1
|
Wu D, Liu J, Guo Z, Wang L, Yao Z, Wu Q, Lu Y, Lv W. Natural bioactive compounds reprogram bile acid metabolism in MAFLD: Multi-target mechanisms and therapeutic implications. Int Immunopharmacol 2025; 157:114708. [PMID: 40306110 DOI: 10.1016/j.intimp.2025.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become an increasingly prevalent liver disorder worldwide, being closely associated with obesity, metabolic syndrome, and insulin resistance. Bile acids (BAs), beyond their traditional role in lipid digestion, play a pivotal part in regulating lipid and glucose metabolism as well as inflammatory responses. Recent investigations have recognized BAs as key factors in the onset and progression of MAFLD, mainly via their interactions with nuclear receptors such as the farnesoid X receptor (FXR) and the G protein-coupled bile acid receptor (TGR5). Additionally, active compounds derived from traditional Chinese medicine (TCM) have shown promising potential in the treatment of MAFLD. This study systematically reviews and analyzes the molecular mechanisms and recent progress in the application of TCM active ingredients for MAFLD treatment, with a focus on their regulation of BAs. These active ingredients, including saponins, flavonoids, polysaccharides, and sterols, exert therapeutic effects through diverse mechanisms, such as modulating BA synthesis and mediating receptor-signaling pathways, and are expected to restore metabolic homeostasis.
Collapse
Affiliation(s)
- Dongjie Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jing Liu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Liang Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Ziang Yao
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Qingjuan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yanping Lu
- Department of Hepatology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen 518100, China.
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Ma H, Li R, Qu B, Liu Y, Li P, Zhao J. The Role of Bile Acid in Immune-Mediated Skin Diseases. Exp Dermatol 2025; 34:e70108. [PMID: 40302108 DOI: 10.1111/exd.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/07/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Immune-mediated skin disorders arise from dysfunctional immune responses, instigating inflammatory dermatoses and a reduced quality of life. The complex pathogenesis likely involves genetic risks, environmental triggers and aberrant immune activation. An emerging body of evidence suggests that bile acid disturbances may critically promote immune pathology in certain skin conditions. Bile acids synthesised from cholesterol regulate nutrient metabolism and immune cell function via nuclear receptors and G protein-coupled receptors (GPCRs). Altered bile acid profiles and receptor expression have been identified in psoriasis, atopic dermatitis (AD) and autoimmune blistering diseases. Disruptions in bile acid signalling affect the inflammatory and metabolic pathways linked to these disorders. Targeting components of the bile acid axis represents a promising therapeutic strategy. This review elucidates the intricate links between bile acid homeostasis and immune dysfunction in inflammatory skin diseases, synthesising evidence that targeting bile acid pathways may unlock innovative therapeutic avenues. This study compiles clinical and experimental data revealing disrupted bile acid signalling and composition in various immune-mediated dermatoses, highlighting the emerging significance of bile acids in cutaneous immune regulation.
Collapse
Affiliation(s)
- Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Ruonan Li
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoquan Qu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuchen Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhai W, Wang Z, Ye C, Ke L, Wang H, Liu H. IL-6 Mutation Attenuates Liver Injury Caused by Aeromonas hydrophila Infection by Reducing Oxidative Stress in Zebrafish. Int J Mol Sci 2023; 24:17215. [PMID: 38139043 PMCID: PMC10743878 DOI: 10.3390/ijms242417215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-6 (IL-6), a pleiotropic cytokine, plays a crucial role in acute stress induced by bacterial infection and is strongly associated with reactive oxygen species (ROS) production. However, the role of IL-6 in the liver of fish after Aeromonas hydrophila infection remains unclear. Therefore, this study constructed a zebrafish (Danio rerio) il-6 knockout line by CRISPR/Cas9 to investigate the function of IL-6 in the liver post bacterial infection. After infection with A. hydrophila, pathological observation showed that il-6-/- zebrafish exhibited milder liver damage than wild-type (WT) zebrafish. Moreover, liver transcriptome sequencing revealed that 2432 genes were significantly up-regulated and 1706 genes were significantly down-regulated in il-6-/- fish compared with WT fish after A. hydrophila infection. Further, gene ontology (GO) analysis showed that differentially expressed genes (DEGs) were significantly enriched in redox-related terms, including oxidoreductase activity, copper ion transport, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in pathways such as the PPAR signaling pathway, suggesting that il-6 mutation has a significant effect on redox processes in the liver after A. hydrophila infection. Additionally, il-6-/- zebrafish exhibited lower malondialdehyde (MDA) levels and higher superoxide dismutase (SOD) activities in the liver compared with WT zebrafish following A. hydrophila infection, indicating that IL-6 deficiency mitigates oxidative stress induced by A. hydrophila infection in the liver. These findings provide a basis for further studies on the role of IL-6 in regulating oxidative stress in response to bacterial infections.
Collapse
Affiliation(s)
- Wenya Zhai
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Zhensheng Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Canxun Ye
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Lan Ke
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
4
|
Cao F, Pan F, Gong X, Wang W, Xu Y, Cao P, Wang Y. Causal relationship between gut microbiota with subcutaneous and visceral adipose tissue: a bidirectional two-sample Mendelian Randomization study. Front Microbiol 2023; 14:1285982. [PMID: 38029216 PMCID: PMC10644100 DOI: 10.3389/fmicb.2023.1285982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Numerous studies have revealed associations between gut microbiota and adipose tissue. However, the specific functional bacterial taxa and their causal relationships with adipose tissue production in different regions of the body remain unclear. Methods We conducted a bidirectional two-sample Mendelian Randomization (MR) study using aggregated data from genome-wide association studies (GWAS) for gut microbiota and adipose tissue. We employed methods such as inverse variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode to assess the causal relationships between gut microbiota and subcutaneous adipose tissue (SAT) as well as visceral adipose tissue (VAT). Cochran's Q test, MR-Egger regression intercept analysis, and MR-PRESSO were used to test for heterogeneity, pleiotropy, and outliers of the instrumental variables, respectively. Reverse MR was employed to evaluate the reverse causal relationships between SAT, VAT, and gut microbiota with significant associations. Results IVW results demonstrated that Betaproteobacteria were protective factors for SAT production (OR = 0.88, 95% CI: 0.80-0.96, p = 0.005) and VAT production (OR = 0.91, 95% CI: 0.83-0.99, p = 0.030). Various bacterial taxa including Ruminococcaceae UCG002 (OR = 0.94, 95% CI: 0.89-0.99, p = 0.017), Methanobacteria class (OR = 0.96, 95% CI: 0.92-1.00, p = 0.029), and Burkholderiales (OR = 0.90, 95% CI: 0.83-0.98, p = 0.012) were associated only with decreased SAT production. Rikenellaceae RC9 gut group (OR = 1.05, 95% CI: 1.02-1.10, p = 0.005), Eubacterium hallii group (OR = 1.08, 95% CI: 1.01-1.15, p = 0.028), Peptococcaceae (OR = 1.08, 95% CI: 1.01-1.17, p = 0.034), and Peptococcus (OR = 1.05, 95% CI: 1.00-1.10, p = 0.047) were risk factors for SAT production. Meanwhile, Eubacterium fissicatena group (OR = 0.95, 95% CI: 0.91-0.99, p = 0.019), Turicibacter (OR = 0.93, 95% CI: 0.88-0.99, p = 0.022), and Defluviitaleaceae UCG011 (OR = 0.94, 95% CI: 0.89-0.99, p = 0.024) were protective factors for VAT production. Furthermore, Bacteroidetes (OR = 1.09, 95% CI: 1.01-1.17, p = 0.018), Eubacterium eligens group (OR = 1.09, 95% CI: 1.01-1.19, p = 0.037), Alloprevotella (OR = 1.05, 95% CI: 1.00-1.10, p = 0.038), and Phascolarctobacterium (OR = 1.07, 95% CI: 1.00-1.15, p = 0.042) were associated with VAT accumulation. Additionally, reverse MR revealed significant associations between SAT, VAT, and Rikenellaceae RC9 gut group (IVW: OR = 1.57, 95% CI: 1.18-2.09, p = 0.002) as well as Betaproteobacteria (IVW: OR = 1.14, 95% CI: 1.01-1.29, p = 0.029), both acting as risk factors. Sensitivity analyzes during bidirectional MR did not identify heterogeneity or pleiotropy. Conclusion This study unveils complex causal relationships between gut microbiota and SAT/VAT, providing novel insights into the diagnostic and therapeutic potential of gut microbiota in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Feng Cao
- Department of General Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Feng Pan
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Gong
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen Wang
- Department of General Practice, Anqing Hospital Affiliated Hospital of Anhui Medical University, Anqing, China
| | - Yanyan Xu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pengwei Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
5
|
Xie X, Liang X, Wang H, Zhu Q, Wang J, Chang Y, Leclercq E, Xue M, Wang J. Effects of paraprobiotics on bile acid metabolism and liver health in largemouth bass (Micropterus salmoides) fed a cottonseed protein concentrate-based diet. ANIMAL NUTRITION 2023; 13:302-312. [PMID: 37168448 PMCID: PMC10165182 DOI: 10.1016/j.aninu.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Cottonseed protein concentrate is a sustainable fishmeal alternative in aquafeed. A 10-week experiment was conducted to investigate the effects of a cottonseed protein concentrate-based diet with and without multi-strain yeast fractions (MsYF) on growth, bile acid metabolism, and health in largemouth bass. Four hundred fish (54.0 ± 0.0 g) were casually distributed into 16 tanks (4 replicates/diet). Fish were fed with 4 iso-nitrogen and iso-energetic diets 3 times daily, including a fishmeal diet (FM), a soy protein concentrate-based diet (SPC; replacing 81% fishmeal protein), a cottonseed protein concentrate-based diet (CPC; replacing 81% fishmeal protein), and a CPC diet supplemented with 800 mg/kg MsYF (CPCY). Results showed that the survival of SPC was the lowest, i.e., 48%, with no apparent diet effect among other treatments; we omitted the SPC in additional analyses. Fish fed cottonseed protein concentrate-based diets showed lower growth than FM (P < 0.05). Fish fed CPC showed the highest nuclear dense hepatic phenotypes ratio (50%), followed by CPCY (33%) and FM (17%). Further, dietary CPC increased hepatic total cholesterol and triglyceride levels with concurrently increased cholesterol synthesis but decreased triglyceride synthesis-associated transcription levels (P < 0.05). Furthermore, dietary CPC increased bile acid synthesis but decreased bile acid transport-associated transcription levels (P < 0.05), and then induced an increment of plasma cholic acid and hepatic chenodeoxycholic acid content and the decrement of genus Romboustia (P < 0.05). Regarding the effect of MsYF, fish fed CPCY reduced hepatic lipid accumulation and total plasma bile acid content (P < 0.05) compared to CPC, suggesting an improvement in liver health. Also, dietary MsYF could reverse the microbiota community structure showing a similar gut microbial composition to FM. In conclusion, 81% of fishmeal protein replaced by cottonseed protein concentrate suppressed growth and liver health, while dietary MsYF might mitigate the negative impact of a high cottonseed protein concentrate level diet on liver functions via gut microbiota regulation.
Collapse
|
6
|
Protective Effects of Clinacanthus nutans (Burm.f.) Lindau Aqueous Extract on HBV Mouse Model by Modulating Gut Microbiota and Liver Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5625222. [PMID: 36636608 PMCID: PMC9831714 DOI: 10.1155/2023/5625222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
Background Clinacanthus nutans (Burm.f.) Lindau (C. nutans) has been used in the therapy of hepatitis B (HB) and is effective; however, the mechanism of action has not been elucidated. Objective To investigate the protective effects of C. nutans aqueous extract on the hepatitis B virus (HBV) mouse model based on correlation analysis between gut microbiota and liver metabolomics. Materials and Methods We firstly constructed the animal model by high-pressure injection of pcDNA3.1(+)/HBV plasmid into the tail vein and treated it with C. nutans. The biomarkers and inflammatory cytokines of HB were detected by enzyme-linked immunosorbent assay and quantitative PCR; the Illumina-MiSeq platform was used for investigating gut microbiota; the LC-MS/MS method was utilized on screening liver tissue metabolites; multiomics joint analysis was performed using the R program. Results Compared with the modeling group, C. nutans significantly decreased the expression levels of HBsAg, IL-1β, TNF-α(P < 0.05) in the serum, and cccDNA (P < 0.05) in the liver tissues of mice. C. nutans dramatically reduced the ratio of Firmicutes and Bacteroidetes (P < 0.05) and significantly declined the proportion of Lactobacillaceae and Lactobacillus(P < 0.05), dramatically increasing the relative abundance of Bacteroidales_S24-7_group, Rikenellaceae, and Alistipes(P < 0.05); LC-MS/MS analysis results showed that C. nutans dramatically upregulate hippuric acid, L-histidine, trehalose, D-threitol, and stachyose and downregulate uridine 5'-diphosphate, cholic acid, trimethylamine N-oxide, CDP-ethanolamine, and phosphorylcholine (P < 0.05). The correlation analysis revealed that C. nutans affects the related metabolite levels of hippuric acid and cholic acid through the modulation of crucial bacteria (Alistipes) (P < 0.01), exerting specific anti-inflammatory effects. Conclusion These results suggest that C. nutans exerts protective effects in HBV model mice, showing the therapeutic potential for anti-HBV infection.
Collapse
|
7
|
Dai Z, Li S, Meng Y, Zhao Q, Zhang Y, Suonan Z, Sun Y, Shen Q, Liao X, Xue Y. Capsaicin Ameliorates High-Fat Diet-Induced Atherosclerosis in ApoE−/− Mice via Remodeling Gut Microbiota. Nutrients 2022; 14:nu14204334. [PMID: 36297020 PMCID: PMC9611743 DOI: 10.3390/nu14204334] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Capsaicin is a pungent alkaloid abundantly present in peppers with outstanding biological activities, including the anti-atherosclerosis effect. Previous studies revealed that gut microbiota played an important role in the beneficial effects of capsaicin, but whether it is essential for the anti-atherosclerosis effect of capsaicin is unclear. This study evaluated the anti-atherosclerosis effect of capsaicin in ApoE−/− mice and further explored the role of depleting gut microbiota in the improvement of atherosclerosis. The results showed that capsaicin administration could prevent the development of atherosclerosis and improve serum lipids and inflammation, while antibiotic intervention abolished the alleviation of atherosclerosis by capsaicin. In addition, capsaicin administration could significantly increase the abundance of Turicibacter, Odoribacter, and Ileibacterium in feces, and decrease the abundance of deoxycholic acid, cholic acid, hypoxanthine, and stercobilin in cecal content. Our study provides evidence that gut microbiota plays a critical role in the anti-atherosclerosis effect of capsaicin.
Collapse
Affiliation(s)
- Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Siqi Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yantong Meng
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qingyu Zhao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhuoma Suonan
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuge Sun
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xiaojun Liao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737524
| |
Collapse
|
8
|
Wang L, Liu Q, Chen Y, Zheng X, Wang C, Qi Y, Dong Y, Xiao Y, Chen C, Chen T, Huang Q, Zhai Z, Long C, Yang H, Li J, Wang L, Zhang G, Liao P, Liu YX, Huang P, Huang J, Wang Q, Chu H, Yin J, Yin Y. Antioxidant potential of Pediococcus pentosaceus strains from the sow milk bacterial collection in weaned piglets. MICROBIOME 2022; 10:83. [PMID: 35650642 PMCID: PMC9158380 DOI: 10.1186/s40168-022-01278-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/24/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND In modern animal husbandry, breeders pay increasing attention to improving sow nutrition during pregnancy and lactation to favor the health of neonates. Sow milk is a main food source for piglets during their first three weeks of life, which is not only a rich repository of essential nutrients and a broad range of bioactive compounds, but also an indispensable source of commensal bacteria. Maternal milk microorganisms are important sources of commensal bacteria for the neonatal gut. Bacteria from maternal milk may confer a health benefit on the host. METHODS Sow milk bacteria were isolated using culturomics followed by identification using 16S rRNA gene sequencing. To screen isolates for potential probiotic activity, the functional evaluation was conducted to assess their antagonistic activity against pathogens in vitro and evaluate their resistance against oxidative stress in damaged Drosophila induced by paraquat. In a piglet feeding trial, a total of 54 newborn suckling piglets were chosen from nine sows and randomly assigned to three treatments with different concentrations of a candidate strain. Multiple approaches were carried out to verify its antioxidant function including western blotting, enzyme activity analysis, metabolomics and 16S rRNA gene amplicon sequencing. RESULTS The 1240 isolates were screened out from the sow milk microbiota and grouped into 271 bacterial taxa based on a nonredundant set of 16S rRNA gene sequencing. Among 80 Pediococcus isolates, a new Pediococcus pentosaceus strain (SMM914) showed the best performance in inhibition ability against swine pathogens and in a Drosophila model challenged by paraquat. Pretreatment of piglets with SMM914 induced the Nrf2-Keap1 antioxidant signaling pathway and greatly affected the pathways of amino acid metabolism and lipid metabolism in plasma. In the colon, the relative abundance of Lactobacillus was significantly increased in the high dose SMM914 group compared with the control group. CONCLUSION P. pentosaceus SMM914 is a promising probiotic conferring antioxidant capacity by activating the Nrf2-Keap1 antioxidant signaling pathway in piglets. Our study provided useful resources for better understanding the relationships between the maternal microbiota and offspring. Video Abstract.
Collapse
Affiliation(s)
- Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qihang Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuwei Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xinlei Zheng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chuni Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yining Qi
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yachao Dong
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yue Xiao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cang Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Taohong Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuyun Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cimin Long
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lei Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Gaihua Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jialu Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huanhuan Chu
- Shandong Yihe Feed Co, Ltd, Yantai Hi-tech Industrial Development Zone, Yantai, Shandong, China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
| |
Collapse
|
9
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Chen S, Chen L, Qi Y, Xu J, Ge Q, Fan Y, Chen D, Zhang Y, Wang L, Hou T, Yang X, Xi Y, Si J, Kang L, Wang L. Bifidobacterium adolescentis regulates catalase activity and host metabolism and improves healthspan and lifespan in multiple species. NATURE AGING 2021; 1:991-1001. [PMID: 37118342 DOI: 10.1038/s43587-021-00129-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 09/27/2021] [Indexed: 04/30/2023]
Abstract
To identify candidate bacteria associated with aging, we performed fecal microbiota sequencing in young, middle-aged and older adults, and found lower Bifidobacterium adolescentis abundance in older individuals aged ≥60 years. Dietary supplementation of B. adolescentis improved osteoporosis and neurodegeneration in a mouse model of premature aging (Terc-/-) and increased healthspan and lifespan in Drosophila melanogaster and Caenorhabditis elegans. B. adolescentis supplementation increased the activity of the catalase (CAT) enzyme in skeletal muscle and brain tissue from Terc-/- mice, and suppressed cellular senescence in mouse embryonic fibroblasts. Transgenic deletion of catalase (ctl-2) in C. elegans abolished the effects of B. adolescentis on the lifespan and healthspan. B. adolescentis feeding also led to changes in oxidative stress-associated metabolites in Terc-/- mouse feces. These results suggest a role for B. adolescentis in improving the healthspan and lifespan through the regulation of CAT activity and host metabolism.
Collapse
Affiliation(s)
- Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Luyi Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Qiwei Ge
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yuedan Fan
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Du Chen
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Yawen Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaohang Yang
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University, Zhejiang, China
| | - Yongmei Xi
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China.
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Liangjing Wang
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China.
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
11
|
Khoirun Nisa A, Afifah DN, Djamiatun K, Syauqy A. The effect of Sorghum Tempeh (Sorghum bicolor L. Moench) on low-density lipoprotein (LDL) and malondialdehyde (MDA) levels in atherogenic diet-induced rats. POTRAVINARSTVO 2021. [DOI: 10.5219/1589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An atherogenic diet induces oxidative stress leading to hypercholesterolemia. This condition causes atherosclerosis followed by increased LDL and MDA. Sorghum tempeh contains fiber and antioxidants that can protectively improve LDL and MDA levels. Therefore, this research aims to determine the effect of sorghum tempeh on LDL and MDA levels in atherogenic diet-induced rats compared to sorghum flour. It used a randomized pre-post test with a control group design. The test subjects were 30 male Sprague Dawley rats, consisting of 6 normal conditioned rats (C1), and 24 that were induced by an atherogenic diet (C2, T1, T2, T3) for 2 weeks. Sorghum flour was administered at a dose of 4.095 g (T1) and the sorghum tempeh at 3.041 g (T2) and 6.081 g (T3) for 4 weeks. Furthermore, C2 was constantly induced through an atherogenic diet. Total cholesterol and LDL levels were then analyzed using the CHOD-PAP method, and MDA levels, using the ELISA method. Meanwhile, statistical analysis for these variables was carried out using IBM SPSS Statistics 21 software. The results showed that the administration of sorghum flour and tempeh significantly reduced total cholesterol, LDL, MDA levels in each group (p = 0.001). Furthermore, it showed that there was a significantly strong correlation between LDL and MDA levels before and after treatment (r = 0.610, r = 0.805, and p = 0.001). The administration of sorghum tempeh at a dose of 6.081 g caused the greatest reduction (∆) in LDL levels at -44.19 ±2.58 mg.dL-1, although, it was not the same as normal control. Meanwhile, sorghum flour at a dose of 4.095 g was the most influential in reducing MDA levels to the same as normal control with delta (∆) at -7.67 ±0.37 ng.mL-1. In conclusion, sorghum tempeh and flour were the most effective at reducing LDL and MDA levels, respectively.
Collapse
|
12
|
Sui G, Jia L, Quan D, Zhao N, Yang G. Activation of the gut microbiota-kynurenine-liver axis contributes to the development of nonalcoholic hepatic steatosis in nondiabetic adults. Aging (Albany NY) 2021; 13:21309-21324. [PMID: 34473644 PMCID: PMC8457600 DOI: 10.18632/aging.203460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/10/2021] [Indexed: 04/09/2023]
Abstract
The contribution of gut-liver signaling to the development of non-alcoholic hepatic steatosis (NHS) in non-diabetic adults remains unclear. We therefore performed comprehensive 16S ribosomal RNA sequencing and fecal metabolomics analyses in 32 controls and 59 non-diabetic adults with NHS and performed fecal microbiota transplantation into germ-free mice using controls and NHS patients as donors. Compared to controls, the abundance of the genera Collinsella and Acinetobacter were higher, while that of Lachnospira was lower, in NHS subjects. Fecal metabolomics analysis showed decreased L-tryptophan levels and increased abundance of the tryptophan metabolite kynurenine in individuals with NHS. Correlation analysis showed that kynurenine levels positively associated with the abundance of Collinsella and Acinetobacter. ROC analysis demonstrated that the combination of tryptophan and kynurenine could discriminate NHS patients from controls with good statistical power [P < 0.05; AUC = 0.833 (95% CI, 0.747 to 0.918)]. Supporting a key role of dysbiotic gut microbiota in NHS development, incipient hepatic steatosis and increased kynurenine levels were observed in GF mice colonized with samples from NHS patients. These results indicate that enhanced kynurenine production resulting from altered gut microbiota composition contributes to NHS in nondiabetic adults and suggest the relevance of tryptophan metabolites as diagnostic biomarkers.
Collapse
Affiliation(s)
- Guoyuan Sui
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People’s Republic of China
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People’s Republic of China
| | - Dongmei Quan
- The Sixth People’s Hospital of Shenyang, Shenyang, Liaoning, People’s Republic of China
| | - Na Zhao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People’s Republic of China
| | - Guanlin Yang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
13
|
Otake M, Kawaguchi H, Enya S, Kangawa A, Koga T, Matsuo K, Yamada S, Rahman MM, Miura N, Shibata M, Tanimoto A. High Pathological Reproducibility of Diet-induced Atherosclerosis in Microminipigs via Cloning Technology. In Vivo 2021; 35:2025-2033. [PMID: 34182477 DOI: 10.21873/invivo.12471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND/AIM The reproducibility of athero - sclerotic lesions was evaluated after the production of cloned-microminipigs and their offspring. MATERIALS AND METHODS Cloned-microminipig-parents were produced by microminipigsomatic cell nuclei. These parents were crossbred and delivered males (F1-offspring) were divided into two groups: normal chow diet (NcD)-fed and high-fat/high-cholesterol diet (HcD)-fed groups. One of the F1-offsprings was subjected to cloning, and delivered males (F1-clones) were fed with HcD. After 8 weeks, all animals were necropsied for patho - physiological studies compared to non-cloned-microminipigs. RESULTS HcD-fed F1-offspring and F1-clones, but not NcD-fed F1-offspring, exhibited increased serum lipid levels and systemic atherosclerosis, which were comparable to those of HcD-fed non-cloned-microminipigs. Homogeneity of variance analysis demonstrated that standard deviation values of serum lipoprotein and aortic atherosclerosis area from HcD-fed animals decreased in F1-offspring and F1-clones. CONCLUSION HcD-induced atherogenesis was highly reproducible in F1-offsprings and F1-clones, indicating that the atherosclerosis-prone genomic background was preserved in the cloned-microminipigs, which can be used for studies on human atherosclerosis and related diseases.
Collapse
Affiliation(s)
- Masayoshi Otake
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Japan;
| | - Hiroaki Kawaguchi
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Towadashi, Japan
| | - Satoko Enya
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Japan
| | - Akihisa Kangawa
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Japan
| | - Tadashi Koga
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - Kei Matsuo
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kahoku, Japan
| | - Md Mahfuzur Rahman
- Veterinary Teaching Hospital, Joint faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Masatoshi Shibata
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan;
| |
Collapse
|
14
|
He L, Vatsalya V, Ma X, Zhang J, Yin X, Kim S, Feng W, McClain CJ, Zhang X. Metabolic Profiling of Bile Acids in the Urine of Patients with Alcohol-Associated Liver Disease. Hepatol Commun 2021; 5:798-811. [PMID: 34027270 PMCID: PMC8122376 DOI: 10.1002/hep4.1671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/02/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Bile acids (BAs) play important functions in the development of alcohol-associated liver disease (ALD). In the current study, urine BA concentrations in 38 patients with well-described alcohol-associated hepatitis (AH) as characterized by Model for End-Stage Liver Disease (MELD), 8 patients with alcohol-use disorder (AUD), and 19 healthy controls (HCs) were analyzed using liquid chromatography-mass spectrometry. Forty-three BAs were identified, and 22 BAs had significant changes in their abundance levels in patients with AH. The potential associations of clinical data were compared to candidate BAs in this pilot proof-of-concept study. MELD score showed positive correlations with several conjugated BAs and negative correlations with certain unconjugated BAs; taurine-conjugated chenodeoxycholic acid (CDCA) and MELD score showed the highest association. Cholic acid, CDCA, and apocholic acid had nonsignificant abundance changes in patients with nonsevere ALD compared to HCs but were significantly increased in those with severe AH. Receiver operating characteristic analysis showed that the differences in these three compounds were sufficiently large to distinguish severe AH from nonsevere ALD. Notably, the abundance levels of primary BAs were significantly increased while most of the secondary BAs were markedly decreased in AH compared to AUD. Most importantly, the amount of total BAs and the ratio of primary to secondary BAs increased while the ratio of unconjugated to conjugated BAs decreased as disease severity increased. Conclusion: Abundance changes of specific BAs are closely correlated with the severity of AH in this pilot study. Urine BAs (individually or as a group) could be potential noninvasive laboratory biomarkers for detecting early stage ALD and may have prognostic value in AH morbidity.
Collapse
Affiliation(s)
- Liqing He
- Department of ChemistryUniversity of LouisvilleLouisvilleKYUSA.,Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Hepatobiology and Toxicology ProgramUniversity of LouisvilleLouisvilleKYUSA.,Center for Regulatory and Environmental Analytical MetabolomicsUniversity of LouisvilleLouisvilleKYUSA
| | - Vatsalya Vatsalya
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Department of MedicineUniversity of LouisvilleLouisvilleKYUSA.,Robley Rex Louisville Veterans Affairs Medical CenterLouisvilleKYUSA
| | - Xipeng Ma
- Department of ChemistryUniversity of LouisvilleLouisvilleKYUSA.,Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Hepatobiology and Toxicology ProgramUniversity of LouisvilleLouisvilleKYUSA.,Center for Regulatory and Environmental Analytical MetabolomicsUniversity of LouisvilleLouisvilleKYUSA
| | - Jiayang Zhang
- School of DentistryUniversity of LouisvilleLouisvilleKYUSA
| | - Xinmin Yin
- Department of ChemistryUniversity of LouisvilleLouisvilleKYUSA.,Center for Regulatory and Environmental Analytical MetabolomicsUniversity of LouisvilleLouisvilleKYUSA
| | - Seongho Kim
- Department of OncologyUniversity of LouisvilleLouisvilleKYUSA.,Biostatistics Core, Karmanos Cancer InstituteWayne State UniversityDetroitMIUSA
| | - Wenke Feng
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Hepatobiology and Toxicology ProgramUniversity of LouisvilleLouisvilleKYUSA.,Department of MedicineUniversity of LouisvilleLouisvilleKYUSA.,Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Craig J McClain
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Hepatobiology and Toxicology ProgramUniversity of LouisvilleLouisvilleKYUSA.,Department of MedicineUniversity of LouisvilleLouisvilleKYUSA.,Robley Rex Louisville Veterans Affairs Medical CenterLouisvilleKYUSA.,Biostatistics Core, Karmanos Cancer InstituteWayne State UniversityDetroitMIUSA
| | - Xiang Zhang
- Department of ChemistryUniversity of LouisvilleLouisvilleKYUSA.,Alcohol Research CenterUniversity of LouisvilleLouisvilleKYUSA.,Hepatobiology and Toxicology ProgramUniversity of LouisvilleLouisvilleKYUSA.,Center for Regulatory and Environmental Analytical MetabolomicsUniversity of LouisvilleLouisvilleKYUSA.,Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
15
|
Yoshii D, Nakagawa T, Komohara Y, Kawaguchi H, Yamada S, Tanimoto A. Phenotypic Changes in Macrophage Activation in a Model of Nonalcoholic Fatty Liver Disease using Microminipigs. J Atheroscler Thromb 2020; 28:844-851. [PMID: 33012740 PMCID: PMC8326174 DOI: 10.5551/jat.57703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim:
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders associated with metabolic syndrome, and its prevalence has been on the rise. The pathogenesis of NAFLD has not yet been sufficiently elucidated due to the multifactorial nature of the disease, although the activation of macrophages/Kupffer cells is considered to be involved. We previously reported an animal model of NAFLD using Microminipigs
TM
(µMPs) fed high-fat diets containing cholesterol with or without cholic acid. The aim of this study was to investigate the phenotypic changes of macrophages that occur during the development of NAFLD.
Methods:
Immunohistochemistry of macrophages, lymphocytes, and stellate cells was performed using liver samples, and the density of positive cells was analyzed.
Results:
The number of Iba-1-positive macrophages increased with increasing cholesterol content in the diet. The numbers of CD163-positive macrophages and CD204-positive macrophages also increased with increasing cholesterol content in the diet; however, the proportion of CD204-positive macrophages among Iba-1-positive macrophages was significantly reduced by cholic acid supplementation.
Conclusion:
The results suggest that lipid accumulation induced macrophage recruitment in swine livers, and that the number of M2-like macrophages increased at the early stage of NAFLD, while the number of M1-like macrophages increased at the late stage of NAFLD, resulting in a liver condition like non-alcoholic steatohepatitis. We provide evidence of the phenotypic changes that occur in macrophages during the development of NAFLD that has never been reported before using µMPs.
Collapse
Affiliation(s)
- Daiki Yoshii
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Takenobu Nakagawa
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University
| | - Hiroaki Kawaguchi
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences
| |
Collapse
|
16
|
Magaña-Cerino JM, Tiessen A, Soto-Luna IC, Peniche-Pavía HA, Vargas-Guerrero B, Domínguez-Rosales JA, García-López PM, Gurrola-Díaz CM. Consumption of nixtamal from a new variety of hybrid blue maize ameliorates liver oxidative stress and inflammation in a high-fat diet rat model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
17
|
Cai Z, Yu C, Fu D, Pan Y, Huang J, Rong Y, Deng L, Chen J, Chen M. Differential metabolic and hepatic transcriptome responses of two miniature pig breeds to high dietary cholesterol. Life Sci 2020; 250:117514. [PMID: 32145306 DOI: 10.1016/j.lfs.2020.117514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
AIMS Pigs are increasingly used as human metabolic disease models; however, there is insufficient research on breed-related genetic background differences. This study aimed to investigate the differential metabolic responses to high-fat and high-cholesterol (HFC) diet-induced non-alcoholic fatty liver disease (NAFLD) of two miniature pig breeds and explore the molecular mechanisms involved. MAIN METHODS Male Wuzhishan (WZSP) and Tibetan pigs (TP) were randomly fed either a standard or an HFC diet for 24 weeks. Weight, serum lipids, bile acid, insulin resistance, liver function, liver histology, and hepatic lipid deposition were determined. RNA-Seq was used to detect the hepatic gene expression profiles. Western blot, immunohistochemistry, and qRT-PCR were used to detect the lipid and glucose metabolism-related gene expressions. KEY FINDINGS The HFC diet caused obesity, hypertension, severe hypercholesterolemia, liver injury, increased hepatocellular steatosis and inflammation, and significantly increased serum insulin levels in both pig breeds. This diet led to higher serum and hepatic cholesterol level concentrations in WZSP and elevated fasting glucose levels in TP. Transcriptome analysis revealed that the genes controlling hepatic cholesterol metabolism and the inflammatory response were consistently regulated; lipid metabolism and insulin signaling related genes were uniquely regulated by the HFC diet in the WZSP and TP, respectively. SIGNIFICANCE Our study demonstrated that the genetic background affects profoundly pigs' metabolic and hepatic responses to an HFC diet. These results deepened our understanding of the molecular mechanisms of HFC diet-induced NAFLD and provided a foundation for selecting the appropriate pig breeds for metabolic studies in the future.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chen Yu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Danting Fu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongming Pan
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junjie Huang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yili Rong
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liqun Deng
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiaojiao Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Minli Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
18
|
Pedersen HD, Galsgaard ED, Christoffersen BØ, Cirera S, Holst D, Fredholm M, Latta M. NASH-inducing Diets in Göttingen Minipigs. J Clin Exp Hepatol 2020; 10:211-221. [PMID: 32405177 PMCID: PMC7212300 DOI: 10.1016/j.jceh.2019.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Owing to the human-like physiology, a minipig model of nonalcoholic steatohepatitis (NASH) could be valuable. Pigs, however, rarely develop substantial hepatic steatosis, even when fed diets with high fat, fructose, and cholesterol (FFC) content. The potential of choline-deficient, amino acid-defined high-fat diets (CDAHFD) was therefore evaluated in Göttingen Minipigs. METHODS Castrated male Göttingen Minipigs were fed either chow (n = 5) or one of the three NASH diets: FFC (n = 5), CDAHFD with sucrose (CDAHFD-S; n = 4), or fructose (CDAHFD-F; n = 4) for 8 weeks. Liver and blood samples were collected after 2 weeks and at termination. RESULTS Compared with chow, the body weight was higher after FFC (9.8 ± 0.4 versus 8.5 ± 1.2 kg; mean ± SD) and less after CDAHFD-S (6.4 ± 0.8 kg) and CDAHFD-F (6.9 ± 0.8 kg). Liver weight per kg body weight was significantly increased in all 3 NASH groups (FFC 2.1 times; and both CDAHFD diets 3.1 times). Histologically, pronounced macrovesicular steatosis developed only in the CDAHFD groups. Inflammation was present in all three NASH groups. In the CDAHFD groups, inflammatory cells formed crown-like structures around steatotic hepatocytes. Sirius red staining revealed mild fibrosis in the two CDAHFD groups with the fibrotic potential being further supported by immunohistochemical staining for activated stellate cells and gene expression analyses. No noticeable differences were found between CDAHFD-S and CDAHFD-F. CONCLUSIONS Göttingen Minipigs fed CDAHFD developed pronounced steatosis with inflammation around steatotic hepatocytes and incipient fibrosis, thereby showing potential as a model for human NASH. Further studies are needed to investigate the period needed for marked fibrosis to develop.
Collapse
Key Words
- -F, with fructose)
- ALP, alkaline phosphatase
- ALT, alanine transaminase
- AST, aspartate transaminase
- Animal model
- CD45, cluster of differentiation 45
- CDAHFD, choline-deficient
- Choline
- EDTA, ethylenediaminetetraacetic acid
- FFC, high-fat, fructose, cholesterol
- Fatty liver
- Fibrosis
- GGT, gamma-glutamyltransferase
- GLDH, glutamate dehydrogenase
- HE, hematoxylin and eosin
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- Porcine
- SMA, smooth muscle actin
- amino acid defined high-fat diet (-S, with sucrose
Collapse
Affiliation(s)
- Henrik D. Pedersen
- Ellegaard Göttingen Minipigs A/S, Dalmose, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark,Address for correspondence: Henrik D. Pedersen, Ellegaard Göttingen Minipigs A/S, Soroe Landevej 302, 4261 Dalmose, Denmark.
| | | | | | - Susanna Cirera
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Dorte Holst
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Markus Latta
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| |
Collapse
|
19
|
Zhang BC, Chen JH, Xiang CH, Su MY, Zhang XS, Ma YF. Increased serum bile acid level is associated with high-risk coronary artery plaques in an asymptomatic population detected by coronary computed tomography angiography. J Thorac Dis 2019; 11:5063-5070. [PMID: 32030222 DOI: 10.21037/jtd.2019.12.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background There are limited data on the association between serum total bile acid level and coronary plaque characteristics. This study investigated the relationship between serum total bile acid level and the severity of coronary stenosis and coronary plaque features in an asymptomatic population using coronary computed tomography angiography (CTA). Methods A total of 1,137 consecutive participants with no known coronary artery disease (CAD) undergoing CTA as part of a general routine health evaluation were recruited. Serum total bile acid level and clinical parameters were assayed. Coronary stenosis and high-risk plaques features (napkin-ring sign, low-attenuation plaque, spotty calcification, positive remodelling) were evaluated. Associations between serum total bile acid concentration and high-risk coronary plaques was tested through univariate and multivariate analyses. Results A total of 101 high-risk coronary plaques subjects and 93 controls were eligible for study inclusion. The severity of coronary artery stenosis and high-risk coronary plaques increased with serum total bile acid level quartiles (all P<0.001). The independent predictor of high-risk coronary plaques in multivariate analysis was serum total bile acid level (P<0.001). Receiver operating characteristic (ROC) confirmed that serum total bile acid concentration significantly differentiated high-risk coronary plaques [the area under the curve (AUC) =0.876; P<0.001, with a sensitivity of 87.13% and a specificity of 86.02%]. Conclusions Higher serum total bile acid level was associated with the severity of coronary artery stenosis and high-risk coronary artery plaques detected by CTA in asymptomatic populations.
Collapse
Affiliation(s)
- Bu-Chun Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Jun-Hong Chen
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Chu-Han Xiang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Ming-Yu Su
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xue-Shan Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Yan-Feng Ma
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| |
Collapse
|
20
|
Zhang L, Huang Y, Wang M, Guo Y, Liang J, Yang X, Qi W, Wu Y, Si J, Zhu S, Li Z, Li R, Shi C, Wang S, Zhang Q, Tang Z, Wang L, Li K, Fei JF, Lan G. Development and Genome Sequencing of a Laboratory-Inbred Miniature Pig Facilitates Study of Human Diabetic Disease. iScience 2019; 19:162-176. [PMID: 31376679 PMCID: PMC6677790 DOI: 10.1016/j.isci.2019.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 07/13/2019] [Indexed: 01/10/2023] Open
Abstract
Pig has been proved to be a valuable large animal model used for research on diabetic disease. However, their translational value is limited given their distinct anatomy and physiology. For the last 30 years, we have been developing a laboratory Asian miniature pig inbred line (Bama miniature pig [BM]) from the primitive Bama xiang pig via long-term selective inbreeding. Here, we assembled a BM reference genome at full chromosome-scale resolution with a total length of 2.49 Gb. Comparative and evolutionary genomic analyses identified numerous variations between the BM and commercial pig (Duroc), particularly those in the genetic loci associated with the features advantageous to diabetes studies. Resequencing analyses revealed many differentiated gene loci associated with inbreeding and other selective forces. These together with transcriptome analyses of diabetic pig models provide a comprehensive genetic basis for resistance to diabetogenic environment, especially related to energy metabolism.
Collapse
Affiliation(s)
- Li Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuemeng Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Meng Wang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Yafen Guo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jing Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenjing Qi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yanjun Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinglei Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Siran Zhu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhe Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Chao Shi
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qunjie Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Zhonglin Tang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ji-Feng Fei
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
21
|
Ge MX, Niu WX, Ren JF, Cai SY, Yu DK, Liu HT, Zhang N, Zhang YX, Wang YC, Shao RG, Wang JX, He HW. A novel ASBT inhibitor, IMB17-15, repressed nonalcoholic fatty liver disease development in high-fat diet-fed Syrian golden hamsters. Acta Pharmacol Sin 2019; 40:895-907. [PMID: 30573812 DOI: 10.1038/s41401-018-0195-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
Abstract
The manipulation of bile acid (BA) homeostasis by blocking the ileal apical Na+-dependent bile salt transporter (ASBT/SLC10A2) may have therapeutic effects in nonalcoholic fatty liver disease. We developed a novel ASBT inhibitor, an N-(3,4-o-dichlorophenyl)-2-(3-trifluoromethoxy) benzamide derivative referred to as IMB17-15, and investigated its therapeutic effects and the molecular mechanisms underlying the effects. Syrian golden hamsters were challenged with high-fat diet (HFD) to induce NAFLD and were subsequently administered 400 mg/kg IMB17-15 by gavage daily for 21 days. Serum, liver, and fecal samples were collected for further analysis. Plasma concentration-time profiles of IMB17-15 were also constructed. The human hepatocyte cell line HL-7702 was treated with Oleic acid (OA) with or without IMB17-15. Western blotting and real-time PCR were used to study the molecular mechanisms of IMB17-15. We found that IMB17-15 inhibited ASBT and subsequently suppressed ileal farnesoid X receptor (FXR) and FXR-activated fibroblast growth factor15/19 (FGF15/19) expression, which reduced the hepatic phosphorylated extracellular regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) levels and upregulated the cholesterol 7α-hydroxylase (CYP7A1) activity. Additionally, IMB17-15 stimulated adenosine monophosphate (AMP)-activated protein kinase (AMPKα) phosphorylation and enhanced peroxisome proliferator activated receptor α (PPARα) expression and thus promoted triglyceride (TG) oxidation and high-density lipoprotein cholesterol (HDL-c) metabolism through an ASBT-independent mechanism. In conclusion, a novel ASBT inhibitor known as IMB17-15 protected hamsters against HFD-induced NFALD by manipulating BA and lipid homeostasis. IMB17-15 also reduced lipid deposition in human hepatic cell lines, indicating that it may be useful as a therapy for NAFLD patients.
Collapse
|
22
|
Schumacher-Petersen C, Christoffersen BØ, Kirk RK, Ludvigsen TP, Zois NE, Pedersen HD, Vyberg M, Olsen LH. Experimental non-alcoholic steatohepatitis in Göttingen Minipigs: consequences of high fat-fructose-cholesterol diet and diabetes. J Transl Med 2019; 17:110. [PMID: 30943987 PMCID: PMC6448276 DOI: 10.1186/s12967-019-1854-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in humans, and ranges from steatosis to non-alcoholic steatohepatitis (NASH), the latter with risk of progression to cirrhosis. The Göttingen Minipig has been used in studies of obesity and diabetes, but liver changes have not been described. The aim of this study was to characterize hepatic changes in Göttingen Minipigs with or without diabetes, fed a diet high in fat, fructose, and cholesterol to see if liver alterations resemble features of human NAFLD/NASH. METHODS Fifty-four male castrated minipigs (age 6 to 7 months) were distributed into four groups and diet-fed for 13 months. Groups were: lean controls fed standard diet (SD, n = 8), a group fed high fat/fructose/cholesterol diet (FFC, n = 16), a group fed high fat/fructose/cholesterol diet but changed to standard diet after 7 months (diet normalization, FFC/SD, n = 16), and a streptozotocin-induced diabetic group fed high fat/fructose/cholesterol diet (FFCDIA, n = 14). At termination, blood samples for analyses of circulating biomarkers and liver tissue for histopathological assessment and analyses of lipids and glycogen content were collected. RESULTS In comparison with SD and FFC/SD, FFC and FFCDIA pigs developed hepatomegaly with increased content of cholesterol, whereas no difference in triglyceride content was found. FFC and FFCDIA groups had increased values of circulating total cholesterol and triglycerides and the hepatic circulating markers alkaline phosphatase and glutamate dehydrogenase. In the histopathological evaluation, fibrosis (mainly located periportally) and inflammation along with cytoplasmic alterations (characterized by hepatocytes with pale, granulated cytoplasm) were found in FFC and FFCDIA groups compared to SD and FFC/SD. Interestingly, FFC/SD also had fibrosis, a feature not seen in SD. Only two FFC and three FFCDIA pigs had > 5% steatosis, and no hepatocellular ballooning or Mallory-Denk bodies were found in any of the pigs. CONCLUSIONS Fibrosis, inflammation and cytoplasmic alterations were characteristic features in the livers of FCC and FFCDIA pigs. Overall, diabetes did not exacerbate the hepatic changes compared to FFC. The limited presence of the key human-relevant pathological hepatic findings of steatosis and hepatocellular ballooning and the variation in the model, limits its use in preclinical research without further optimisation.
Collapse
Affiliation(s)
- Camilla Schumacher-Petersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 2., 1870, Frederiksberg, Denmark
| | | | - Rikke Kaae Kirk
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Trine Pagh Ludvigsen
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Nora Elisabeth Zois
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,In Vivo Pharmacology, Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Henrik Duelund Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 2., 1870, Frederiksberg, Denmark.,Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Mogens Vyberg
- Institute of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Soendre Skovvej 15, 9000, Aalborg, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 2., 1870, Frederiksberg, Denmark.
| |
Collapse
|
23
|
Zhang J, Guo X, Hamada T, Yokoyama S, Nakamura Y, Zheng J, Kurose N, Ishigaki Y, Uramoto H, Tanimoto A, Yamada S. Protective Effects of Peroxiredoxin 4 (PRDX4) on Cholestatic Liver Injury. Int J Mol Sci 2018; 19:2509. [PMID: 30149550 PMCID: PMC6163182 DOI: 10.3390/ijms19092509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence indicates that oxidative stress plays a critical role in initiating the progression of inflammatory and fibrotic liver diseases, including cholestatic hepatitis. Peroxiredoxin 4 (PRDX4) is a secretory antioxidase that protects against oxidative damage by scavenging reactive oxygen species (ROS) in both the intracellular compartments and extracellular space. In this study, we examined the in vivo net effects of PRDX4 overexpression in a murine model of cholestasis. To induce cholestatic liver injury, we subjected C57BL/6J wild-type (WT) or human PRDX4 (hPRDX4) transgenic (Tg) mice to sham or bile duct ligation (BDL) surgery for seven days. Our results showed that the liver necrosis area was significantly suppressed in Tg BDL mice with a reduction in the severity of liver injuries. Furthermore, PRDX4 overexpression markedly reduced local and systemic oxidative stress generated by BDL. In addition, suppression of inflammatory cell infiltration, reduced proliferation of hepatocytes and intrahepatic bile ducts, and less fibrosis were also found in the liver of Tg BDL mice, along with a reduced mortality rate after BDL surgery. Interestingly, the composition of the hepatic bile acids (BAs) was more beneficial for Tg BDL mice than for WT BDL mice, suggesting that PRDX4 overexpression may affect BA metabolism during cholestasis. These features indicate that PRDX4 plays an important role in protecting against liver injury following BDL and might be a promising therapeutic modality for cholestatic diseases.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan.
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan.
| | - Taiji Hamada
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan.
| | - Seiya Yokoyama
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan.
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan.
| | - Jianbo Zheng
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan.
| | - Nozomu Kurose
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan.
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan.
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan.
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan.
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan.
| |
Collapse
|
24
|
ABE MASAHARU, KAWAGUCHI HIROAKI, MIURA NAOKI, AKIOKA KOHEI, USHIKAI MIHARU, OI SAYUMI, YUKAWA AIRO, YOSHIKAWA TETSUYA, IZUMI HIROYUKI, HORIUCHI MASAHISA. Diurnal Variation of Melatonin Concentration in the Cerebrospinal Fluid of Unanesthetized Microminipig. In Vivo 2018; 32. [PMID: 29695564 PMCID: PMC6000775 DOI: 10.21873/invivo.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND/AIM The aim of this study was to develop a method for sequentially collecting cerebrospinal fluid (CSF) from an unanesthetized microminipig, which shares many physiological and anatomical similarities with humans, such as diurnality, and investigate the diurnal variation of melatonin concentration in the CSF. MATERIALS AND METHODS A catheter was placed percutaneously into the subarachnoid space of an anesthetized animal, and the tip of the catheter was placed into the cisterna magna under X-ray. We then sequentially collected CSF at light-on and -off times from the unanesthetized animal for several weeks. After catheter placement, a period of one week or more was necessary to relieve the contamination of RBCs in the CSF. RESULTS A higher melatonin level in the CSF was noted during lights-off time, and the level was higher than that in the serum. CONCLUSION This model of sequential collection of CSF will contribute to research in brain functions.
Collapse
Affiliation(s)
- MASAHARU ABE
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - HIROAKI KAWAGUCHI
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - NAOKI MIURA
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - KOHEI AKIOKA
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - MIHARU USHIKAI
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - SAYUMI OI
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - AIRO YUKAWA
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | | | - HIROYUKI IZUMI
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - MASAHISA HORIUCHI
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
25
|
Abe M, Kawaguchi H, Miura N, Akioka K, Ushikai M, Oi S, Yukawa A, Yoshikawa T, Izumi H, Horiuchi M. Diurnal Variation of Melatonin Concentration in the Cerebrospinal Fluid of Unanesthetized Microminipig. In Vivo 2018; 32:583-590. [PMID: 29695564 PMCID: PMC6000775 DOI: 10.21873/invivo.11279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIM The aim of this study was to develop a method for sequentially collecting cerebrospinal fluid (CSF) from an unanesthetized microminipig, which shares many physiological and anatomical similarities with humans, such as diurnality, and investigate the diurnal variation of melatonin concentration in the CSF. MATERIALS AND METHODS A catheter was placed percutaneously into the subarachnoid space of an anesthetized animal, and the tip of the catheter was placed into the cisterna magna under X-ray. We then sequentially collected CSF at light-on and -off times from the unanesthetized animal for several weeks. After catheter placement, a period of one week or more was necessary to relieve the contamination of RBCs in the CSF. RESULTS A higher melatonin level in the CSF was noted during lights-off time, and the level was higher than that in the serum. CONCLUSION This model of sequential collection of CSF will contribute to research in brain functions.
Collapse
Affiliation(s)
- Masaharu Abe
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroaki Kawaguchi
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kohei Akioka
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Miharu Ushikai
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sayumi Oi
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - Airo Yukawa
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | | | - Hiroyuki Izumi
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - Masahisa Horiuchi
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
26
|
Noguchi M, Hirata M, Kawaguchi H, Tanimoto A. Corpus luteum Regression Induced by Prostaglandin F 2α in Microminipigs During the Normal Estrous Cycle. In Vivo 2017; 31:1097-1101. [PMID: 29102931 PMCID: PMC5756637 DOI: 10.21873/invivo.11175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
Induction of corpus luteum regression and subsequent estrus using prostaglandin F2α (PGF2α) in microminipigs was investigated. Microminipigs with normal estrous cycle were treated with PGF2α as 0.75 mg (0.75 PG group, n=3) or 1.5 mg (1.5 PG group, n=4) dinoprost injected into the vulva at 24-h intervals at 10 days after the onset of estrus (D0), D1 and D2. Three microminipigs were not treated (control group). The estrous interval in the 1.5 PG group was significantly shortened compared to the control and 0.75 PG groups. Plasma progesterone levels started to decline and reached the base line in the 1.5 PG group significantly faster than in the control group. In conclusion, we demonstrate that multiple PGF2α treatments can induce corpus luteum regression and estrous synchronization in female microminipigs.
Collapse
Affiliation(s)
- Michiko Noguchi
- Laboratory of Theriogenology, Department of Veterinary Medicine, Azabu University, Sagamihara, Japan
- Laboratory of Domestic Animal Internal Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Japan
| | - Masaya Hirata
- Laboratory of Domestic Animal Internal Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Japan
| | - Hiroaki Kawaguchi
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Japan
| |
Collapse
|