoring their mutual dependence for health-related considerations. Energy and protein synthesis are fundamental to biological processes, crucial for the sustenance of life and the growth of organisms. METHODS AND RESULTS We explore the intricate relationship between energy metabolism, protein synthesis, regulatory mechanisms, protein sources, amino acid availability, and autophagy in order to elucidate how these elements collectively maintain cellular homeostasis. We underscore the vital role this dynamic interplay has in preserving cell life. CONCLUSIONS A deeper understanding of the link between energy and protein synthesis is essential to comprehend fundamental cellular processes. This insight could have a wide-ranging impact in several medical fields, such as nutrition, metabolism, and disease management.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Evasio Pasini
- Italian Association of Functional Medicine, 20855 Lesmo, Italy;
- Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy
| | | | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Arashpreet Singh
- School of Osteopathic Medicine, Campbell University, Lillington, NC 27546, USA;
| | | | | |
Collapse
|
33
|
Lorenzetti WR, Ibelli AMG, Peixoto JDO, Savoldi IR, Mores MAZ, de Souza Romano G, do Carmo KB, Ledur MC. The downregulation of genes encoding muscle proteins have a potential role in the development of scrotal hernia in pigs. Mol Biol Rep 2024; 51:822. [PMID: 39023774 DOI: 10.1007/s11033-024-09766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Testicular descent is a physiological process regulated by many factors. Eventually, disturbances in the embryological/fetal development path facilitate the occurrence of scrotal hernia, a congenital malformation characterized by the presence of intestinal portions within the scrotal sac due to the abnormal expansion of the inguinal ring. In pigs, some genes have been related to this anomaly, but the genetic mechanisms involved remain unclear. This study aimed to investigate the expression profile of a set of genes potentially involved with the manifestation of scrotal hernia in the inguinal ring tissue. METHODS AND RESULTS Tissue samples from the inguinal ring/canal of normal and scrotal hernia-affected male pigs with approximately 30 days of age were used. Relative expression analysis was performed using qPCR to confirm the expression profile of 17 candidate genes previously identified in an RNA-Seq study. Among them, the Myosin heavy chain 1 (MYH1), Desmin (DES), and Troponin 1 (TNNI1) genes were differentially expressed between groups and had reduced levels of expression in the affected animals. These genes encode proteins involved in the formation of muscle tissue, which seems to be important for increasing the resistance of the inguinal ring to the abdominal pressure, which is essential to avoid the occurrence of scrotal hernia. CONCLUSIONS The downregulation of muscular candidate genes in the inguinal tissue clarifies the genetic mechanisms involved with this anomaly in its primary site, providing useful information for developing strategies to control this malformation in pigs and other mammals.
Collapse
Affiliation(s)
- William Raphael Lorenzetti
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, São Carlos, São Paulo, 13560-970, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil
- Laudo laboratório Avícola, Rodovia BR-365, Morumbi, Uberlândia, Minas Gerais, 38407180, Brazil
| | - Marcos Antônio Zanella Mores
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
| | | | - Kamilla Bleil do Carmo
- Universidade do Contestado, Concórdia, Santa Catarina, Brazil
- Instituto Federal Catarinense, Rodovia SC 283, km 17, Concórdia, Santa Catarina, 89703-720, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil.
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil.
| |
Collapse
|
34
|
López-Ayllón BD, Marin S, Fernández MF, García-García T, Fernández-Rodríguez R, de Lucas-Rius A, Redondo N, Mendoza-García L, Foguet C, Grigas J, Calvet A, Villalba JM, Gómez MJR, Megías D, Mandracchia B, Luque D, Lozano JJ, Calvo C, Herrán UM, Thomson TM, Garrido JJ, Cascante M, Montoya M. Metabolic and mitochondria alterations induced by SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10. J Med Virol 2024; 96:e29752. [PMID: 38949191 DOI: 10.1002/jmv.29752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.
Collapse
Affiliation(s)
- Blanca D López-Ayllón
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Marco Fariñas Fernández
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tránsito García-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Ana de Lucas-Rius
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, University Hospital '12 de Octubre', Institute for Health Research Hospital '12 de Octubre' (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Laura Mendoza-García
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Carles Foguet
- British Heart Foundation Cardiovascular Epidemiology Unit and Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Juozas Grigas
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alba Calvet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
| | - María Josefa Rodríguez Gómez
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Megías
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Biagio Mandracchia
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- ETSI Telecommunication, University of Valladolid, Valladolid, Spain
| | - Daniel Luque
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Juan José Lozano
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Cristina Calvo
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
| | - Unai Merino Herrán
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Timothy M Thomson
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
- Translational Research and Computational Biology Laboratory, Faculty of Science and Engineering, Peruvian University Cayetano Heredia, Lima, Perú
| | - Juan J Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - María Montoya
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
35
|
Jane-Wit D, Song G, He L, Jiang Q, Barkestani M, Wang S, Wang Q, Ren P, Fan M, Johnson J, Mullan C. Complement Membrane Attack Complexes Disrupt Proteostasis to Function as Intracellular Alarmins. RESEARCH SQUARE 2024:rs.3.rs-4504419. [PMID: 38947095 PMCID: PMC11213201 DOI: 10.21203/rs.3.rs-4504419/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Internalized pools of membrane attack complexes (MACs) promote NF-kB and dysregulated tissue inflammation. Here, we show that C9, a MAC-associated protein, promotes loss of proteostasis to become intrinsically immunogenic. Surface-bound C9 is internalized into Rab5 + endosomes whose intraluminal acidification promotes C9 aggregates. A region within the MACPF/CDC domain of C9 stimulates aggrephagy to induce NF-kB, inflammatory genes, and EC activation. This process requires ZFYVE21, a Rab5 effector, which links LC3A/B on aggresome membranes to RNF34-P62 complexes to mediate C9 aggrephagy. C9 aggregates form in human tissues, C9-associated signaling responses occur in three mouse models, and ZFYVE21 stabilizes RNF34 to promote C9 aggrephagy in vivo. Gene-deficient mice lacking ZFYVE21 in ECs showed reduced MAC-induced tissue injury in a skin model of chronic rejection. While classically defined as cytotoxic effectors, MACs may impair proteostasis, forming aggregates that behave as intracellular alarmins.
Collapse
|
36
|
Lee A, Davis JH. NCOA4 initiates ferritinophagy by binding GATE16 using two highly avid short linear interaction motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.597909. [PMID: 38895392 PMCID: PMC11185777 DOI: 10.1101/2024.06.09.597909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cells carefully regulate cytosolic iron, which is a vital enzymatic cofactor, yet is toxic in excess. In mammalian cells, surplus iron is sequestered in ferritin cages that, in iron limiting conditions, are degraded through the selective autophagy pathway ferritinophagy to liberate free iron. Prior work identified the ferritinophagy receptor protein NCOA4, which links ferritin and LC3/GABARAP-family member GATE16, effectively tethering ferritin to the autophagic machinery. Here, we elucidate the molecular mechanism underlying this interaction, discovering two short linear motifs in NCOA4 that each bind GATE16 with weak affinity. These binding motifs are highly avid and, in concert, support high-affinity NCOA4•GATE16 complex formation. We further find the minimal NCOA4383-522 fragment bearing these motifs is sufficient for ferritinophagy and that both motifs are necessary for this activity. This work suggests a general mechanism wherein selective autophagy receptors can distinguish between the inactive soluble pools of LC3/GABARAPs and the active membrane-conjugated forms that drive autophagy. Finally, we find that iron decreases NCOA4383-522's affinity for GATE16, providing a plausible mechanism for iron-dependent regulation of ferritinophagy.
Collapse
Affiliation(s)
- April Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joseph H. Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
37
|
Gaiaschi L, De Luca F, Roda E, Ferrari B, Casali C, Inguscio CR, Gola F, Pelloni E, Savino E, Ravera M, Rossi P, Bottone MG. A Phyto-mycotherapeutic Supplement, Namely Ganostile, as Effective Adjuvant in Brain Cancer Management: An In Vitro Study Using U251 Human Glioblastoma Cell Line. Int J Mol Sci 2024; 25:6204. [PMID: 38892392 PMCID: PMC11172483 DOI: 10.3390/ijms25116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The current standard oncotherapy for glioblastoma is limited by several adverse side effects, leading to a short-term patient survival rate paralleled by a worsening quality of life (QoL). Recently, Complementary and Integrative Medicine's (CIM) innovative approaches have shown positive impacts in terms of better response to treatment, side effect reduction, and QoL improvement. In particular, promising potential in cancer therapy has been found in compounds coming from phyto- and mycotherapy. The objective of this study was to demonstrate the beneficial effects of a new phyto-mycotherapy supplement, named Ganostile, in the human glioblastoma cell line U251, in combination with chemotherapeutic agents, i.e., Cisplatin and a new platinum-based prodrug. Choosing a supplement dosage that mimicked oral supplementation in humans (about 1 g/day), through in vitro assays, microscopy, and cytometric analysis, it has emerged that the cells, after 48hr continuous exposure to Ganostile in combination with the chemical compounds, showed a higher mortality and a lower proliferation rate than the samples subjected to the different treatments administered individually. In conclusion, our data support the use of Ganostile in integrative oncology protocols as a promising adjuvant able to amplify conventional and new drug effects and also reducing resistance mechanisms often observed in brain tumors.
Collapse
Affiliation(s)
- Ludovica Gaiaschi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Beatrice Ferrari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Claudio Casali
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Chiara Rita Inguscio
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Federica Gola
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Enrico Pelloni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Savino
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
38
|
Du H, Zhang L, Sun H, Zheng S, Zhang H, Yuan S, Zhou J, Fang Z, Song J, Mei M, Deng C. Exploring the Underlying Mechanisms of Qingxing Granules Treating H1N1 Influenza Based on Network Pharmacology and Experimental Validation. Pharmaceuticals (Basel) 2024; 17:731. [PMID: 38931398 PMCID: PMC11206762 DOI: 10.3390/ph17060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND H1N1 is one of the major subtypes of influenza A virus (IAV) that causes seasonal influenza, posing a serious threat to human health. A traditional Chinese medicine combination called Qingxing granules (QX) is utilized clinically to treat epidemic influenza. However, its chemical components are complex, and the potential pharmacological mechanisms are still unknown. METHODS QX's effective components were gathered from the TCMSP database based on two criteria: drug-likeness (DL ≥ 0.18) and oral bioavailability (OB ≥ 30%). SwissADME was used to predict potential targets of effective components, and Cytoscape was used to create a "Herb-Component-Target" network for QX. In addition, targets associated with H1N1 were gathered from the databases GeneCards, OMIM, and GEO. Targets associated with autophagy were retrieved from the KEGG, HAMdb, and HADb databases. Intersection targets for QX, H1N1 influenza, and autophagy were identified using Venn diagrams. Afterward, key targets were screened using Cytoscape's protein-protein interaction networks built using the database STRING. Biological functions and signaling pathways of overlapping targets were observed through GO analysis and KEGG enrichment analysis. The main chemical components of QX were determined by high-performance liquid chromatography (HPLC), followed by molecular docking. Finally, the mechanism of QX in treating H1N1 was validated through animal experiments. RESULTS A total of 786 potential targets and 91 effective components of QX were identified. There were 5420 targets related to H1N1 and 821 autophagy-related targets. The intersection of all targets of QX, H1N1, and autophagy yielded 75 intersecting targets. Ultimately, 10 core targets were selected: BCL2, CASP3, NFKB1, MTOR, JUN, TNF, HSP90AA1, EGFR, HIF1A, and MAPK3. Identification of the main chemical components of QX by HPLC resulted in the separation of seven marker ingredients within 195 min, which are amygdalin, puerarin, baicalin, phillyrin, wogonoside, baicalein, and wogonin. Molecular docking results showed that BCL2, CASP3, NFKB1, and MTOR could bind well with the compounds. In animal studies, QX reduced the degenerative alterations in the lung tissue of H1N1-infected mice by upregulating the expression of p-mTOR/mTOR and p62 and downregulating the expression of LC3, which inhibited autophagy. CONCLUSIONS According to this study's network pharmacology analysis and experimental confirmation, QX may be able to treat H1N1 infection by regulating autophagy, lowering the expression of LC3, and increasing the expression of p62 and p-mTOR/mTOR.
Collapse
Affiliation(s)
- Hujun Du
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.D.); (L.Z.); (H.S.); (H.Z.); (S.Y.); (J.S.)
| | - Lianying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.D.); (L.Z.); (H.S.); (H.Z.); (S.Y.); (J.S.)
| | - Haoxiang Sun
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.D.); (L.Z.); (H.S.); (H.Z.); (S.Y.); (J.S.)
| | - Shaoqin Zheng
- Sci-Tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou 510330, China;
| | - Hongying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.D.); (L.Z.); (H.S.); (H.Z.); (S.Y.); (J.S.)
- Sci-Tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou 510330, China;
| | - Shijia Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.D.); (L.Z.); (H.S.); (H.Z.); (S.Y.); (J.S.)
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510330, China;
| | - Zihao Fang
- The Eighth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.D.); (L.Z.); (H.S.); (H.Z.); (S.Y.); (J.S.)
| | - Manxue Mei
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510330, China;
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (H.D.); (L.Z.); (H.S.); (H.Z.); (S.Y.); (J.S.)
| |
Collapse
|
39
|
Lieu DJ, Crowder MK, Kryza JR, Tamilselvam B, Kaminski PJ, Kim IJ, Li Y, Jeong E, Enkhbaatar M, Chen H, Son SB, Mok H, Bradley KA, Phillips H, Blanke SR. Autophagy suppression in DNA damaged cells occurs through a newly identified p53-proteasome-LC3 axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595139. [PMID: 38826216 PMCID: PMC11142043 DOI: 10.1101/2024.05.21.595139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Macroautophagy is thought to have a critical role in shaping and refining cellular proteostasis in eukaryotic cells recovering from DNA damage. Here, we report a mechanism by which autophagy is suppressed in cells exposed to bacterial toxin-, chemical-, or radiation-mediated sources of genotoxicity. Autophagy suppression is directly linked to cellular responses to DNA damage, and specifically the stabilization of the tumor suppressor p53, which is both required and sufficient for regulating the ubiquitination and proteasome-dependent reduction in cellular pools of microtubule-associated protein 1 light chain 3 (LC3A/B), a key precursor of autophagosome biogenesis and maturation, in both epithelial cells and an ex vivo organoid model. Our data indicate that suppression of autophagy, through a newly identified p53-proteasome-LC3 axis, is a conserved cellular response to multiple sources of genotoxicity. Such a mechanism could potentially be important for realigning proteostasis in cells undergoing DNA damage repair.
Collapse
|
40
|
Morgan AB, Fan Y, Inman DM. The ketogenic diet and hypoxia promote mitophagy in the context of glaucoma. Front Cell Neurosci 2024; 18:1409717. [PMID: 38841201 PMCID: PMC11150683 DOI: 10.3389/fncel.2024.1409717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Mitochondrial homeostasis includes balancing organelle biogenesis with recycling (mitophagy). The ketogenic diet protects retinal ganglion cells (RGCs) from glaucoma-associated neurodegeneration, with a concomitant increase in mitochondrial biogenesis. This study aimed to determine if the ketogenic diet also promoted mitophagy. MitoQC mice that carry a pH-sensitive mCherry-GFP tag on the outer mitochondrial membrane were placed on a ketogenic diet or standard rodent chow for 5 weeks; ocular hypertension (OHT) was induced via magnetic microbead injection in a subset of control or ketogenic diet animals 1 week after the diet began. As a measure of mitophagy, mitolysosomes were quantified in sectioned retina immunolabeled with RBPMS for RGCs or vimentin for Müller glia. Mitolysosomes were significantly increased as a result of OHT and the ketogenic diet (KD) in RGCs. Interestingly, the ketogenic diet increased mitolysosome number significantly higher than OHT alone. In contrast, OHT and the ketogenic diet both increased mitolysosome number in Müller glia to a similar degree. To understand if hypoxia could be a stimulus for mitophagy, we quantified mitolysosomes after acute OHT, finding significantly greater mitolysosome number in cells positive for pimonidazole, an adduct formed in cells exposed to hypoxia. Retinal protein analysis for BNIP3 and NIX showed no differences across groups, suggesting that these receptors were equivocal for mitophagy in this model of OHT. Our data indicate that OHT and hypoxia stimulate mitophagy and that the ketogenic diet is an additive for mitophagy in RGCs. The different response across RGCs and Müller glia to the ketogenic diet may reflect the different metabolic needs of these cell types.
Collapse
Affiliation(s)
| | | | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
41
|
Leclerc NR, Dunne TM, Shrestha S, Johnson CP, Kelley JB. TOR signaling regulates GPCR levels on the plasma membrane and suppresses the Saccharomyces cerevisiae mating pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593412. [PMID: 38798445 PMCID: PMC11118302 DOI: 10.1101/2024.05.09.593412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Saccharomyces cerevisiae respond to mating pheromone through the GPCRs Ste2 and Ste3, which promote growth of a mating projection in response to ligand binding. This commitment to mating is nutritionally and energetically taxing, and so we hypothesized that the cell may suppress mating signaling during starvation. We set out to investigate negative regulators of the mating pathway in nutritionally depleted environments. Here, we report that nutrient deprivation led to loss of Ste2 from the plasma membrane. Recapitulating this effect with nitrogen starvation led us to hypothesize that it was due to TORC1 signaling. Rapamycin inhibition of TORC1 impacted membrane levels of all yeast GPCRs. Inhibition of TORC1 also dampened mating pathway output. Deletion analysis revealed that TORC1 repression leads to α-arrestin-directed CME through TORC2-Ypk1 signaling. We then set out to determine whether major downstream effectors of the TOR complexes also downregulate pathway output during mating. We found that autophagy contributes to pathway downregulation through analysis of strains lacking ATG8 . We also show that Ypk1 significantly reduced pathway output. Thus, both autophagy machinery and TORC2-Ypk1 signaling serve as attenuators of pheromone signaling during mating. Altogether, we demonstrate that the stress-responsive TOR complexes coordinate GPCR endocytosis and reduce the magnitude of pheromone signaling, in ligand-independent and ligand-dependent contexts. One Sentence Summary TOR signaling regulates the localization of all Saccharomyces cerevisiae GPCRs during starvation and suppress the mating pathway in the presence and absence of ligand.
Collapse
|
42
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
43
|
Zhang Y, Ding N, Li Y, Ouyang M, Fu P, Peng Y, Tan Y. Transcription factor FOXM1 specifies chromatin DNA to extracellular vesicles. Autophagy 2024; 20:1054-1071. [PMID: 37974331 PMCID: PMC11135825 DOI: 10.1080/15548627.2023.2284523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicle DNAs (evDNAs) hold significant diagnostic value for various diseases and facilitate transcellular transfer of genetic material. Our study identifies transcription factor FOXM1 as a mediator for directing chromatin genes or DNA fragments (termed FOXM1-chDNAs) to extracellular vesicles (EVs). FOXM1 binds to MAP1LC3/LC3 in the nucleus, and FOXM1-chDNAs, such as the DUX4 gene and telomere DNA, are designated by FOXM1 binding and translocated to the cytoplasm before being released to EVs through the secretory autophagy during lysosome inhibition (SALI) process involving LC3. Disrupting FOXM1 expression or the SALI process impairs FOXM1-chDNAs incorporation into EVs. FOXM1-chDNAs can be transmitted to recipient cells via EVs and expressed in recipient cells when they carry functional genes. This finding provides an example of how chromatin DNA fragments are specified to EVs by transcription factor FOXM1, revealing its contribution to the formation of evDNAs from nuclear chromatin. It provides a basis for further exploration of the roles of evDNAs in biological processes, such as horizontal gene transfer.Abbreviation: ATG5: autophagy related 5; CCFs: cytoplasmic chromatin fragments; ChIP: chromatin immunoprecipitation; cytoDNA: cytoplasmic DNA; CQ: chloroquine; FOXM1-DBD: FOXM1 DNA binding domain; DUX4:double homeobox 4; EVs: extracellular vesicles; evDNAs: extracellular vesicle DNAs; FOXM1: forkhead box M1; FOXM1-chDNAs: chromatin DNA fragments directed by FOXM1 to EVs; HGT: horizontal gene transfer; LC3-II: lipid modified LC3; LMNB1: lamin B1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MVBs: multivesicular bodies; M1-binding DNA: a linear DNA containing 72× FOXM1 binding sites; SALI: secretory autophagy during lysosome inhibition; siRNA: small interfering RNA; TetO-DUX4: TetO array-containing DUX4 DNA; TetO: tet operator; TetR: tet repressor.
Collapse
Affiliation(s)
- Yunsheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
- The Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Nana Ding
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| | - Yizhen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| | - Min Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| | - Ping Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| | - Yousong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| |
Collapse
|
44
|
Kim J, Byun I, Kim DY, Joh H, Kim HJ, Lee MJ. Targeted protein degradation directly engaging lysosomes or proteasomes. Chem Soc Rev 2024; 53:3253-3272. [PMID: 38369971 DOI: 10.1039/d3cs00344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Targeted protein degradation (TPD) has been established as a viable alternative to attenuate the function of a specific protein of interest in both biological and clinical contexts. The unique TPD mode-of-action has allowed previously undruggable proteins to become feasible targets, expanding the landscape of "druggable" properties and "privileged" target proteins. As TPD continues to evolve, a range of innovative strategies, which do not depend on recruiting E3 ubiquitin ligases as in proteolysis-targeting chimeras (PROTACs), have emerged. Here, we present an overview of direct lysosome- and proteasome-engaging modalities and discuss their perspectives, advantages, and limitations. We outline the chemical composition, biochemical activity, and pharmaceutical characteristics of each degrader. These alternative TPD approaches not only complement the first generation of PROTACs for intracellular protein degradation but also offer unique strategies for targeting pathologic proteins located on the cell membrane and in the extracellular space.
Collapse
Affiliation(s)
- Jiseong Kim
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Do Young Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hyunhi Joh
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hak Joong Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Min Jae Lee
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Wallace NS, Gadbery JE, Cohen CI, Kendall AK, Jackson LP. Tepsin binds LC3B to promote ATG9A trafficking and delivery. Mol Biol Cell 2024; 35:ar56. [PMID: 38381558 PMCID: PMC11064669 DOI: 10.1091/mbc.e23-09-0359-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Tepsin is an established accessory protein found in Adaptor Protein 4 (AP-4) coated vesicles, but the biological role of tepsin remains unknown. AP-4 vesicles originate at the trans-Golgi network (TGN) and target the delivery of ATG9A, a scramblase required for autophagosome biogenesis, to the cell periphery. Using in silico methods, we identified a putative LC3-Interacting Region (LIR) motif in tepsin. Biochemical experiments using purified recombinant proteins indicate tepsin directly binds LC3B preferentially over other members of the mammalian ATG8 family. Calorimetry and structural modeling data indicate this interaction occurs with micromolar affinity using the established LC3B LIR docking site. Loss of tepsin in cultured cells dysregulates ATG9A export from the TGN as well as ATG9A distribution at the cell periphery. Tepsin depletion in a mRFP-GFP-LC3B HeLa reporter cell line using siRNA knockdown increases autophagosome volume and number, but does not appear to affect flux through the autophagic pathway. Reintroduction of wild-type tepsin partially rescues ATG9A cargo trafficking defects. In contrast, reintroducing tepsin with a mutated LIR motif or missing N-terminus drives diffuse ATG9A subcellular distribution. Together, these data suggest roles for tepsin in cargo export from the TGN; ensuring delivery of ATG9A-positive vesicles; and in overall maintenance of autophagosome structure.
Collapse
Affiliation(s)
- Natalie S. Wallace
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | - John E. Gadbery
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | - Cameron I. Cohen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
46
|
Chauhan S, Tomar RS. Unveiling the molecular networks underlying cellular impairment in Saccharomyces cerevisiae: investigating the effects of magnesium oxide nanoparticles on cell wall integrity and endoplasmic reticulum stress response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30149-30162. [PMID: 38602634 DOI: 10.1007/s11356-024-33265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Nanoparticles, particularly magnesium oxide nanoparticles (MgO-NPs), are increasingly utilized in various fields, yet their potential impact on cellular systems remains a topic of concern. This study aimed to comprehensively investigate the molecular mechanisms underlying MgO-NP-induced cellular impairment in Saccharomyces cerevisiae, with a focus on cell wall integrity, endoplasmic reticulum (ER) stress response, mitochondrial function, lipid metabolism, autophagy, and epigenetic alterations. MgO-NPs were synthesized through a chemical reduction method, characterized for morphology, size distribution, and elemental composition. Concentration-dependent toxicity assays were conducted to evaluate the inhibitory effect on yeast growth, accompanied by propidium iodide (PI) staining to assess membrane damage. Intracellular reactive oxygen species (ROS) accumulation was measured, and chitin synthesis, indicative of cell wall perturbation, was examined along with the expression of chitin synthesis genes. Mitochondrial function was assessed through Psd1 localization, and ER structure was analyzed using dsRed-HDEL marker. The unfolded protein response (UPR) pathway activation was monitored, and lipid droplet formation and autophagy induction were investigated. Results demonstrated a dose-dependent inhibition of yeast growth by MgO-NPs, with concomitant membrane damage and ROS accumulation. Cell wall perturbation was evidenced by increased chitin synthesis and upregulation of chitin synthesis genes. MgO-NPs impaired mitochondrial function, disrupted ER structure, and activated the UPR pathway. Lipid droplet formation and autophagy were induced, indicating cellular stress responses. Additionally, MgO-NPs exhibited differential cytotoxicity on histone mutant strains, implicating specific histone residues in cellular response to nanoparticle stress. Immunoblotting revealed alterations in histone posttranslational modifications, particularly enhanced methylation of H3K4me. This study provides comprehensive insights into the multifaceted effects of MgO-NPs on S. cerevisiae, elucidating key molecular pathways involved in nanoparticle-induced cellular impairment. Understanding these mechanisms is crucial for assessing nanoparticle toxicity and developing strategies for safer nanoparticle applications.
Collapse
Affiliation(s)
- Shraddha Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India.
| |
Collapse
|
47
|
Li J, Qin X, Xu W, Zhang H, Huang S, Yang Y, Qin M, Mi Z, Zhong X. Herb pair of Rhubarb-Astragalus mitigates renal interstitial fibrosis through downregulation of autophagy via p38-MAPK/TGF-β1 and p38-MAPK/smad2/3 pathways. Int J Biochem Cell Biol 2024; 169:106549. [PMID: 38340950 DOI: 10.1016/j.biocel.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) has a high incidence and poor prognosis; however, no effective treatment is currently available. Our previous study found that the improvement effect of the herb pair of Rhubarb-Astragalus on CKD is likely related to the inhibition of the TGF-β1/p38-MAPK pathway. In the present study, a p38-MAPK inhibitor was used to further investigate the inhibitory effect of Rhubarb-Astragalus on the TGF-β1/p38-MAPK pathway and its relationship with autophagy. METHODS A rat model of unilateral ureteral obstruction (UUO) was established, and a subgroup of rats was administered Rhubarb-Astragalus. Renal function and renal interstitial fibrosis (RIF) were assessed 21 d after UUO induction. In vitro, HK-2 cells were treated with TGF-β1 and a subset of cells were treated with Rhubarb-Astragalus or p38-MAPK inhibitor. Western blotting, immunohistochemistry, and qRT-PCR analyses were used to detect the relevant protein and mRNA levels. Transmission electron microscopy was used to observe autophagosomes. RESULTS Rhubarb-Astragalus treatment markedly decreased the elevated levels of blood urea nitrogen, serum creatinine, and urinary N-acetyl-β-D-glucosaminidase; attenuated renal damage and RIF induced by UUO; and reduced the number of autophagosomes and lysosomes in UUO-induced renal tissues. Additionally, Rhubarb-Astragalus reduced the protein and mRNA levels of α-SMA, collagen I, LC3, Atg3, TGF-β1, p38-MAPK, smad2/3, and TAK1 in renal tissues of UUO rats. Rhubarb-Astragalus also reduced protein and mRNA levels of these indicators in vitro. Importantly, the effect of the p38-MAPK inhibitor was similar to that of Rhubarb-Astragalus. CONCLUSIONS Rhubarb-Astragalus improves CKD possibly by downregulating autophagy via the p38-MAPK/TGF-β1 and p38-MAPK/smad2/3 pathways.
Collapse
Affiliation(s)
- Jinxiu Li
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiping Qin
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weimin Xu
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongliang Zhang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Songqing Huang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufang Yang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Mengyuan Qin
- Student Affairs Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengcheng Mi
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaobin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, China
| |
Collapse
|
48
|
Al-Salam S, Jagadeesh GS, Sudhadevi M, Yasin J. Galectin-3 and Autophagy in Renal Acute Tubular Necrosis. Int J Mol Sci 2024; 25:3604. [PMID: 38612416 PMCID: PMC11012141 DOI: 10.3390/ijms25073604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Acute kidney injury (AKI) is a public health burden with increasing morbidity and mortality rates and health care costs. Acute tubular necrosis (ATN) is the most common cause of AKI. Cisplatin (CIS) is a platinum-based chemotherapeutic agent used in the treatment of a wide variety of malignancies such as lung, breast, ovary, testis, bladder, cervix, and head and neck cancers. Autophagy plays an important role in AKI. Galectin-3 (Gal-3) is significantly increased in renal tubules in AKI; however, its role in autophagy is not well understood. Male C57B6/J and B6.Cg-Lgals3 /J Gal-3 knockout (KO) mice were used to induce AKI using a CIS mouse model of ATN. Renal Gal-3 and autophagy proteins' expression were measured using standard histologic, immunofluorescent, and enzyme-linked immunosorbent assay techniques. The data were presented as the mean ± S.E. Statistically significant differences (p < 0.05) were calculated between experimental groups and corresponding control groups by one-way analysis of variance. There was a significant increase in renal concentrations of Gal-3 in the Gal-3 wild-type CIS-treated mice when compared with sham control mice. There were significantly higher concentrations of renal LC3B, ATG13, Ulk-1, Beclin, ATG5, ATG12, ATG9A, and p-AMPK in the CIS-treated Gal-3 KO mice than in the Gal-3 wild-type CIS-treated mice. Further, there were significantly higher concentrations of mTOR, p- NF-κB, beta-catenin, and p62 in the kidneys of the Gal-3 wild-type CIS-treated mice than in the Gal-3 KO CIS-treated mice. Our findings affirm the connection between Gal-3 and autophagy, revealing its central role as a connector with prosurvival signaling proteins. Gal-3 plays a pivotal role in orchestrating cellular responses by interacting with prosurvival signal pathways and engaging with autophagy proteins. Notably, our observations highlight that the absence of Gal-3 can enhance autophagy in CIS-induced ATN.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Govindan S. Jagadeesh
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Manjusha Sudhadevi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
49
|
Dai Y, Sang XB, Bai WP. N-acetylcysteine and Hydroxychloroquine Ameliorate ADMA-Induced Fetal Growth Restriction in Mice via Regulating Oxidative Stress and Autophagy. Reprod Sci 2024; 31:779-790. [PMID: 37845590 DOI: 10.1007/s43032-023-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Fetal growth restriction (FGR) seriously threatens perinatal health. The main cause of FGR is placental malperfusion, but the specific mechanism is still unclear, and there is no effective treatment for FGR. We constructed a FGR mouse model by adding exogenous asymmetric dimethylarginine (ADMA) through in vivo experiments and found that ADMA could cause placental dysplasia and induce the occurrence of FGR. Compared with the control group, reactive oxygen species (ROS) production in the placenta was increased in mice with FGR, and the expression of autophagy-related proteins p-AKT/AKT, p-mTOR/mTOR, and P62 was significantly decreased, while the expression of Beclin-1 and LC3-II was significantly increased in the FGR group. Furthermore, ADMA had a favorable effect in promoting the formation of autophagosomes. Hydroxychloroquine (HCQ) and N-acetylcysteine (NAC) improved ADMA-induced disorders of placental development and alleviated ADMA-induced FGR. This study found that ADMA could cause excessive autophagy of trophoblasts by increasing the level of oxidative stress, ultimately leading to the occurrence of FGR, and HCQ and NAC had therapeutic effects on ADMA-induced FGR.
Collapse
Affiliation(s)
- Yan Dai
- The Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiu-Bo Sang
- The Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen-Pei Bai
- The Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Botella J, Shaw CS, Bishop DJ. Autophagy and Exercise: Current Insights and Future Research Directions. Int J Sports Med 2024; 45:171-182. [PMID: 37582398 DOI: 10.1055/a-2153-9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Autophagy is a cellular process by which proteins and organelles are degraded inside the lysosome. Exercise is known to influence the regulation of autophagy in skeletal muscle. However, as gold standard techniques to assess autophagy flux in vivo are restricted to animal research, important gaps remain in our understanding of how exercise influences autophagy activity in humans. Using available datasets, we show how the gene expression profile of autophagy receptors and ATG8 family members differ between human and mouse skeletal muscle, providing a potential explanation for their differing exercise-induced autophagy responses. Furthermore, we provide a comprehensive view of autophagy regulation following exercise in humans by summarizing human transcriptomic and phosphoproteomic datasets that provide novel targets of potential relevance. These newly identified phosphorylation sites may provide an explanation as to why both endurance and resistance exercise lead to an exercise-induced reduction in LC3B-II, while possibly divergently regulating autophagy receptors, and, potentially, autophagy flux. We also provide recommendations to use ex vivo autophagy flux assays to better understand the influence of exercise, and other stimuli, on autophagy regulation in humans. This review provides a critical overview of the field and directs researchers towards novel research areas that will improve our understanding of autophagy regulation following exercise in humans.
Collapse
Affiliation(s)
- Javier Botella
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| |
Collapse
|