1
|
Mourikis P, Benkhoff M, Wildeis L, Barcik M, Helten C, Coman C, Solari FA, Krahn D, Dannenberg L, Ahlbrecht S, Zikeli D, Utz A, Trojovsky K, Richter H, Al Kassis G, M'Pembele R, Zako S, Huckenbeck T, Bauer S, Schmitz D, Pfeiler S, Gerdes N, Dücker C, Pircher J, Zhe Z, Thienel M, Ul Ain Q, Keul P, Kirkby N, Sohn D, Budach W, Hohlfeld T, Schrör K, Levkau B, Zeus T, Verhelst SHL, Ahrends R, Sickmann A, Mitchell J, Mora S, Manson JE, Bhatt DL, Landmesser U, Massberg S, Kelm M, Petzold T, Polzin A. Icosapent ethyl reduces arterial thrombosis by inhibition of cyclooxygenase-1-induced platelet reactivity. Sci Transl Med 2025; 17:eado0610. [PMID: 40397711 DOI: 10.1126/scitranslmed.ado0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 12/11/2024] [Accepted: 04/25/2025] [Indexed: 05/23/2025]
Abstract
Large, randomized trials testing omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation to reduce cardiovascular events have reported contradictory results. Interpretation of these trials is challenging, because different dosages and formulations of ω-3 PUFA were tested. Furthermore, the exact mechanisms for the reduction in cardiovascular events are unclear. In this study, we investigated the effects of ω-3 PUFA on platelet adhesion, degranulation, and aggregation in vitro and in patients with cardiovascular disease using different formulations of ω-3 PUFA. We also investigated the effects of ω-3 PUFA in rodent models of arterial thrombosis and in tail bleeding assays, including in cyclooxygenase-1 (COX-1)-deficient animals. The ω-3 PUFA eicosapentaenoic acid (EPA) dose-dependently reduced platelet adhesion, degranulation, and aggregation in vitro. Moreover, arterial thrombus formation in wild-type mice was inhibited by oral EPA administration before thrombus formation. Photoaffinity labeling and in silico docking analyses suggested a direct, competitive interaction of EPA and arachidonic acid at the level of COX-1. The COX-1 dependency of EPA's inhibitory effects was confirmed by platelet-specific COX-1-deficient animals that had no reduction of thrombus burden by EPA. In patients with cardiovascular disease, switching from 2 grams of EPA twice daily to 1 gram of docosahexaenoic acid (DHA) (460 milligrams of EPA and 380 milligrams of DHA) once daily completely blunted the platelet inhibition achieved by EPA. Our results may partially explain contradictory results with different ω-3 PUFA formulations in clinical trials.
Collapse
Affiliation(s)
- Philipp Mourikis
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
- Institute of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Laura Wildeis
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Maike Barcik
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Carolin Helten
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Cristina Coman
- Institute of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Daniel Krahn
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Lisa Dannenberg
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Samantha Ahlbrecht
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Dorothee Zikeli
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Amelie Utz
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Kajetan Trojovsky
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Hannah Richter
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Gabrielle Al Kassis
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - René M'Pembele
- Department of Anesthesiology, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Saif Zako
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Tim Huckenbeck
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Sofia Bauer
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Danny Schmitz
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Susanne Pfeiler
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Norbert Gerdes
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), 40225 Düsseldorf, Germany
| | - Christof Dücker
- Institute for Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, 37027 Göttingen, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität München, 80539 München, Deutschland
| | - Zhang Zhe
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität München, 80539 München, Deutschland
- Deutsches Herzzentrum der Charité (DHZC) University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 12203 Berlin, Germany
| | - Manuela Thienel
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität München, 80539 München, Deutschland
| | - Qurrat Ul Ain
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität München, 80539 München, Deutschland
| | - Petra Keul
- Institute for Molecular Medicine III, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Nicholas Kirkby
- Faculty of Medicine National Heart & Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Wilfried Budach
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Thomas Hohlfeld
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Karsten Schrör
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Bodo Levkau
- Institute for Molecular Medicine III, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
| | - Steven H L Verhelst
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Robert Ahrends
- Institute of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Jane Mitchell
- Faculty of Medicine National Heart & Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Samia Mora
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY 10029, USA
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité (DHZC) University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität München, 80539 München, Deutschland
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), 40225 Düsseldorf, Germany
| | - Tobias Petzold
- Deutsches Herzzentrum der Charité (DHZC) University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 12203 Berlin, Germany
- Friede Springer - Centre of Cardiovascular Prevention @ Charité, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University Medical Center Dusseldorf, 40225 Dusseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Chen J, Bai X, Peng W, Liu J, Jia Z, Cheng M, Li J, Guo W, Zheng Y. A thiocoumarin based self-reporting sulfide prodrug strategy with a favorable safety profile. Eur J Med Chem 2025; 289:117426. [PMID: 40015159 DOI: 10.1016/j.ejmech.2025.117426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
H2S as the third gasotransmitter is an important endogenous bioregulator that shows various therapeutic potentials. Herein, we present a novel thiocoumarin-based self-reporting sulfide prodrug strategy that utilizes esterase-mediated hydrolysis of thionoesters to release H2S and provide real-time fluorescence monitoring. Our key discovery is that thionoesters can be hydrolyzed by esterases to release H2S under physiological conditions, providing ample opportunities to design prodrugs based on ester-containing molecules. Thiocoumarin derivatives bearing a unique lactone structure offer advantages that simplify prodrug construction by substituting oxygen with sulfur in coumarin backbone and allow in-situ monitoring of H2S release through thiocoumarin-coumarin transformation. Our prodrug candidates are demonstrated with favorable H2S release kinetics and showed combined therapeutic effects of H2S and coumarin, making them promising for treating cerebral infarction. Fluorescent monitoring in mouse confirmed sustained H2S release and revealed the organ distribution, further validating the self-reporting system. Additionally, this approach that ensures therapeutic efficacy and reduces the hepatorenal toxicity of coumarin derivatives constitutes a facile prodrug strategy to overcome the toxicity of drug candidates.
Collapse
Affiliation(s)
- Jiaxuan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, China
| | - Xue Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, China
| | - Wen Peng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, China
| | - Jianru Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, China
| | - Zhongao Jia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, China
| | - Mingxin Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, China
| | - Jing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, China
| | - Weiwei Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, China; Department of Pharmacy, Fujian Medical University Union Hospital, NO.29, Xinquan Road, Fuzhou City, Fujian Province,China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, China.
| |
Collapse
|
3
|
Eldeeb AM, Abdelkader DH, El Maghraby GM. Controlled anti-solvent precipitation for enhanced dissolution rate and antiplatelet activity of ticagrelor. Pharm Dev Technol 2025; 30:463-473. [PMID: 40203454 DOI: 10.1080/10837450.2025.2489744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
The goal of our study is to augment ticagrelor (TC)'s dissolution rate and antiplatelet activity via controlled antisolvent precipitation. A saturated ethanolic solution of TC was prepared in the absence and presence of poloxamer 188 or gelucire 44/14. Aerosil 200 was added before controlled precipitation using water or water-containing poloxamer (1% w/v). The resulting precipitate was dried and characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and in vitro dissolution. FTIR showed hydrogen bonding after the processing of TC. DSC and PXRD reflected partial amorphization. A significant enhancement (p < 0.05) in dissolution efficiency and TC amount released after five minutes was also shown. The most effective composition was F6, which comprised TC, poloxamer, and Aerosil (5:5:2.5), or F9, utilizing gelucire instead of poloxamer at a similar ratio. Assessment of tail bleeding time (min) exhibited a significant (p < 0.05) prolongation for rat groups treated with F6 (24.71 ± 5.46) and F9 (30.06 ± 1.63) compared with negative control (3.43 ± 0.46) and unprocessed TC (5.78 ± 2.18). These results suggest an enhancement of TC's pharmacological activity probably due to enhanced bioavailability imparted with an enhanced dissolution rate. The study introduced controlled antisolvent precipitation as a simple tool for hastened TC's dissolution.
Collapse
Affiliation(s)
- Asmaa M Eldeeb
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Lucotti S, Ogitani Y, Kenific CM, Geri J, Kim YH, Gu J, Balaji U, Bojmar L, Shaashua L, Song Y, Cioffi M, Lauritzen P, Joseph OM, Asao T, Grandgenett PM, Hollingsworth MA, Peralta C, Pagano AE, Molina H, Lengel HB, Dunne EG, Jing X, Schmitter M, Borriello L, Miller T, Zhang H, Romin Y, Manova K, Paul D, Remmel HL, O'Reilly EM, Jarnagin WR, Kelsen D, Castellino SM, Giulino-Roth L, Jones DR, Condeelis JS, Pascual V, Bussel JB, Boudreau N, Matei I, Entenberg D, Bromberg JF, Simeone DM, Lyden D. Extracellular vesicles from the lung pro-thrombotic niche drive cancer-associated thrombosis and metastasis via integrin beta 2. Cell 2025; 188:1642-1661.e24. [PMID: 39938515 DOI: 10.1016/j.cell.2025.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/08/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
Cancer is a systemic disease with complications beyond the primary tumor site. Among them, thrombosis is the second leading cause of death in patients with certain cancers (e.g., pancreatic ductal adenocarcinoma [PDAC]) and advanced-stage disease. Here, we demonstrate that pro-thrombotic small extracellular vesicles (sEVs) are secreted by C-X-C motif chemokine 13 (CXCL13)-reprogrammed interstitial macrophages in the non-metastatic lung microenvironment of multiple cancers, a niche that we define as the pro-thrombotic niche (PTN). These sEVs package clustered integrin β2 that dimerizes with integrin αX and interacts with platelet-bound glycoprotein (GP)Ib to induce platelet aggregation. Blocking integrin β2 decreases both sEV-induced thrombosis and lung metastasis. Importantly, sEV-β2 levels are elevated in the plasma of PDAC patients prior to thrombotic events compared with patients with no history of thrombosis. We show that lung PTN establishment is a systemic consequence of cancer progression and identify sEV-β2 as a prognostic biomarker of thrombosis risk as well as a target to prevent thrombosis and metastasis.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Yusuke Ogitani
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Candia M Kenific
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Geri
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Young Hun Kim
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinghua Gu
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Uthra Balaji
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Linda Bojmar
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yi Song
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Cioffi
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Pernille Lauritzen
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Oveen M Joseph
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Tetsuhiko Asao
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Respiratory Medicine, Juntendo University, Tokyo, Japan
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Alexandra E Pagano
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Harry B Lengel
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth G Dunne
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaohong Jing
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Madeleine Schmitter
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Lucia Borriello
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Fox Chase Cancer Center, Cancer Signaling and Microenvironment Program, Philadelphia, PA, USA
| | - Thomas Miller
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yevgeniy Romin
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katia Manova
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - H Lawrence Remmel
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Atossa Therapeutics, Inc., Seattle, WA, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Kelsen
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sharon M Castellino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Lisa Giulino-Roth
- Department of Pediatrics, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - David R Jones
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John S Condeelis
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Department of Cell Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Cancer Dormancy Institute, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Virginia Pascual
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - James B Bussel
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Nancy Boudreau
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Department of Cell Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Cancer Dormancy Institute, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Jacqueline F Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Diane M Simeone
- Department of Surgery, UC San Diego Health, San Diego, CA, USA; Moores Cancer Center, UC San Diego Health, San Diego, CA, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Gao H, Huang J, Huang X, Lin X, Li X, Deng H, Zhou Y, Wu L, Xi X, Jin J, Huang J. Tryptanthrin impairs platelet function and thrombus formation by reducing Gp1bα expression. Eur J Pharmacol 2025; 991:177332. [PMID: 39900328 DOI: 10.1016/j.ejphar.2025.177332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Tryptanthrin (Couroupitine A) is isolated from indigo-bearing traditional Chinese herbal medicines. It has a broad spectrum of pharmacological and biological activities. However, the potential effects of tryptanthrin on platelet function and thrombus formation remain elusive. METHODS Platelets were harvested from C57BL/6 mice and healthy individuals. Following incubation with tryptanthrin, various platelet functions were assessed. Thrombus formation in the presence of tryptanthrin was evaluated both in vitro, using a BioFlux 200 microfluidic system, and in vivo, through FeCl3-induced thrombosis and mouse deep venous thrombosis experiments. The closure times of the tryptanthrin-treated whole blood samples were determined using the PFA-200 system. Platelet proteomics sequencing was conducted to elucidate the underlying mechanisms by which tryptanthrin influences platelet function. RESULTS Tryptanthrin inhibited mouse platelet function and impaired carotid artery and deep venous thrombus formation. Tryptanthrin also inhibited human platelet spreading, aggregation and clot retraction. The signaling pathways related to platelet activation, aggregation, hemostasis, and the fibrin clotting cascade were significantly suppressed in platelets treated with tryptanthrin. Notably, the expression of Gp1bα in platelets was diminished by tryptanthrin. CONCLUSIONS Tryptanthrin impairs platelet function and thrombus formation.
Collapse
Affiliation(s)
- Hanchen Gao
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Jian Huang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Xin Huang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Xiangjie Lin
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Xia Li
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Lanlan Wu
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Xiaodong Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Jin
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, 310003, Zhejiang Province, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China.
| | - Jiansong Huang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, 310003, Zhejiang Province, China.
| |
Collapse
|
6
|
Ranjbar J, Gibbins JM, Roe J, Roach P, Yang Y, Harper AG. A humanised thrombus-on-a-chip model utilising tissue-engineered arterial constructs: A method to reduce and replace mice used in thrombosis and haemostasis research. F1000Res 2025; 14:110. [PMID: 40191150 PMCID: PMC11971621 DOI: 10.12688/f1000research.158910.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 04/09/2025] Open
Abstract
The study of in vivo thrombus formation has principally been performed using intravital microscopy in mice and other species. These have allowed us to visualise the molecular and cellular processes that regulate thrombus formation inside the body. However current in vivo arterial thrombosis models are difficult to standardise between labs and frequently produce results that do not reliably translate successfully in human clinical trials. Here we provide a step-by-step description with accompanying video tutorials to demonstrate how to produce a 3D humanised thrombus-on-a-chip model, which uses perfusion of fluorescently-labelled human blood over a mechanically-injured human tissue engineered arterial construct (TEAC) within a 3D printed microfluidic flow chamber to replicate thrombus formation within a healthy artery. We also provide a written methodology on how to use 3D printing to produce a mechanical injury press that can reproducibly damage the TEAC as a stimulus for thrombus formation as part of a mechanical injury model. Perfusion of the uninjured TEAC with whole human blood containing DiOC6-labelled platelets without initiating notable thrombus formation. The mechanical injury press was shown to induce a reproducible puncture wound in the TEAC. Fluorescence microscopy was used to demonstrate that thrombus formation could be observed reproducibly around sites of injury. This humanised thrombosis-on-a-chip model can replace the use of animals in in vivo thrombosis models for preclinical assessment of anti-thrombotic therapies. This method also offers multiple scientific advantages: allowing new drugs to be directly tested on human blood from a diverse array of donors, facilitating use of a realistic and reproducible injury modality as well as removing the potential confounding effects of general anaesthetics in animal studies. The use of human thrombus-on-a-chip models combining TEACs offers a new methodology to reduce animal use whilst improving the predictive capabilities of preclinical trials of anti-thrombotic therapies.
Collapse
Affiliation(s)
- Jacob Ranjbar
- School of Medicine, Keele University, Keele, England, ST5 5BG, UK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular & Metabolic Research, University of Reading School of Biological Sciences, Reading, England, RG6 6EX, UK
| | - Jordan Roe
- Department of Chemistry, School of Science, Loughborough University, Loughborough, England, LE11 3TU, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Loughborough, England, LE11 3TU, UK
| | - Ying Yang
- School of Life Sciences, Keele University, Keele, England, ST5 5BG, UK
| | - Alan G.S. Harper
- School of Medicine, Keele University, Keele, England, ST5 5BG, UK
| |
Collapse
|
7
|
Lee RH, Ballard-Kordeliski A, Jones SR, Bergmeier W. Impact of antiplatelet therapy on hemostatic plug formation in the setting of thrombocytopenia. Res Pract Thromb Haemost 2025; 9:102672. [PMID: 39902096 PMCID: PMC11788864 DOI: 10.1016/j.rpth.2024.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 02/05/2025] Open
Abstract
Background Antiplatelet therapy (APT), mainly aspirin and P2Y12 receptor inhibitors, reduces the incidence of recurrent arterial thrombosis but also increases bleeding risk. Therefore, management of APT in patients with thrombocytopenia, itself an independent risk factor for bleeding, is a clinical challenge with few evidence-based guidelines. Data are lacking on the combined impact of thrombocytopenia and APT on hemostasis. Objectives To systematically investigate the combined effect of thrombocytopenia and APT in mouse models of hemostasis and thrombosis. Methods Platelet-depleted mice were repleted with donor platelets inhibited with aspirin and/or clopidogrel at low (<1 × 108/mL) or normal (>2) platelet counts. Hemostasis was assessed in the saphenous vein laser injury model, and thrombosis was assessed in the carotid artery ferric chloride model. Results In the saphenous vein laser injury model, neither single nor dual APT significantly increased bleeding compared with vehicle at platelet counts >2 × 108/mL. However, for platelet counts <1, clopidogrel prolonged the time to the first hemostatic plug, and dual APT prolonged the time to the first plug and total bleeding time compared with vehicle and aspirin treatment. In the carotid artery ferric chloride thrombosis model, clopidogrel was entirely protected against platelet-rich thrombus formation, while aspirin had minimal effect. Conclusion Our experimental data suggests that for severe thrombocytopenia, single APT provides an appropriate balance of antithrombotic effect and limited bleeding, with clopidogrel demonstrating a greater antithrombotic effect but slightly increased bleeding compared with aspirin.
Collapse
Affiliation(s)
- Robert H. Lee
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Abigail Ballard-Kordeliski
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Summer R. Jones
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Fernández-Rojas B, López-Pérez A, Lagunez-Rivera L, Solano R, Bernal-Martínez AK, Majluf-Cruz A, Hernández-Juárez J. Antiplatelet, Anticoagulant, and Fibrinolytic Activity of Orchids: A Review. Molecules 2024; 29:5706. [PMID: 39683865 PMCID: PMC11643684 DOI: 10.3390/molecules29235706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Thrombosis is the occlusion of a blood vessel and is responsible for the highest number of deaths worldwide. Its treatment comprises the use of anticoagulants, antiplatelets, and thrombolytics. Although many antithrombotic drugs are currently available, none is completely effective and safe. Plants are a valuable source of compounds with antithrombotic properties. Some orchid species have been used in traditional medicine for their antithrombotic properties. This review informs about the contribution of orchids in this field and the studies that have validated their properties.
Collapse
Affiliation(s)
- Berenice Fernández-Rojas
- Laboratorio de Nutracéuticos y Productos Naturales, Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico;
| | - Abimael López-Pérez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca 71233, Mexico; (A.L.-P.); (L.L.-R.); (R.S.); (A.K.B.-M.)
| | - Luicita Lagunez-Rivera
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca 71233, Mexico; (A.L.-P.); (L.L.-R.); (R.S.); (A.K.B.-M.)
| | - Rodolfo Solano
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca 71233, Mexico; (A.L.-P.); (L.L.-R.); (R.S.); (A.K.B.-M.)
| | - Anel Karina Bernal-Martínez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Oaxaca 71233, Mexico; (A.L.-P.); (L.L.-R.); (R.S.); (A.K.B.-M.)
| | - Abraham Majluf-Cruz
- Unidad de Investigación Médica en Trombosis, Hemostasia y Aterogénesis, Hospital General Regional No. 1 Dr. Carlos Mac Gregor Sánchez Navarro, Instituto Mexicano del Seguro Social, Mexico City 031013, Mexico;
| | - Jesús Hernández-Juárez
- CONAHCYT-Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán 71233, Oaxaca, Mexico
| |
Collapse
|
9
|
Leung HHL, Ahmadi Z, Lee B, Casey J, Ratnasingam S, McKenzie SE, Perdomo J, Chong BH. Antithrombotic efficacy and bleeding risks of vaccine-induced immune thrombotic thrombocytopenia treatments. Blood Adv 2024; 8:5744-5752. [PMID: 39293086 PMCID: PMC11599978 DOI: 10.1182/bloodadvances.2024013883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
ABSTRACT Current guidelines for treating vaccine-induced immune thrombotic thrombocytopenia (VITT) recommend nonheparin anticoagulants and IV immunoglobulin (IVIg). However, the efficacy of these treatments remains uncertain due to case studies involving small patient numbers, confounding factors (eg, concurrent treatments), and a lack of animal studies. A recent study proposed danaparoid and heparin as potential VITT therapies because of their ability to disrupt VITT IgG-platelet factor 4 (PF4) binding. Here, we examined the effects of various anticoagulants (including unfractionated [UF] heparin, danaparoid, bivalirudin, fondaparinux, and argatroban), IVIg, and the FcγRIIa receptor-blocking antibody, IV.3. Our investigation focused on VITT IgG-PF4 binding, platelet activation, thrombocytopenia, and thrombosis. Danaparoid, at therapeutic doses, was the sole anticoagulant that reduced VITT IgG-PF4 binding, verified by affinity-purified anti-PF4 VITT IgG. Although danaparoid and high-dose UF heparin (10 U/mL) inhibited platelet activation, none of the anticoagulants significantly affected thrombocytopenia in our VITT animal model and all prolonged bleeding time. IVIg and all anticoagulants except UF heparin protected the VITT mice from thrombosis. Direct FcγRIIa receptor inhibition with IV.3 antibody is an effective approach for managing both thrombosis and thrombocytopenia in the VITT mouse model. Our results underscore the necessity of animal model investigations to inform and better guide clinicians on treatment choices. This study provides compelling evidence for the development of FcγRIIa receptor blockers to prevent thrombosis in VITT and other FcγRIIa-related inflammatory disorders.
Collapse
Affiliation(s)
- Halina H. L. Leung
- Department of Haematology, St. George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Zohra Ahmadi
- Department of Haematology, St. George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Brendan Lee
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - John Casey
- Department of Haematology, Townsville University Hospital and Health Service, Townsville, QLD, Australia
| | - Sumita Ratnasingam
- Department of Haematology, University Hospital Geelong, Geelong, VIC, Australia
| | - Steven E. McKenzie
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | - Jose Perdomo
- Department of Haematology, St. George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Beng H. Chong
- Department of Haematology, St. George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, New South Wales Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
10
|
Nowicki KW, Mittal A, Hudson JS, D'Angelo MP, McDowell MM, Cao C, Mantena R, Jauhari A, Friedlander RM. Blockade of the Platelet-Driven CXCL7-CXCR1/2 Inflammatory Axis Prevents Murine Cerebral Aneurysm Formation and Rupture. Transl Stroke Res 2024:10.1007/s12975-024-01304-2. [PMID: 39499487 DOI: 10.1007/s12975-024-01304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Platelet aggregation is intimately associated with vascular inflammation and is commonly seen on routine histology studies of cerebral aneurysms. Platelets, when activated, have been shown to augment neutrophil response and the pro-inflammatory cascade. Platelet-neutrophil complexes have been found to aggravate atherosclerosis through a positive feedback loop. We hypothesized that targeting platelet aggregation and downstream inflammation could be used to prevent aneurysm formation and progression. First, we induced cerebral aneurysm formation in a previously described intracranial aneurysm model via carotid artery ligation, hypertension, and stereotactic elastase injection in C57BL/6 mice and analyzed vessels for lesion and thrombus formation. Raybiotech cytokine arrays were used to analyze 96 cytokines in induced murine aneurysms and 120 cytokines in human tissue samples. Cerebral aneurysm formation and inflammatory pathway were then studied in animals treated with IgG2 antibody (control), anti-GpIb antibody (platelet depletion), 1:10 DMSO:PBS (control), clopidogrel, anti-CXCR1/2 small molecule inhibitor, or anti-CXCL7 antibody. Bleeding assays and flow cytometry were used to evaluate platelet function in treated groups. CD31 + platelet aggregates are a common feature in human and mouse cerebral aneurysm specimens. Platelet ablation in mice prevents cerebral aneurysm formation (20% vs 100% in control antibody-treated mice, n = 5 each, p = 0.0476). Mice treated with 1 mg/kg clopidogrel develop significantly less aneurysms than controls (18% vs 73%, n = 11 and 11, respectively, p = 0.03). Semi-quantitative analysis of 96 different cytokines using Raybiotech arrays shows increased protein expression of CXCL7 in murine cerebral aneurysms when compared to controls. Treatment with clopidogrel results in reciprocal decrease in detected CXCL7. Targeting CXCL7-CXCR1/2 axis with 10 mg/kg reparixin (CXCR1/2 antagonist) significantly decreases cerebral aneurysm formation (11% vs 73%, n = 9 and 11, p = 0.0098) while treatment with 10 mg/kg SB225002 tends to decrease aneurysm formation (36% vs 73%, n = 11 vs n = 7, p = 0.11). Lastly, specific antibody blockade against CXCL7 using anti-CXCL7 antibody at 100 ug/mL significantly decreases cerebral aneurysm formation (29% vs 75%, n = 7 vs n = 8, p = 0.046). Platelet inflammation has an important role in cerebral aneurysm formation. Small molecule inhibitors targeting platelet CXCL7-CXCR1/2 inflammatory axis could be used to prevent cerebral aneurysm formation or progression.
Collapse
Affiliation(s)
- Kamil W Nowicki
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA.
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Aditya Mittal
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - Joseph S Hudson
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - Michael P D'Angelo
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael M McDowell
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - Catherine Cao
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - Rohit Mantena
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - Abhishek Jauhari
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| |
Collapse
|
11
|
Lv N, Zhai S, Xiong J, Hu N, Guo X, Liu Z, Zhang R. Enhanced-permeability delivery system for hydroxyl radical-responsive NIR-II fluorescence-monitored thrombolytic therapy. Colloids Surf B Biointerfaces 2024; 245:114193. [PMID: 39241635 DOI: 10.1016/j.colsurfb.2024.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pathological thrombus can cause serious acute diseases that present a significant threat to human health, such as myocardial infarction and stroke. Challenges remain in achieving effective thrombolysis and real-time monitoring of therapeutic effects while minimizing side effects. Herein,a multifunctional nanoplatform (TG-OPDEA@UK/MnO2-H1080) with enhanced thrombus-permeability was developed to monitor the therapeutic effect of antioxidant-thrombolysis by hydroxyl radical-responsive NIR-II fluorescence imaging. The polyzwitterion poly (oxidized N,N-Diethylaminoethyl methacrylate-co-n-butyl methacrylate) (OPDEA) was prepared as the matrix of nanoparticles to simultaneously loading urokinase (UK) and MnO2 QDs, as well as NIR-II fluorescent molecule, H-1080. Subsequently, the fibrin targeted peptide CREKA was modified on the surface of the nanoparticles. OPDEA exhibits efficient loading capacity while endowing nanoparticles with the ability to effectively increased penetration depth of UK by 94.1 % into the thrombus, for extensive thrombolysis and fluorescence monitoring. The loaded UK exhibited good thrombolytic effect and greatly reduced the risk of bleeding by 82.6 %. TG-OPDEA@UK/MnO2-H1080 showed good thrombolytic efficacy and specific thrombus monitoring in the mouse carotid artery thrombosis model induced by ferric chloride (FeCl3). This work prepares a nanoplatform for thrombolytic therapy and real-time efficacy assessment based on an independent externally forced thrombus penetration delivery strategy.
Collapse
Affiliation(s)
- Nan Lv
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Shaodong Zhai
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China.
| | - Jun Xiong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Nan Hu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xiang Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial Peoples Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
12
|
Chu HW, Chen WJ, Liu KH, Mao JY, Harroun SG, Unnikrishnan B, Lin HJ, Ma YH, Chang HT, Huang CC. Carbonization of quercetin into nanogels: a leap in anticoagulant development. J Mater Chem B 2024; 12:5391-5404. [PMID: 38716492 DOI: 10.1039/d4tb00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Quercetin, a flavonoid abundantly found in onions, fruits, and vegetables, is recognized for its pharmacological potential, especially for its anticoagulant properties that work by inhibiting thrombin and coagulation factor Xa. However, its clinical application is limited due to poor water solubility and bioavailability. To address these limitations, we engineered carbonized nanogels derived from quercetin (CNGsQur) using controlled pyrolysis and polymerization techniques. This led to substantial improvements in its anticoagulation efficacy, water solubility, and biocompatibility. We generated a range of CNGsQur by subjecting quercetin to varying pyrolytic temperatures and then assessed their anticoagulation capacities both in vitro and in vivo. Coagulation metrics, including thrombin clotting time (TCT), activated partial thromboplastin time (aPTT), and prothrombin time (PT), along with a rat tail bleeding assay, were utilized to gauge the efficacy. CNGsQur showed a pronounced extension of coagulation time compared to uncarbonized quercetin. Specifically, CNGsQur synthesized at 270 °C (CNGsQur270) exhibited the most significant enhancement in TCT, with a binding affinity to thrombin exceeding 400 times that of quercetin. Moreover, variants synthesized at 310 °C (CNGsQur310) and 290 °C (CNGsQur290) showed the most substantial delays in PT and aPTT, respectively. Our findings indicate that the degree of carbonization significantly influences the transformation of quercetin into various CNGsQur forms, each affecting distinct coagulation pathways. Additionally, both intravenous and oral administrations of CNGsQur were found to extend rat tail bleeding times by up to fivefold. Our studies also demonstrate that CNGsQur270 effectively delays and even prevents FeCl3-induced vascular occlusion in a dose-dependent manner in mice. Thus, controlled pyrolysis offers an innovative approach for generating quercetin-derived CNGs with enhanced anticoagulation properties and water solubility, revealing the potential for synthesizing self-functional carbonized nanomaterials from other flavonoids for diverse biomedical applications.
Collapse
Affiliation(s)
- Han-Wei Chu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wan-Jyun Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Ko-Hsin Liu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Scott G Harroun
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yunn-Hwa Ma
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
13
|
Baucom MR, Price AD, Weissman N, England L, Schuster RM, Pritts TA, Goodman MD. Desmopressin, Misoprostol, nor Carboprost Affect Platelet Aggregability Following Traumatic Brain Injury and Aspirin. J Surg Res 2024; 296:643-653. [PMID: 38359679 DOI: 10.1016/j.jss.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Desmopressin (DDAVP) has been utilized clinically in patients taking aspirin (ASA) to improve drug-induced platelet dysfunction. Misoprostol and carboprost, prostaglandin analogs commonly used for postpartum hemorrhage, may also induce platelet aggregation. The aim of this study was to determine the effects of DDAVP, misoprostol, and carboprost administration on platelet aggregability following traumatic brain injury (TBI) in mice treated with ASA. METHODS Male C57BL/6 mice were randomized into seven groups (n = 5 each): untouched, ASA only, Saline/TBI, ASA/TBI, ASA/TBI/DDAVP 0.4 μg/kg, ASA/TBI/misoprostol 1 mg/kg, and ASA/TBI/carboprost 100 μg/kg. TBI was induced via a weight drop model 4-h after ASA (50 mg/kg) gavage. Mice were given an intraperitoneal injection of DDAVP, misoprostol, or carboprost 10 minutes after TBI. In vivo testing was completed utilizing tail vein bleed. Mice were sacrificed 30-min posttreatment and blood was collected via cardiac puncture. Whole blood was analyzed via Multiplate impedance aggregometry, rotational thromboelastometry, and TEG6s. RESULTS Mice receiving misoprostol after ASA/TBI demonstrated decreased tail vein bleeding times compared to ASA only treated mice. However, mice treated with misoprostol following ASA and TBI demonstrated decreased platelet aggregability compared to untouched mice and TBI only mice within the arachidonic acid agonist pathway. By contrast, DDAVP and carboprost did not significantly change platelet aggregability via adenosine diphosphate or arachidonic acid following ASA and TBI. However, DDAVP did decrease the platelet contribution to clot via rotational thromboelastometry. CONCLUSIONS Reversal of medication-induced platelet inhibition has become increasingly controversial after TBI. Based on these results, DDAVP, misoprostol, nor carboprost consistently improve platelet aggregability following TBI in those also treated with ASA.
Collapse
Affiliation(s)
- Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Adam D Price
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Lisa England
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Timothy A Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
14
|
Bresette CA, Ashworth KJ, Di Paola J, Ku DN. N-Acetyl Cysteine Prevents Arterial Thrombosis in a Dose-Dependent Manner In Vitro and in Mice. Arterioscler Thromb Vasc Biol 2024; 44:e39-e53. [PMID: 38126172 DOI: 10.1161/atvbaha.123.319044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Platelet-rich thrombi occlude arteries causing fatal infarcts like heart attacks and strokes. Prevention of thrombi by current antiplatelet agents can cause major bleeding. Instead, we propose using N-acetyl cysteine (NAC) to act against the protein VWF (von Willebrand factor), and not platelets, to prevent arterial thrombi from forming. METHODS NAC was assessed for its ability to prevent arterial thrombosis by measuring platelet accumulation rate and occlusion time using a microfluidic model of arterial thrombosis with human blood. Acute clot formation, clot stability, and tail bleeding were measured in vivo with the murine modified Folts model. The effect of NAC in the murine model after 6 hours was also measured to determine any persistent effects of NAC after it has been cleared from the blood. RESULTS We demonstrate reduction of thrombi formation following treatment with NAC in vitro and in vivo. Human whole blood treated with 3 or 5 mmol/L NAC showed delayed thrombus formation 2.0× and 3.7× longer than control, respectively (P<0.001). Blood treated with 10 mmol/L NAC did not form an occlusive clot, and no macroscopic platelet aggregation was visible (P<0.001). In vivo, a 400-mg/kg dose of NAC prevented occlusive clots from forming in mice without significantly affecting tail bleeding times. A lower dose of NAC significantly reduced clot stability. Mice given multiple injections showed that NAC has a lasting and cumulative effect on clot stability, even after being cleared from the blood (P<0.001). CONCLUSIONS Both preclinical models demonstrate that NAC prevents thrombus formation in a dose-dependent manner without significantly affecting bleeding time. This work highlights a new pathway for preventing arterial thrombosis, different from antiplatelet agents, using an amino acid derivative as an antithrombotic therapeutic.
Collapse
Affiliation(s)
- Christopher A Bresette
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (C.A.B., D.N.K.)
| | - Katrina J Ashworth
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine in St. Louis, MO (K.J.A., J.D.P.)
| | - Jorge Di Paola
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine in St. Louis, MO (K.J.A., J.D.P.)
| | - David N Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (C.A.B., D.N.K.)
| |
Collapse
|
15
|
Deng J, Xiong L, Ding Y, Cai Y, Chen Z, Fan F, Luo S, Hu Y. Platelet RNA sequencing reveals profile of caffeic acid affecting hemostasis in mice. Res Pract Thromb Haemost 2024; 8:102349. [PMID: 38496710 PMCID: PMC10943058 DOI: 10.1016/j.rpth.2024.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Background Caffeic acid (CA) is a naturally occurring phenolic compound with diverse pharmacologic properties. CA plays a crucial role in hemostasis by increasing platelet count. However, the mechanism by which CA regulates platelets to promote hemostasis remains unclear. Objectives We aim to identify the potential target pathways and genes by which CA regulates platelets to promote hemostasis. Methods We performed RNA sequencing (RNA-seq) analysis of mouse platelet pools in both the CA-gavaged group and phosphate-buffered saline-gavaged group. Results The 12,934 expressed transcripts had been annotated after platelet RNA-seq. Compared with the phosphate-buffered saline group, 987 differentially expressed genes (DEGs) were identified, of which 466 were downregulated and 521 were upregulated in CA group. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Reactome gene set enrichment analysis demonstrated that upregulated DEGs were enriched in the pathways of hemostasis, platelet activation, signaling, aggregation, and degranulation. Moreover, Kyoto Encyclopedia of Genes and Genomes and Reactome gene set enrichment analysis revealed that 5 of the 25 cosignificantly upregulated DEGs were essential in CA-mediated platelet regulation to promote hemostasis. Conclusion Our findings of platelet RNA-seq analysis demonstrate that CA regulates the gene expression of hemostasis and platelet activation-related pathways to increase platelet count and promote hemostasis. It will also provide reference molecular resources for future research on the function and mechanism by which CA regulates platelets to promote hemostasis.
Collapse
Affiliation(s)
- Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lv Xiong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Ding
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohua Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaolin Chen
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Priya V, Samridhi, Singh N, Dash D, Muthu MS. Nattokinase Encapsulated Nanomedicine for Targeted Thrombolysis: Development, Improved in Vivo Thrombolytic Effects, and Ultrasound/Photoacoustic Imaging. Mol Pharm 2024; 21:283-302. [PMID: 38126777 DOI: 10.1021/acs.molpharmaceut.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Nattokinase (NK), a potent thrombolytic enzyme that dissolves blood clots, is highly used in the treatment of cardiovascular disorders. However, its effective delivery remains demanding because of stability and bioavailability problems owing to its high molecular weight and proteineous nature. In this research, we have developed novel NK-loaded nontargeted liposomes (NK-LS) and targeted liposomes (RGD-NK-LS and AM-NK-LS) by the reverse phase evaporation method. The physiochemical characterizations (particle size, polydispersity index, zeta potential, and morphology) were performed by a Zetasizer, SEM, TEM, and AFM. The Bradford assay and XPS analysis confirmed the successful surface conjugation of the targeting ligands. Platelet interaction studies by CLSM, photon imager optima, and flow cytometry showed significantly higher (P < 0.05) platelet binding affinity of targeted liposomes. In vitro evaluations were performed using human blood and a fibrinolysis study by CLSM imaging demonstrating the potent antithrombotic efficacy of AM-NK-LS. Furthermore, bleeding and clotting time studies revealed that the targeted liposomes were free from any bleeding complications. Moreover, the in vivo FeCl3 model on Sprague-Dawley (SD) rats using a Doppler flow meter and ultrasound/photoacoustic imaging indicated the increased % thrombolysis and potent affinity of targeted liposomes toward the thrombus site. Additionally, in vitro hemocompatibility and histopathology studies demonstrated the safety and biocompatibility of the nanoformulations.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| | - Samridhi
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| | - Nitesh Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| |
Collapse
|
17
|
Ye Y, Yang L, Leng M, Wang Q, Wu J, Wan W, Wang H, Li L, Peng Y, Chai S, Meng Z. Luteolin inhibits GPVI-mediated platelet activation, oxidative stress, and thrombosis. Front Pharmacol 2023; 14:1255069. [PMID: 38026984 PMCID: PMC10644720 DOI: 10.3389/fphar.2023.1255069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Luteolin inhibits platelet activation and thrombus formation, but the mechanisms are unclear. This study investigated the effects of luteolin on GPVI-mediated platelet activation in vitro and explored the effect of luteolin on thrombosis, coagulation, and platelet production in vivo. Methods: Washed human platelets were used for aggregation, membrane protein expression, ATP, Ca2+, and LDH release, platelet adhesion/spreading, and clot retraction experiments. Washed human platelets were used to detect collagen and convulxin-induced reactive oxygen species production and endogenous antioxidant effects. C57BL/6 male mice were used for ferric chloride-induced mesenteric thrombosis, collagen-epinephrine induced acute pulmonary embolism, tail bleeding, coagulation function, and luteolin toxicity experiments. The interaction between luteolin and GPVI was analyzed using solid phase binding assay and surface plasmon resonance (SPR). Results: Luteolin inhibited collagen- and convulxin-mediated platelet aggregation, adhesion, and release. Luteolin inhibited collagen- and convulxin-induced platelet ROS production and increased platelet endogenous antioxidant capacity. Luteolin reduced convulxin-induced activation of ITAM and MAPK signaling molecules. Molecular docking simulation showed that luteolin forms hydrogen bonds with GPVI. The solid phase binding assay showed that luteolin inhibited the interaction between collagen and GPVI. Surface plasmon resonance showed that luteolin bonded GPVI. Luteolin inhibited integrin αIIbβ3-mediated platelet activation. Luteolin inhibited mesenteric artery thrombosis and collagen- adrenergic-induced pulmonary thrombosis in mice. Luteolin decreased oxidative stress in vivo. Luteolin did not affect coagulation, hemostasis, or platelet production in mice. Discussion: Luteolin may be an effective and safe antiplatelet agent target for GPVI. A new mechanism (decreased oxidative stress) for the anti-platelet activity of luteolin has been identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
18
|
Liu KT, Quiñones ED, Liu MH, Lin CW, Chen YT, Chiang CC, Wu KCW, Fan YJ, Chuang EY, Yu J. A Biomimicking and Multiarm Self-Indicating Nanoassembly for Site-Specific Photothermal-Potentiated Thrombolysis Assessed in Microfluidic and In Vivo Models. Adv Healthc Mater 2023; 12:e2300682. [PMID: 37289540 DOI: 10.1002/adhm.202300682] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Thrombolytic and antithrombotic therapies are limited by short circulation time and the risk of off-target hemorrhage. Integrating a thrombus-homing strategy with photothermal therapy are proposed to address these limitations. Using glycol chitosan, polypyrrole, iron oxide and heparin, biomimicking GCPIH nanoparticles are developed for targeted thrombus delivery and thrombolysis. The nanoassembly achieves precise delivery of polypyrrole, exhibiting biocompatibility, selective accumulation at multiple thrombus sites, and enhanced thrombolysis through photothermal activation. To simulate targeted thrombolysis, a microfluidic model predicting thrombolysis dynamics in realistic pathological scenarios is designed. Human blood assessments validate the precise homing of GCPIH nanoparticles to activated thrombus microenvironments. Efficient near-infrared phototherapeutic effects are demonstrated at thrombus lesions under physiological flow conditions ex vivo. The combined investigations provide compelling evidence supporting the potential of GCPIH nanoparticles for effective thrombus therapy. The microfluidic model also offers a platform for advanced thrombolytic nanomedicine development.
Collapse
Affiliation(s)
- Kuan-Ting Liu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Edgar Daniel Quiñones
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ming-Hsin Liu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Che-Wei Lin
- School of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kevin Chia-Wen Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Center for Precision Health and Quantitative Sciences, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Er-Yuan Chuang
- School of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
19
|
Gong J, Yang R, Zhou M, Chang LJ. Improved intravenous lentiviral gene therapy based on endothelial-specific promoter-driven factor VIII expression for hemophilia A. Mol Med 2023; 29:74. [PMID: 37308845 DOI: 10.1186/s10020-023-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Hemophilia A (HA) is an X-linked monogenic disorder caused by deficiency of the factor VIII (FVIII) gene in the intrinsic coagulation cascade. The current protein replacement therapy (PRT) of HA has many limitations including short term effectiveness, high cost, and life-time treatment requirement. Gene therapy has become a promising treatment for HA. Orthotopic functional FVIII biosynthesis is critical to its coagulation activities. METHODS To investigate targeted FVIII expression, we developed a series of advanced lentiviral vectors (LVs) carrying either a universal promoter (EF1α) or a variety of tissue-specific promoters, including endothelial-specific (VEC), endothelial and epithelial-specific (KDR), and megakaryocyte-specific (Gp and ITGA) promoters. RESULTS To examine tissue specificity, the expression of a B-domain deleted human F8 (F8BDD) gene was tested in human endothelial and megakaryocytic cell lines. Functional assays demonstrated FVIII activities of LV-VEC-F8BDD and LV-ITGA-F8BDD in the therapeutic range in transduced endothelial and megakaryocytic cells, respectively. In F8 knockout mice (F8 KO mice, F8null mice), intravenous (iv) injection of LVs illustrated different degrees of phenotypic correction as well as anti-FVIII immune response for the different vectors. The iv delivery of LV-VEC-F8BDD and LV-Gp-F8BDD achieved 80% and 15% therapeutic FVIII activities over 180 days, respectively. Different from the other LV constructs, the LV-VEC-F8BDD displayed a low FVIII inhibitory response in the treated F8null mice. CONCLUSIONS The LV-VEC-F8BDD exhibited high LV packaging and delivery efficiencies, with endothelial specificity and low immunogenicity in the F8null mice, thus has a great potential for clinical applications.
Collapse
Affiliation(s)
- Jie Gong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Zhou
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Shenzhen Geno-Immune Medical Institute, 6 Yuexing 2nd Rd., 2nd Floor, Nanshan Dist., Shenzhen, 518057, Guangdong Province, China.
| |
Collapse
|
20
|
Sloos PH, Maas MAW, Meijers JCM, Nieuwland R, Roelofs JJTH, Juffermans NP, Kleinveld DJB. Anti-high-mobility group box-1 treatment strategies improve trauma-induced coagulopathy in a mouse model of trauma and shock. Br J Anaesth 2023; 130:687-697. [PMID: 36967283 DOI: 10.1016/j.bja.2023.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Trauma-induced coagulopathy is associated with platelet dysfunction and contributes to early mortality after traumatic injury. Plasma concentrations of the damage molecule high-mobility group box-1 (HMGB-1) increase after trauma, which may contribute to platelet dysfunction. We hypothesised that inhibition of HMGB-1 with a monoclonal antibody (mAb) or with recombinant thrombomodulin (rTM) improves trauma-induced coagulopathy in a murine model of trauma and shock. METHODS Male 129S2/SvPasOrlRJ mice were anaesthetised, mechanically ventilated, and randomised into five groups: (i) ventilation control (VENT), (ii) trauma/shock (TS), (iii) TS+anti-HMGB-1 mAb (TS+AB), (iv) TS+rTM (TS+TM), and (v) TS+anti-HMGB-1 mAb+rTM (TS+COMBI). Primary outcome was rotational thromboelastometry EXTEM. Secondary outcomes included tail bleeding time, platelet count, plasma HMGB-1 concentration, and platelet activation. RESULTS Trauma and shock resulted in a hypocoagulable thromboelastometry profile, increased plasma HMGB-1, and increased platelet activation markers. TS+AB was associated with improved clot firmness after 5 min compared with TS (34 [33-37] vs 32 [29-34] mm; P=0.043). TS+COMBI was associated with decreased clot formation time (98 [92-125] vs 122 [111-148] s; P=0.018) and increased alpha angle (77 [72-78] vs 69 [64-71] degrees; P=0.003) compared with TS. TS+COMBI also reduced tail bleeding time compared with TS (P=0.007). The TS+TM and TS+COMBI groups had higher platelet counts compared with TS (P=0.044 and P=0.041, respectively). CONCLUSIONS Inhibition of HMGB-1 early after trauma in a mouse model improves clot formation and strength, preserves platelet count, and decreases bleeding time.
Collapse
Affiliation(s)
- Pieter H Sloos
- Amsterdam UMC Location University of Amsterdam, Department of Intensive Care Medicine, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam, the Netherlands
| | - M Adrie W Maas
- Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam, the Netherlands
| | - Joost C M Meijers
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands; Sanquin Research, Department of Molecular Hematology, Amsterdam, the Netherlands
| | - Rienk Nieuwland
- Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Clinical Chemistry, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands
| | - Joris J T H Roelofs
- Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Nicole P Juffermans
- Amsterdam UMC Location University of Amsterdam, Department of Intensive Care Medicine, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam, the Netherlands; Onze Lieve Vrouwe Gasthuis, Department of Intensive Care Medicine, Amsterdam, the Netherlands
| | - Derek J B Kleinveld
- Amsterdam UMC Location University of Amsterdam, Department of Intensive Care Medicine, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam, the Netherlands; Erasmus MC, Department of Anesthesiology, Rotterdam, the Netherlands.
| |
Collapse
|
21
|
Kawano T, Hisada Y, Grover SP, Schug WJ, Paul DS, Bergmeier W, Mackman N. Decreased Platelet Reactivity and Function in a Mouse Model of Human Pancreatic Cancer. Thromb Haemost 2023; 123:501-509. [PMID: 36716775 PMCID: PMC10820933 DOI: 10.1055/s-0043-1761419] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cancer patients have increased thrombosis and bleeding compared with the general population. Cancer is associated with activation of both platelets and coagulation. Mouse models have been used to study the dysregulation of platelets and coagulation in cancer. We established a mouse model of pancreatic cancer in which tissue factor-expressing human pancreatic tumors (BxPC-3) are grown in nude mice. Tumor-bearing mice have an activated coagulation system and increased venous thrombosis compared to control mice. We also showed that tumor-derived, tissue factor-positive extracellular vesicles activated platelets ex vivo and in vivo. In this study, we determined the effect of tumors on a platelet-dependent arterial thrombosis model. Unexpectedly, we observed significantly reduced carotid artery thrombosis in tumor-bearing mice compared to controls. In addition, we observed significantly increased tail bleeding in tumor-bearing mice compared to controls. These results suggested that the presence of the tumor affected platelets. Indeed, tumor-bearing mice exhibited a significant decrease in platelet count and an increase in mean platelet volume and percentage of reticulated platelets, findings that are consistent with increased platelet turnover. Levels of the platelet activation marker platelet factor 4 were also increased in tumor-bearing mice. We also observed decreased platelet receptor expression in tumor-bearing mice and reduced levels of active αIIb/β3 integrin in response to PAR4 agonist peptide and convulxin in platelets from tumor-bearing mice compared with platelets from control mice. In summary, our study suggests that in tumor-bearing mice there is chronic platelet activation, leading to thrombocytopenia, decreased receptor expression, and impaired platelet adhesive function.
Collapse
Affiliation(s)
- Tomohiro Kawano
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Yohei Hisada
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Steven P. Grover
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Wyatt J. Schug
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - David S. Paul
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
22
|
Wang Y, Jian C, Long Y, Xu X, Song Y, Yin Z. H 2O 2-triggered "off/on signal" nanoparticles target P-selectin for the non-invasive and contrast-enhanced theranostics for arterial thrombosis. Acta Biomater 2023; 158:769-781. [PMID: 36565786 DOI: 10.1016/j.actbio.2022.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Pathological coagulation within an injured artery and the subsequent cardiovascular complications, such as stroke and heart attack, greatly threaten human life. Inspired by the biochemical features of acute arterial thrombosis, such as abundant activated platelets and hydrogen peroxide (H2O2), we constructed platelet-targeted theranostic nanoparticles (CyBA/PFM NPs) with H2O2-triggered photoacoustic contrast enhancement and antithrombotic capabilities. CyBA/PFM NPs were designed to target platelet-rich clots via fucoidan segment within the carrier, which could be activated by H2O2 to produce fluorescent "CyOH" molecules, thus turning on the photoacoustic signal. CyBA/PFM NPs showed obvious amplification of fluorescence following incubation with fresh clots, exhibiting efficient scavenging ability of intracellular reactive oxygen species (ROS). In a FeCl3-induced mouse model of carotid thrombosis, CyBA/PFM NPs significantly amplified the photoacoustic contrast in thrombogenic tissues, effectively eliminated ROS within the occlusion site, and suppressed the thrombus formation, accompanied by a normalization of the soluble CD40L level. Given their accurate imaging potential, potent antithrombotic activities and acceptable biosafety, CyBA/PFM NPs hold strong potential as nanoscale theranostics for H2O2-correlated cardiovascular diseases. STATEMENT OF SIGNIFICANCE: In this study, we developed a platelet-targeted and H2O2-triggered nanosystem self-assembled from phenylboronated fucoidan/maltodextrin polymers and responsive near-infrared probes. The fucoidan segment within the carrier could facilitate the specific delivery of the therapeutic polymers and probes to the platelet-rich arterial thrombus. In a mouse model of FeCl3-induced arterial thrombosis, the system could be activated by H2O2 to produce fluorescent "CyOH" molecules, thus turning on the photoacoustic signal and specifically imaging thrombosed tissues. Besides, CyBA/PFM NPs significantly effectively eliminated ROS within the occlusion site and suppressed the thrombus formation. Given their theranostic potential and acceptable biosafety, this system has great potential for H2O2-correlated cardiovascular diseases.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Chuanjiang Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yiqing Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaowen Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yang Song
- Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Kuszynski DS, Christian BD, Bernard MP, Lauver DA. Evaluation of the Efficacy and Safety of Antiplatelet Therapeutics in Rabbits. Curr Protoc 2023; 3:e711. [PMID: 36921209 DOI: 10.1002/cpz1.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Hemostasis is a multifactorial process that involves vasoconstriction of blood vessels, activation of the coagulation cascade, and platelet aggregation. Inappropriate activation of hemostatic processes can result in thrombosis and tissue ischemia. In patients at risk for thrombotic events, antiplatelet therapeutic agents inhibit platelet activation, thereby reducing the incidence of pathologic clot formation. Platelets are activated by several endogenous chemical mediators, including adenosine diphosphate, thrombin, and thromboxane. These activation pathways serve as attractive drug targets. The protocols described in this article are designed to evaluate the preclinical efficacy and safety of novel antiplatelet therapeutics in rabbits. Here, we provide two protocols for blood collection, two for determining platelet activation, and one for assessing bleeding safety. Together, these protocols can be used to characterize the efficacy and safety of antiplatelet agents for hemostasis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Blood collection via the central ear artery Alternative Protocol 1: Blood collection via the jugular vein Basic Protocol 2: Platelet aggregation assessment via light transmission aggregometry Alternative Protocol 2: Platelet activation assessment via flow cytometry Basic Protocol 3: Determination of tongue bleeding time.
Collapse
Affiliation(s)
- Dawn S Kuszynski
- Therapeutic Systems Research Laboratories, Inc., Ann Arbor, Michigan
| | - Barbara D Christian
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Matthew P Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - D Adam Lauver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
24
|
Plasminogen activator inhibitor 1 is not a major causative factor for exacerbation in a mouse model of SARS-CoV-2 infection. Sci Rep 2023; 13:3103. [PMID: 36813909 PMCID: PMC9944779 DOI: 10.1038/s41598-023-30305-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global pandemic. Although several vaccines targeting SARS-CoV-2 spike proteins protect against COVID-19 infection, mutations affecting virus transmissibility and immune evasion potential have reduced their efficacy, leading to the need for a more efficient strategy. Available clinical evidence regarding COVID-19 suggests that endothelial dysfunction with thrombosis is a central pathogenesis of progression to systemic disease, in which overexpression of plasminogen activator inhibitor-1 (PAI-1) may be important. Here we developed a novel peptide vaccine against PAI-1 and evaluated its effect on lipopolysaccharide (LPS)-induced sepsis and SARS-CoV-2 infection in mice. Administration of LPS and mouse-adapted SARS-CoV-2 increased serum PAI-1 levels, although the latter showed smaller levels. In an LPS-induced sepsis model, mice immunized with PAI-1 vaccine showed reduced organ damage and microvascular thrombosis and improved survival compared with vehicle-treated mice. In plasma clot lysis assays, vaccination-induced serum IgG antibodies were fibrinolytic. However, in a SARS-CoV-2 infection model, survival and symptom severity (i.e., body weight reduction) did not differ between vaccine- and vehicle-treated groups. These results indicate that although PAI-1 may promote the severity of sepsis by increasing thrombus formation, it might not be a major contributor to COVID-19 exacerbation.
Collapse
|
25
|
Goeritzer M, Kuentzel KB, Beck S, Korbelius M, Rainer S, Bradić I, Kolb D, Mussbacher M, Schrottmaier WC, Assinger A, Schlagenhauf A, Rost R, Gottschalk B, Eichmann TO, Züllig T, Graier WF, Vujić N, Kratky D. Monoglyceride Lipase Deficiency Is Associated with Altered Thrombogenesis in Mice. Int J Mol Sci 2023; 24:3116. [PMID: 36834530 PMCID: PMC9958834 DOI: 10.3390/ijms24043116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Katharina B. Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1190 Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria
| | | | - Alice Assinger
- Core Facility Ultrastructural Analysis, Medical University of Graz, 8010 Graz, Austria
| | - Axel Schlagenhauf
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, 8010 Graz, Austria
| | - René Rost
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Thomas O. Eichmann
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, 8010 Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
26
|
Priya V, Singh SK, Revand R, Kumar S, Mehata AK, Sushmitha P, Mahto SK, Muthu MS. GPIIb/IIIa Receptor Targeted Rutin Loaded Liposomes for Site-Specific Antithrombotic Effect. Mol Pharm 2023; 20:663-679. [PMID: 36413707 DOI: 10.1021/acs.molpharmaceut.2c00848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rutin (RUT) is a flavonoid obtained from a natural source and is reported for antithrombotic potential, but its delivery remains challenging because of its poor solubility and bioavailability. In this research, we have fabricated novel rutin loaded liposomes (RUT-LIPO, nontargeted), liposomes conjugated with RGD peptide (RGD-RUT-LIPO, targeted), and abciximab (ABX-RUT-LIPO, targeted) by ethanol injection method. The particle size, ζ potential, and morphology of prepared liposomes were analyzed by using DLS, SEM, and TEM techniques. The conjugation of targeting moiety on the surface of targeted liposomes was confirmed by XPS analysis and Bradford assay. In vitro assessment such as blood clot assay, aPTT assay, PT assay, and platelet aggregation analysis was performed using human blood which showed the superior antithrombotic potential of ABX-RUT-LIPO and RGD-RUT-LIPO liposomes. The clot targeting efficiency was evaluated by in vitro imaging and confocal laser scanning microscopy. A significant (P < 0.05) rise in the affinity of targeted liposomes toward activated platelets was demonstrated that revealed their remarkable potential in inhibiting thrombus formation. Furthermore, an in vivo study executed on Sprague Dawley rats (FeCl3 model) demonstrated improved antithrombotic activity of RGD-RUT-LIPO and ABX-RUT-LIPO compared with pure drug. The pharmacokinetic study performed on rats demonstrates the increase in bioavailability when administered as liposomal formulation as compared to RUT. Moreover, the tail bleeding assay and clotting time study (Swiss Albino mice) indicated a better antithrombotic efficacy of targeted liposomes than control preparations. Additionally, biocompatibility of liposomal formulations was determined by an in vitro hemolysis study and cytotoxicity assay, which showed that they were hemocompatible and safe for human use. A histopathology study on rats suggested no severe toxicity of prepared liposomal formulations. Thus, RUT encapsulated nontargeted and targeted liposomes exhibited superior antithrombotic potential over RUT and could be used as a promising carrier for future use.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi221005, UP, India
| | - Sanjeev K Singh
- Department of Physiology, IMS, Banaras Hindu University, Varanasi221005, India
| | - Ravindran Revand
- Department of Physiology, IMS, Banaras Hindu University, Varanasi221005, India
| | - Sandip Kumar
- Department of Pathology, IMS, Banaras Hindu University, Varanasi221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi221005, UP, India
| | - Paulraj Sushmitha
- School of Biomedical Engineering, IIT (BHU), Varanasi221005, UPIndia
| | | | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi221005, UP, India
| |
Collapse
|
27
|
Yousif Al-Fatlawi AC. Evaluation of the effects of mobile phone electromagnetic radiation on some physiological parameters and histological structure in some laboratory male mice organs. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recently, the researcher has shown great interest in Electromagnetic radiation released from different devices such as TV, microwaves, medical apparatus, and satellites because of its effect on animals' growth and health. Exposure to "EMR" from mobiles phone can cause adverse effects on different cell functions. This study aimed to evaluate the effects of these radiations on histological and some blood parameters. The present study used 20 mice divided into two groups, the first one contains five animals as control, and the second experiment group contains 15 animals. EMR exposed from mobile for 12 h\day for one month. Histological examination of lungs, hearts and spleen showed a dramatic effect in these organs, such as necrosis, congestion, infiltrations, edema, splitting of muscle bundles and degenerations. This study shows that radiation from mobile phones contributes to histological changes in various visceral organs. Blood parameters showed a significant increase in platelets, bleeding and clotting time compared to the control group. The effect of EMR (Electromagnetic Radiation) on histology related to free radicals, increased lipid peroxidation in the cell membrane, and change in electrolyte concentration. An increase in platelets, bleeding and clotting time can also affect the rise in body temperature, ions and stimulations of stem cell divisions.
Keywords: electromagnetic radiations, mice, physiology, histology, mobile phone.
Collapse
|
28
|
Chen D, Liu Y, Liu P, Zhou Y, Jiang L, Yuan C, Huang M. Orally delivered rutin in lipid-based nano-formulation exerts strong antithrombotic effects by protein disulfide isomerase inhibition. Drug Deliv 2022; 29:1824-1835. [PMID: 35674505 PMCID: PMC9186361 DOI: 10.1080/10717544.2022.2083726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Thrombosis occurs in both macrovasculature and microvasculature, causing various cardio-cerebral vascular diseases. The lack of effective and safe antithrombotic drugs leads to a public health crisis. Mounting evidence suggests that protein disulfide isomerase (PDI) plays a critical role in the initial stage of thrombus formation, motivating the research of the feasibility of PDI inhibitors as novel anti-thrombotics. Rutin, one of the most potent PDI inhibitors, was reported to suppress platelet aggregation and thrombosis in animal models, but further studies and clinical translation were restricted due to its low aqueous solubility and oral bioavailability. In this work, we fabricated rutin-loaded lipid-based nano-formulation (NanoR) and characterized their physical-chemical properties, release profiles, pharmacokinetic process, and pharmacodynamic function against thrombosis in macrovessels and microvessels. NanoR provided increased solubility and dissolution of rutin to achieve earlier Tmax and higher Cmax than the sodium salt of rutin (NaR) after oral gavage. Ex vivo studies demonstrated that NanoR significantly inhibited thrombin generation and clot formation in the plasma of mice. Importantly, such effect was reversed by exogenous recombinant PDI, demonstrating the specificity of the NanoR. In direct current-induced arterial thrombosis model and ferric chloride-induced microvascular thrombosis model, NanoR exhibited greatly enhanced antithrombotic activity compared with NaR. NanoR also showed good safety performance according to tail bleeding assay, global coagulation tests, and histological analysis. Overall, our current results indicated that NanoR offers a promising antithrombotic treatment with potential for clinical translation.
Collapse
Affiliation(s)
- Dan Chen
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Yurong Liu
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Peiwen Liu
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Yang Zhou
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Longguang Jiang
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Mingdong Huang
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| |
Collapse
|
29
|
Budi HS, Elsayed Ramadan D, Anitasari S, Widya Pangestika E. Estimation of Platelet Count and Bleeding Time of Mice Treated with Musa paradisiaca var. sapientum (L.) Kuntze Extract. J Exp Pharmacol 2022; 14:301-308. [PMID: 36321066 PMCID: PMC9618238 DOI: 10.2147/jep.s358105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Objective The aim of this study was to estimate the platelet count and bleeding time on peripheral blood smear of mice tail wound using Musa paradisiaca var. sapientum (L.) Kuntze (ambonese banana stem extract). Design Randomized post-test-only control group design. Materials and Methods Twenty-four male mice (Mus Musculus) were randomly divided into 4 groups. A negative control group was treated with carboxymethyl cellulose (CMC), a positive control group (K+) treated aspirin 100 mg/kg body weight, group P1 treated with aspirin 100 mg/kg body weight and tranexamic acid 50 mg/kg body weight, and group P2 treated with 30% of ambonese banana stem extract (ABSE). The mean and standard deviation data of platelet counts and bleeding time were analyzed by one-way ANOVA statistical software. Results and Discussion Tranexamic acid had no significant effect on platelets count compared to CMC group (p = 0.871), but administration of aspirin resulted in low platelets count significantly (p = 0.003). The platelet counts of ABSE and CMC groups were not significant different (p = 0.937). Aspirin has significantly shown prolonged bleeding time than CMC, tranexamic acid, and ABSE groups. However, there was no difference between the tranexamic acid and ABSE groups (p=0.934). The bleeding time of tranexamic acid and ABSE groups was similar, although the platelet count in the ABSE group was lower than in the CMC group. Conclusion This study proved that ambonese banana stem extract has a potency to shorten the bleeding time in mice tail wound without interfering to platelet count.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia,Correspondence: Hendrik Setia Budi, Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia, Tel/Fax +62315020255, Email
| | - Doaa Elsayed Ramadan
- Doctoral Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia,Directorate of Damietta Health Affairs, Ministry of Health and Population, Cairo, Egypt
| | - Silvia Anitasari
- Department of Dental Material and Devices, Dentistry Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, Indonesia,School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Elza Widya Pangestika
- Undergraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
30
|
Huang Y, Jiang J, Ren J, Guo Y, Zhao Q, Zhou J, Li Y, Chen R. A Fibrinogen-Mimicking, Activated-Platelet-Sensitive Nanocoacervate Enhances Thrombus Targeting and Penetration of Tissue Plasminogen Activator for Effective Thrombolytic Therapy. Adv Healthc Mater 2022; 11:e2201265. [PMID: 35864062 PMCID: PMC11468879 DOI: 10.1002/adhm.202201265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Indexed: 01/27/2023]
Abstract
The development of a fibrinolytic system with long circulation time, high thrombus targeting, efficient thrombus penetration, effective thrombolysis, and minimal hemorrhagic risk remains a major challenge. Herein, inspired by fibrinogen binding to activated platelets in thrombosis, this article reports a fibrinogen-mimicking, activated-platelet-sensitive nanocoacervate to enhance thrombus penetration of tissue plasminogen activator (tPA) for targeted thrombolytic therapy. This biomimetic nanothrombolytic system, denoted as RGD-Chi@tPA, is constructed by "one-pot" coacervation through electrostatic interactions between positively charged arginine-glycine-aspartic acid (RGD)-grafted chitosan (RGD-Chi) and negatively charged tPA. Flow cytometry and confocal laser scanning microscopy measurements show targeting of RGD-Chi@tPA to activated platelets. Controlled tPA release triggered by activated platelets at a thrombus site is demonstrated. Its targeted fibrinolytic and thrombolytic activities are measured in in vitro models. The pharmacokinetic profiles show that RGD-Chi@tPA can significantly prolong circulation time compared to free tPA. In a mouse tail thrombus model, RGD-Chi@tPA displays efficient thrombus targeting and penetration, enabling a complete vascular recanalization as confirmed by the fluorescence imaging, histochemical assay, and laser speckle contrast imager. Consequently, RGD-Chi@tPA induces a substantial enhancement in thrombolysis with minimal hemorrhagic risk compared to free tPA. This simple, effective, and safe platform holds great promise for the development of thrombolytic nanomedicines.
Collapse
Affiliation(s)
- Yu Huang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, P. R. China
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jingxuan Jiang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Jie Ren
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Yuanyuan Guo
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Qianqian Zhao
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Jia Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
31
|
Abstract
The mammalian hemostatic system is highly conserved, and companion exotic mammals are commonly used as biomedical models for normal and disordered hemostasis. Challenges associated with sample collection, test validation, and test interpretation have limited the use of these tests in clinical exotic animal practice. However, evaluation of platelet counts, coagulation screening times, and fibrin(ogen) degradation products can be valuable for monitoring exotic patients with a range of disease presentations including intoxications, anemia, systemic viral disease, hepatopathy, and endocrinopathy.
Collapse
Affiliation(s)
- Sarrah Kaye
- Staten Island Zoo, 614 Broadway, Staten Island, NY 10310, USA.
| | - Tracy Stokol
- Cornell University, Upper Tower Road, Ithaca, NY 14853-6401, USA
| |
Collapse
|
32
|
Yegappan R, Lauko J, Wang Z, Lavin MF, Kijas AW, Rowan AE. Snake Venom Hydrogels as a Rapid Hemostatic Agent for Uncontrolled Bleeding. Adv Healthc Mater 2022; 11:e2200574. [PMID: 35652565 PMCID: PMC11469059 DOI: 10.1002/adhm.202200574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Uncontrolled bleeding from traumatic injury remains the leading cause of preventable death with loss of balance between blood clotting (coagulation) and blood clot breakdown (fibrinolysis). A major limitation of existing hemostatic agents is that they require a functioning clotting system to control the bleeding and are largely based on gauze delivery scaffolds. Herein, a novel rapid wound sealant, composed of two recombinant snake venom proteins, the procoagulant ecarin, to rapidly initiate blood clotting and the antifibrinolytic textilinin, to prevent blood clot breakdown within a synthetic thermoresponsive hydrogel scaffold is developed. In vitro, it is demonstrated that clotting is rapidly initiated with only nanomolar concentrations of venom protein and clot breakdown is effectively inhibited by textilinin. A stable clot is formed within 60 s compared to normal clot formation in 8 min. In vivo studies reveal that the snake venom hydrogel rapidly controls warfarin-induced bleeding, reducing the bleed volume from 48% to 12% and has demonstrated immune compatibility. A new class of hemostatic agents that achieve formation of rapid and stable blood clots even in the presence of blood thinners is demonstrated here.
Collapse
Affiliation(s)
- Ramanathan Yegappan
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Zhao Wang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Martin F. Lavin
- University of Queensland Centre for Clinical ResearchThe University of QueenslandHerstonQLD4029Australia
| | - Amanda W. Kijas
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Alan E. Rowan
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| |
Collapse
|
33
|
Ke W, Chandler M, Cedrone E, Saito RF, Rangel MC, de Souza Junqueira M, Wang J, Shi D, Truong N, Richardson M, Rolband LA, Dréau D, Bedocs P, Chammas R, Dokholyan NV, Dobrovolskaia MA, Afonin KA. Locking and Unlocking Thrombin Function Using Immunoquiescent Nucleic Acid Nanoparticles with Regulated Retention In Vivo. NANO LETTERS 2022; 22:5961-5972. [PMID: 35786891 PMCID: PMC9511123 DOI: 10.1021/acs.nanolett.2c02019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The unbalanced coagulation of blood is a life-threatening event that requires accurate and timely treatment. We introduce a user-friendly biomolecular platform based on modular RNA-DNA anticoagulant fibers programmed for reversible extracellular communication with thrombin and subsequent control of anticoagulation via a "kill-switch" mechanism that restores hemostasis. To demonstrate the potential of this reconfigurable technology, we designed and tested a set of anticoagulant fibers that carry different thrombin-binding aptamers. All fibers are immunoquiescent, as confirmed in freshly collected human peripheral blood mononuclear cells. To assess interindividual variability, the anticoagulation is confirmed in the blood of human donors from the U.S. and Brazil. The anticoagulant fibers reveal superior anticoagulant activity and prolonged renal clearance in vivo in comparison to free aptamers. Finally, we confirm the efficacy of the "kill-switch" mechanism in vivo in murine and porcine models.
Collapse
Affiliation(s)
- Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Edward Cedrone
- Nanotechnology Characterization Lab., Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Renata F Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Maria Cristina Rangel
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Mara de Souza Junqueira
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Jian Wang
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Da Shi
- Nanotechnology Characterization Lab., Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nguyen Truong
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Melina Richardson
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Lewis A Rolband
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Peter Bedocs
- Department of Anesthesiology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab., Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
34
|
Ohkura N. Potential applications of Chinese herbal medicines with hemostatic properties. Drug Discov Ther 2022; 16:112-117. [PMID: 35753799 DOI: 10.5582/ddt.2022.01037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Various herbal medicines with hemostatic properties have been applied for centuries to accelerate hemostasis and control bleeding. However, the mechanisms of action and active constituents remain unknown. This report provides an overview of current clinical hemostatic agents and their disadvantages, then focuses on the clinical value of Chinese herbal medicines with unique hemostatic features that modern medicines lack. A comprehensive review of hemostatic agents derived from Chinese herbal medicines and their potential medical applications is also presented.
Collapse
Affiliation(s)
- Naoki Ohkura
- Laboratory of Host Defense, Department of Medical and Pharmaceutical Sciences, School of Pharma-Sciences, Teikyo University, Japan
| |
Collapse
|
35
|
Song H, Yang Y, Li B. Tripeptide Hyp-Asp-Gly from collagen peptides inhibited platelet activation via regulation of PI3K/Akt-MAPK/ERK1/2 signaling pathway. J Food Sci 2022; 87:3279-3293. [PMID: 35703476 DOI: 10.1111/1750-3841.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Platelet activation is involved in cardiovascular thrombosis. Our previous study demonstrated that oral administration of collagen peptides (CPs) inhibited platelet activation, but the mechanism of action of CPs remained to be elucidated. As a continued effort, the objective of this study was to identify the active ingredient of CPs and clarify its molecular mechanism. Simulated absorbate of CPs was prepared by simulated gastrointestinal digestion and intestinal absorption system, and then separated by C18 column. The fraction with the highest antiplatelet activity was subjected to NanoUPLC-ESI-MS/MS for peptide sequencing. Novel tripeptide Hyp-Asp-Gly (ODG) was identified. It had a broad-spectrum inhibition of platelet activation induced by collagen, thrombin, and adenosine diphosphate (ADP). ODG could survive simulated gastrointestinal digestion and be absorbed intact. Furthermore, it showed good stability in plasma. ODG had no significant effect on the PLC-PKC-Ca2+ pathway, but it inhibited the PI3K/Akt-MAPK/ERK1/2 signaling. At a dosage of 200 µmol/kg body weight, ODG had an in vivo anti-thrombosis activity without bleeding risk. The present study provides one of the mechanisms of action of CPs and highlights its potential use as a functional component to combat cardiovascular thrombosis. PRACTICAL APPLICATION: This study has suggested that tripeptide Hyp-Asp-Gly(ODG) derived from collagen have potent activities. This novel collagen peptide had a greatpotential to be applied to combat cardiovascular thrombosis in the foodindustry. Meanwhile, this work is expected to provide a theoretical basis forthe development of safe and effective anti-platelet and anti-thrombosis peptides.
Collapse
Affiliation(s)
- Hongdong Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yijie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Lisjak M, De Caneva A, Marais T, Barbon E, Biferi MG, Porro F, Barzel A, Zentilin L, Kay MA, Mingozzi F, Muro AF. Promoterless Gene Targeting Approach Combined to CRISPR/Cas9 Efficiently Corrects Hemophilia B Phenotype in Neonatal Mice. Front Genome Ed 2022; 4:785698. [PMID: 35359664 PMCID: PMC8962648 DOI: 10.3389/fgeed.2022.785698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022] Open
Abstract
Many inborn errors of metabolism require life-long treatments and, in severe conditions involving the liver, organ transplantation remains the only curative treatment. Non-integrative AAV-mediated gene therapy has shown efficacy in adult patients. However, treatment in pediatric or juvenile settings, or in conditions associated with hepatocyte proliferation, may result in rapid loss of episomal viral DNA and thus therapeutic efficacy. Re-administration of the therapeutic vector later in time may not be possible due to the presence of anti-AAV neutralizing antibodies. We have previously shown the permanent rescue of the neonatal lethality of a Crigler-Najjar mouse model by applying an integrative gene-therapy based approach. Here, we targeted the human coagulation factor IX (hFIX) cDNA into a hemophilia B mouse model. Two AAV8 vectors were used: a promoterless vector with two arms of homology for the albumin locus, and a vector carrying the CRISPR/SaCas9 and the sgRNA. Treatment of neonatal P2 wild-type mice resulted in supraphysiological levels of hFIX being stable 10 months after dosing. A single injection of the AAV vectors into neonatal FIX KO mice also resulted in the stable expression of above-normal levels of hFIX, reaching up to 150% of the human levels. Mice subjected to tail clip analysis showed a clotting capacity comparable to wild-type animals, thus demonstrating the rescue of the disease phenotype. Immunohistological analysis revealed clusters of hFIX-positive hepatocytes. When we tested the approach in adult FIX KO mice, we detected hFIX in plasma by ELISA and in the liver by western blot. However, the hFIX levels were not sufficient to significantly ameliorate the bleeding phenotype upon tail clip assay. Experiments conducted using a AAV donor vectors containing the eGFP or the hFIX cDNAs showed a higher recombination rate in P2 mice compared to adult animals. With this study, we demonstrate an alternative gene targeting strategy exploiting the use of the CRISPR/SaCas9 platform that can be potentially applied in the treatment of pediatric patients suffering from hemophilia, also supporting its application to other liver monogenic diseases. For the treatment of adult patients, further studies for the improvement of targeting efficiency are still required.
Collapse
Affiliation(s)
- Michela Lisjak
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessia De Caneva
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Thibaut Marais
- Inserm UMRS974, Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Université, Paris, France
| | - Elena Barbon
- Genethon, Evry, France
- IRCCS San Raffaele Hospital, Milan, Italy
| | - Maria Grazia Biferi
- Inserm UMRS974, Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Université, Paris, France
| | - Fabiola Porro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Adi Barzel
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, United States
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie - Paris 6, INSERM U974, Paris, France
- Spark Therapeutics, Philadelphia, PA, United States
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
37
|
Goeritzer M, Schlager S, Kuentzel KB, Vujić N, Korbelius M, Rainer S, Kolb D, Mussbacher M, Salzmann M, Schrottmaier WC, Assinger A, Schlagenhauf A, Madreiter-Sokolowski CT, Blass S, Eichmann TO, Graier WF, Kratky D. Adipose Triglyceride Lipase Deficiency Attenuates In Vitro Thrombus Formation without Affecting Platelet Activation and Bleeding In Vivo. Cells 2022; 11:850. [PMID: 35269472 PMCID: PMC8908992 DOI: 10.3390/cells11050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
According to genome-wide RNA sequencing data from human and mouse platelets, adipose triglyceride lipase (ATGL), the main lipase catalyzing triglyceride (TG) hydrolysis in cytosolic lipid droplets (LD) at neutral pH, is expressed in platelets. Currently, it is elusive to whether common lipolytic enzymes are involved in the degradation of TG in platelets. Since the consequences of ATGL deficiency in platelets are unknown, we used whole-body and platelet-specific (plat)Atgl-deficient (-/-) mice to investigate the loss of ATGL on platelet function. Our results showed that platelets accumulate only a few LD due to lack of ATGL. Stimulation with platelet-activating agonists resulted in comparable platelet activation in Atgl-/-, platAtgl-/-, and wild-type mice. Measurement of mitochondrial respiration revealed a decreased oxygen consumption rate in platelets from Atgl-/- but not from platAtgl-/- mice. Of note, global loss of ATGL was associated with an anti-thrombogenic phenotype, which was evident by reduced thrombus formation in collagen-coated channels in vitro despite unchanged bleeding and occlusion times in vivo. We conclude that genetic deletion of ATGL affects collagen-induced thrombosis without pathological bleeding and platelet activation.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Stefanie Schlager
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
- AOP Orphan Pharmaceuticals GmbH, 1190 Vienna, Austria
| | - Katharina B. Kuentzel
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Nemanja Vujić
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Melanie Korbelius
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Silvia Rainer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis, Medical University of Graz, 8010 Graz, Austria;
- BioTechMed-Graz, 8010 Graz, Austria;
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria;
| | - Manuel Salzmann
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, 1190 Vienna, Austria;
| | - Waltraud C. Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1190 Vienna, Austria; (W.C.S.); (A.A.)
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1190 Vienna, Austria; (W.C.S.); (A.A.)
| | - Axel Schlagenhauf
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Corina T. Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Sandra Blass
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
| | - Thomas O. Eichmann
- BioTechMed-Graz, 8010 Graz, Austria;
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
- BioTechMed-Graz, 8010 Graz, Austria;
| | - Dagmar Kratky
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (M.G.); (S.S.); (K.B.K.); (N.V.); (M.K.); (S.R.); (C.T.M.-S.); (S.B.); (W.F.G.)
- BioTechMed-Graz, 8010 Graz, Austria;
| |
Collapse
|
38
|
Meng Q, Li B, Huang N, Wei S, Ren Q, Wu S, Li X, Chen R. Folic acid targets splenic extramedullary hemopoiesis to attenuate carbon black-induced coagulation-thrombosis potential. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127354. [PMID: 34634699 DOI: 10.1016/j.jhazmat.2021.127354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Due to its wide applications in tire and rubber products, carbon black (CB) implicates concerns on its safety during production, collection, and handling. Here we report that exposure CB, increases coagulation-thrombosis potential in a splenic extramedullary hemopoiesis (EMH)-dependent manner. Adult C57BL/6 mice are kept in whole-body inhalation chambers, and exposed to filtered room air (FRA) or CB for 28 consecutive days. CB exposure resulted in splenic EMH characterized with platelet precursor cells, megakaryocytes (MKs), hyperplasia and enhanced in vivo blood coagulation ability. Metabolomics analysis suggests significant enhance in PGE2 production but reduction in folic acid (FA) levels in murine serum following CB exposure. Mechanistically, activation of COX-dependent PGE2 production promotes IL-6 expression in splenic macrophages, which subsequently results in splenic EMH and increased platelet counts in circulation. Administration of FA protects the mice against CB-induced splenic EMH through inhibiting prostaglandin-endoperoxide synthase 2 (Ptgs2 or Cox2) and prostaglandin E synthase (Ptges) expression in splenic macrophages, eventually recover the coagulation capacity to normal level. The results strongly suggest the involvement of splenic EMH in response to CB exposure and subsequently increased coagulation-thrombosis potential. Supplementation with FA may be a candidate to prevent thrombosis potential attributable to CB exposure.
Collapse
Affiliation(s)
- Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China
| | - Bin Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Nannan Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Shengnan Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Quanzhong Ren
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
39
|
In Silico, In Vitro, and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway. Biomolecules 2022; 12:biom12010099. [PMID: 35053247 PMCID: PMC8774285 DOI: 10.3390/biom12010099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC50 = 1.9 ± 0.4 µM) and 5-LO (IC50 = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases.
Collapse
|
40
|
Revollo L, Merrill-Skoloff G, De Ceunynck K, Dilks JR, Guo S, Bordoli MR, Peters CG, Noetzli L, Ionescu A, Rosen V, Italiano JE, Whitman M, Flaumenhaft R. The secreted tyrosine kinase VLK is essential for normal platelet activation and thrombus formation. Blood 2022; 139:104-117. [PMID: 34329392 PMCID: PMC8718620 DOI: 10.1182/blood.2020010342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/22/2021] [Indexed: 01/09/2023] Open
Abstract
Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate lonesome kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet α-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets exhibit a significant decrease in several tyrosine phosphobands. Results of functional testing of VLK-deficient platelets show decreased protease-activated receptor 4-mediated and collagen-mediated platelet aggregation but normal responses to adenosine 5'-diphosphate. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased protease-activated receptor 4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets display strongly reduced platelet accumulation and fibrin formation after laser-induced injury of cremaster arterioles compared with control mice but with normal bleeding times. These studies show that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.
Collapse
Affiliation(s)
- Leila Revollo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - James R Dilks
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Shihui Guo
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Mattia R Bordoli
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Christian G Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Leila Noetzli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA; and
| | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Joseph E Italiano
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA; and
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Abstract
Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate lonesome kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet α-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets exhibit a significant decrease in several tyrosine phosphobands. Results of functional testing of VLK-deficient platelets show decreased protease-activated receptor 4-mediated and collagen-mediated platelet aggregation but normal responses to adenosine 5'-diphosphate. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased protease-activated receptor 4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets display strongly reduced platelet accumulation and fibrin formation after laser-induced injury of cremaster arterioles compared with control mice but with normal bleeding times. These studies show that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.
Collapse
|
42
|
Mohammed BM, Cheng Q, Ivanov IS, Gailani D. Murine Models in the Evaluation of Heparan Sulfate-Based Anticoagulants. Methods Mol Biol 2022; 2303:789-805. [PMID: 34626423 PMCID: PMC8552346 DOI: 10.1007/978-1-0716-1398-6_59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Evaluating prospective anticoagulant therapies in animal thrombosis and bleeding models are standard pre-clinical approaches. Mice are frequently used for initial evaluations because a variety of models have been developed in this well-characterized species, and mice are relatively inexpensive to maintain. Because mice seem to be resistant to forming "spontaneous" thrombosis, vessel injury is used to induce intravascular clot formation. For the purpose of testing heparin-based drugs, we adapted a well-established model in which thrombus formation in the carotid artery is induced by exposing the vessel to ferric chloride. For studying anticoagulant effects on venous thrombosis, we use a model in which the inferior vena cava is ligated and the size of the resulting clots are measured. The most common adverse effect of anticoagulation therapy is bleeding. We describe a simple tail bleeding time that has been used for many years to study the effects of anticoagulants on hemostasis. We also describe a more reproducible, but more technically challenging, saphenous vein bleeding model that is also used for this purpose.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO, USA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Ivan S Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
43
|
Pan N, Li ZC, Li ZH, Chen SH, Jiang MH, Yang HY, Liu YS, Hu R, Zeng YW, Dai LH, Liu L, Wang GL. Antiplatelet and Antithrombotic Effects of Isaridin E Isolated from the Marine-Derived Fungus via Downregulating the PI3K/Akt Signaling Pathway. Mar Drugs 2021; 20:23. [PMID: 35049878 PMCID: PMC8780978 DOI: 10.3390/md20010023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Isaridin E, a cyclodepsipeptide isolated from the marine-derived fungus Amphichorda felina (syn. Beauveria felina) SYSU-MS7908, has been demonstrated to possess anti-inflammatory and insecticidal activities. Here, we first found that isaridin E concentration-dependently inhibited ADP-induced platelet aggregation, activation, and secretion in vitro, but did not affect collagen- or thrombin-induced platelet aggregation. Furthermore, isaridin E dose-dependently reduced thrombosis formation in an FeCl3-induced mouse carotid model without increasing the bleeding time. Mechanistically, isaridin E significantly decreased the ADP-mediated phosphorylation of PI3K and Akt. In conclusion, these results suggest that isaridin E exerts potent antithrombotic effects in vivo without increasing the risk of bleeding, which may be due to its important role in inhibiting ADP-induced platelet activation, secretion and aggregation via the PI3K/Akt pathways.
Collapse
Affiliation(s)
- Ni Pan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (N.P.); (Z.-C.L.); (Z.-H.L.); (H.-Y.Y.); (Y.-S.L.); (R.H.); (Y.-W.Z.)
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou 510080, China
| | - Zi-Cheng Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (N.P.); (Z.-C.L.); (Z.-H.L.); (H.-Y.Y.); (Y.-S.L.); (R.H.); (Y.-W.Z.)
| | - Zhi-Hong Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (N.P.); (Z.-C.L.); (Z.-H.L.); (H.-Y.Y.); (Y.-S.L.); (R.H.); (Y.-W.Z.)
| | - Sen-Hua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510080, China; (S.-H.C.); (M.-H.J.)
| | - Ming-Hua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510080, China; (S.-H.C.); (M.-H.J.)
| | - Han-Yan Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (N.P.); (Z.-C.L.); (Z.-H.L.); (H.-Y.Y.); (Y.-S.L.); (R.H.); (Y.-W.Z.)
| | - Yao-Sheng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (N.P.); (Z.-C.L.); (Z.-H.L.); (H.-Y.Y.); (Y.-S.L.); (R.H.); (Y.-W.Z.)
| | - Rui Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (N.P.); (Z.-C.L.); (Z.-H.L.); (H.-Y.Y.); (Y.-S.L.); (R.H.); (Y.-W.Z.)
| | - Yu-Wei Zeng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (N.P.); (Z.-C.L.); (Z.-H.L.); (H.-Y.Y.); (Y.-S.L.); (R.H.); (Y.-W.Z.)
| | - Le-Hui Dai
- Department of Basic Medical Sciences, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510080, China; (S.-H.C.); (M.-H.J.)
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (N.P.); (Z.-C.L.); (Z.-H.L.); (H.-Y.Y.); (Y.-S.L.); (R.H.); (Y.-W.Z.)
| |
Collapse
|
44
|
Olgasi C, Borsotti C, Merlin S, Bergmann T, Bittorf P, Adewoye AB, Wragg N, Patterson K, Calabria A, Benedicenti F, Cucci A, Borchiellini A, Pollio B, Montini E, Mazzuca DM, Zierau M, Stolzing A, Toleikis P, Braspenning J, Follenzi A. Efficient and safe correction of hemophilia A by lentiviral vector-transduced BOECs in an implantable device. Mol Ther Methods Clin Dev 2021; 23:551-566. [PMID: 34853801 PMCID: PMC8606349 DOI: 10.1016/j.omtm.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Hemophilia A (HA) is a rare bleeding disorder caused by deficiency/dysfunction of the FVIII protein. As current therapies based on frequent FVIII infusions are not a definitive cure, long-term expression of FVIII in endothelial cells through lentiviral vector (LV)-mediated gene transfer holds the promise of a one-time treatment. Thus, here we sought to determine whether LV-corrected blood outgrowth endothelial cells (BOECs) implanted through a prevascularized medical device (Cell Pouch) would rescue the bleeding phenotype of HA mice. To this end, BOECs from HA patients and healthy donors were isolated, expanded, and transduced with an LV carrying FVIII driven by an endothelial-specific promoter employing GMP-like procedures. FVIII-corrected HA BOECs were either directly transplanted into the peritoneal cavity or injected into a Cell Pouch implanted subcutaneously in NSG-HA mice. In both cases, FVIII secretion was sufficient to improve the mouse bleeding phenotype. Indeed, FVIII-corrected HA BOECs reached a relatively short-term clinically relevant engraftment being detected up to 16 weeks after transplantation, and their genomic integration profile did not show enrichment for oncogenes, confirming the process safety. Overall, this is the first preclinical study showing the safety and feasibility of transplantation of GMP-like produced LV-corrected BOECs within an implantable device for the long-term treatment of HA.
Collapse
Affiliation(s)
- Cristina Olgasi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Thorsten Bergmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Patrick Bittorf
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Adeolu Badi Adewoye
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Nicholas Wragg
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST47QB Stoke-on-Trent, UK
| | | | | | | | - Alessia Cucci
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandra Borchiellini
- Haematology Unit Regional Center for Hemorrhagic and Thrombotic Diseases, City of Health and Science University Hospital of Molinette, 10126 Turin, Italy
| | - Berardino Pollio
- Immune-Haematology and Transfusion Medicine, Regina Margherita Children Hospital, City of Health and Science University Hospital of Molinette, 10126 Turin, Italy
| | | | | | - Martin Zierau
- IMS Integrierte Management Systeme e. K., 64646 Heppenheim, Germany
| | - Alexandra Stolzing
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, LE113TU Loughborough, UK
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | | - Joris Braspenning
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
45
|
Gong J, Chung TH, Zheng J, Zheng H, Chang LJ. Transduction of modified factor VIII gene improves lentiviral gene therapy efficacy for hemophilia A. J Biol Chem 2021; 297:101397. [PMID: 34774524 PMCID: PMC8649223 DOI: 10.1016/j.jbc.2021.101397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Hemophilia A (HA) is a bleeding disorder caused by deficiency of the coagulation factor VIII (F8). F8 replacement is standard of care, whereas gene therapy (F8 gene) for HA is an attractive investigational approach. However, the large size of the F8 gene and the immunogenicity of the product present challenges in development of the F8 gene therapy. To resolve these problems, we synthesized a shortened F8 gene (F8-BDD) and cloned it into a lentiviral vector (LV). The F8-BDD produced mainly short cleaved inactive products in LV-transduced cells. To improve F8 functionality, we designed two novel F8-BDD genes, one with an insertion of eight specific N-glycosylation sites (F8-N8) and another which restored all N-glycosylation sites (F8-299) in the B domain. Although the overall protein expression was reduced, high coagulation activity (>100-fold) was detected in the supernatants of LV-F8-N8- and LV-F8-299-transduced cells. Protein analysis of F8 and the procoagulation cofactor, von Willebrand Factor, showed enhanced interaction after restoration of B domain glycosylation using F8-299. HA mouse hematopoietic stem cell transplantation studies illustrated that the bleeding phenotype was corrected after LV-F8-N8 or -299 gene transfer into the hematopoietic stem cells. Importantly, the F8-299 modification markedly reduced immunogenicity of the F8 protein in these HA mice. In conclusion, the modified F8-299 gene could be efficiently packaged into LV and, although with reduced expression, produced highly stable and functional F8 protein that corrected the bleeding phenotype without inhibitory immunogenicity. We anticipate that these results will be beneficial in the development of gene therapies against HA.
Collapse
Affiliation(s)
- Jie Gong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Tsai-Hua Chung
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China; Shenzhen Geno-Immune Medical Institute, Shenzhen, China
| | - Jie Zheng
- Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huyong Zheng
- Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China; Shenzhen Geno-Immune Medical Institute, Shenzhen, China; Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
46
|
La Rose AM, Bazioti V, Hoogerland JA, Svendsen AF, Groenen AG, van Faassen M, Rutten MGS, Kloosterhuis NJ, Dethmers-Ausema B, Nijland JH, Mithieux G, Rajas F, Kuipers F, Lukens MV, Soehnlein O, Oosterveer MH, Westerterp M. Hepatocyte-specific glucose-6-phosphatase deficiency disturbs platelet aggregation and decreases blood monocytes upon fasting-induced hypoglycemia. Mol Metab 2021; 53:101265. [PMID: 34091064 PMCID: PMC8243524 DOI: 10.1016/j.molmet.2021.101265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Glycogen storage disease type 1a (GSD Ia) is a rare inherited metabolic disorder caused by mutations in the glucose-6-phosphatase (G6PC1) gene. When untreated, GSD Ia leads to severe fasting-induced hypoglycemia. Although current intensive dietary management aims to prevent hypoglycemia, patients still experience hypoglycemic events. Poor glycemic control in GSD Ia is associated with hypertriglyceridemia, hepatocellular adenoma and carcinoma, and also with an increased bleeding tendency of unknown origin. METHODS To evaluate the effect of glycemic control on leukocyte levels and coagulation in GSD Ia, we employed hepatocyte-specific G6pc1 deficient (L-G6pc-/-) mice under fed or fasted conditions, to match good or poor glycemic control in GSD Ia, respectively. RESULTS We found that fasting-induced hypoglycemia in L-G6pc-/- mice decreased blood leukocytes, specifically proinflammatory Ly6Chi monocytes, compared to controls. Refeeding reversed this decrease. The decrease in Ly6Chi monocytes was accompanied by an increase in plasma corticosterone levels and was prevented by the glucocorticoid receptor antagonist mifepristone. Further, fasting-induced hypoglycemia in L-G6pc-/- mice prolonged bleeding time in the tail vein bleeding assay, with reversal by refeeding. This could not be explained by changes in coagulation factors V, VII, or VIII, or von Willebrand factor. While the prothrombin and activated partial thromboplastin time as well as total platelet counts were not affected by fasting-induced hypoglycemia in L-G6pc-/- mice, ADP-induced platelet aggregation was disturbed. CONCLUSIONS These studies reveal a relationship between fasting-induced hypoglycemia, decreased blood monocytes, and disturbed platelet aggregation in L-G6pc-/- mice. While disturbed platelet aggregation likely accounts for the bleeding phenotype in GSD Ia, elevated plasma corticosterone decreases the levels of proinflammatory monocytes. These studies highlight the necessity of maintaining good glycemic control in GSD Ia.
Collapse
Affiliation(s)
- Anouk M La Rose
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joanne A Hoogerland
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arthur F Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn G S Rutten
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bertien Dethmers-Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J Hendrik Nijland
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gilles Mithieux
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Fabienne Rajas
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michaël V Lukens
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Oliver Soehnlein
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZBME), University of Münster, Münster, Germany; Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden
| | - Maaike H Oosterveer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
47
|
Choi SS, Park HR, Lee KA. A Comparative Study of Rutin and Rutin Glycoside: Antioxidant Activity, Anti-Inflammatory Effect, Effect on Platelet Aggregation and Blood Coagulation. Antioxidants (Basel) 2021; 10:antiox10111696. [PMID: 34829567 PMCID: PMC8614652 DOI: 10.3390/antiox10111696] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
The effects of rutin and rutin glycoside with different solubility were compared on antioxidant activity and anti-inflammatory effects in vitro and the effects on platelet aggregation and blood coagulation in vitro and in vivo. Rutin glycoside (consisting of rutin mono-glucoside and rutin di-glucoside) was prepared via enzymatic transglycosylation from rutin. Rutin glycoside showed a higher effect than rutin on radical scavenging activity in antioxidant assays. Rutin showed a higher toxicity than rutin glycoside in murine macrophage RAW264.7 cells. They had similar effects on the levels of nitric oxide (NO), prostaglandin E (PGE) 2 and pro-inflammatory cytokines (such as tumor necrosis factor (TNF)-α, and interleukin (IL)-6) in the cells. Both rutin and rutin glycosides similarly reduced the rate of platelet aggregation compared to controls in vitro. They also similarly delayed prothrombin time (PT) and activated partial thromboplastin time (APTT) in an in vitro blood coagulation test. The effect of repeated administration of rutin and rutin glycoside was evaluated in vivo using SD rats. The platelet aggregation rate of rutin and the rutin glycoside administered group was significantly decreased compared to that of the control group. On the other hand, PT and APTT of rutin and rutin glycoside group were not significantly delayed in vivo blood coagulation test. In conclusion, rutin and rutin glycoside showed differences in antioxidant activities in vitro, while they were similar in the reduction of NO, PGE2, TNF-α and IL-6 in vitro. Rutin and rutin glycoside also showed similar platelet aggregation rates, and blood coagulation both in vitro and in vivo condition. Comparing in vitro and in vivo, rutin and rutin glycoside were effective on platelet aggregation both in vitro and in vivo, but only in vitro on blood coagulation.
Collapse
Affiliation(s)
- Sung-Sook Choi
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01370, Korea;
| | - Hye-Ryung Park
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea;
| | - Kyung-Ae Lee
- Department of Food and Nutrition, Anyang University, Anyang 14028, Korea
- Correspondence: ; Tel.: +82-31-5183-2101
| |
Collapse
|
48
|
Palacios-Acedo AL, Mezouar S, Mège D, Crescence L, Dubois C, Panicot-Dubois L. P2RY12-Inhibitors Reduce Cancer-Associated Thrombosis and Tumor Growth in Pancreatic Cancers. Front Oncol 2021; 11:704945. [PMID: 34589424 PMCID: PMC8475274 DOI: 10.3389/fonc.2021.704945] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Platelet function can be modified by cancer cells to support tumor growth, causing alterations in the delicate hemostatic equilibrium. Cancer-cell and platelet interactions are one of the main pillars of Trousseau’s syndrome: a paraneoplastic syndrome with recurring and migrating episodes of thrombophlebitis. Altogether, this leads to a four-fold risk of thrombotic events in cancer patients, which in turn, portend a poor prognosis. We previously demonstrated that anti-P2RY12 drugs inhibit cancer-associated-thrombosis and formation of tumor metastasis in pancreatic cancer models. Here, we aimed to (1) compare the effects of aspirin and clopidogrel on pancreatic cancer prevention, (2) characterize the effects of clopidogrel (platelet P2RY12 inhibitor) on cancer-associated thrombosis and cancer growth in vivo, (3) determine the effect of P2RY12 across different digestive-tract cancers in vitro, and (4) analyze the expression pattern of P2RY12 in two different cancer types affecting the digestive system. Clopidogrel treatment resulted in better survival rates with smaller primary tumors and less metastasis than aspirin treatment. Clopidogrel was also more effective than aspirin at dissolving spontaneous endogenous thrombi in our orthotopic advanced cancer mouse model. P2RY12 expression gives pancreatic adenocarcinomas proliferative advantages. In conclusion, we propose the hypothesis that clopidogrel should be further studied to target and prevent Trousseau’s syndrome; as well as diminish cancer growth and spread. However, more studies are required to determine the implicated pathways and effects of these drugs on cancer development.
Collapse
Affiliation(s)
- Ana Luisa Palacios-Acedo
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France
| | - Soraya Mezouar
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France
| | - Diane Mège
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France.,Department of Digestive Surgery, Timone University Hospital, Marseille, France
| | - Lydie Crescence
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France
| | - Christophe Dubois
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille Univ, INSERM 1263, INRA 1260, Center for Cardiovascular and Nutrition Research (C2VN), Marseille, France
| |
Collapse
|
49
|
McCullough LD, Roy-O'Reilly M, Lai YJ, Patrizz A, Xu Y, Lee J, Holmes A, Kraushaar DC, Chauhan A, Sansing LH, Stonestreet BS, Zhu L, Kofler J, Lim YP, Venna VR. Exogenous inter-α inhibitor proteins prevent cell death and improve ischemic stroke outcomes in mice. J Clin Invest 2021; 131:144898. [PMID: 34580244 DOI: 10.1172/jci144898] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Inter-α inhibitor proteins (IAIPs) are a family of endogenous plasma and extracellular matrix molecules. IAIPs suppress proinflammatory cytokines, limit excess complement activation, and bind extracellular histones to form IAIP-histone complexes, leading to neutralization of histone-associated cytotoxicity in models of sepsis. Many of these detrimental processes also play critical roles in the pathophysiology of ischemic stroke. In this study, we first assessed the clinical relevance of IAIPs in stroke and then tested the therapeutic efficacy of exogenous IAIPs in several experimental stroke models. IAIP levels were reduced in both ischemic stroke patients and in mice subjected to experimental ischemic stroke when compared with controls. Post-stroke administration of IAIP significantly improved stroke outcomes across multiple stroke models, even when given 6 hours after stroke onset. Importantly, the beneficial effects of delayed IAIP treatment were observed in both young and aged mice. Using targeted gene expression analysis, we identified a receptor for complement activation, C5aR1, that was highly suppressed in both the blood and brain of IAIP-treated animals. Subsequent experiments using C5aR1-knockout mice demonstrated that the beneficial effects of IAIPs are mediated in part by C5aR1. These results indicate that IAIP is a potential therapeutic candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Louise D McCullough
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Meaghan Roy-O'Reilly
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yun-Ju Lai
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anthony Patrizz
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yan Xu
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aleah Holmes
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniel C Kraushaar
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, Texas, USA
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lauren H Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Liang Zhu
- Biostatistics and Epidemiology Research Design Core, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yow-Pin Lim
- ProThera Biologics Inc., Providence, Rhode Island, USA.,Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
50
|
Marín-Quílez A, García-Tuñón I, Fernández-Infante C, Hernández-Cano L, Palma-Barqueros V, Vuelta E, Sánchez-Martín M, González-Porras JR, Guerrero C, Benito R, Rivera J, Hernández-Rivas JM, Bastida JM. Characterization of the Platelet Phenotype Caused by a Germline RUNX1 Variant in a CRISPR/Cas9-Generated Murine Model. Thromb Haemost 2021; 121:1193-1205. [PMID: 33626581 DOI: 10.1055/s-0041-1723987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
RUNX1-related disorder (RUNX1-RD) is caused by germline variants affecting the RUNX1 gene. This rare, heterogeneous disorder has no specific clinical or laboratory phenotype, making genetic diagnosis necessary. Although international recommendations have been established to classify the pathogenicity of variants, identifying the causative alteration remains a challenge in RUNX1-RD. Murine models may be useful not only for definitively settling the controversy about the pathogenicity of certain RUNX1 variants, but also for elucidating the mechanisms of molecular pathogenesis. Therefore, we developed a knock-in murine model, using the CRISPR/Cas9 system, carrying the RUNX1 p.Leu43Ser variant (mimicking human p.Leu56Ser) to study its pathogenic potential and mechanisms of platelet dysfunction. A total number of 75 mice were generated; 25 per genotype (RUNX1WT/WT, RUNX1WT/L43S, and RUNX1L43S/L43S). Platelet phenotype was assessed by flow cytometry and confocal microscopy. On average, RUNX1L43S/L43S and RUNX1WT/L43S mice had a significantly longer tail-bleeding time than RUNX1WT/WT mice, indicating the variant's involvement in hemostasis. However, only homozygous mice displayed mild thrombocytopenia. RUNX1L43S/L43S and RUNX1WT/L43S displayed impaired agonist-induced spreading and α-granule release, with no differences in δ-granule secretion. Levels of integrin αIIbβ3 activation, fibrinogen binding, and aggregation were significantly lower in platelets from RUNX1L43S/L43S and RUNX1WT/L43S using phorbol 12-myristate 13-acetate (PMA), adenosine diphosphate (ADP), and high thrombin doses. Lower levels of PKC phosphorylation in RUNX1L43S/L43S and RUNX1WT/L43S suggested that the PKC-signaling pathway was impaired. Overall, we demonstrated the deleterious effect of the RUNX1 p.Leu56Ser variant in mice via the impairment of integrin αIIbβ3 activation, aggregation, α-granule secretion, and platelet spreading, mimicking the phenotype associated with RUNX1 variants in the clinical setting.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Ignacio García-Tuñón
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Cristina Fernández-Infante
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
| | - Elena Vuelta
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus, University of Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
| | - Carmen Guerrero
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Rocío Benito
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
- On behalf of the "Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)", Hemorrhagic Diathesis Working Group, SETH
| | - Jesús María Hernández-Rivas
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
| | - José María Bastida
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
- On behalf of the "Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)", Hemorrhagic Diathesis Working Group, SETH
| |
Collapse
|