1
|
de Bont DFA, Mohammed SG, de Vries RHW, Paulino da Silva Filho O, Vaithilingam V, Jetten MJ, Engelse MA, de Koning EJP, van Apeldoorn AA. Supporting islet function in a PVDF membrane based macroencapsulation delivery device by solvent non-solvent casting using PVP. PLoS One 2025; 20:e0298114. [PMID: 40073008 PMCID: PMC11902058 DOI: 10.1371/journal.pone.0298114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/08/2024] [Indexed: 03/14/2025] Open
Abstract
Type 1 diabetic (T1D) patients are life-long dependent on insulin therapy to keep their blood glucose levels under control. An alternative cell-based therapy for exogenous insulin injections is clinical islet transplantation (CIT). Currently the widespread application of CIT is limited, due to risks associated with the life-long use of immunosuppressive drugs to prevent rejection of donor cells. An immunoprotective macroencapsulation device can protect allogeneic islet cells against the host immune system and allow exploring extrahepatic transplantation sites. We report on the characterization and creation of porous polyvinylidene fluoride (PVDF) membrane-based devices intended for islet and beta-cell transplantation. We hypothesize that by incorporating polyvinyl-pyrrolidone (PVP) into a PVDF solution the permeability of PVDF membranes for insulin and glucose can be improved by solvent-non solvent casting to create submicrometer porous films. We show that the use of water-soluble PVP, can significantly increase glucose diffusion through these membranes while still having the ability to block immune cells from migrating through these membranes. Human donor islets loaded into devices made from these thin PVDF/PVP membranes showed a 92 ± 4% viability after 8 days similar to their free-floating counterparts. The glucose responsiveness of human donor islets encapsulated inside PVDF/PVP membrane-based devices was significantly improved compared to islets seeded in devices made from PVDF membranes without PVP, with a stimulation index of 3.2 for PVDF/PVP devices and 1.3 for PVDF-alone devices at day 8. Our data show that by addition of PVP as pore forming agent during membrane fabrication at a specific ratio the diffusion characteristics can be tuned such that human islet function in these closed macrodevices, can be kept at the same level as non-encapsulated islets, while the membrane can still serve as a protective barrier preventing the entry of primary human macrophages and damaging beta cells.
Collapse
Affiliation(s)
- Denise F. A. de Bont
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Sami G. Mohammed
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Rick H. W. de Vries
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Omar Paulino da Silva Filho
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vijayaganapathy Vaithilingam
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Marlon J. Jetten
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Marten A. Engelse
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco J. P. de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
| | - Aart A. van Apeldoorn
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Tol MC, de Bont DFA, Boon WPC, de Koning EJP, van Apeldoorn AA. Preferred Islet Delivery Device Characteristics and Implantation Strategies of Patients With Type 1 Diabetes. Transpl Int 2023; 36:11077. [PMID: 37908676 PMCID: PMC10614671 DOI: 10.3389/ti.2023.11077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
Islet delivery devices (IDDs) offer potential benefits for islet transplantation and stem cell-based replacement in type 1 diabetes. Little is known about patient preferences regarding islet delivery device characteristics and implantation strategies. Patient preferences for IDDs and implantation strategies remain understudied. We invited patients, parents and caregivers to fill in an online questionnaire regarding IDDs. An online survey gathered responses from 809 type 1 diabetes patients and 47 caregivers. We also assessed diabetes distress in a subgroup of 412 patients. A significant majority (97%) expressed willingness to receive an IDD. Preferred IDD attributes included a 3.5 cm diameter for 37.7% of respondents, while when provided with all options, 30.4% found dimensions unimportant. Respondents were open to approximately 4 implants, each with a 5 cm incision. Many favored a device functioning for 12 months (33.4%) or 24 months (24.8%). Younger participants (16-30) were more inclined to accept a 6 months functional duration (p < 0.001). Functional duration outweighed implant quantity and size (p < 0.001) in device importance. This emphasizes patients' willingness to accommodate burdens related to IDD features and implantation methods, crucial for designing future beta cell replacement strategies.
Collapse
Affiliation(s)
- Maarten C. Tol
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
- LUMC Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Denise F. A. de Bont
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Wouter P. C. Boon
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands
| | - Eelco J. P. de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
- LUMC Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Aart A. van Apeldoorn
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Lighthouse Biomedical B.V., Maastricht, Netherlands
| |
Collapse
|
3
|
Miranda MA, Macias-Velasco JF, Schmidt H, Lawson HA. Integrated transcriptomics contrasts fatty acid metabolism with hypoxia response in β-cell subpopulations associated with glycemic control. BMC Genomics 2023; 24:156. [PMID: 36978008 PMCID: PMC10052828 DOI: 10.1186/s12864-023-09232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Understanding how heterogeneous β-cell function impacts diabetes is imperative for therapy development. Standard single-cell RNA sequencing analysis illuminates some factors driving heterogeneity, but new strategies are required to enhance information capture. RESULTS We integrate pancreatic islet single-cell and bulk RNA sequencing data to identify β-cell subpopulations based on gene expression and characterize genetic networks associated with β-cell function in obese SM/J mice. We identify β-cell subpopulations associated with basal insulin secretion, hypoxia response, cell polarity, and stress response. Network analysis associates fatty acid metabolism and basal insulin secretion with hyperglycemic-obesity, while expression of Pdyn and hypoxia response is associated with normoglycemic-obesity. CONCLUSIONS By integrating single-cell and bulk islet transcriptomes, our study explores β-cell heterogeneity and identifies novel subpopulations and genetic pathways associated with β-cell function in obesity.
Collapse
Affiliation(s)
- Mario A Miranda
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA
| | - Juan F Macias-Velasco
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA
| | - Heather Schmidt
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA.
| |
Collapse
|
4
|
Simple Complexity: Incorporating Bioinspired Delivery Machinery within Self-Assembled Peptide Biogels. Gels 2023; 9:gels9030199. [PMID: 36975648 PMCID: PMC10048788 DOI: 10.3390/gels9030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability—features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.
Collapse
|
5
|
Farshbafnadi M, Razi S, Rezaei N. Transplantation. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Huang H, Shang Y, Li H, Feng Q, Liu Y, Chen J, Dong H. Co-transplantation of Islets-Laden Microgels and Biodegradable O 2-Generating Microspheres for Diabetes Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38448-38458. [PMID: 35980755 DOI: 10.1021/acsami.2c07215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pancreatic islets transplantation is an optimal alternative to exogenous insulin injection for long-term effective type 1 diabetes treatment. However, direct islets transplantation without any protection can induce cell necrosis due to severe host immune rejection. Insufficient O2 supply induced by the lack of capillary network at the early stage of islets transplantation is another critical constraint limiting islets survival and insulin-secretion function. In this paper, we design a novel co-transplantation system composed of islets-laden nanocomposite microgels and O2-generating microspheres. In particular, nanocomposite microgels confer the encapsulated islets with simultaneous physical protection and chemical anti-inflammation/immunosuppression by covalently anchoring rapamycin-loaded cyclodextrin nanoparticles to microgel network. Meanwhile, O2-generating microspheres prepared by blending inorganic peroxides in biodegradable polycaprolactone and polylactic acid can generate in situ O2 gas and thus avoid hypoxia environment around transplanted islets. In vivo therapeutic effect of diabetic mice proves the reversion of the high blood glucose level back to normoglycemia and superior glucose tolerance for at least 90 days post co-transplantation. In brief, the localized drug and oxygen codelivery, as well as physical protection provided by our co-transplantation system, has the potential to overcome to a large extent the inflammatory, hypoxia, and host immune rejection after islets transplantation. This new strategy may have wider application in other cell replacement therapies.
Collapse
Affiliation(s)
- Hanhao Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yulian Shang
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haofei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yang Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Junlin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Hua Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Alzhanuly B, Mukhatayev ZY, Botbayev DM, Ashirbekov Y, Katkenov ND, Dzhaynakbaev NT, Sharipov KO. Modulation of Insulin Gene Expression with CRISPR/Cas9-based Transcription Factors. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The discovery and use of CRISPR/Cas9 technology have enabled researchers throughout the globe to continuously edit genomes for the benefit of science and medicine. Diabetes type I is one field of medicine where CRISPR/Cas9 has a strong potential for cell therapy development. The long-lasting paucity of healthy cells for clinical transplantation into diabetic patients has led to the search of new methods for producing β-cells from other human cell types. Embryonic stem cells are being studied worldwide as one most promising solution of this need. Aim: The aim of the study is to to check the feasibility of modulating human insulin transcription using CRISPR/Cas9-based synthetic transcription regulation factors.
Results: A new approach for creating potential therapeutic donor cells with enhanced and suppressed insulin production based on one of the latest achievements of human genome editing was developed. Both synthetic transcription activator (VP64) and transcription repressor (KRAB) proteins were shown to function adequately well as a part of the whole CRISPR/Cas9-based system. We claim that our results have a lot to offer and can bring light to many studies where numerous labs are struggling on to treat this disease.
Collapse
|
8
|
Hu M, Hawthorne WJ, Nicholson L, Burns H, Qian YW, Liuwantara D, Jimenez Vera E, Chew YV, Williams L, Yi S, Keung K, Watson D, Rogers N, Alexander SI, O'Connell PJ. Low-Dose Interleukin-2 Combined With Rapamycin Led to an Expansion of CD4 +CD25 +FOXP3 + Regulatory T Cells and Prolonged Human Islet Allograft Survival in Humanized Mice. Diabetes 2020; 69:1735-1748. [PMID: 32381646 DOI: 10.2337/db19-0525] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/03/2020] [Indexed: 11/13/2022]
Abstract
Islet transplantation is an emerging therapy for type 1 diabetes and hypoglycemic unawareness. However, a key challenge for islet transplantation is cellular rejection and the requirement for long-term immunosuppression. In this study, we established a diabetic humanized NOD-scidIL2Rγnull (NSG) mouse model of T-cell-mediated human islet allograft rejection and developed a therapeutic regimen of low-dose recombinant human interleukin-2 (IL-2) combined with low-dose rapamycin to prolong graft survival. NSG mice that had received renal subcapsular human islet allografts and were transfused with 1 × 107 of human spleen mononuclear cells reconstituted human CD45+ cells that were predominantly CD3+ T cells and rejected their grafts with a median survival time of 27 days. IL-2 alone (0.3 × 106 IU/m2 or 1 × 106 IU/m2) or rapamycin alone (0.5-1 mg/kg) for 3 weeks did not prolong survival. However, the combination of rapamycin with IL-2 for 3 weeks significantly prolonged human islet allograft survival. Graft survival was associated with expansion of CD4+CD25+FOXP3+ regulatory T cells (Tregs) and enhanced transforming growth factor-β production by CD4+ T cells. CD8+ T cells showed reduced interferon-γ production and reduced expression of perforin-1. The combination of IL-2 and rapamycin has the potential to inhibit human islet allograft rejection by expanding CD4+FOXP3+ Tregs in vivo and suppressing effector cell function and could be the basis of effective tolerance-based regimens.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Clinical Schools, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Leigh Nicholson
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Heather Burns
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Yi Wen Qian
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - David Liuwantara
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Elvira Jimenez Vera
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Lindy Williams
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Karen Keung
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Natasha Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Clinical Schools, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Abstract
Diabetes is a major worldwide health problem which results from the loss and/or dysfunction of pancreatic insulin-producing β cells in the pancreas. Therefore, there is great interest in understanding the endogenous capacity of β cells to regenerate under normal or pathological conditions, with the goal of restoring functional β cell mass in patients with diabetes. Here, we summarize the current status of β cell regeneration research, which has been broadly divided into three in vivo mechanisms: 1. proliferation of existing β cells; 2. neogenesis of β cells from adult ductal progenitors; and 3. transdifferentiation of other cell types into β cells. We discuss the evidence and controversies for each mechanism in mice and humans, as well as the prospect of using these approaches for the treatment of diabetes.
Collapse
|
10
|
Nguyen TT, Pham TT, Nguyen HT, Nepal MR, Phung CD, You Z, Katila N, Pun NT, Jeong TC, Choi DY, Park PH, Yong CS, Kim JO, Yook S, Jeong JH. Engineering “cell-particle hybrids” of pancreatic islets and bioadhesive FK506-loaded polymeric microspheres for local immunomodulation in xenogeneic islet transplantation. Biomaterials 2019; 221:119415. [DOI: 10.1016/j.biomaterials.2019.119415] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|
11
|
Farina M, Alexander JF, Thekkedath U, Ferrari M, Grattoni A. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv Drug Deliv Rev 2019; 139:92-115. [PMID: 29719210 DOI: 10.1016/j.addr.2018.04.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Cell-based therapy is emerging as a promising strategy for treating a wide range of human diseases, such as diabetes, blood disorders, acute liver failure, spinal cord injury, and several types of cancer. Pancreatic islets, blood cells, hepatocytes, and stem cells are among the many cell types currently used for this strategy. The encapsulation of these "therapeutic" cells is under intense investigation to not only prevent immune rejection but also provide a controlled and supportive environment so they can function effectively. Some of the advanced encapsulation systems provide active agents to the cells and enable a complete retrieval of the graft in the case of an adverse body reaction. Here, we review various encapsulation strategies developed in academic and industrial settings, including the state-of-the-art technologies in advanced preclinical phases as well as those undergoing clinical trials, and assess their advantages and challenges. We also emphasize the importance of stimulus-responsive encapsulated cell systems that provide a "smart and live" therapeutic delivery to overcome barriers in cell transplantation as well as their use in patients.
Collapse
|
12
|
Li X, Meng Q, Zhang L. The Fate of Allogeneic Pancreatic Islets following Intraportal Transplantation: Challenges and Solutions. J Immunol Res 2018; 2018:2424586. [PMID: 30345316 PMCID: PMC6174795 DOI: 10.1155/2018/2424586] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet transplantation as a therapeutic option for type 1 diabetes mellitus is gaining widespread attention because this approach can restore physiological insulin secretion, minimize the risk of hypoglycemic unawareness, and reduce the risk of death due to severe hypoglycemia. However, there are many obstacles contributing to the early mass loss of the islets and progressive islet loss in the late stages of clinical islet transplantation, including hypoxia injury, instant blood-mediated inflammatory reactions, inflammatory cytokines, immune rejection, metabolic exhaustion, and immunosuppression-related toxicity that is detrimental to the islet allograft. Here, we discuss the fate of intrahepatic islets infused through the portal vein and propose potential interventions to promote islet allograft survival and improve long-term graft function.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Qiang Meng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Lei Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| |
Collapse
|
13
|
Ackeifi CA, Swartz EA, Wang P. Cell-Based Methods to Identify Inducers of Human Pancreatic Beta-Cell Proliferation. Methods Mol Biol 2018; 1787:87-100. [PMID: 29736712 DOI: 10.1007/978-1-4939-7847-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetes is the result of the insufficiency or dysfunction of pancreatic beta cells alone or in combination with insulin resistance. The replacement or regeneration of beta cells can effectively reverse diabetes in humans and rodents. Therefore, the identification of novel small molecules that promote pancreatic beta-cell proliferation is an attractive approach for diabetic therapy. While numerous hormones, small molecules, and growth factors are able to drive rodent beta cells to replicate, only a few small molecules have demonstrated the ability to stimulate human beta-cell proliferation. Hence, there is an urgent need for therapeutic agents that induce regeneration and expansion of adult human beta cells. Here, we describe a detailed protocol for coating chamber slides, culturing primary islets, performing islet cell disassociation, seeding cells on chamber slides, treating islet cells with compounds or infecting them with adenovirus, immunostaining of proliferation markers and imaging, and data analysis.
Collapse
Affiliation(s)
- Courtney A Ackeifi
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ethan A Swartz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Barra JM, Tse HM. Redox-Dependent Inflammation in Islet Transplantation Rejection. Front Endocrinol (Lausanne) 2018; 9:175. [PMID: 29740396 PMCID: PMC5924790 DOI: 10.3389/fendo.2018.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease that results in the progressive destruction of insulin-producing pancreatic β-cells inside the islets of Langerhans. The loss of this vital population leaves patients with a lifelong dependency on exogenous insulin and puts them at risk for life-threatening complications. One method being investigated to help restore insulin independence in these patients is islet cell transplantation. However, challenges associated with transplant rejection and islet viability have prevented long-term β-cell function. Redox signaling and the production of reactive oxygen species (ROS) by recipient immune cells and transplanted islets themselves are key players in graft rejection. Therefore, dissipation of ROS generation is a viable intervention that can protect transplanted islets from immune-mediated destruction. Here, we will discuss the newly appreciated role of redox signaling and ROS synthesis during graft rejection as well as new strategies being tested for their efficacy in redox modulation during islet cell transplantation.
Collapse
|
15
|
Li C, Yang B, Xu Z, Boivin E, Black M, Huang W, Xu B, Wu P, Zhang B, Li X, Chen K, Wu Y, Rayat GR. Protective effect of cyanidin-3-O-glucoside on neonatal porcine islets. J Endocrinol 2017; 235:237-249. [PMID: 28931557 DOI: 10.1530/joe-17-0141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
Abstract
Oxidative stress is a major cause of islet injury and dysfunction during isolation and transplantation procedures. Cyanidin-3-O-glucoside (C3G), which is present in various fruits and vegetables especially in Chinese bayberry, shows a potent antioxidant property. In this study, we determined whether C3G could protect neonatal porcine islets (NPI) from reactive oxygen species (H2O2)-induced injury in vitro and promote the function of NPI in diabetic mice. We found that C3G had no deleterious effect on NPI and that C3G protected NPI from damage induced by H2O2 Significantly higher hemeoxygenase-1 (HO1) gene expression was detected in C3G-treated NPI compared to untreated islets before and after transplantation (P < 0.05). Western blot analysis showed a significant increase in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K/Akt) proteins in C3G-treated NPI compared to untreated islets. C3G induced the nuclear translocation of nuclear erythroid 2-related factor 2 (NRF2) and the significant elevation of HO1 protein. Recipients of C3G-treated NPI with or without C3G-supplemented drinking water achieved normoglycemia earlier compared to recipients of untreated islets. Mice that received C3G-treated islets with or without C3G-supplemented water displayed significantly lower blood glucose levels at 5-10 weeks post-transplantation compared to mice that received untreated islets. Mice that received C3G-treated NPI and C3G-supplemented drinking water had significantly (P < 0.05) lower blood glucose levels at 7 and 8 weeks post-transplantation compared to mice that received C3G-treated islets. These findings suggest that C3G has a beneficial effect on NPI through the activation of ERK1/2- and PI3K/AKT-induced NRF2-mediated HO1 signaling pathway.
Collapse
Affiliation(s)
- Chao Li
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Bin Yang
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Zhihao Xu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Boivin
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mazzen Black
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wenlong Huang
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Baoyou Xu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ping Wu
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bo Zhang
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Xian Li
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kunsong Chen
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yulian Wu
- Department of SurgeryThe Second Affiliated Hospital of Zhejiang University, Hanghzou, Zhejiang, China
| | - Gina R Rayat
- Department of SurgeryRay Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Current outcomes in islet versus solid organ pancreas transplant for β-cell replacement in type 1 diabetes. Curr Opin Organ Transplant 2017; 21:399-404. [PMID: 27258578 DOI: 10.1097/mot.0000000000000332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW With continued optimization of islet isolation and immunosuppression protocols, the medium-term rates of insulin independence following islet transplantation have improved significantly. This review evaluates the most up-to-date outcomes data for both solid organ pancreas and islet transplantation to develop an algorithm for selection of β-cell replacement in type 1 diabetes patients. RECENT FINDINGS Solid organ pancreas and islet transplantation have both displayed improved rates of 5-year insulin independence, largely attributable to improvements in immunosuppressive regimens. The medium-term rates of insulin independence following islet transplantation in highly selected type 1 nonuremic diabetic recipients is beginning to approach the success rates observed following solitary pancreas transplantation. SUMMARY Although pancreas transplantation has historically been favored for β-cell replacement, current outcomes following islet transplantation justify the use of this minimally invasive therapy in carefully selected patients. Pancreas transplant remains the procedure of choice for β-cell replacement in uremic patients. Islet transplantation should be considered in nonuremic patients with low BMI and low insulin requirements, patients lacking the cardiovascular reserve to undergo open abdominal surgery, or patients who elect to forego the risks of a major operation in exchange for an increased risk of islet graft failure.
Collapse
|
17
|
Wisel SA, Gardner JM, Roll GR, Harbell J, Freise CE, Feng S, Kang SM, Hirose R, Kaufman DB, Posselt A, Stock PG. Pancreas-After-Islet Transplantation in Nonuremic Type 1 Diabetes: A Strategy for Restoring Durable Insulin Independence. Am J Transplant 2017; 17:2444-2450. [PMID: 28489277 PMCID: PMC5573612 DOI: 10.1111/ajt.14344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 01/25/2023]
Abstract
Islet transplantation offers a minimally invasive approach for β cell replacement in diabetic patients with hypoglycemic unawareness. Attempts at insulin independence may require multiple islet reinfusions from distinct donors, increasing the risk of allogeneic sensitization. Currently, solid organ pancreas transplant is the only remaining surgical option following failed islet transplantation in the United States; however, the immunologic impact of repeated exposure to donor antigens on subsequent pancreas transplantation is unclear. We describe a case series of seven patients undergoing solid organ pancreas transplant following islet graft failure with long-term follow-up of pancreatic graft survival and renal function. Despite highly variable panel reactive antibody levels prior to pancreas transplant (mean 27 ± 35%), all seven patients achieved stable and durable insulin independence with a mean follow-up of 6.7 years. Mean hemoglobin A1c values improved significantly from postislet, prepancreas levels (mean 8.1 ± 1.5%) to postpancreas levels (mean 5.3 ± 0.1%; p = 0.0022). Three patients experienced acute rejection episodes that were successfully managed with thymoglobulin and methylprednisolone, and none of these preuremic type 1 diabetic recipients developed stage 4 or 5 chronic kidney disease postoperatively. These results support pancreas-after-islet transplantation with aggressive immunosuppression and protocol biopsies as a viable strategy to restore insulin independence after islet graft failure.
Collapse
Affiliation(s)
- SA Wisel
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - JM Gardner
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - GR Roll
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - J Harbell
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - CE Freise
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - S Feng
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - SM Kang
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - R Hirose
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - DB Kaufman
- Department of Surgery, University of Wisconsin; Madison, WI, United States
| | - A Posselt
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - PG Stock
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| |
Collapse
|
18
|
Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression. Transplantation 2017; 101:2218-2227. [DOI: 10.1097/tp.0000000000001543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Qin J, Arakawa Y, Morita M, Fung JJ, Qian S, Lu L. C-C Chemokine Receptor Type 2-Dependent Migration of Myeloid-Derived Suppressor Cells in Protection of Islet Transplants. Transplantation 2017; 101:1793-1800. [PMID: 27755503 PMCID: PMC5393972 DOI: 10.1097/tp.0000000000001529] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Islet transplantation is a promising therapeutic approach to restore the physical response to blood glucose in type 1 diabetes. Current chronic use of immunosuppressive reagents for preventing islet allograft rejection is associated with severe complications. In addition, many of the immunosuppressive drugs are diabetogenic. The induction of transplant tolerance to eliminate the dependency on immunosuppression is ideal, but remains challenging. METHODS Addition of hepatic stellate cells allowed generation of myeloid-derived suppressor cells (MDSC) from precursors in mouse bone marrow. Migration of MDSC was examined in an islet allograft transplant model by tracking the systemic administered MDSC from CD45.1 congenic mice. RESULTS The generated MDSC were expressed C-C chemokine receptor type 2 (CCR2), which was enhanced by exposure to interferon-γ. A single systemic administration of MDSC markedly prolonged survival of islet allografts without requirement of immunosuppression. Tracking the administered MDSC showed that they promptly migrated to the islet graft sites, at which point they exerted potent immune suppressive activity by inhibiting CD8 T cells, enhancing regulatory T cell activity. MDSC generated from CCR2 mice failed to be mobilized and lost tolerogenic activity in vivo, but sustained suppressive activity in vitro. CONCLUSIONS MDSC migration was dependent on expression of CCR2, whereas CCR2 does not directly participate in immune suppression. Expression of CCR2 needs to be closely monitored for quality control purpose when MDSC are generated in vitro for immune therapy.
Collapse
Affiliation(s)
- Jie Qin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yusuke Arakawa
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Miwa Morita
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - John J Fung
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
20
|
The Efficacy of a Prevascularized, Retrievable Poly(D,L,-lactide-co-ε-caprolactone) Subcutaneous Scaffold as Transplantation Site for Pancreatic Islets. Transplantation 2017; 101:e112-e119. [PMID: 28207637 DOI: 10.1097/tp.0000000000001663] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The liver as transplantation site for human pancreatic islets is a harsh microenvironment for islets and it lacks the ability to retrieve the graft. A retrievable, extrahepatic transplantation site that mimics the pancreatic environment is desired. Ideally, this transplantation site should be located subdermal for easy surgical-access but this never resulted in normoglycemia. Here, we describe the design and efficacy of a novel prevascularized, subcutaneously implanted, retrievable poly (D,L-lactide-co-ε-caprolactone) scaffold. METHOD Three dosages of rat islets, that is, 400, 800, and 1200, were implanted in immune compromised mice to test the efficacy (n = 5). Islet transplantation under the kidney capsule served as control (n = 5). The efficacy was determined by nonfasting blood glucose measurements and glucose tolerance tests. RESULTS Transplantation of 800 (n = 5) and 1200 islets (n = 5) into the scaffold reversed diabetes in respectively 80 and 100% of the mice within 6.8 to 18.5 days posttransplant. The marginal dose of 400 islets (n = 5) induced normoglycemia in 20%. The glucose tolerance test showed major improvement of the glucose clearance in the scaffold groups compared to diabetic controls. However, the kidney capsule was slightly more efficacious because all 800 (n = 5) and 1200 islets (n = 5) recipients and 40% of the 400 islets (n = 5) recipients became normoglycemic within 8 days. Removal of the scaffolds or kidney grafts resulted in immediate return to hyperglycemia. Normoglycemia was not achieved with 1200 islets in the unmodified skin group. CONCLUSIONS Our findings demonstrate that the prevascularized poly (D,L-lactide-co-ε-caprolactone) scaffold maintains viability and function of islets in the subcutaneous site.
Collapse
|
21
|
Dendritic cells that highly express SOCS1 induce T-cell hypo-responsiveness and prolong islet allograft survival. Cell Immunol 2017; 314:36-41. [DOI: 10.1016/j.cellimm.2017.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/07/2017] [Accepted: 01/27/2017] [Indexed: 11/17/2022]
|
22
|
Heileman KL, Daoud J, Tabrizian M. Elaboration of a finite element model of pancreatic islet dielectric response to gap junction expression and insulin release. Colloids Surf B Biointerfaces 2016; 148:474-480. [PMID: 27665380 DOI: 10.1016/j.colsurfb.2016.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/23/2022]
Abstract
Dielectric spectroscopy could potentially be a powerful tool to monitor isolated human pancreatic islets for applications in diabetes therapy and research. Isolated intact human islets provide the most relevant means to understand the cellular and molecular mechanisms associated with diabetes. The advantages of dielectric spectroscopy for continuous islet monitoring are that it is a non-invasive, inexpensive and real-time technique. We have previously assessed the dielectric response of human islet samples during stimulation and differentiation. Because of the complex geometry of islets, analytical solutions are not sufficiently representative to provide a pertinent model of islet dielectric response. Here, we present a finite element dielectric model of a single intact islet that takes into account the tight packing of islet cells and intercellular junctions. The simulation yielded dielectric spectra characteristic of cell aggregates, similar to those produced with islets. In addition, the simulation showed that both exocytosis, such as what occurs during insulin secretion, and differential gap junction expression have significant effects on islet dielectric response. Since the progression of diabetes has some connections with dysfunctional islet gap junctions and insulin secretion, the ability to monitor these islet features with dielectric spectroscopy would benefit diabetes research.
Collapse
Affiliation(s)
| | | | - Maryam Tabrizian
- Biomedical Engineering Department, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
23
|
Pawlick RL, Wink J, Pepper AR, Bruni A, Abualhassen N, Rafiei Y, Gala-Lopez B, Bral M, Shapiro AJ. Reparixin, a CXCR1/2 inhibitor in islet allotransplantation. Islets 2016; 8:115-24. [PMID: 27328412 PMCID: PMC5029202 DOI: 10.1080/19382014.2016.1199303] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Quality of life in Type 1 diabetic patients may be improved with islet transplantation, but lifelong immunosuppression is required to prevent rejection. Allo-immune response is a key player in graft dysfunction and although the adaptive immune response is well characterized, the effect of the innate immune reaction after transplantation is only recently becoming appreciated. In this study, we address how the innate response affects long-term outcomes in a murine islet allotransplant model. CTLA-4 Ig treatment is known to significantly prolong kidney subcapsular islet allograft survival and enhance glucose tolerance. The combination of CTLA-4 Ig with reparixin, which blocks against inflammatory neutrophil infiltration, yielded no long-term graft survival in an intrahepatic allotransplant model but had similar long-term graft survival in the kidney subcapsular model. Seven days after transplant, serum blood IFN-γ levels were significantly lower in the CTLA-4 Ig with reparixin treatment group compared to controls. IL-12p70 cytokine levels were increased with combination treatment, a positive modulation of the inflammatory response to the allograft. Furthermore, KC GRO, also known as CXCL1, was decreased in serum 7 d after transplant. Histologically, we found that immune cell infiltrate, CD4+ and CD8+ T cell populations along with both CXCR1+ and CXCR2+ cell populations were decreased within the CTLA-4 Ig and reparixin islet transplant graft. Overall these data provide insight into the down regulation of T-cell recruitment by CTLA-4 Ig and decreased neutrophil activation and recruitment with reparixin after long-term islet graft survival.
Collapse
Affiliation(s)
- Rena L. Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - John Wink
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Yasmin Rafiei
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Mariusz Bral
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - A.M. James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- CONTACT: Dr. A.M. James Shapiro , Canada Research Chair in Transplantation Surgery and Regenerative Medicine, 2000 College Plaza, 8215 112th St., Edmonton, AB, Canada T6G 2C8
| |
Collapse
|
24
|
Sionov RV, Finesilver G, Sapozhnikov L, Soroker A, Zlotkin-Rivkin E, Saad Y, Kahana M, Bodaker M, Alpert E, Mitrani E. Beta Cells Secrete Significant and Regulated Levels of Insulin for Long Periods when Seeded onto Acellular Micro-Scaffolds. Tissue Eng Part A 2016; 21:2691-702. [PMID: 26416226 DOI: 10.1089/ten.tea.2014.0711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of this work is to obtain significant and regulated insulin secretion from human beta cells ex vivo. Long-term culture of human pancreatic islets and attempts at expanding human islet cells normally result in loss of beta-cell phenotype. We propose that to obtain proper ex vivo beta cell function, there is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. We here describe the preparation of endocrine micro-pancreata (EMPs) that are made up of acellular organ-derived micro-scaffolds seeded with human intact or enzymatically dissociated islets. We show that EMPs constructed by seeding whole islets, freshly enzymatically-dissociated islets or even dissociated islets grown first in standard monolayer cultures express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than 3 months in vitro.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Gershon Finesilver
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Lena Sapozhnikov
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Avigail Soroker
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Yocheved Saad
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Meygal Kahana
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Matan Bodaker
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Evgenia Alpert
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem , The Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| |
Collapse
|
25
|
Yoshimatsu G, Takita M, Kanak MA, Haque WZ, Chang C, Saravanan PB, Lawrence MC, Levy MF, Naziruddin B. MiR-375 and miR-200c as predictive biomarkers of islet isolation and transplantation in total pancreatectomy with islet autotransplantation. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2016; 23:585-94. [PMID: 27429015 DOI: 10.1002/jhbp.377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Total pancreatectomy with islet autotransplantation (TPIAT) is a promising treatment for refractory chronic pancreatitis. Predictable biomarkers for the endocrine function after transplantation would be helpful in selecting patients for TPIAT. This study aims to identify novel biomarkers for predicting the outcome of islet isolation and transplantation in TPIAT patients. METHODS This paper studied microRNA of 31 TPIAT patients and 11 deceased donors from plasma samples before TPIAT. MiR-7, miR-200a, miR-200c, miR-320, and miR-375 were analyzed along with patient characteristics and the outcomes of islet isolation and transplantation via univariate and multivariate regression analysis. RESULTS MiR-375 before TPIAT showed a significant correlation with ∆C-peptide (r = -0.396, P = 0.03) and post-digestion islet count (r = -0.372, P = 0.04). And also miR-200c was significantly correlated with insulin requirement, C-peptide, and SUITO index at 1 year after transplantation. Moreover it was confirmed that miR-200c was a predictable factor of endocrine outcome in multi regression analysis (coefficient = -7.081, P = 0.001). CONCLUSIONS We concluded that miR-375 and miR-200c could potentially serve as novel biomarkers in predicting the islet yield in islet isolation and the metabolic function after transplantation for chronic pancreatitis patients.
Collapse
Affiliation(s)
- Gumpei Yoshimatsu
- Islet Cell Laboratory, Baylor Research Institute, Dallas, Texas, USA
| | - Morihito Takita
- Islet Cell Laboratory, Baylor Research Institute, Dallas, Texas, USA
| | - Mazhar A Kanak
- Transplant Division, Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Waqas Z Haque
- Islet Cell Laboratory, Baylor Research Institute, Dallas, Texas, USA
| | - Charles Chang
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | | | | | - Marlon F Levy
- Transplant Division, Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, Texas, USA. .,Islet Cell Laboratory, Baylor Simmons Transplant Institute, 3410 Worth Street, Suite 950, Dallas, TX, 75246, USA.
| |
Collapse
|
26
|
Abualhassan N, Sapozhnikov L, Pawlick RL, Kahana M, Pepper AR, Bruni A, Gala-Lopez B, Kin T, Mitrani E, Shapiro AMJ. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation. PLoS One 2016; 11:e0156053. [PMID: 27227978 PMCID: PMC4881949 DOI: 10.1371/journal.pone.0156053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.
Collapse
Affiliation(s)
| | - Lena Sapozhnikov
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rena L. Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Meygal Kahana
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A. M. James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Castiello FR, Heileman K, Tabrizian M. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities. LAB ON A CHIP 2016; 16:409-31. [PMID: 26732665 DOI: 10.1039/c5lc01046b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A secretome signature is a heterogeneous profile of secretions present in a single cell type. From the secretome signature a smaller panel of proteins, namely a secretion fingerprint, can be chosen to feasibly monitor specific cellular activity. Based on a thorough appraisal of the literature, this review explores the possibility of defining and using a secretion fingerprint to gauge the functionality of pancreatic islets of Langerhans. It covers the state of the art regarding microfluidic perfusion systems used in pancreatic islet research. Candidate analytical tools to be integrated within microfluidic perfusion systems for dynamic secretory fingerprint monitoring were identified. These analytical tools include patch clamp, amperometry/voltametry, impedance spectroscopy, field effect transistors and surface plasmon resonance. Coupled with these tools, microfluidic devices can ultimately find applications in determining islet quality for transplantation, islet regeneration and drug screening of therapeutic agents for the treatment of diabetes.
Collapse
Affiliation(s)
- F Rafael Castiello
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Khalil Heileman
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Maryam Tabrizian
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
28
|
Gala-Lopez BL, Pepper AR, Pawlick RL, O'Gorman D, Kin T, Bruni A, Abualhassan N, Bral M, Bautista A, Manning Fox JE, Young LG, MacDonald PE, Shapiro AMJ. Antiaging Glycopeptide Protects Human Islets Against Tacrolimus-Related Injury and Facilitates Engraftment in Mice. Diabetes 2016; 65:451-462. [PMID: 26581595 DOI: 10.2337/db15-0764] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/10/2015] [Indexed: 02/05/2023]
Abstract
Clinical islet transplantation has become an established treatment modality for selected patients with type 1 diabetes. However, a large proportion of transplanted islets is lost through multiple factors, including immunosuppressant-related toxicity, often requiring more than one donor to achieve insulin independence. On the basis of the cytoprotective capabilities of antifreeze proteins (AFPs), we hypothesized that supplementation of islets with synthetic AFP analog antiaging glycopeptide (AAGP) would enhance posttransplant engraftment and function and protect against tacrolimus (Tac) toxicity. In vitro and in vivo islet Tac exposure elicited significant but reversible reduction in insulin secretion in both mouse and human islets. Supplementation with AAGP resulted in improvement of islet survival (Tac(+) vs. Tac+AAGP, 31.5% vs. 67.6%, P < 0.01) coupled with better insulin secretion (area under the curve: Tac(+) vs. Tac+AAGP, 7.3 vs. 129.2 mmol/L/60 min, P < 0.001). The addition of AAGP reduced oxidative stress, enhanced insulin exocytosis, improved apoptosis, and improved engraftment in mice by decreasing expression of interleukin (IL)-1β, IL-6, keratinocyte chemokine, and tumor necrosis factor-α. Finally, transplant efficacy was superior in the Tac+AAGP group and was similar to islets not exposed to Tac, despite receiving continuous treatment for a limited time. Thus, supplementation with AAGP during culture improves islet potency and attenuates long-term Tac-induced graft dysfunction.
Collapse
Affiliation(s)
- Boris L Gala-Lopez
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Canadian National Transplant Research Program, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Canadian National Transplant Research Program, University of Alberta, Edmonton, Alberta, Canada
| | - Rena L Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Canadian National Transplant Research Program, University of Alberta, Edmonton, Alberta, Canada
| | - Nasser Abualhassan
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Canadian National Transplant Research Program, University of Alberta, Edmonton, Alberta, Canada
| | - Mariusz Bral
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Lachlan G Young
- ProtoKinetix Inc., Vancouver, Vancouver, British Columbia, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada Canadian National Transplant Research Program, University of Alberta, Edmonton, Alberta, Canada Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Hawthorne WJ. Necessities for a Clinical Islet Program. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 938:67-88. [PMID: 27586423 DOI: 10.1007/978-3-319-39824-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For more than two decades we have been refining advances in islet cell transplantation as a clinical therapy for patients suffering from type 1 diabetes. A great deal of effort has gone to making this a viable therapy for a broader range of patients with type 1 diabetes. Clinical results have progressively improved, demonstrating clinical outcomes on par with other organ transplants, specifically in terms of insulin independence, graft and patient survival. We are now at the point where islet cell transplantation, in the form of allotransplantation, has become accepted as a clinical therapy in adult patients affected by type 1 diabetes, in particular those suffering from severe hypoglycaemic unawareness. This chapter provides an overview on how this has been undertaken over the years to provide outcomes on par with other organ transplantation results. In particular this chapter focuses on the processes and facilities that are required to establish a clinical islet isolation and transplantation program. It also outlines the very important underpinning processes of selection of the organ donor for islet isolation, the processes of organ donor operation and preservation of the pancreas by various means and the ideal ways to best improve outcomes for human islet cell isolation. Providing these more optimal conditions we can underpin the isolation processes to provide islets for transplantation and as such a safe, effective and feasible therapeutic option for an increasing number of patients suffering from type 1 diabetes with severe hypoglycaemic unawareness.
Collapse
Affiliation(s)
- Wayne J Hawthorne
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia. .,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
30
|
Lazard D, Vardi P, Bloch K. Anti-diabetic and neuroprotective effects of pancreatic islet transplantation into the central nervous system. Diabetes Metab Res Rev 2016; 32:11-20. [PMID: 25708430 DOI: 10.1002/dmrr.2644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
During the last decades, the central nervous system (CNS) was intensively tested as a site for islet transplantation in different animal models of diabetes. Immunoprivilege properties of intracranial and intrathecal sites were found to delay and reduce rejection of transplanted allo-islets and xeno-islets, especially in the form of dispersed single cells. Insulin released from islets grafted in CNS was shown to cross the blood-brain barrier and to act as a regulator of peripheral glucose metabolism. In diabetic animals, sufficient nutrition and oxygen supply to islets grafted in the CNS provide adequate insulin response to increase glucose level resulting in rapid normoglycemia. In addition to insulin, pancreatic islets produce and secrete several other hormones, as well as neurotrophic and angiogenic factors with potential neuroprotective properties. Recent experimental studies and clinical trials provide a strong support for delivery of islet-derived macromolecules to CNS as a promising strategy to treat various brain disorders. This review article focuses mainly on analysis of current status of intracranial and intrathecal islet transplantations for treatment of experimental diabetes and discusses the possible neuroprotective properties of grafted islets into CNS as a novel therapeutic approach to brain disorders with cognitive dysfunctions characterized by impaired brain insulin signalling. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier
- Brain
- Central Nervous System
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/surgery
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/surgery
- Diabetic Neuropathies/prevention & control
- Disease Models, Animal
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemia/prevention & control
- Insulin/metabolism
- Insulin Resistance
- Insulin Secretion
- Islets of Langerhans Transplantation/adverse effects
- Spinal Cord
- Subarachnoid Space
- Transplantation, Heterologous/adverse effects
- Transplantation, Heterotopic/adverse effects
Collapse
Affiliation(s)
- Daniel Lazard
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Pnina Vardi
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Konstantin Bloch
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| |
Collapse
|
31
|
Hanayama H, Ohashi K, Utoh R, Shimizu H, Ise K, Sakurai F, Mizuguchi H, Tsuchiya H, Okano T, Gotoh M. Efficient Gene Transduction of Dispersed Islet Cells in Culture Using Fiber-Modified Adenoviral Vectors. CELL MEDICINE 2015; 8:31-8. [PMID: 26858906 DOI: 10.3727/215517915x689083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To establish novel islet-based therapies, our group has recently developed technologies for creating functional neo-islet tissues in the subcutaneous space by transplanting monolithic sheets of dispersed islet cells (islet cell sheets). Improving cellular function and viability are the next important challenges for enhancing the therapeutic effects. This article describes the adenoviral vector-mediated gene transduction of dispersed islet cells under culture conditions. Purified pancreatic islets were obtained from Lewis rats and dissociated into single islet cells. Cells were plated onto laminin-5-coated temperature-responsive polymer poly(N-isopropylacrylamide)-immobilized plastic dishes. At 0 h, islet cells were infected for 1 h with either conventional type 5 adenoviral vector (Ad-CA-GFP) or fiber-modified adenoviral vector (AdK7-CA-GFP) harboring a polylysine (K7) peptide in the C terminus of the fiber knob. We investigated gene transduction efficiency at 48 h after infection and found that AdK7-CA-GFP yielded higher transduction efficiencies than Ad-CA-GFP at a multiplicity of infection (MOI) of 5 and 10. For AdK7-CA-GFP at MOI = 10, 84.4 ± 1.5% of islet cells were found to be genetically transduced without marked vector infection-related cellular damage as determined by viable cell number and lactate dehydrogenase (LDH) release assay. After AdK7-CA-GFP infection at MOI = 10, cells remained attached and expanded to nearly full confluency, showing that this adenoviral infection protocol is a feasible approach for creating islet cell sheets. We have shown that dispersed and cultured islet cells can be genetically modified efficiently using fiber-modified adenoviral vectors. Therefore, this gene therapy technique could be used for cellular modification or biological assessment of dispersed islet cells.
Collapse
Affiliation(s)
- Hiroyuki Hanayama
- Department of Regenerative Surgery, Fukushima Medical University , Hikarigaoka, Fukushima , Japan
| | - Kazuo Ohashi
- † iPS Cell-based Projects on Cell Transplantation and Cell Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka , Japan
| | - Rie Utoh
- ‡ Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Shinjuku, Tokyo , Japan
| | - Hirofumi Shimizu
- Department of Regenerative Surgery, Fukushima Medical University , Hikarigaoka, Fukushima , Japan
| | - Kazuya Ise
- Department of Regenerative Surgery, Fukushima Medical University , Hikarigaoka, Fukushima , Japan
| | - Fuminori Sakurai
- § Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka , Japan
| | - Hiroyuki Mizuguchi
- § Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka , Japan
| | - Hiroyuki Tsuchiya
- † iPS Cell-based Projects on Cell Transplantation and Cell Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka , Japan
| | - Teruo Okano
- ‡ Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Shinjuku, Tokyo , Japan
| | - Mitsukazu Gotoh
- Department of Regenerative Surgery, Fukushima Medical University , Hikarigaoka, Fukushima , Japan
| |
Collapse
|
32
|
Choong FJ, Freeman C, Parish CR, Simeonovic CJ. Islet heparan sulfate but not heparan sulfate proteoglycan core protein is lost during islet isolation and undergoes recovery post-islet transplantation. Am J Transplant 2015; 15:2851-64. [PMID: 26104150 DOI: 10.1111/ajt.13366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 03/29/2015] [Accepted: 04/19/2015] [Indexed: 01/25/2023]
Abstract
Islet beta cells in situ express intracellular heparan sulfate (HS), a property previously shown in vitro to be important for their survival. We report that HS levels inside islet beta cells correlate with the novel intracellular localization of the HSPG core proteins for collagen type XVIII (Col18), a conventional extracellular matrix component. Syndecan-1 (Sdc1) and CD44 core proteins were similarly localized inside beta cells. During isolation, mouse islets selectively lose HS to 11-27% of normal levels but retain their HSPG core proteins. Intra-islet HS failed to recover substantially during culture for 4 days and was not reconstituted in vitro using HS mimetics. In contrast, significant recovery of intra-islet HS to ∼40-50% of normal levels occurred by 5-10 days after isotransplantation. Loss of islet HS during the isolation procedure is independent of heparanase (a HS-degrading endoglycosidase) and due, in part, to oxidative damage. Treatment with antioxidants reduced islet cell death by ∼60% and increased the HS content of isolated islets by ∼twofold compared to untreated islets, preserving intra-islet HS to ∼60% of the normal HS content of islets in situ. These findings suggest that the preservation of islet HS during the islet isolation process may optimize islet survival posttransplant.
Collapse
Affiliation(s)
- F J Choong
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - C Freeman
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - C R Parish
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - C J Simeonovic
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| |
Collapse
|
33
|
Meirelles Júnior RF, Salvalaggio P, Pacheco-Silva A. Pancreas transplantation: review. EINSTEIN-SAO PAULO 2015; 13:305-9. [PMID: 26154551 PMCID: PMC4943828 DOI: 10.1590/s1679-45082015rw3163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 02/08/2015] [Indexed: 12/20/2022] Open
Abstract
Vascularized pancreas transplantation is the only treatment that establishes normal glucose levels and normalizes glycosylated hemoglobin levels in type 1 diabetic patients. The first vascularized pancreas transplant was performed by William Kelly and Richard Lillehei, to treat a type 1 diabetes patient, in December 1966. In Brazil, Edison Teixeira performed the first isolated segmental pancreas transplant in 1968. Until the 1980s, pancreas transplants were restricted to a few centers of the United States and Europe. The introduction of tacrolimus and mycophenolate mofetil in 1994, led to a significant outcome improvement and consequently, an increase in pancreas transplants in several countries. According to the International Pancreas Transplant Registry, until December 31st, 2010, more than 35 thousand pancreas transplants had been performed. The one-year survival of patients and pancreatic grafts exceeds 95 and 83%, respectively. The better survival of pancreatic (86%) and renal (93%) grafts in the first year after transplantation is in the simultaneous pancreas-kidney transplant group of patients. Immunological loss in the first year after transplant for simultaneous pancreas-kidney, pancreas after kidney, and pancreas alone are 1.8, 3.7, and 6%, respectively. Pancreas transplant has 10 to 20% surgical complications requiring laparotomy. Besides enhancing quality of life, pancreatic transplant increases survival of uremic diabetic patient as compared to uremic diabetic patients on dialysis or with kidney transplantation alone.
Collapse
|
34
|
Oh BJ, Jin SM, Choi JM, Oh SH, Shim W, Lee MS, Lee MK, Kim JH. Improved revascularization of islet grafts using an angiogenic monocyte subpopulation derived from spheroid culture of bone marrow mononuclear cells. Am J Transplant 2015; 15:1543-54. [PMID: 25865268 DOI: 10.1111/ajt.13157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/10/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023]
Abstract
The spheroid culture method is an effective strategy for ex vivo expansion of an autologous therapeutic cell population. We investigated if cotransplantation of bone marrow-derived spheroids (BM-spheroid) formed using 3D culture of BM-derived mononuclear cells (BM-MNCs) could improve the posttransplant outcome of islet grafts using a mouse syngeneic marginal mass renal subcapsular islet transplantation model. Using green fluorescent protein transgenic (GFP-Tg) mice, the role of the BM-spheroids and the contribution of vessels derived from donors and recipients in grafted areas were assessed by immunohistochemistry. Compared to fresh BM-MNCs and nonspheroid remnant cells (BM-nonspheroid), the BM-spheroids, mainly composed of CXCR4(+) CD14(+) myeloid cells, showed higher angiogenic capacity, such as in vitro self-formed vessel structures; increased expression of angiogenic and chemoattractive factors; and incorporation into new vessel formation in basement membrane matrix plugs. BM-spheroid cotransplantation with islets improved the posttransplant outcomes in terms of glucose tolerance, serum insulin level, and diabetes reversal rate when compared with cotransplantation of BM-nonspheroids. Immunohistochemistry revealed that cotransplantation of the BM-spheroids increased vessel density, area of grafted endocrine and non-endocrine tissue, and β cell proliferation. In conclusion, cotransplantation of islets and BM-spheroids improved islet function through facilitation of revascularization and an increase in cell proliferation and islet cell mass.
Collapse
Affiliation(s)
- B J Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - S-M Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J-M Choi
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - S-H Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - W Shim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - M-S Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - M-K Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J H Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
Xu T, Zhu M, Guo Y, Wu D, Huang Y, Fan X, Zhu S, Lin C, Li X, Lu J, Zhu H, Zhou P, Lu Y, Wang Z. Three-dimensional culture of mouse pancreatic islet on a liver-derived perfusion-decellularized bioscaffold for potential clinical application. J Biomater Appl 2015; 30:379-87. [PMID: 26006767 DOI: 10.1177/0885328215587610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cutting-edge technology of three-dimensional liver decellularized bioscaffold has a potential to provide a microenvironment that is suitable for the resident cells and even develop a new functional organ. Liver decellularized bioscaffold preserved the native extracellular matrix and three-dimensional architecture in support of the cell culture. The goal of this study was to discover if three-dimensional extracellular matrix derived from mouse liver could facilitate the growth and maintenance of physiological functions of mouse isolated islets. We generated a whole organ liver decellularized bioscaffold which could successfully preserve extracellular matrix proteins and the native vascular channels using 1% Triton X-100/0.1% ammonium protocol. To evaluate the potential of decellularized liver as a scaffold for islets transplantation, the liver decellularized bioscaffold was infused with mouse primary pancreatic islets which were obtained through Collagenase P digestion protocol. Its yield, morphology, and quality were estimated by microscopic analysis, dithizone staining, insulin immunofluorescence and glucose stimulation experiments. Comparing the three-dimensional culture in liver decellularized bioscaffold with the orthodoxy two-dimensional plate culture, hematoxylin-eosin staining, immunohistochemistry, and insulin gene expression were tested. Our results demonstrated that the liver decellularized bioscaffold could support cellular culture and maintenance of cell functions. In contrast with the conventional two-dimensional culture, three-dimensional culture system could give rise to an up-regulated insulin gene expression. These findings demonstrated that the liver bioscaffold by a perfusion-decellularized technique could serve as a platform to support the survival and function of the pancreatic islets in vitro. Meanwhile three-dimensional culture system had a superior role in contrast with the two-dimensional culture. This study advanced the field of regenerative medicine towards the development of a liver decellularized bioscaffold capable of forming a neo-organ and could be used as potential clinical application.
Collapse
Affiliation(s)
- Tianxin Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Mingyan Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Yibing Guo
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Di Wu
- Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Xiangjun Fan
- Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Shajun Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Changchun Lin
- Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Xiaohong Li
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Jingjing Lu
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Hui Zhu
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Pengcheng Zhou
- Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Yuhua Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Jiangsu, People's Republic of China
| |
Collapse
|
36
|
Transdifferentiation of Bone Marrow Mesenchymal Stem Cells into the Islet-Like Cells: the Role of Extracellular Matrix Proteins. Arch Immunol Ther Exp (Warsz) 2015; 63:377-84. [PMID: 25957583 DOI: 10.1007/s00005-015-0340-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/16/2015] [Indexed: 02/03/2023]
Abstract
Pancreatic islet implantation has been recently shown to be an efficient method of treatment for type 1 diabetes. However, limited availability of donor islets reduces its use. Bone morrow would provide potentially unlimited source of stem cells for generation of insulin-producing cells. This study was performed to evaluate the influence of extracellular matrix proteins like collagen, laminin, and vitronectin on bone marrow mesenchymal stem cells (BM-MSCs) transdifferentiation into islet-like cells (ILCs) in vitro. To our knowledge, this is the first report evaluating the importance of vitronectin in transdifferentiation of BM-MSCs into ILCs. Rat BM-MSCs were induced to ILCs using four-step protocol on plates coated with collagen type IV, laminin type I and vitronectin type I. Quantitative real-time PCR was performed to detect gene expression related to pancreatic β cell development. The induced cells expressed islet-related genes including: neurogenin 3, neurogenic differentiation 1, paired box 4, NK homeobox factor 6.1, glucagon, insulin 1 and insulin 2. Laminin but not collagen type IV or vitronectin enhanced expression of insulin and promoted formation of islet-like structures in monolayer culture. Laminin triggered transdifferentiation of BM-MSCs into ILCs.
Collapse
|
37
|
Wang P, Fiaschi-Taesch NM, Vasavada RC, Scott DK, García-Ocaña A, Stewart AF. Diabetes mellitus--advances and challenges in human β-cell proliferation. Nat Rev Endocrinol 2015; 11:201-12. [PMID: 25687999 DOI: 10.1038/nrendo.2015.9] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The treatment of diabetes mellitus represents one of the greatest medical challenges of our era. Diabetes results from a deficiency or functional impairment of insulin-producing β cells, alone or in combination with insulin resistance. It logically follows that the replacement or regeneration of β cells should reverse the progression of diabetes and, indeed, this seems to be the case in humans and rodents. This concept has prompted attempts in many laboratories to create new human β cells using stem-cell strategies to transdifferentiate or reprogramme non-β cells into β cells or to discover small molecules or other compounds that can induce proliferation of human β cells. This latter approach has shown promise, but has also proven particularly challenging to implement. In this Review, we discuss the physiology of normal human β-cell replication, the molecular mechanisms that regulate the cell cycle in human β cells, the upstream intracellular signalling pathways that connect them to cell surface receptors on β cells, the epigenetic mechanisms that control human β-cell proliferation and unbiased approaches for discovering novel molecules that can drive human β-cell proliferation. Finally, we discuss the potential and challenges of implementing strategies that replace or regenerate β cells.
Collapse
Affiliation(s)
- Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Nathalie M Fiaschi-Taesch
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Rupangi C Vasavada
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Adolfo García-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
38
|
Moore SJ, Gala-Lopez BL, Pepper AR, Pawlick RL, Shapiro AMJ. Bioengineered stem cells as an alternative for islet cell transplantation. World J Transplant 2015; 5:1-10. [PMID: 25815266 PMCID: PMC4371156 DOI: 10.5500/wjt.v5.i1.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/18/2014] [Accepted: 10/29/2014] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes is an autoimmune and increasingly prevalent condition caused by immunological destruction of beta cells. Insulin remains the mainstay of therapy. Endeavours in islet transplantation have clearly demonstrated that type 1 diabetes is treatable by cellular replacement. Many challenges remain with this approach. The opportunity to use bioengineered embryonic or adult pluripotential stem cells, or islets derived from porcine xenograft sources could address future demands, but are still associated with considerable challenges. This detailed review outlines current progress in clinical islet transplantation, and places this in perspective for the remarkable scientific advances now occurring in stem cell and regenerative medicine approaches in the treatment of future curative treatment of diabetes.
Collapse
|
39
|
Béland S, Désy O, Vallin P, Basoni C, De Serres SA. Innate immunity in solid organ transplantation: an update and therapeutic opportunities. Expert Rev Clin Immunol 2015; 11:377-89. [PMID: 25644774 DOI: 10.1586/1744666x.2015.1008453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innate immunity is increasingly recognized as a major player in transplantation. In addition to its role in inflammation in the early post-transplant period, innate immunity shapes the differentiation of cells of adaptive immunity, with a capacity to promote either rejection or tolerance. Emerging data indicate that innate allorecognition, a characteristic previously limited to lymphocytes, is involved in allograft rejection. This review briefly summarizes the physiology of each component of the innate immune system in the context of transplantation and presents the current or promising therapeutic applications, such as cellular, anticomplement and anticytokine therapies.
Collapse
Affiliation(s)
- Stéphanie Béland
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec Research Center, Faculty of Medicine, Laval University, 11 Côte du Palais, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
40
|
Salvadori M, Bertoni E. What's new in clinical solid organ transplantation by 2013. World J Transplant 2014; 4:243-266. [PMID: 25540734 PMCID: PMC4274595 DOI: 10.5500/wjt.v4.i4.243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/27/2014] [Indexed: 02/05/2023] Open
Abstract
Innovative and exciting advances in the clinical science in solid organ transplantation continuously realize as the results of studies, clinical trials, international conferences, consensus conferences, new technologies and discoveries. This review will address to the full spectrum of news in transplantation, that verified by 2013. The key areas covered are the transplantation activity, with particular regards to the donors, the news for solid organs such as kidney, pancreas, liver, heart and lung, the news in immunosuppressive therapies, the news in the field of tolerance and some of the main complications following transplantation as infections and cancers. The period of time covered by the study starts from the international meetings held in 2012, whose results were published in 2013, up to the 2013 meetings, conferences and consensus published in the first months of 2014. In particular for every organ, the trends in numbers and survival have been reviewed as well as the most relevant problems such as organ preservation, ischemia reperfusion injuries, and rejections with particular regards to the antibody mediated rejection that involves all solid organs. The new drugs and strategies applied in organ transplantation have been divided into new way of using old drugs or strategies and drugs new not yet on the market, but on phase Ito III of clinical studies and trials.
Collapse
|
41
|
Al-Adra DP, Gill RS, Imes S, O'Gorman D, Kin T, Axford SJ, Shi X, Senior PA, Shapiro AMJ. Single-donor islet transplantation and long-term insulin independence in select patients with type 1 diabetes mellitus. Transplantation 2014; 98:1007-1012. [PMID: 24911037 DOI: 10.1097/tp.0000000000000217] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Islet transplantation is a recognized treatment option for select patients with type I diabetes mellitus. However, islet infusions from multiple donors are often required to achieve insulin independence. Ideally, insulin independence would be achieved routinely with only a single donor. Identification of factors associated with insulin independence after single-donor islet transplantation may help to select recipient-donor combinations with the highest probability of success. METHODS Subjects undergoing islet transplantation at a single center (Edmonton, Canada) between March 1999 and August 2013 were included. Recipient, donor, and transplant characteristics were collected and compared between recipients who became insulin independent after one islet transplantation and those who did not. RESULTS Thirty-one patients achieved insulin independence after a single-donor islet transplantation, and 149 did not. Long-term insulin-free survival was not different between the groups. Factors significantly associated with single-donor success included recipient age, insulin requirement at baseline, donor weight, donor body mass index, islet transplant mass, and peritransplant heparin and insulin administration. On multivariate analysis, pretransplantation daily insulin requirements, the use of peritransplantation heparin and insulin infusions, and islet transplant mass remained significant. CONCLUSION We have identified clinically relevant differences defining the achievement of insulin independence after single-donor transplantation. Based on these differences, a preoperative insulin requirement of less than 0.6 U/kg per day and receiving more than 5,646 islet equivalents (IEQ)/kg have a sensitivity of 84% and 71% and specificity of 50% and 50%, respectively, for insulin independence after single-donor islet transplantation. With ideal patient selection, this finding could potentially increase single-donor transplantation success and may be especially relevant for presensitized subjects or those who may subsequently require renal replacement.
Collapse
Affiliation(s)
- David P Al-Adra
- 1 Clinical Islet Transplant Program, Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada. 2 St. George's University, University Centre, Grenada, West Indies. 3 Center for the Advancement of Minimally Invasive Surgery, Royal Alexandra Hospital, Edmonton, Alberta, Canada. 4 Clinical Islet Transplant Program and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada. 5 Address correspondence to: A.M. James Shapiro, M.D., Ph.D., University of Alberta, 2000 College Plaza, 8215-112 St, Edmonton, AB T6G 2C8
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vivot K, Langlois A, Bietiger W, Dal S, Seyfritz E, Pinget M, Jeandidier N, Maillard E, Gies JP, Sigrist S. Pro-inflammatory and pro-oxidant status of pancreatic islet in vitro is controlled by TLR-4 and HO-1 pathways. PLoS One 2014; 9:e107656. [PMID: 25343247 PMCID: PMC4208733 DOI: 10.1371/journal.pone.0107656] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/13/2014] [Indexed: 01/09/2023] Open
Abstract
Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation.
Collapse
Affiliation(s)
- Kevin Vivot
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Allan Langlois
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - William Bietiger
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Stéphanie Dal
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Elodie Seyfritz
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Michel Pinget
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
- Structure d'Endocrinologie, Diabète –Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg, (HUS), Strasbourg, France
| | - Nathalie Jeandidier
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
- Structure d'Endocrinologie, Diabète –Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg, (HUS), Strasbourg, France
| | - Elisa Maillard
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Jean-Pierre Gies
- UMR 7034 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Séverine Sigrist
- DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
- * E-mail:
| |
Collapse
|
43
|
Chiang JL, Kirkman MS, Laffel LMB, Peters AL. Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 2014; 37:2034-54. [PMID: 24935775 PMCID: PMC5865481 DOI: 10.2337/dc14-1140] [Citation(s) in RCA: 609] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - M Sue Kirkman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Lori M B Laffel
- Pediatric, Adolescent and Young Adult Section, Joslin Diabetes Center; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Anne L Peters
- Division of Endocrinology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| |
Collapse
|
44
|
Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AMJ. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes 2014; 7:211-23. [PMID: 25018643 PMCID: PMC4075233 DOI: 10.2147/dmso.s50789] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Islet transplantation is a well-established therapeutic treatment for a subset of patients with complicated type I diabetes mellitus. Prior to the Edmonton Protocol, only 9% of the 267 islet transplant recipients since 1999 were insulin independent for >1 year. In 2000, the Edmonton group reported the achievement of insulin independence in seven consecutive patients, which in a collaborative team effort propagated expansion of clinical islet transplantation centers worldwide in an effort to ameliorate the consequences of this disease. To date, clinical islet transplantation has established improved success with insulin independence rates up to 5 years post-transplant with minimal complications. In spite of marked clinical success, donor availability and selection, engraftment, and side effects of immunosuppression remain as existing obstacles to be addressed to further improve this therapy. Clinical trials to improve engraftment, the availability of insulin-producing cell sources, as well as alternative transplant sites are currently under investigation to expand treatment. With ongoing experimental and clinical studies, islet transplantation continues to be an exciting and attractive therapy to treat type I diabetes mellitus with the prospect of shifting from a treatment for some to a cure for all.
Collapse
Affiliation(s)
- Anthony Bruni
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Pepper
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nasser S Abualhassan
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - AM James Shapiro
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
|
46
|
Gleizes C, Constantinescu A, Abbas M, Bouhadja H, Zobairi F, Kessler L, Toti F. Liraglutide protects Rin-m5f β cells by reducing procoagulant tissue factor activity and apoptosis prompted by microparticles under conditions mimicking Instant Blood-Mediated Inflammatory Reaction. Transpl Int 2014; 27:733-40. [DOI: 10.1111/tri.12286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/02/2013] [Accepted: 02/14/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Céline Gleizes
- EA 7293; Vascular and Tissular Stress in Transplantation; Federation of Translational Medicine of Strasbourg; Faculty of Medicine; University of Strasbourg; Strasbourg France
| | - Andrei Constantinescu
- EA 7293; Vascular and Tissular Stress in Transplantation; Federation of Translational Medicine of Strasbourg; Faculty of Medicine; University of Strasbourg; Strasbourg France
- Department of Parasitology and Parasitic Diseases and Animal Biology; Faculty of Veterinary Medicine; University of Agronomical Sciences and Veterinary Medicine; Bucharest Romania
| | - Malak Abbas
- EA 7293; Vascular and Tissular Stress in Transplantation; Federation of Translational Medicine of Strasbourg; Faculty of Medicine; University of Strasbourg; Strasbourg France
- Faculty of Sciences; Lebanon University; Hadath Lebanon
| | - Houda Bouhadja
- Faculty of Pharmacy; University of Strasbourg; UMR7213 CNRS; Laboratory of Biophotonics and Pharmacology; Illkirch France
| | - Fatiha Zobairi
- EA 7293; Vascular and Tissular Stress in Transplantation; Federation of Translational Medicine of Strasbourg; Faculty of Medicine; University of Strasbourg; Strasbourg France
| | - Laurence Kessler
- EA 7293; Vascular and Tissular Stress in Transplantation; Federation of Translational Medicine of Strasbourg; Faculty of Medicine; University of Strasbourg; Strasbourg France
- Department of Diabetology; University Hospital; Strasbourg Cedex France
| | - Florence Toti
- Faculty of Pharmacy; University of Strasbourg; UMR7213 CNRS; Laboratory of Biophotonics and Pharmacology; Illkirch France
| |
Collapse
|