1
|
Ozturk M, Ates K, Esener Z, Mutlu H, Aydogmus C, Boztug K, Sarac H, Gezdirici A, Dogan M, Beser OF, Varol FI, Gokce IK, Ozdemir R, Tekedereli I. Expanding the phenotypic and genotypic characteristics of trichohepatoenteric syndrome: a report of eight patients from five unrelated families. Mol Biol Rep 2024; 51:736. [PMID: 38874671 DOI: 10.1007/s11033-024-09656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Trichohepatoenteric syndrome (THES) is characterized by neonatal-onset intractable diarrhea. It often requires long-term total parenteral nutrition (TPN). In addition, other characteristic findings of the syndrome include growth retardation, facial dysmorphism, hair abnormalities, various immunological problems and other rare system findings. Two genes and their associated pathogenic variants have been associated with this syndrome: SKIC3 and SKIC2. METHODS AND RESULTS In this case series, the clinical findings and molecular analysis results of a total of 8 patients from 5 different families who presented with persistent diarrhea and were diagnosed with THES were shared. Pathogenic variants were detected in the SKIC3 gene in 6 of our patients and in the SKIC2 gene in 2 patients. It was planned to compare the clinical findings of our patients with other patients, together with literature data, and to present yet-undefined phenotypic features that may be related to THES. In our case series, in addition to our patients with a novel variant, patient number 2 had a dual phenotype (THES and Spondyloepimetaphyseal dysplasia, sponastrime type) that has not been reported yet. Delay in gross motor skills, mild cognitive impairment, radioulnar synostosis, osteoporosis, nephropathy and cystic lesions (renal and liver) were observed as unreported phenotypic findings. CONCLUSIONS We are expanding the clinical and molecular repertoire of the syndrome regarding patients diagnosed with THES. We recommend that the NGS (next-generation sequencing) multigene panel should be used as a diagnostic tool in cases with persistent diarrhea.
Collapse
Affiliation(s)
- Murat Ozturk
- Department of Medical Genetics, Batman Education and Research Hospital, Batman, Turkey.
| | - Kubra Ates
- Department of Medical Genetics, Sakarya Education and Research Hospital, Sakarya, Turkey
| | - Zeynep Esener
- Department of Medical Genetics, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Hatice Mutlu
- Departments of Pediatric Genetics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Immunology and Allergy, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Kaan Boztug
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria
| | - Hatice Sarac
- Department of Medical Genetics, Inonu University Faculty of Medicine, Turgut Ozal Medical Center, Malatya, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Mustafa Dogan
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Omer Faruk Beser
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Cerrahpasa Faculty of Medicine, İstanbul University-Cerrahpasa, İstanbul, Turkey
| | - Fatma Ilknur Varol
- Departments of Pediatric Gastroenterology, Hepatology, and Nutrition, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ibrahim Tekedereli
- Department of Medical Genetics, Inonu University Faculty of Medicine, Turgut Ozal Medical Center, Malatya, Turkey
| |
Collapse
|
2
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Gao J, Hu X, Hu W, Sun X, Chen L. Novel TTC37 mutations in a patient with Trichohepatoenteric syndrome: a case report and literature review. Transl Pediatr 2022; 11:1050-1057. [PMID: 35800280 PMCID: PMC9253954 DOI: 10.21037/tp-21-574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/29/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Trichohepatoenteric syndrome (THES) is a rare autosomal recessive genetic disease caused by pathogenic mutations in TTC37 or SKIV2L gene. The presentation is variable, including intractable diarrhea, woolly hair abnormality, immune dysfunction, intrauterine growth restriction (IUGR), facial dysmorphism, and sometimes liver and skin abnormalities. Although four Chinese children affected with THES syndrome 1 have been described in Singapore, Taiwan (China) and Malaysia, to our knowledge, this is the first report of a patient with THES in Mainland China, harboring classical platelets features, clinical course, and novel mutations in TTC37 gene. CASE DESCRIPTION The male infant had symmetrical IUGR, and was born at 37+1 weeks with a birth weight of 1,480 g. He presented with feeding difficulties and vomiting from the 12th day after birth during the stay in neonatal intensive care unit, and had excessive diarrhea from the 21st day after birth. From the 35th day after birth, even slightly hypotonic oral rehydration solution caused watery stools. The blood glucose level was lower than 3.3 mmol/L even when the glucose infusion rate was up to 14 mg/kg/min on the parenteral alone, which has not been reported in previous literature. Normal α-granules were observed occasionally in THES platelets. Whole-exome sequencing analysis identified compound heterozygous mutations (c.4130C > G: p.S1377X) and (Exon11-13 del) in the TTC37 gene, which had been inherited from his father and mother, respectively. To our knowledge, the above mutations have not been described in any database or previous literature. Total parenteral nutrition was employed as mainstay of therapy, and hydrocortisone (1 mg/kg/dose, every 4 hours) was used to maintain blood glucose levels. The patient's final prognosis was poor after discharged from the hospital. CONCLUSIONS This case presented with mild platelet abnormality and intractable hypoglycemia, which extends the known mutation and phenotype of THES. The clinical features of Chinese patient are consistent with other ethnicity. Molecular diagnosis is useful for patients with unexplained intractable diarrhea, which puts an end to a long diagnostic odyssey.
Collapse
Affiliation(s)
- Jinzhi Gao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Sun
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Yang M, Jiang Y, Shao X. Case Report: A Novel Homozygous Frameshift Mutation of the SKIV2L Gene in a Trichohepatoenteric Syndrome Patient Presenting With Short Stature, Premature Ovarian Failure, and Osteoporosis. Front Genet 2022; 13:879899. [PMID: 35571060 PMCID: PMC9094698 DOI: 10.3389/fgene.2022.879899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Trichohepatoenteric syndrome (THES) is a rare Mendelian autosomal recessive genetic disease characterized by intractable diarrhea, woolly hair, facial abnormality, immune dysfunction, and intrauterine growth restriction. THES mutations are found in the TTC37 and SKIV2L genes, which encode two components of the human superkiller (SKI) complex. Methods and results: We report one case of a 32-year-old woman of Chinese descent with THES, who was born with a low weight (2000 g). She had intractable diarrhea during the neonatal period and was allergic to cow’s milk and condensed milk, but did not require total parenteral nutrition. She experienced menarche at age 12 and amenorrhea at age 28. In May 2019, the patient presented with a left fibular head fracture and was diagnosed with osteoporosis. Genetic testing showed a novel mutation in exon1 [p.E5Afs∗37 (c.12_13del)] of SKIV2L, which is composed of 28 exons. After the diagnosis, hormone replacement therapy was prescribed, in addition to the routine calcium and vitamin D supplements. Conclusion: This case expands the clinical characteristic and phenotype spectrum of THES, providing further understanding of SKIV2L and its autoimmune influence.
Collapse
Affiliation(s)
- Minyi Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Jiang
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Xinyu Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
5
|
Malformations of cerebral development and clues from the peripheral nervous system: A systematic literature review. Eur J Paediatr Neurol 2022; 37:155-164. [PMID: 34535379 DOI: 10.1016/j.ejpn.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Clinical manifestations of malformations of cortical development (MCD) are variable and can range from mild to severe intellectual disability, cerebral palsy and drug-resistant epilepsy. Besides common clinical features, non-specific or more subtle clinical symptoms may be present in association with different types of MCD. Especially in severely affected individuals, subtle but specific underlying clinical symptoms can be overlooked or overshadowed by the global clinical presentation. To facilitate the interpretation of genetic variants detailed clinical information is indispensable. Detailed (neurological) examination can be helpful in assisting with the diagnostic trajectory, both when referring for genetic work-up as well as when interpreting data from molecular genetic testing. This systematic literature review focusses on different clues derived from the neurological examination and potential further work-up triggered by these signs and symptoms in genetically defined MCDs. A concise overview of specific neurological findings and their associations with MCD subtype and genotype are presented, easily applicable in daily clinical practice. The following pathologies will be discussed: neuropathy, myopathy, muscular dystrophies and spastic paraplegia. In the discussion section, tips and pitfalls are illustrated to improve clinical outcome in the future.
Collapse
|
6
|
Zhang N, Olsen KJ, Ball D, Johnson SJ, D’Arcy S. OUP accepted manuscript. Nucleic Acids Res 2022; 50:4042-4053. [PMID: 35380691 PMCID: PMC9023267 DOI: 10.1093/nar/gkac170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/01/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Darby Ball
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080, USA
| | - Sean J Johnson
- Correspondence may also be addressed to Sean J. Johnson.
| | - Sheena D’Arcy
- To whom correspondence should be addressed. Tel: +1 972 883 2915;
| |
Collapse
|
7
|
Gupta NP, Rawal N, Batra A, Thakur S, Singha C, Paul S. Newborn with Failure to Thrive and Diarrhea. Neoreviews 2021; 22:e614-e616. [PMID: 34470763 DOI: 10.1542/neo.22-9-e614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Naveen Parkash Gupta
- Department of Neonatology, Madhukar Rainbow Children's Hospital, New Delhi, India
| | - Nidhi Rawal
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Madhukar Rainbow Children's Hospital, New Delhi, India, and Sitaram Bhartia Institute of Science and Research, Max Hospitals, Gurgaon, India
| | - Anil Batra
- Department of Neonatology, Madhukar Rainbow Children's Hospital, New Delhi, India
| | - Seema Thakur
- Department of Genetics and Fetal Diagnosis, Madhukar Rainbow Children's Hospital, New Delhi, and Fortis Hospital, New Delhi, India
| | - Chandrasekhar Singha
- Department of Pediatric Critical Care, Madhukar Rainbow Children's Hospital, New Delhi, India
| | - Sisir Paul
- Department of Pediatrics, Madhukar Rainbow Children's Hospital, New Delhi, India
| |
Collapse
|
8
|
Töpf A, Pyle A, Griffin H, Matalonga L, Schon K, Sickmann A, Schara-Schmidt U, Hentschel A, Chinnery PF, Kölbel H, Roos A, Horvath R. Exome reanalysis and proteomic profiling identified TRIP4 as a novel cause of cerebellar hypoplasia and spinal muscular atrophy (PCH1). Eur J Hum Genet 2021; 29:1348-1353. [PMID: 34075209 PMCID: PMC8440675 DOI: 10.1038/s41431-021-00851-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 01/26/2023] Open
Abstract
TRIP4 is one of the subunits of the transcriptional coregulator ASC-1, a ribonucleoprotein complex that participates in transcriptional coactivation and RNA processing events. Recessive variants in the TRIP4 gene have been associated with spinal muscular atrophy with bone fractures as well as a severe form of congenital muscular dystrophy. Here we present the diagnostic journey of a patient with cerebellar hypoplasia and spinal muscular atrophy (PCH1) and congenital bone fractures. Initial exome sequencing analysis revealed no candidate variants. Reanalysis of the exome data by inclusion in the Solve-RD project resulted in the identification of a homozygous stop-gain variant in the TRIP4 gene, previously reported as disease-causing. This highlights the importance of analysis reiteration and improved and updated bioinformatic pipelines. Proteomic profile of the patient's fibroblasts showed altered RNA-processing and impaired exosome activity supporting the pathogenicity of the detected variant. In addition, we identified a novel genetic form of PCH1, further strengthening the link of this characteristic phenotype with altered RNA metabolism.
Collapse
Affiliation(s)
- Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Griffin
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Katherine Schon
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Albert Sickmann
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- Medizinische Proteom-Center (MPC), Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children's Hospital University of Essen, Essen, Germany.
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Slavotinek A, Misceo D, Htun S, Mathisen L, Frengen E, Foreman M, Hurtig JE, Enyenihi L, Sterrett MC, Leung SW, Schneidman-Duhovny D, Estrada-Veras J, Duncan JL, Haaxma CA, Kamsteeg EJ, Xia V, Beleford D, Si Y, Douglas G, Treidene HE, van Hoof A, Fasken MB, Corbett AH. Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness. Hum Mol Genet 2021; 29:2218-2239. [PMID: 32504085 DOI: 10.1093/hmg/ddaa108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA exosome is an essential ribonuclease complex required for processing and/or degradation of both coding and non-coding RNAs. We identified five patients with biallelic variants in EXOSC5, which encodes a structural subunit of the RNA exosome. The clinical features of these patients include failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. While we ascertained five patients, three patients with distinct variants of EXOSC5 were studied in detail. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. The additional two patients ascertained are siblings who had an early frameshift mutation in EXOSC5 and the p.Thr114Ile missense variant that were inherited in trans. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess consequences of pathogenic EXOSC5 variants. Loss of function for exosc5 in zebrafish results in shortened and curved tails/bodies, reduced eye/head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants cause defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. These findings expand the number of genes encoding RNA exosome subunits linked to human disease while also suggesting that disease mechanism varies depending on the specific pathogenic variant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Stephanie Htun
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Linda Mathisen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Michelle Foreman
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Jennifer E Hurtig
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Liz Enyenihi
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Sara W Leung
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering and the Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Juvianee Estrada-Veras
- Department of Pediatrics-Medical Genetics and Metabolism, Uniformed Services University/Walter Reed NMMC Bethesda, MD 20889, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Vivian Xia
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Daniah Beleford
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Yue Si
- GeneDx Inc., MD 20877, USA
| | | | - Hans Einar Treidene
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo 0450, Norway
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Alsaleem BM, Hasosah M, Ahmed ABM, Al Hatlani MM, Alanazi AH, Al-Hussaini A, Asery AT, Alghamdi KA, AlRuwaithi MM, Khormi MAM, Al Sarkhy A, Alshamrani AS. Tricho-hepato-enteric syndrome: Retrospective multicenter experience in Saudi Arabia. Saudi J Gastroenterol 2021; 28:135-142. [PMID: 34414925 PMCID: PMC9007078 DOI: 10.4103/sjg.sjg_200_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Trichohepatoenteric syndrome (THES) is a very rare disorder that is characterized by intractable congenital diarrhea, woolly hair, intrauterine growth restriction, facial dysmorphism, and short stature. Our knowledge of THES is limited due to the small number of reported cases. METHODS Thirty patients diagnosed with THES, all molecularly confirmed by whole exome sequencing (WES) to have biallelic variants in TTC37 or SKIV2L, were included in the study. Clinical, biochemical, and nutritional phenotypes and outcome data were collected from all participants. RESULTS The median age of THES patients was 3.7 years (0.9-23 years). Diarrhea and malnutrition were the most common clinical features (100%). Other common features included hair abnormalities (96%), skin hyperpigmentation (87%), facial dysmorphic abnormalities (73%), psychomotor retardation (57%), and hepatic abnormalities (30%). Twenty-five patients required parenteral nutrition (83%) with a mean duration of 13.34 months, and nearly half were eventually weaned off. Parenteral nutrition was associated with a poor prognosis. The vast majority of cases (89.6%) had biallelic variants in SKIV2L, with biallelic variants in TTC37 accounting for the remaining cases. A total of seven variants were identified in TTC37 (n = 3) and SKIV2L (n = 4). The underlying genotype influenced some phenotypic aspects, especially liver involvement, which was more common in TTC37-related THES. CONCLUSION Our data helps define the natural history of THES and provide clinical management guidelines.
Collapse
Affiliation(s)
- Badr M. Alsaleem
- Department of Pediatric Gastroenterology, Intestinal Failure Program, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia,Address for correspondence: Dr. Badr M. Alsaleem, Pediatric Consultant Gastroenterologist, King Fahad Medical City, Children's Hospital, Intestinal Failure Program, Riyadh, Saudi Arabia. E-mail:
| | - Mohammed Hasosah
- Department of Pediatric Gastroenterology, King Abdulaziz Medical City, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Amna Basheer M. Ahmed
- Department of Pediatric Gastroenterology, Intestinal Failure Program, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maher M. Al Hatlani
- Department of Pediatric Gastroenterology, IABF Hospital of National Guard, Dammam, Saudi Arabia
| | - Aziz Helal Alanazi
- Department of Pediatric Gastroenterology, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Abdulrahman Al-Hussaini
- The Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia,Alfaisal University, College of Medicine, Riyadh, Saudi Arabia,Prince Abdullah bin Khalid Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali T. Asery
- Department of Pediatric Gastroenterology, Intestinal Failure Program, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Khalid A. Alghamdi
- Department of Pediatric Gastroenterology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Muhanad M. AlRuwaithi
- Department of Pediatric Gastroenterology, Intestinal Failure Program, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Musa Ali M. Khormi
- Department of Pediatric Gastroenterology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ahmed Al Sarkhy
- Department of Pediatric Gastroenterology, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali S. Alshamrani
- Department of Pediatric Gastroenterology, Maternity and Children's Hospital, Makkah, Saudi Arabia
| |
Collapse
|
11
|
Serwas NK, Hoeger B, Ardy RC, Stulz SV, Sui Z, Memaran N, Meeths M, Krolo A, Yüce Petronczki Ö, Pfajfer L, Hou TZ, Halliday N, Santos-Valente E, Kalinichenko A, Kennedy A, Mace EM, Mukherjee M, Tesi B, Schrempf A, Pickl WF, Loizou JI, Kain R, Bidmon-Fliegenschnee B, Schickel JN, Glauzy S, Huemer J, Garncarz W, Salzer E, Pierides I, Bilic I, Thiel J, Priftakis P, Banerjee PP, Förster-Waldl E, Medgyesi D, Huber WD, Orange JS, Meffre E, Sansom DM, Bryceson YT, Altman A, Boztug K. Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat Commun 2019; 10:3106. [PMID: 31308374 PMCID: PMC6629652 DOI: 10.1038/s41467-019-10812-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in differentially expressed in FDCP6 homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.
Collapse
Affiliation(s)
- Nina K Serwas
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Rico C Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sigrun V Stulz
- Centre for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Zhenhua Sui
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Nima Memaran
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Centre for Paediatrics and Adoloscent Medicine, Hannover Medical School, Hannover, Germany
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Özlem Yüce Petronczki
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Pathophysiology of Toulouse Purpan, INSERM UMR1043, CNRS UMR5282, Paul Sabatier University, Toulouse, France
| | - Tie Z Hou
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | | | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alan Kennedy
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Emily M Mace
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
- Columbia University Medical Center, Columbia, NY, USA
| | - Malini Mukherjee
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Bianca Tesi
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Schrempf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Renate Kain
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Salomé Glauzy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jakob Huemer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wojciech Garncarz
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Iro Pierides
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ivan Bilic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Takeda (Shire), Vienna, Austria
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, 79106, Germany
| | - Peter Priftakis
- Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Pinaki P Banerjee
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
- MD Anderson Cancer Center, Houston, TX, USA
| | - Elisabeth Förster-Waldl
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - David Medgyesi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wolf-Dietrich Huber
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
- Columbia University Medical Center, Columbia, NY, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, University College London, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
- St. Anna Kinderspital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Sun Y, Li A, Liu X, Wang Q, Bai Y, Liu Z, Huang L, Wu M, Li H, Miao J, Liu J. A panel of biomarkers for skin squamous cell carcinoma: various functional entities and differential responses to resveratrol. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1363-1377. [PMID: 31933951 PMCID: PMC6947080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/20/2019] [Indexed: 06/10/2023]
Abstract
In contrast to the highly malignant melanoma, skin squamous cell carcinoma (SCC) usually presents with lower morbidity. However, its incidence has been alarmingly rising worldwide and is a public health burden, let alone the current SCC cancer classification scheme is inadequate. Due to its features of progressing along different pathologic stages, early detection of precancerous lesions with accurate molecular markers would be desirable for cancer prevention and treatment. In the present study, using immunohistochemical staining of 85 clinical samples, we profiled the expression of a panel of ten proteins from five functional divisions implicated in SCC development, i.e. cytokeratins, intercellular molecules, chaperone proteins, transcription factors, and mitochondrial redox enzymes. The differential alterations of the proteins in SCC cell lines SCL12 and COLO16, upon resveratrol therapy, were also examined by immunocytochemistry (ICC). Our data reveal that, while all these proteins show significant correlation with cancer initiation and/or progression, a comprehensive panel encompassing a range of biologic functions, instead of a single marker, will provide prognostic value in SCC diagnosis and management. Additionally, the strong correlation among the proteins with cancer stages implies their distinct roles in SCC pathogenesis and contributions to the therapeutic effects of resveratrol, which is demonstrated in the resveratrol-sensitive COLO16 cells, but not in the resveratrol-resistant SCL12 cells.
Collapse
Affiliation(s)
- Yuan Sun
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, China
| | - Aiqing Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, China
| | - Xin Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, China
| | - Qian Wang
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, China
| | - Yang Bai
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, China
| | - Zhili Liu
- Dalian Skin Disease HospitalDalian, China
| | - Lei Huang
- The Friendship Municipal HospitalDalian, China
| | - Moli Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, China
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, China
| | - Jian Miao
- The Department of General Surgery, The Second Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, China
| |
Collapse
|
13
|
Xinias I, Mavroudi A, Mouselimis D, Tsarouchas A, Vasilaki K, Roilides I, Lacaille F, Giouleme O. Trichohepatoenteric syndrome: A rare mutation in SKIV2L gene in the first Balkan reported case. SAGE Open Med Case Rep 2018; 6:2050313X18807795. [PMID: 30397475 PMCID: PMC6207980 DOI: 10.1177/2050313x18807795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Trichohepatoenteric syndrome or syndromic diarrhea is a rare and severe Mendelian autosomal recessive syndrome characterized by intractable diarrhea, facial and hair abnormalities, liver dysfunction, immunodeficiency and failure to thrive. It has been associated with mutations in TTC37 and SKIV2L genes, which encode proteins of the SKI complex that contributes to the cytosolic degradation of the messenger RNA by the cell's exosome. We report a case of a male infant who suffered from typical symptoms and signs of trichohepatoenteric syndrome without immunodeficiency. The patient's genetic testing showed a very rare mutation in SKIV2L gene's 25 exons (p.Glu1038 fs*7 (c.3112_3140del)). Even though our patient was provided with total parenteral nutrition from birth, the child's death in the third year of age highlights the severity of the disease and the poor prognosis of this particular type of genetic predisposition.
Collapse
Affiliation(s)
- Ioannis Xinias
- 3rd Pediatric Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antigoni Mavroudi
- 3rd Pediatric Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Mouselimis
- 3rd Pediatric Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios Tsarouchas
- 3rd Pediatric Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Vasilaki
- 3rd Pediatric Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Roilides
- 3rd Pediatric Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Olga Giouleme
- 2nd Pathologic Propaedeutic Clinic, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Vély F, Barlogis V, Marinier E, Coste ME, Dubern B, Dugelay E, Lemale J, Martinez-Vinson C, Peretti N, Perry A, Bourgeois P, Badens C, Goulet O, Hugot JP, Farnarier C, Fabre A. Combined Immunodeficiency in Patients With Trichohepatoenteric Syndrome. Front Immunol 2018; 9:1036. [PMID: 29868001 PMCID: PMC5958188 DOI: 10.3389/fimmu.2018.01036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
The syndromic diarrhea/trichohepatoenteric syndrome (SD/THE) is a rare and multi-system genetic disorder caused by mutation in SKIV2L or in TTC37, two genes encoding subunits of the putative human SKI complex involved in RNA degradation. The main features are intractable diarrhea of infancy, hair abnormalities, facial dysmorphism, and intrauterine growth restriction. Immunologically this syndrome is associated with a hypogammaglobulinemia leading to an immunoglobulin supplementation. Our immune evaluation of a large French cohort of SD/THE patient revealed several immunological defects. First, switched memory B lymphocytes count is very low. Second, IFN-γ production by T and NK cells is impaired and associated with a reduced degranulation of NK cells. Third, T cell proliferation was abnormal in 3/6 TTC37-mutated patients. These three patients present with severe EBV infection and a transient hemophagocytosis which may be related to these immunological defects. Moreover, an immunological screening of patients with clinical features of SD/THE could facilitate both diagnosis and therapeutic management of these patients.
Collapse
Affiliation(s)
- Frédéric Vély
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopôle, Marseille, France
| | - Vincent Barlogis
- APHM, Hôpital de la Timone, Service d'Hématologie et Oncologie Pédiatrique, Marseille, France
| | - Evelyne Marinier
- APHP Robert Debré, Department of Pediatric Gastroenterology, Hepatology and Nutrition, Paris, France
| | - Marie-Edith Coste
- APHM, Hôpital de la Timone Enfant, Service de Pédiatrie Multidisciplinaire, Marseille, France
| | - Béatrice Dubern
- Nutrition et Gastroentérologie Pédiatriques, Hôpital Armand-Trousseau, UMR-S U1166 Nutriomics, UPMC, Sorbonne University, Paris, France
| | - Emmanuelle Dugelay
- APHP Robert Debré, Department of Pediatric Gastroenterology, Hepatology and Nutrition, Paris, France
| | - Julie Lemale
- Nutrition et Gastroentérologie Pédiatriques, Hôpital Armand-Trousseau, UMR-S U1166 Nutriomics, UPMC, Sorbonne University, Paris, France
| | - Christine Martinez-Vinson
- APHP Robert Debré, Department of Pediatric Gastroenterology, Hepatology and Nutrition, Paris, France
| | - Noël Peretti
- Department of Pediatric Nutrition, University Pediatric Hospital of Lyon, Hospices Civils de Lyon HCL, INSERM U1060, CarMeN Laboratory, University Claude Bernard Univ Lyon-1, Lyon, France
| | - Ariane Perry
- APHP, Hôpitaux Universitaires Paris Sud, Hôpital Antoine Béclère, Centre de référence des maladies héréditaires du métabolisme hépatique, Clamart, France
| | - Patrice Bourgeois
- APHM, Hôpital de la Timone Enfant, Service de biologie moléculaire, Marseille, France.,Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Catherine Badens
- APHM, Hôpital de la Timone Enfant, Service de biologie moléculaire, Marseille, France.,Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Olivier Goulet
- APHP, Necker-Enfants Malades Hospital, Department of Pediatric Gastroenterology, Hepatology and Nutrition, Paris-Descartes University, Intestinal Failure Rehabilitation Center, National Reference Centre for Rare Digestive Diseases, Paris, France
| | - Jean-Pierre Hugot
- APHP, Hôpital Robert Debré, Paris, France.,UMR 1149, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Labex Inflamex, Université Paris-Diderot Sorbonne Paris-Cité, Paris, France
| | - Catherine Farnarier
- APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopôle, Marseille, France
| | - Alexandre Fabre
- APHM, Hôpital de la Timone Enfant, Service de Pédiatrie Multidisciplinaire, Marseille, France.,Aix Marseille Univ, INSERM, MMG, Marseille, France
| |
Collapse
|
15
|
Exosomes from C2C12 myoblasts enhance osteogenic differentiation of MC3T3-E1 pre-osteoblasts by delivering miR-27a-3p. Biochem Biophys Res Commun 2018; 498:32-37. [PMID: 29476741 DOI: 10.1016/j.bbrc.2018.02.144] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Many regulators have been identified to participate in the cross-talk between muscle and bone, however, most previous studies focus on secreting proteins. In this study, we demonstrated that exosomes from myoblasts C2C12 can promote pre-osteoblasts MC3T3-E1 differentiation to osteoblasts. We revealed that the effect of C2C12 exosomes depended on its miR-27a-3p component, they can increase miR-27a-3p level in the recipient cells, and decrease its direct target adenomatous polyposis coli (APC) expression, thus activating β-catenin pathway. Furthermore, C2C12 exosomes failed to exert above effects when miR-27a-3p was deprived. These findings indicates exosomal microRNAs can be regarded as a novel type of "myokines" with osteogenesis promoting potential, which would broad our understanding of the muscle-bone interaction under physiological and pathological conditions.
Collapse
|
16
|
Abstract
Numerous surveillance pathways sculpt eukaryotic transcriptomes by degrading unneeded, defective, and potentially harmful noncoding RNAs (ncRNAs). Because aberrant and excess ncRNAs are largely degraded by exoribonucleases, a key characteristic of these RNAs is an accessible, protein-free 5' or 3' end. Most exoribonucleases function with cofactors that recognize ncRNAs with accessible 5' or 3' ends and/or increase the availability of these ends. Noncoding RNA surveillance pathways were first described in budding yeast, and there are now high-resolution structures of many components of the yeast pathways and significant mechanistic understanding as to how they function. Studies in human cells are revealing the ways in which these pathways both resemble and differ from their yeast counterparts, and are also uncovering numerous pathways that lack equivalents in budding yeast. In this review, we describe both the well-studied pathways uncovered in yeast and the new concepts that are emerging from studies in mammalian cells. We also discuss the ways in which surveillance pathways compete with chaperone proteins that transiently protect nascent ncRNA ends from exoribonucleases, with partner proteins that sequester these ends within RNPs, and with end modification pathways that protect the ends of some ncRNAs from nucleases.
Collapse
Affiliation(s)
- Cedric Belair
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| |
Collapse
|
17
|
Fabre A, Bourgeois P, Coste ME, Roman C, Barlogis V, Badens C. Management of syndromic diarrhea/tricho-hepato-enteric syndrome: A review of the literature. Intractable Rare Dis Res 2017; 6:152-157. [PMID: 28944135 PMCID: PMC5608923 DOI: 10.5582/irdr.2017.01040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Syndromic diarrhea/tricho-hepato-enteric syndrome (SD/THE) is a rare disease linked to the loss of function of either TTC37 or SKIV2L, two components of the SKI complex. It is characterized by a combination of 9 signs (intractable diarrhea, hair abnormalities, facial dysmorphism, immune abnormalities, IUGR/SGA, liver abnormalities, skin abnormalities, congenital heart defect and platelet abnormalities). We present a comprehensive review of the management of SD/THE and tested therapeutic regimens. A review of the literature was conducted in May 2017: 29 articles and 2 abstracts were included describing a total of 80 patients, of which 40 presented with mutations of TTC37, 14 of SKIV2L. Parenteral nutrition was used in the management of 83% of the patients and weaned in 44% (mean duration of 14.97 months). Immunoglobulins were used in 33 patients, but data on efficacy was reported for 6 patients with a diminution of infection (n = 3) or diarrhea reduction (n = 2). Antibiotics (n = 11) provided no efficacy. Steroids (n = 17) and immunosuppressant drugs (n = 13) were used with little efficacy and mostly in patients with IBD-like SD/THE. Hematopoietic stem cell transplantation (HSCT) was performed in 4 patients: 2 died, for one it corrected the immune defects but not the other features and for the last one, it provided only a partial improvement. Finally, no specific diet was effective except for some contradictory reports for elemental formula. In conclusion, the management of SD/THE mainly involves parenteral nutrition and immunoglobulin supplementation. Antibiotics, steroids, immunosuppressants, and HSCT are not recommended as principle treatments since there is no evidence of efficacy.
Collapse
Affiliation(s)
- Alexandre Fabre
- Service de Pédiatrie Multidisciplinaire, Hôpital de la Timone, APHM, Marseille, France
- Aix Marseille Université, INSERM, Génétique Médicale et Génomique Fonctionnelle (GMGF), UMRS 910, Marseille, France
- Address correspondence to: Dr. Alexandre Fabre, Service de Pédiatrie Multidisciplinaire, Hôpital de la Timone Enfant, 264 Rue Saint Pierre, Marseille 13005, France. E-mail:
| | - Patrice Bourgeois
- Aix Marseille Université, INSERM, Génétique Médicale et Génomique Fonctionnelle (GMGF), UMRS 910, Marseille, France
- Service de génétique moléculaire, Hôpital de la Timone Enfant, APHM, Marseille, France
| | - Marie-Edith Coste
- Service de Pédiatrie Multidisciplinaire, Hôpital de la Timone, APHM, Marseille, France
| | - Céline Roman
- Service de Pédiatrie Multidisciplinaire, Hôpital de la Timone, APHM, Marseille, France
| | - Vincent Barlogis
- Service d'hématologie pédiatrique, Hôpital de la Timone, APHM, Marseille, France
| | - Catherine Badens
- Aix Marseille Université, INSERM, Génétique Médicale et Génomique Fonctionnelle (GMGF), UMRS 910, Marseille, France
- Service de génétique moléculaire, Hôpital de la Timone Enfant, APHM, Marseille, France
| |
Collapse
|
18
|
Zinder JC, Lima CD. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 2017; 31:88-100. [PMID: 28202538 PMCID: PMC5322736 DOI: 10.1101/gad.294769.116] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Zinder and Lima highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes. The eukaryotic RNA exosome is an essential and conserved protein complex that can degrade or process RNA substrates in the 3′-to-5′ direction. Since its discovery nearly two decades ago, studies have focused on determining how the exosome, along with associated cofactors, achieves the demanding task of targeting particular RNAs for degradation and/or processing in both the nucleus and cytoplasm. In this review, we highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes.
Collapse
Affiliation(s)
- John C Zinder
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Structural Biology Program, Sloan Kettering Institute, New York, New York, 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, New York, New York, 10065, USA.,Howard Hughes Medical Institute, New York, New York, 10065 USA
| |
Collapse
|
19
|
Zinder JC, Wasmuth EV, Lima CD. Nuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3. Mol Cell 2016; 64:734-745. [PMID: 27818140 DOI: 10.1016/j.molcel.2016.09.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Abstract
The eukaryotic RNA exosome is an essential and conserved 3'-to-5' exoribonuclease complex that degrades or processes nearly every class of cellular RNA. The nuclear RNA exosome includes a 9-subunit non-catalytic core that binds Rrp44 (Dis3) and Rrp6 subunits to modulate their processive and distributive 3'-to-5' exoribonuclease activities, respectively. Here we utilize an engineered RNA with two 3' ends to obtain a crystal structure of an 11-subunit nuclear exosome bound to RNA at 3.1 Å. The structure reveals an extended RNA path to Rrp6 that penetrates into the non-catalytic core; contacts between the non-catalytic core and Rrp44, which inhibit exoribonuclease activity; and features of the Rrp44 exoribonuclease site that support its ability to degrade 3' phosphate RNA substrates. Using reconstituted exosome complexes, we show that 3' phosphate RNA is not a substrate for Rrp6 but is readily degraded by Rrp44 in the nuclear exosome.
Collapse
Affiliation(s)
- John C Zinder
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
20
|
Kowalinski E, Kögel A, Ebert J, Reichelt P, Stegmann E, Habermann B, Conti E. Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex. Mol Cell 2016; 63:125-34. [PMID: 27345150 PMCID: PMC4942675 DOI: 10.1016/j.molcel.2016.05.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/26/2016] [Accepted: 05/18/2016] [Indexed: 10/28/2022]
Abstract
The RNA exosome complex associates with nuclear and cytoplasmic cofactors to mediate the decay, surveillance, or processing of a wide variety of transcripts. In the cytoplasm, the conserved core of the exosome (Exo10) functions together with the conserved Ski complex. The interaction of S. cerevisiae Exo10 and Ski is not direct but requires a bridging cofactor, Ski7. Here, we report the 2.65 Å resolution structure of S. cerevisiae Exo10 bound to the interacting domain of Ski7. Extensive hydrophobic interactions rationalize the high affinity and stability of this complex, pointing to Ski7 as a constitutive component of the cytosolic exosome. Despite the absence of sequence homology, cytoplasmic Ski7 and nuclear Rrp6 bind Exo10 using similar surfaces and recognition motifs. Knowledge of the interacting residues in the yeast complexes allowed us to identify a splice variant of human HBS1-Like as a Ski7-like exosome-binding protein, revealing the evolutionary conservation of this cytoplasmic cofactor.
Collapse
Affiliation(s)
- Eva Kowalinski
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Judith Ebert
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter Reichelt
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Elisabeth Stegmann
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bianca Habermann
- Computational Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
21
|
Lee WI, Huang JL, Chen CC, Lin JL, Wu RC, Jaing TH, Ou LS. Identifying Mutations of the Tetratricopeptide Repeat Domain 37 (TTC37) Gene in Infants With Intractable Diarrhea and a Comparison of Asian and Non-Asian Phenotype and Genotype: A Global Case-report Study of a Well-Defined Syndrome With Immunodeficiency. Medicine (Baltimore) 2016; 95:e2918. [PMID: 26945392 PMCID: PMC4782876 DOI: 10.1097/md.0000000000002918] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Syndromic diarrhea/tricho-hepato-enteric syndrome (SD/THE) is a rare, autosomal recessive and severe bowel disorder mainly caused by mutations in the tetratricopeptide repeat domain 37 (TTC37) gene which act as heterotetrameric cofactors to enhance aberrant mRNAs decay. The phenotype and immune profiles of SD/THE overlap those of primary immunodeficiency diseases (PIDs). Neonates with intractable diarrhea underwent immunologic assessments including immunoglobulin levels, lymphocyte subsets, lymphocyte proliferation, superoxide production, and IL-10 signaling function. Candidate genes for PIDs predisposing to inflammatory bowel disease were sequencing in this study. Two neonates, born to nonconsanguineous parents, suffered from intractable diarrhea, recurrent infections, and massive hematemesis from esopharyngeal varices due to liver cirrhosis or accompanying Trichorrhexis nodosa that developed with age and thus guided the diagnosis of SD/THE compatible to TTC37 mutations (homozygous DelK1155H, Fs*2; heterozygous Y1169Ter and InsA1143, Fs*3). Their immunologic evaluation showed normal mitogen-stimulated lymphocyte proliferation, superoxide production, and IL-10 signaling, but low IgG levels, undetectable antibody to hepatitis B surface antigen and decreased antigen-stimulated lymphocyte proliferation. A PubMed search for bi-allelic TTC37 mutations and phenotypes were recorded in 14 Asian and 12 non-Asian cases. They had similar presentations of infantile onset refractory diarrhea, facial dysmorphism, hair anomalies, low IgG, low birth weight, and consanguinity. A higher incidence of heart anomalies (8/14 vs 2/12; P = 0.0344, Chi-square), nonsense mutations (19 in 28 alleles), and hot-spot mutations (W936Ter, 2779-2G>A, and Y1169Ter) were found in the Asian compared with the non-Asian patients. Despite immunoglobulin therapy in 20 of the patients, 4 died from liver cirrhosis and 1 died from sepsis. Patients of all ethnicities with SD/THE with the characteristic triad of T nodosa, hepatic cirrhosis, and intractable enteropathy have low IgG, poor vaccine response and/or decreased antigen-stimulated lymphocyte proliferation. This is now better classified into the subgroup of "well-defined syndromes with immunodeficiency" (the update termed as "combined immunodeficiencies with associated or syndromic features") than "predominantly antibody deficiencies" in the update PIDs classification, and requires optimal interventions.
Collapse
Affiliation(s)
- Wen-I Lee
- From the Primary Immunodeficiency Care and Research (PICAR) Institute (W-IL, J-LH) and Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine (W-IL, J-LH, T-HJ, L-SO); and Division of Gastroenterology (C-CC), Division of Genetics and Endocrinology (J-LL), Division of Hematology/Oncology, Department of Pediatrics (T-HJ), and Department Pathology, Chang Gung Memorial Hospital (R-CW), Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Müller JS, Giunta M, Horvath R. Exosomal Protein Deficiencies: How Abnormal RNA Metabolism Results in Childhood-Onset Neurological Diseases. J Neuromuscul Dis 2015; 2:S31-S37. [PMID: 27127732 PMCID: PMC4845884 DOI: 10.3233/jnd-150086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Defects of RNA metabolism have been increasingly identified in various forms of inherited neurological diseases. Recently, abnormal RNA degradation due to mutations in human exosome subunit genes has been shown to cause complex childhood onset neurological presentations including spinal muscular atrophy, pontocerebellar hypoplasia and myelination deficiencies. This paper summarizes our current knowledge about the exosome in human neurological disease and provides some important insights into potential disease mechanisms.
Collapse
Affiliation(s)
- Juliane S. Müller
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Michele Giunta
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Perspective: The RNA exosome, cytokine gene regulation and links to autoimmunity. Cytokine 2015; 74:175-80. [PMID: 25835609 DOI: 10.1016/j.cyto.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022]
Abstract
The RNA exosome is a highly conserved exoribonuclease complex that is involved in RNA processing, quality control and turnover regulation. The exosome plays pleiotropic functions by recruiting different cofactors that regulate its target specificity. Recently, the exosome has been implicated in the regulation of immune processes including cytokine production and negative regulation of innate sensing of nucleic acids. Careful regulation of such mechanisms is critical to avoid a breakdown of self-tolerance and the pathogenesis of autoimmune disorders. This perspective briefly introduces the exosome, its its normal function in RNA biology and summarizes regulatory roles of the RNA exosome in immunity. Finally we discuss how dysregulation of exosome function can lead to autoimmune disease.
Collapse
|