1
|
Cheon W, Park S, Oh Y, Goh J, Mun HY. Report of 10 Unrecorded Fungi from Freshwater Environment in Korea. MYCOBIOLOGY 2025; 53:168-182. [PMID: 40098937 PMCID: PMC11912237 DOI: 10.1080/12298093.2024.2439648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025]
Abstract
Research on fungi isolated from freshwater environments contribute to expanding the fungal diversity and species inventory of freshwater ecosystems, as well as aiding in understanding the roles they play within these ecosystems. This study presents detailed descriptions and phylogenetic tree of 10 fungal species isolated from various freshwater environments in South Korea. These species were isolated from freshwater environments, such as plantlitter, sediment, and filtered freshwater. Identification of based on morphological characteristics and phylogenetic analysis using the DNA sequences from the internal transcribed spacer (ITS), elongation factor (EF1), calmodulin (cmd), β-tubulin (btub), and RNA polymerase II (rpb2) coding genes, depending on the species. The following species were recorded for the first time in Korea: Plectosphaerella pauciseptata NNIBRFG186, Striatibotrys rhabdosporus NNIBRFG2094, Gibellulopsis serrae NNIBRFG1912, Trichoderma hunanense NNIBRFG33378, T. Albofulvopsis NNIBRFG34098, Curvularia americana NNIBRFG34293, Phacidium mollerianum NNIBRFG28409, Mucor brunneogriseus NNIBRFG50199, M. laxorrhizus NNIBRFG37671, and M. pseudolusitanicus NNIBRFG39976.
Collapse
Affiliation(s)
- Wonsu Cheon
- Freshwater Bioresources Research Department, Fungal Resources Research Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, Republic of Korea
| | - Sangkyu Park
- Freshwater Bioresources Research Department, Fungal Resources Research Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, Republic of Korea
| | - Yoosun Oh
- Freshwater Bioresources Research Department, Fungal Resources Research Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, Republic of Korea
| | - Jaeduk Goh
- Freshwater Bioresources Research Department, Fungal Resources Research Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, Republic of Korea
| | - Hye Yeon Mun
- Freshwater Bioresources Research Department, Fungal Resources Research Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Nonthijun P, Tanunchai B, Schroeter SA, Wahdan SFM, Alves EG, Hilke I, Buscot F, Schulze ED, Disayathanoowat T, Purahong W, Noll M. Feels Like Home: A Biobased and Biodegradable Plastic Offers a Novel Habitat for Diverse Plant Pathogenic Fungi in Temperate Forest Ecosystems. MICROBIAL ECOLOGY 2024; 87:155. [PMID: 39708062 DOI: 10.1007/s00248-024-02466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/16/2024] [Indexed: 12/23/2024]
Abstract
Poly(butylene succinate-co-adipate) (PBSA), a biodegradable plastic, is significantly colonized and degraded by soil microbes under natural field conditions, especially by fungal plant pathogens, raising concerns about potential economic losses. This study hypothesizes that the degradation of biodegradable plastics may increase the presence and abundance of plant pathogens by serving as an additional carbon source, ultimately posing a risk to forest ecosystems. We investigated (i) fungal plant pathogens during the exposure of PBSA in European broadleaved and coniferous forests (two forest types), with a specific focus on potential risk to tree health, and (ii) the response of such fungi to environmental factors, including tree species, soil pH, nutrient availability, moisture content, and the physicochemical properties of leaf litter layer. Next-generation sequencing (NGS) revealed that PBSA harbored a total of 318 fungal plant pathogenic amplicon sequence variants (ASVs) belonging to 108 genera. Among the identified genera (Alternaria, Nectria, Phoma, Lophodermium, and Phacidium), some species have been reported as causative agents of tree diseases. Plenodomus was present in high relative abundances on PBSA, which have not previously been associated with disease in broadleaved and coniferous forests. Furthermore, the highest number of fungal plant pathogens were detected at 200 days of PBSA exposure (112 and 99 fungal plant pathogenic ASV on PBSA degraded under Q. robur and F. sylvatic-dominated forest, respectively), which was double compared mature leaves and needles from the same forest sites. These findings suggest that PBSA attracts fungal plant pathogens in forests as an additional carbon source, potentially leading to increased disease outbreaks and disrupting the stability of forest ecosystems. The fungal plant pathogenic community compositions were mainly shaped by forest type, PBSA exposure time, site locations, leaf litter layer water content, and N:P ratio from leaf litter layer in both forest types. This study provides valuable insights into the potential risks posed by biodegradable plastic degradation in forests after 200 and 400 days of exposure, respectively. Further comprehensive evaluations of their effects on tree health and ecosystems, ideally on a long-term basis, are needed. These evaluations should include integrating microbial investigation, soil health monitoring, and ecosystem interaction assessments. Nevertheless, it should be noted that our interpretation of plant pathogens is solely based on high-throughput sequencing, bioinformatics, and annotation tools.
Collapse
Affiliation(s)
- Paradha Nonthijun
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjawan Tanunchai
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Simon Andreas Schroeter
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Sara Fareed Mohamed Wahdan
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Eliane Gomes Alves
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Ines Hilke
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103, Leipzig, Germany
| | - Ernst-Detlef Schulze
- Max Planck Institute for Biogeochemistry, Biogeochemical Processes Department, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goal (SMART Bee SDGs), Chiang Mai University, Chiang Mai, Thailand.
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany.
| | - Matthias Noll
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany.
| |
Collapse
|
3
|
Langer GJ, Bien S, Bußkamp J. Filamentous Fungi Associated with Disease Symptoms in Non-Native Giant Sequoia ( Sequoiadendron giganteum) in Germany-A Gateway for Alien Fungal Pathogens? Pathogens 2024; 13:715. [PMID: 39338907 PMCID: PMC11434650 DOI: 10.3390/pathogens13090715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/30/2024] Open
Abstract
Filamentous fungi associated with disease symptoms in non-native giant sequoia (Sequoiadendron giganteum) in Germany were investigated in ten cases of disease in Northwest Germany. During the study period from 2018 to 2023, a total of 81 species of Dikaria were isolated from woody tissue and needles of giant sequoia and morphotyped. Morphotypes were assigned to species designations based on ITS-sequence comparison and, in part, multi-locus phylogenetic analyses. Nine species were recognised as new reports for Germany or on giant sequoia: Amycosphaerella africana, Botryosphaeria parva, Coniochaeta acaciae, C. velutina, Muriformistrickeria rubi, Pestalotiopsis australis, P. monochaeta, Phacidiopycnis washingtonensis, and Rhizosphaera minteri. The threat posed to giant sequoia and other forest trees in Germany by certain, especially newly reported, fungal species is being discussed. The detection of a considerable number of new fungal records in the trees studied suggests that giant sequoia cultivation may be a gateway for alien fungal species in Germany.
Collapse
Affiliation(s)
- Gitta Jutta Langer
- Department of Forest Protection, Northwest German Forest Research Institute (NW-FVA), Grätzelstraße 2, D37079 Goettingen, Germany; (S.B.); (J.B.)
| | | | | |
Collapse
|
4
|
Iwakiri A, Hirooka Y, Matsushita N, Fukuda K. Chionobium takahashii, gen. et sp. nov., associated with snow blight of conifers in Japan. Mycologia 2024; 116:299-308. [PMID: 38386714 DOI: 10.1080/00275514.2024.2302283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024]
Abstract
Gremmenia abietis (Dearn.) Crous (syn: Phacidium abietis) was originally described in North America to accommodate the species associated with snow blight of Abies and Pseudotsuga spp. In Japan, this species was first observed on the dead needles on Abies sachalinensis and Picea jezoensis var. jezoensis in 1969. However, the identity of Japanese species was unclear due to the lack of molecular data and the absence of anamorph description. In this study, we collected fresh specimens from various conifer species (A. sachalinensis, A. veitchii, Pic. jezoensis var. jezoensis, Pic. jezoensis var. hondoensis, Pinus koraiensis, and Pin. pumila) in Japan and revised the taxonomy based on morphological and phylogenetic analyses. Phylogenetic analyses based on nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 (ITS), nuc 28S rDNA (28S), and RNA polymerase II second largest subunit (RPB2) regions indicated that the species belongs to Phacidiaceae. Conidiomata formed in vitro produced pyriform, hyaline conidia without mucoid appendage, which distinguished the species from phylogenetically related genera. Consequently, we established Chionobium takahashii to accommodate the snow blight fungus in Japan. Further phylogenetic analyses also indicated that C. takahashii includes several distinct clades corresponding to the host genera (Abies, Picea, Pinus). Morphological differences among those clades were unclear, suggesting that C. takahashii may contain host-specific cryptic species.
Collapse
Affiliation(s)
- Ayuka Iwakiri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| | - Yuuri Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University, Koganei, 184-8584 Tokyo, Japan
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| | - Kenji Fukuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| |
Collapse
|
5
|
Zerouki C, Chakraborty K, Kuittinen S, Pappinen A, Turunen O. Whole-genome sequence and mass spectrometry study of the snow blight fungus Phacidium infestans (Karsten) DSM 5139 growing at freezing temperatures. Mol Genet Genomics 2023; 298:1449-1466. [PMID: 37815644 PMCID: PMC10657286 DOI: 10.1007/s00438-023-02073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Phacidium infestans (synonym Gremmenia infestans) is a significant pathogen that impacts Pinus species across the northern regions of Europe and Asia. This study introduces the genome sequence of P. infestans Karsten DSM 5139 (Phain), obtained through Pacbio technology. The assembly resulted in 44 contigs, with a total genome size of 36,805,277 bp and a Guanine-Cytosine content of 46.4%. Genome-mining revealed numerous putative biosynthetic gene clusters that code for virulence factors and fungal toxins. The presence of the enzyme pisatin demethylase was indicative of the potential of Phain to detoxify its environment from the terpenoid phytoalexins produced by its host as a defense mechanism. Proteomic analysis revealed the potential survival strategies of Phain under the snow, which included the production of antifreeze proteins, trehalose synthesis enzymes, desaturases, proteins related to elongation of very long-chain fatty acids, and stress protein responses. Study of protein GH11 endoxylanase expressed in Escherichia coli showed an acidic optimum pH (pH 5.0) and a low optimum temperature (45 °C), which is reflective of the living conditions of the fungus. Mass spectrometry analysis of the methanol extract of Phain, incubated at - 3 °C and 22 °C, revealed differences in the produced metabolites. Both genomic and mass spectrometry analyses showed the ability of Phain to adapt its metabolic processes and secretome to freezing temperatures through the production of osmoprotectant and cryoprotectant metabolites. This comprehensive exploration of Phain's genome sequence, proteome, and secretome not only advances our understanding of its unique adaptive mechanisms but also expands the possibilities of biotechnological applications.
Collapse
Affiliation(s)
- C Zerouki
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland.
| | - K Chakraborty
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - S Kuittinen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - A Pappinen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - O Turunen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| |
Collapse
|
6
|
Jayawardena RS, Hyde KD, Wang S, Sun YR, Suwannarach N, Sysouphanthong P, Abdel-Wahab MA, Abdel-Aziz FA, Abeywickrama PD, Abreu VP, Armand A, Aptroot A, Bao DF, Begerow D, Bellanger JM, Bezerra JDP, Bundhun D, Calabon MS, Cao T, Cantillo T, Carvalho JLVR, Chaiwan N, Chen CC, Courtecuisse R, Cui BK, Damm U, Denchev CM, Denchev TT, Deng CY, Devadatha B, de Silva NI, dos Santos LA, Dubey NK, Dumez S, Ferdinandez HS, Firmino AL, Gafforov Y, Gajanayake AJ, Gomdola D, Gunaseelan S, Shucheng-He, Htet ZH, Kaliyaperumal M, Kemler M, Kezo K, Kularathnage ND, Leonardi M, Li JP, Liao C, Liu S, Loizides M, Luangharn T, Ma J, Madrid H, Mahadevakumar S, Maharachchikumbura SSN, Manamgoda DS, Martín MP, Mekala N, Moreau PA, Mu YH, Pahoua P, Pem D, Pereira OL, Phonrob W, Phukhamsakda C, Raza M, Ren GC, Rinaldi AC, Rossi W, Samarakoon BC, Samarakoon MC, Sarma VV, Senanayake IC, Singh A, Souza MF, Souza-Motta CM, Spielmann AA, Su W, Tang X, Tian X, Thambugala KM, Thongklang N, Tennakoon DS, Wannathes N, Wei D, Welti S, Wijesinghe SN, Yang H, Yang Y, Yuan HS, Zhang H, Zhang J, Balasuriya A, Bhunjun CS, Bulgakov TS, Cai L, Camporesi E, Chomnunti P, Deepika YS, et alJayawardena RS, Hyde KD, Wang S, Sun YR, Suwannarach N, Sysouphanthong P, Abdel-Wahab MA, Abdel-Aziz FA, Abeywickrama PD, Abreu VP, Armand A, Aptroot A, Bao DF, Begerow D, Bellanger JM, Bezerra JDP, Bundhun D, Calabon MS, Cao T, Cantillo T, Carvalho JLVR, Chaiwan N, Chen CC, Courtecuisse R, Cui BK, Damm U, Denchev CM, Denchev TT, Deng CY, Devadatha B, de Silva NI, dos Santos LA, Dubey NK, Dumez S, Ferdinandez HS, Firmino AL, Gafforov Y, Gajanayake AJ, Gomdola D, Gunaseelan S, Shucheng-He, Htet ZH, Kaliyaperumal M, Kemler M, Kezo K, Kularathnage ND, Leonardi M, Li JP, Liao C, Liu S, Loizides M, Luangharn T, Ma J, Madrid H, Mahadevakumar S, Maharachchikumbura SSN, Manamgoda DS, Martín MP, Mekala N, Moreau PA, Mu YH, Pahoua P, Pem D, Pereira OL, Phonrob W, Phukhamsakda C, Raza M, Ren GC, Rinaldi AC, Rossi W, Samarakoon BC, Samarakoon MC, Sarma VV, Senanayake IC, Singh A, Souza MF, Souza-Motta CM, Spielmann AA, Su W, Tang X, Tian X, Thambugala KM, Thongklang N, Tennakoon DS, Wannathes N, Wei D, Welti S, Wijesinghe SN, Yang H, Yang Y, Yuan HS, Zhang H, Zhang J, Balasuriya A, Bhunjun CS, Bulgakov TS, Cai L, Camporesi E, Chomnunti P, Deepika YS, Doilom M, Duan WJ, Han SL, Huanraluek N, Jones EBG, Lakshmidevi N, Li Y, Lumyong S, Luo ZL, Khuna S, Kumla J, Manawasinghe IS, Mapook A, Punyaboon W, Tibpromma S, Lu YZ, Yan J, Wang Y. Fungal diversity notes 1512-1610: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2023; 117:1-272. [PMID: 36852303 PMCID: PMC9948003 DOI: 10.1007/s13225-022-00513-0] [Show More Authors] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 02/25/2023]
Abstract
This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise Angustimassarina kunmingense, Asterina lopi, Asterina brigadeirensis, Bartalinia bidenticola, Bartalinia caryotae, Buellia pruinocalcarea, Coltricia insularis, Colletotrichum flexuosum, Colletotrichum thasutense, Coniochaeta caraganae, Coniothyrium yuccicola, Dematipyriforma aquatic, Dematipyriforma globispora, Dematipyriforma nilotica, Distoseptispora bambusicola, Fulvifomes jawadhuvensis, Fulvifomes malaiyanurensis, Fulvifomes thiruvannamalaiensis, Fusarium purpurea, Gerronema atrovirens, Gerronema flavum, Gerronema keralense, Gerronema kuruvense, Grammothele taiwanensis, Hongkongmyces changchunensis, Hypoxylon inaequale, Kirschsteiniothelia acutisporum, Kirschsteiniothelia crustaceum, Kirschsteiniothelia extensum, Kirschsteiniothelia septemseptatum, Kirschsteiniothelia spatiosum, Lecanora immersocalcarea, Lepiota subthailandica, Lindgomyces guizhouensis, Marthe asmius pallidoaurantiacus, Marasmius tangerinus, Neovaginatispora mangiferae, Pararamichloridium aquisubtropicum, Pestalotiopsis piraubensis, Phacidium chinaum, Phaeoisaria goiasensis, Phaeoseptum thailandicum, Pleurothecium aquisubtropicum, Pseudocercospora vernoniae, Pyrenophora verruculosa, Rhachomyces cruralis, Rhachomyces hyperommae, Rhachomyces magrinii, Rhachomyces platyprosophi, Rhizomarasmius cunninghamietorum, Skeletocutis cangshanensis, Skeletocutis subchrysella, Sporisorium anadelphiae-leptocomae, Tetraploa dashaoensis, Tomentella exiguelata, Tomentella fuscoaraneosa, Tricholomopsis lechatii, Vaginatispora flavispora and Wetmoreana blastidiocalcarea. The new combination is Torula sundara. The 39 new records on hosts and geographical distribution comprise Apiospora guiyangensis, Aplosporella artocarpi, Ascochyta medicaginicola, Astrocystis bambusicola, Athelia rolfsii, Bambusicola bambusae, Bipolaris luttrellii, Botryosphaeria dothidea, Chlorophyllum squamulosum, Colletotrichum aeschynomenes, Colletotrichum pandanicola, Coprinopsis cinerea, Corylicola italica, Curvularia alcornii, Curvularia senegalensis, Diaporthe foeniculina, Diaporthe longicolla, Diaporthe phaseolorum, Diatrypella quercina, Fusarium brachygibbosum, Helicoma aquaticum, Lepiota metulispora, Lepiota pongduadensis, Lepiota subvenenata, Melanconiella meridionalis, Monotosporella erecta, Nodulosphaeria digitalis, Palmiascoma gregariascomum, Periconia byssoides, Periconia cortaderiae, Pleopunctum ellipsoideum, Psilocybe keralensis, Scedosporium apiospermum, Scedosporium dehoogii, Scedosporium marina, Spegazzinia deightonii, Torula fici, Wiesneriomyces laurinus and Xylaria venosula. All these taxa are supported by morphological and multigene phylogenetic analyses. This article allows the researchers to publish fungal collections which are important for future studies. An updated, accurate and timely report of fungus-host and fungus-geography is important. We also provide an updated list of fungal taxa published in the previous fungal diversity notes. In this list, erroneous taxa and synonyms are marked and corrected accordingly.
Collapse
Affiliation(s)
- Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Song Wang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Ya-Ru Sun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O.Box: 811, Vientiane Capital, Lao PDR
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Pranami D. Abeywickrama
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Vanessa P. Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - André Aptroot
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 Yunnan China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Dominik Begerow
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jean-Michel Bellanger
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, INSERM, 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jadson D. P. Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, S/N, Setor Universitário, Goiânia, GO CEP: 74605-050 Brazil
| | - Digvijayini Bundhun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, 5023 Miagao, Iloilo Philippines
| | - Ting Cao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Taimy Cantillo
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, Feira de Santana, BA 44036-900 Brazil
| | - João L. V. R. Carvalho
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Napalai Chaiwan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Che-Chih Chen
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, 11529 Taipei Taiwan
| | - Régis Courtecuisse
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Ulrike Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Chun Y. Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Bandarupalli Devadatha
- Virus Diagnostic and Research Lab, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517501 India
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
| | - Nimali I. de Silva
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Lidiane A. dos Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Nawal K. Dubey
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Sylvain Dumez
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Himashi S. Ferdinandez
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - André L. Firmino
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Monte Carmelo, Minas Gerais Brazil
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- AKFA University, 264 Milliy Bog Street, Tashkent, Uzbekistan 111221
| | - Achala J. Gajanayake
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Deecksha Gomdola
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sugantha Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Shucheng-He
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Zin H. Htet
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Malarvizhi Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Martin Kemler
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Kezhocuyi Kezo
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Nuwan D. Kularathnage
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Marco Leonardi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Ji-Peng Li
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Chunfang Liao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Shun Liu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | | | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Jian Ma
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Hugo Madrid
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Sede Iquique, Av. Luis Emilio Recabarren, 2477 Iquique, Chile
| | - S. Mahadevakumar
- Forest Pathology Department, KSCSTE-Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
- Botanical Survey of India, Andaman and Nicobar Regional Centre, Haddo, Port Blair, South Andaman 744102 India
| | | | - Dimuthu S. Manamgoda
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - María P. Martín
- Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Niranjan Mekala
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Papum Pare, Itanagar, Arunachal Pradesh 791112 India
| | | | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Pasouvang Pahoua
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Olinto L. Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Wiphawanee Phonrob
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - Chayanard Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Mubashar Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Walter Rossi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Binu C. Samarakoon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Vemuri V. Sarma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry 605014 India
| | - Indunil C. Senanayake
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Archana Singh
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Maria F. Souza
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Cristina M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Adriano A. Spielmann
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Xia Tang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - XingGuo Tian
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Kasun M. Thambugala
- Generics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, 10250 Nugegoda Sri Lanka
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Danushka S. Tennakoon
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nopparat Wannathes
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - DingPeng Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Stéphane Welti
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hongde Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Yunhui Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
| | - Huang Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Jingyi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Abhaya Balasuriya
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Timur S. Bulgakov
- Department of Plant Protection, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Jana Fabriciusa Str. 2/28, Krasnodar Region, Sochi, Russia 354002
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Erio Camporesi
- A.M.B, Circolo Micologico ‘‘Giovanni Carini’’, C.P. 314, 25121 Brescia, Italy
- A.M.B. Gruppo, Micologico Forlivese ‘‘Antonio Cicognani’’, via Roma 18, 47121 Forlì, Italy
- Società per gli Studi Naturalistici Della Romagna, C.P. 143, 48012 Bagnacavallo, RA Italy
| | - Putarak Chomnunti
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Y. S. Deepika
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Mingkwan Doilom
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Wei-Jun Duan
- Ningbo Academy of Inspection and Quarantine, Ningbo, Zhejiang, 315012 PR China
- Ningbo Customs District, Ningbo, 315012 Zhejiang PR China
| | - Shi-Ling Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - N. Lakshmidevi
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Yu Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Zong-Long Luo
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Surapong Khuna
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Wilawan Punyaboon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Yong-Zhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - JiYe Yan
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| |
Collapse
|
7
|
Humicolopsis cephalosporioides synthesizes DHN-melanin in its chlamydospores. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Marčiulynienė D, Marčiulynas A, Mishcherikova V, Lynikienė J, Gedminas A, Franic I, Menkis A. Principal Drivers of Fungal Communities Associated with Needles, Shoots, Roots and Adjacent Soil of Pinus sylvestris. J Fungi (Basel) 2022; 8:1112. [PMID: 36294677 PMCID: PMC9604598 DOI: 10.3390/jof8101112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
The plant- and soil-associated microbial communities are critical to plant health and their resilience to stressors, such as drought, pathogens, and pest outbreaks. A better understanding of the structure of microbial communities and how they are affected by different environmental factors is needed to predict and manage ecosystem responses to climate change. In this study, we carried out a country-wide analysis of fungal communities associated with Pinus sylvestris growing under different environmental conditions. Needle, shoot, root, mineral, and organic soil samples were collected at 30 sites. By interconnecting the high-throughput sequencing data, environmental variables, and soil chemical properties, we were able to identify key factors that drive the diversity and composition of fungal communities associated with P. sylvestris. The fungal species richness and community composition were also found to be highly dependent on the site and the substrate they colonize. The results demonstrated that different functional tissues and the rhizosphere soil of P. sylvestris are associated with diverse fungal communities, which are driven by a combination of climatic (temperature and precipitation) and edaphic factors (soil pH), and stand characteristics.
Collapse
Affiliation(s)
- Diana Marčiulynienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Adas Marčiulynas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Valeriia Mishcherikova
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Jūratė Lynikienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Artūras Gedminas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Iva Franic
- Department of Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden;
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden;
| |
Collapse
|
9
|
High Variability of Fungal Communities Associated with the Functional Tissues and Rhizosphere Soil of Picea abies in the Southern Baltics. FORESTS 2022. [DOI: 10.3390/f13071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change, which leads to higher temperatures, droughts, and storms, is expected to have a strong effect on both health of forest trees and associated biodiversity. The aim of this study was to investigate the diversity and composition of fungal communities associated with the functional tissues and rhizosphere soil of healthy-looking Picea abies to better understand these fungal communities and their potential effect on tree health in the process of climate change. The study sites included 30 P. abies stands, where needles, shoots, roots, and the rhizosphere soil was sampled. DNA was isolated from individual samples, amplified using ITS2 rRNA as a marker and subjected to high-throughput sequencing. The sequence analysis showed the presence of 232,547 high-quality reads, which following clustering were found to represent 2701 non-singleton fungal OTUs. The highest absolute richness of fungal OTUs was in the soil (1895), then in the needles (1049) and shoots (1002), and the lowest was in the roots (641). The overall fungal community was composed of Ascomycota (58.3%), Basidiomycota (37.2%), Zygomycota (2.5%), Chytridiomycota (1.6%), and Glomeromycota (0.4%). The most common fungi based on sequence read abundance were Aspergillus pseudoglaucus (7.9%), Archaeorhizomyces sp. (3.6%), and Rhinocladiella sp. (2.0%). Pathogens were relatively rare, among which the most common were Phacidium lacerum (1.7%), Cyphellophora sessilis (1.4%), and Rhizosphaera kalkhoffii (1.4%). The results showed that the detected diversity of fungal OTUs was generally high, but their relative abundance varied greatly among different study sites, thereby highlighting the complexity of interactions among the host trees, fungi, and local environmental conditions.
Collapse
|
10
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
11
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
12
|
Gómez-Zapata PA, Haelewaters D, Quijada L, Pfister DH, Aime MC. Notes on Trochila (Ascomycota, Leotiomycetes), with new species and combinations. MycoKeys 2021; 78:21-47. [PMID: 36761369 PMCID: PMC9849072 DOI: 10.3897/mycokeys.78.62046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
Studies of Trochila (Leotiomycetes, Helotiales, Cenangiaceae) are scarce. Here, we describe two new species based on molecular phylogenetic data and morphology. Trochilabostonensis was collected at the Boston Harbor Islands National Recreation Area, Massachusetts. It was found on the stem of Asclepiassyriaca, representing the first report of any Trochila species from a plant host in the family Apocynaceae. Trochilaurediniophila is associated with the uredinia of the rust fungus Ceroteliumfici. It was discovered during a survey for rust hyperparasites conducted at the Arthur Fungarium, in a single sample from 1912 collected in Trinidad. Macro- and micromorphological descriptions, illustrations, and molecular phylogenetic analyses are presented. The two new species are placed in Trochila with high support in both our six-locus (SSU, ITS, LSU, rpb1, rpb2, tef1) and two-locus (ITS, LSU) phylogenetic reconstructions. In addition, two species are combined in Trochila: Trochilacolensoi (formerly placed in Pseudopeziza) and T.xishuangbanna (originally described as the only species in Calycellinopsis). This study reveals new host plant families, a new ecological strategy, and a new country record for the genus Trochila. Finally, our work emphasizes the importance of specimens deposited in biological collections such as fungaria.
Collapse
Affiliation(s)
- Paula Andrea Gómez-Zapata
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USAPurdue UniversityWest LafayetteUnited States of America
| | - Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USAPurdue UniversityWest LafayetteUnited States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USAHarvard UniversityCambridgeUnited States of America
- Farlow Herbarium and Reference Library of Cryptogamic Botany, Harvard University Herbaria, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USAHarvard University HerbariaCambridgeUnited States of America
- Faculty of Science, University of South Bohemia, České Budějovice, Czech RepublicUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Luis Quijada
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USAHarvard UniversityCambridgeUnited States of America
- Farlow Herbarium and Reference Library of Cryptogamic Botany, Harvard University Herbaria, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USAHarvard University HerbariaCambridgeUnited States of America
| | - Donald H. Pfister
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USAHarvard UniversityCambridgeUnited States of America
- Farlow Herbarium and Reference Library of Cryptogamic Botany, Harvard University Herbaria, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USAHarvard University HerbariaCambridgeUnited States of America
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USAPurdue UniversityWest LafayetteUnited States of America
| |
Collapse
|
13
|
Ozturk IK, Amiri A. Pathogenicity and Control of Phacidium lacerum, an Emerging Pome Fruit Pathogen in Washington State. PLANT DISEASE 2020; 104:3124-3130. [PMID: 33064596 DOI: 10.1094/pdis-04-20-0793-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phacidium lacerum (anamorph Ceuthospora pinastri) is a recently reported quarantine fungal pathogen responsible for postharvest rot in apples and pears. Very little is known about its pathogenicity, epidemiology, and best management practices. We screened pathogenicity of P. lacerum on twigs from seven and fruit from nine major commercial apple cultivars. Among the nine cultivars tested, detached fruit of Honeycrisp and Gala cultivars were the most susceptible, whereas WA38 (Cosmic Crisp) was the least susceptible (P < 0.05). Effective concentrations to inhibit 50% growth (EC50) were determined in 41 baseline P. lacerum isolates. The mean EC50 values for four postharvest fungicides, i.e., fludioxonil (FDL), difenoconazole (DIF), thiabendazole (TBZ), and pyrimethanil (PYRI) were 0.16, 0.38, 0.54, and 0.72 µg/ml, respectively. The mean EC50 values for four preharvest fungicides, i.e., pyraclostrobin (PYRA), fluxapyroxad (FLUX), boscalid (BOSC), and fluopyram (FLUP) were 0.96, 12.64, 16.54, and 44.46 µg/ml, respectively. In situ efficacy trials were conducted on detached Gala apples treated preventively and curatively with the aforementioned fungicides. After 6 months of storage at 1°C, FDL and DIF provided full control followed by TBZ and PYRI, whereas the other preharvest fungicides provided fair or low efficacies. Findings of this study shed light on pathogenicity of this emerging pathogen and provide necessary knowledge for effective management of Phacidium rot.
Collapse
Affiliation(s)
- I K Ozturk
- Washington State University, Department of Plant Pathology, Tree Fruit Research and Extension Center, Wenatchee, WA 98801
| | - A Amiri
- Washington State University, Department of Plant Pathology, Tree Fruit Research and Extension Center, Wenatchee, WA 98801
| |
Collapse
|
14
|
Sphaeropsis sapinea and fungal endophyte diversity in twigs of Scots pine (Pinus sylvestris) in Germany. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01617-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractSphaeropsis sapinea is the causal fungal agent of Diplodia tip blight disease of Scots pine (Pinus sylvestris) and other coniferous trees of relevance to forestry in Germany. In this study, the distribution and occurrence of S. sapinea and accompanying endophytic fungi in twigs of healthy and diseased Scots pine was investigated on a spatial and temporal scale. Sampling of 26,000 twig segments from trees in 105 temperate coniferous forest stands in Germany resulted in isolation of 33,000 endophytic fungi consisting of 103 species identified based on morphological and ITS-DNA sequence analyses. Approximately 98% of the sample was represented by fungi in the Ascomycota, with only two species (Peniophora pini and Coprinellus sp.) belonging to the Basidiomycota. Four species were detected in a frequency greater than 10% (Sphaeropsis sapinea, Sydowia polyspora, Microsphaeropsis olivacea, and Truncatella conorum-piceae) from the collective sample. A typical inhabitant of Scots pine twigs Desmazierella acicola was isolated and additionally typical hardwood colonizers like Biscogniauxia spp. were detected. S. sapinea, an endophytic plant pathogen with saprobic capabilities, was isolated from more than 80% of the studied pine trees, but the majority of trees sampled showed no symptoms of Diplodia tip blight. No invasive, pathogenic quarantine fungi for Germany were isolated from healthy or diseased Scots pines. Advantages and disadvantages of isolation-based endophyte studies over studies using direct DNA-isolation are discussed. Knowledge of the fungal endophyte communities in twigs of Scots pine allowed for identification S. sapinea and other potential pathogens of pines and other forest trees that may possibly contribute to increased disease under repeated periods of drought and heat stress in the future.
Collapse
|
15
|
Chan JY, Bonser SP, Powell JR, Cornwell WK. Environmental cues for dispersal in a filamentous fungus in simulated islands. OIKOS 2020. [DOI: 10.1111/oik.07000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justin Y. Chan
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, Univ. of New South Wales Sydney New South Wales 2052 Australia
| | - Stephen P. Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, Univ. of New South Wales Sydney New South Wales 2052 Australia
| | - Jeff R. Powell
- Hawkesbury Inst. for the Environment, Western Sydney Univ. Penrith NSW Australia
| | - William K. Cornwell
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, Univ. of New South Wales Sydney New South Wales 2052 Australia
| |
Collapse
|
16
|
Baturo-Cieśniewska A, Pusz W, Patejuk K. Problems, Limitations, and Challenges in Species Identification of Ascomycota Members on the Basis of ITS Regions. ACTA MYCOLOGICA 2020. [DOI: 10.5586/am.5512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The internal transcribed spacer (ITS) region is regarded as a formal fungal primary barcode with a high probability of the correct identification for a broad group of fungi. ITS sequences have been widely used to determine many fungal species and analysis of rDNA ITS is still one of the most popular tools used in mycology. However, this region is not equally variable in all groups of fungi; therefore, identification may be problematic and result in ambiguous data, especially in some species-rich genera of Ascomycota. For these reasons, identification based on rDNA ITS is usually complemented by morphological observations and analysis of additional genes. Reliable species identification of Ascomycota members is essential in diagnosing plant diseases, verifying air quality and the effectiveness of agronomic practices, or analyzing relationships between microorganisms. Therefore, the present study aimed to verify, using specific examples, the extent to which ITS sequence analysis is useful in species identification of pathogens and saprobionts from Ascomycota and demonstrate problems related to such identification in practice. We analyzed 105 ITS sequences of isolates originating from air and plant material. Basic local alignment search tool (BLASTn) significantly contributed to the reliable species identification of nearly 80% of isolates such as <em>Arthrinium arundinis</em>, <em>Beauveria bassiana</em>, <em>Boeremia exigua</em>, <em>Cladosporium cladosporioides</em>, <em>Epicoccum nigrum</em>, <em>Nigrospora oryzae</em>, <em>Sclerotinia sclerotiorum</em>, or <em>Sordaria fimicola </em>and members of the genera <em>Alternaria </em>and <em>Trichoderma</em>. However, for most isolates, additional morphological observations, information regarding the isolate origin and, where possible, a PCR with species-specific primers were helpful and complementary. Using our practical approach, we determined that ITS-based species identification and comparative analysis with GenBank sequences significantly helps identifying Ascomycota members. However, in many cases, this should be regarded as suggestive of a taxon because the data usually require the use of additional tools to verify the results of such analysis.
Collapse
|
17
|
Fungal Diversity in the Phyllosphere of Pinus heldreichii H. Christ—An Endemic and High-Altitude Pine of the Mediterranean Region. DIVERSITY 2020. [DOI: 10.3390/d12050172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pinus heldreichii is a high-altitude coniferous tree species naturaly occurring in small and disjuncted populations in the Balkans and southern Italy. The aim of this study was to assess diversity and composition of fungal communities in living needles of P. heldreichii specifically focusing on fungal pathogens. Sampling was carried out at six different sites in Montenegro, where 2-4 year-old living needles of P. heldreichii were collected. Following DNA isolation, it was amplified using ITS2 rDNA as a marker and subjected to high-throughput sequencing. Sequencing resulted in 31,831 high quality reads, which after assembly were found to represent 375 fungal taxa. The detected fungi were 295 (78.7%) Ascomycota, 79 (21.0%) Basidiomycota and 1 (0.2%) Mortierellomycotina. The most common fungi were Lophodermium pinastri (12.5% of all high-quality sequences), L. conigenum (10.9%), Sydowia polyspora (8.8%), Cyclaneusma niveum (5.5%), Unidentified sp. 2814_1 (5.4%) and Phaeosphaeria punctiformis (4.4%). The community composition varied among different sites, but in this respect two sites at higher altitudes (harsh growing conditions) were separated from three sites at lower altitudes (milder growing conditions), suggesting that environmental conditions were among major determinants of fungal communities associated with needles of P. heldreichii. Trees on one study site were attacked by bark beetles, leading to discolouration and frequent dieback of needles, thereby strongly affecting the fungal community structure. Among all functional groups of fungi, pathogens appeared to be an important component of fungal communities in the phyllosphere of P. heldreichii, especially in those trees under strong abiotic and biotic stress.
Collapse
|
18
|
Li WJ, McKenzie EHC, Liu JK(J, Bhat DJ, Dai DQ, Camporesi E, Tian Q, Maharachchikumbura SSN, Luo ZL, Shang QJ, Zhang JF, Tangthirasunun N, Karunarathna SC, Xu JC, Hyde KD. Taxonomy and phylogeny of hyaline-spored coelomycetes. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00440-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Untereiner WA, Yue Q, Chen L, Li Y, Bills GF, Štěpánek V, Réblová M. PhialophorasectionCatenulataedisassembled: New genera, species, and combinations and a new family encompassing taxa with cleistothecial ascomata and phialidic asexual states. Mycologia 2019; 111:998-1027. [DOI: 10.1080/00275514.2019.1663106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Qun Yue
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, 1881 East Road, Houston, Texas 77054
| | - Li Chen
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, 1881 East Road, Houston, Texas 77054
| | - Yan Li
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, 1881 East Road, Houston, Texas 77054
| | - Gerald F. Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, 1881 East Road, Houston, Texas 77054
| | - Václav Štěpánek
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Martina Réblová
- Department of Taxonomy, Institute of Botany, Czech Academy of Sciences, Czech Republic
| |
Collapse
|
20
|
Crous P, Wingfield M, Cheewangkoon R, Carnegie A, Burgess T, Summerell B, Edwards J, Taylor P, Groenewald J. Foliar pathogens of eucalypts. Stud Mycol 2019; 94:125-298. [PMID: 31636729 PMCID: PMC6797021 DOI: 10.1016/j.simyco.2019.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Species of eucalypts are commonly cultivated for solid wood and pulp products. The expansion of commercially managed eucalypt plantations has chiefly been driven by their rapid growth and suitability for propagation across a very wide variety of sites and climatic conditions. Infection of foliar fungal pathogens of eucalypts is resulting in increasingly negative impacts on commercial forest industries globally. To assist in evaluating this threat, the present study provides a global perspective on foliar pathogens of eucalypts. We treat 110 different genera including species associated with foliar disease symptoms of these hosts. The vast majority of these fungi have been grown in axenic culture, and subjected to DNA sequence analysis, resolving their phylogeny. During the course of this study several new genera and species were encountered, and these are described. New genera include: Lembosiniella (L. eucalyptorum on E. dunnii, Australia), Neosonderhenia (N. eucalypti on E. costata, Australia), Neothyriopsis (N. sphaerospora on E. camaldulensis, South Africa), Neotrichosphaeria (N. eucalypticola on E. deglupta, Australia), Nothotrimmatostroma (N. bifarium on E. dalrympleana, Australia), Nowamyces (incl. Nowamycetaceae fam. nov., N. globulus on E. globulus, Australia), and Walkaminomyces (W. medusae on E. alba, Australia). New species include (all from Australia): Disculoides fraxinoides on E. fraxinoides, Elsinoe piperitae on E. piperita, Fusculina regnans on E. regnans, Marthamyces johnstonii on E. dunnii, Neofusicoccum corticosae on E. corticosa, Neotrimmatostroma dalrympleanae on E. dalrympleana, Nowamyces piperitae on E. piperita, Phaeothyriolum dunnii on E. dunnii, Pseudophloeospora eucalyptigena on E. obliqua, Pseudophloeospora jollyi on Eucalyptus sp., Quambalaria tasmaniae on Eucalyptus sp., Q. rugosae on E. rugosa, Sonderhenia radiata on E. radiata, Teratosphaeria pseudonubilosa on E. globulus and Thyrinula dunnii on E. dunnii. A new name is also proposed for Heteroconium eucalypti as Thyrinula uruguayensis on E. dunnii, Uruguay. Although many of these genera and species are commonly associated with disease problems, several appear to be opportunists developing on stressed or dying tissues. For the majority of these fungi, pathogenicity remains to be determined. This represents an important goal for forest pathologists and biologists in the future. Consequently, this study will promote renewed interest in foliar pathogens of eucalypts, leading to investigations that will provide an improved understanding of the biology of these fungi.
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - M.J. Wingfield
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - R. Cheewangkoon
- Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - A.J. Carnegie
- Forest Health & Biosecurity, Forest Science, NSW Department of Primary Industries – Forestry, Level 12, 10 Valentine Ave, Parramatta, NSW, 2150, Australia
- School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - T.I. Burgess
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - B.A. Summerell
- Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | - J. Edwards
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, 5 Ring Road, LaTrobe University, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, LaTrobe University, Bundoora, Victoria, 3083, Australia
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands
| |
Collapse
|
21
|
Johnston PR, Quijada L, Smith CA, Baral HO, Hosoya T, Baschien C, Pärtel K, Zhuang WY, Haelewaters D, Park D, Carl S, López-Giráldez F, Wang Z, Townsend JP. A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus 2019; 10:1. [PMID: 32647610 PMCID: PMC7325659 DOI: 10.1186/s43008-019-0002-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
Fungi in the class Leotiomycetes are ecologically diverse, including mycorrhizas, endophytes of roots and leaves, plant pathogens, aquatic and aero-aquatic hyphomycetes, mammalian pathogens, and saprobes. These fungi are commonly detected in cultures from diseased tissue and from environmental DNA extracts. The identification of specimens from such character-poor samples increasingly relies on DNA sequencing. However, the current classification of Leotiomycetes is still largely based on morphologically defined taxa, especially at higher taxonomic levels. Consequently, the formal Leotiomycetes classification is frequently poorly congruent with the relationships suggested by DNA sequencing studies. Previous class-wide phylogenies of Leotiomycetes have been based on ribosomal DNA markers, with most of the published multi-gene studies being focussed on particular genera or families. In this paper we collate data available from specimens representing both sexual and asexual morphs from across the genetic breadth of the class, with a focus on generic type species, to present a phylogeny based on up to 15 concatenated genes across 279 specimens. Included in the dataset are genes that were extracted from 72 of the genomes available for the class, including 10 new genomes released with this study. To test the statistical support for the deepest branches in the phylogeny, an additional phylogeny based on 3156 genes from 51 selected genomes is also presented. To fill some of the taxonomic gaps in the 15-gene phylogeny, we further present an ITS gene tree, particularly targeting ex-type specimens of generic type species. A small number of novel taxa are proposed: Marthamycetales ord. nov., and Drepanopezizaceae and Mniaeciaceae fams. nov. The formal taxonomic changes are limited in part because of the ad hoc nature of taxon and specimen selection, based purely on the availability of data. The phylogeny constitutes a framework for enabling future taxonomically targeted studies using deliberate specimen selection. Such studies will ideally include designation of epitypes for the type species of those genera for which DNA is not able to be extracted from the original type specimen, and consideration of morphological characters whenever genetically defined clades are recognized as formal taxa within a classification.
Collapse
Affiliation(s)
- Peter R. Johnston
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | - Luis Quijada
- Department of Organismic and Evolutionary Biology, Harvard Herbarium, 22 Divinity Ave, Cambridge, MA 02138 USA
| | | | | | - Tsuyoshi Hosoya
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005 Japan
| | - Christiane Baschien
- Leibniz-Institute DSMZ German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Kadri Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, EE-51005 Tartu, Estonia
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Danny Haelewaters
- Department of Organismic and Evolutionary Biology, Harvard Herbarium, 22 Divinity Ave, Cambridge, MA 02138 USA
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Duckchul Park
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | - Steffen Carl
- Leibniz-Institute DSMZ German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | | | - Zheng Wang
- Department of Biostatistics, Yale University, 135 College St, New Haven, CT 06510 USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, 135 College St, New Haven, CT 06510 USA
| |
Collapse
|
22
|
Chan JY, Bonser SP, Powell JR, Cornwell WK. When to cut your losses: Dispersal allocation in an asexual filamentous fungus in response to competition. Ecol Evol 2019; 9:4129-4137. [PMID: 31015993 PMCID: PMC6467841 DOI: 10.1002/ece3.5041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/17/2019] [Accepted: 02/01/2019] [Indexed: 11/12/2022] Open
Abstract
Fungal communities often form on ephemeral substrates and dispersal is critical for the persistence of fungi among the islands that form these metacommunities. Within each substrate, competition for space and resources is vital for the local persistence of fungi. The capacity to detect and respond by dispersal away from unfavorable conditions may confer higher fitness in fungi. Informed dispersal theory posits that organisms are predicted to detect information about their surroundings which may trigger a dispersal response. As such, we expect that fungi will increase allocation to dispersal in the presence of a strong competitor.In a laboratory setting, we tested how competition with other filamentous fungi affected the development of conidial pycnidiomata (asexual fruiting bodies) in Phacidium lacerum over 10 days. Phacidium lacerum was not observed to produce more asexual fruiting bodies or produce them earlier when experiencing interspecific competition with other filamentous fungi. However, we found that a trade-off existed between growth rate and allocation to dispersal. We also observed a defensive response to specific interspecific competitors in the form of hyphal melanization of the colony which may have an impact on the growth rate and dispersal trade-off.Our results suggest that P. lacerum have the capacity to detect and respond to competitors by changing their allocation to dispersal and growth. However, allocation to defence may come at a cost to growth and dispersal. Thus, it is likely that optimal life history allocation in fungi constrained to ephemeral resources will depend on the competitive strength of neighbors surrounding them.
Collapse
Affiliation(s)
- Justin Y. Chan
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Stephen P. Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Jeff R. Powell
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - William K. Cornwell
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| |
Collapse
|
23
|
Fehrer J, Réblová M, Bambasová V, Vohník M. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha ( Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Stud Mycol 2019; 92:195-225. [PMID: 31998413 PMCID: PMC6976342 DOI: 10.1016/j.simyco.2018.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Data mining for a phylogenetic study including the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae revealed nearly identical ITS sequences of the bryophilous Hyaloscypha hepaticicola suggesting they are conspecific. Additional genetic markers and a broader taxonomic sampling furthermore suggested that the sexual Hyaloscypha and the asexual Meliniomyces may be congeneric. In order to further elucidate these issues, type strains of all species traditionally treated as members of the Rhizoscyphus ericae aggregate (REA) and related taxa were subjected to phylogenetic analyses based on ITS, nrLSU, mtSSU, and rpb2 markers to produce comparable datasets while an in vitro re-synthesis experiment was conducted to examine the root-symbiotic potential of H. hepaticicola in the Ericaceae. Phylogenetic evidence demonstrates that sterile root-associated Meliniomyces, sexual Hyaloscypha and Rhizoscyphus, based on R. ericae, are indeed congeneric. To this monophylum also belongs the phialidic dematiaceous hyphomycetes Cadophora finlandica and Chloridium paucisporum. We provide a taxonomic revision of the REA; Meliniomyces and Rhizoscyphus are reduced to synonymy under Hyaloscypha. Pseudaegerita, typified by P. corticalis, an asexual morph of H. spiralis which is a core member of Hyaloscypha, is also transferred to the synonymy of the latter genus. Hyaloscypha melinii is introduced as a new root-symbiotic species from Central Europe. Cadophora finlandica and C. paucisporum are confirmed conspecific, and four new combinations in Hyaloscypha are proposed. Based on phylogenetic analyses, some sexually reproducing species can be attributed to their asexual counterparts for the first time whereas the majority is so far known only in the sexual or asexual state. Hyaloscypha bicolor sporulating in vitro is reported for the first time. Surprisingly, the mycological and mycorrhizal sides of the same coin have never been formally associated, mainly because the sexual and asexual morphs of these fungi have been studied in isolation by different research communities. Evaluating all these aspects allowed us to stabilize the taxonomy of a widespread and ecologically well-studied group of root-associated fungi and to link their various life-styles including saprobes, bryophilous fungi, root endophytes as well as fungi forming ericoid mycorrhizae and ectomycorrhizae.
Collapse
Affiliation(s)
- J. Fehrer
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - M. Réblová
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - V. Bambasová
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - M. Vohník
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
- Department of Plant Experimental Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| |
Collapse
|
24
|
Marin-Felix Y, Hernández-Restrepo M, Wingfield M, Akulov A, Carnegie A, Cheewangkoon R, Gramaje D, Groenewald J, Guarnaccia V, Halleen F, Lombard L, Luangsa-ard J, Marincowitz S, Moslemi A, Mostert L, Quaedvlieg W, Schumacher R, Spies C, Thangavel R, Taylor P, Wilson A, Wingfield B, Wood A, Crous P. Genera of phytopathogenic fungi: GOPHY 2. Stud Mycol 2019; 92:47-133. [PMID: 29997401 PMCID: PMC6031069 DOI: 10.1016/j.simyco.2018.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are included. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names.
Collapse
Key Words
- 26 new taxa
- Apoharknessia eucalypti Crous & M.J. Wingf.
- Cylindrocladiella addiensis L. Lombard & Crous
- Cylindrocladiella nauliensis L. Lombard & Crous
- DNA barcodes
- Diaporthe heterophyllae Guarnaccia & Crous
- Diaporthe racemosae A.R. Wood, Guarnaccia & Crous
- Dichotomophthora basellae Hern.-Restr., Cheew. & Crous
- Dichotomophthora brunnea Hern.-Restr. & Crous
- Fungal systematics
- Harknessia bourbonica Crous & M.J. Wingf.
- Harknessia corymbiae Crous & A.J. Carnegie
- Harknessia cupressi Crous & R.K. Schumach.
- Harknessia pilularis Crous & A.J. Carnegie
- Helminthosporium arundinaceum Corda
- Huntiella abstrusa A.M. Wilson, Marinc., M.J. Wingf.
- Macgarvieomyces luzulae (Ondřej) Y. Marín, Akulov & Crous
- Metulocladosporiella chiangmaiensis Y. Marín, Cheew. & Crous
- Metulocladosporiella malaysiana Y. Marín & Crous
- Metulocladosporiella musigena Y. Marín, Cheew. & Crous
- Metulocladosporiella samutensis Y. Marín, Luangsa-ard & Crous
- Microdochium novae-zelandiae Hern.-Restr., Thangavel & Crous
- Oculimacula acuformis (Nirenberg) Y. Marín & Crous
- Phaeoacremonium pravum C.F.J. Spies, L. Mostert & Halleen
- Phomopsis pseudotsugae M. Wilson
- Phyllosticta iridigena Y. Marín & Crous
- Phyllosticta persooniae Y. Marín & Crous
- Pyricularia luzulae Ondřej
- Pyricularia zingiberis Y. Nishik
- Pyriculariomyces Y. Marín, M.J. Wingf. & Crous
- Pyriculariomyces asari (Crous & M.J. Wingf.) Y. Marín, M.J. Wingf. & Crous
- Six new typifications
- Utrechtiana arundinacea (Corda) Crous, Quaedvl. & Y. Marín
- Utrechtiana constantinescui (Melnik & Shabunin) Crous & Y. Marín
Collapse
Affiliation(s)
- Y. Marin-Felix
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - M. Hernández-Restrepo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A. Akulov
- V.N. Karasin National University of Kharkiv, Svobody sq. 4, Kharkiv 61077, Ukraine
| | - A.J. Carnegie
- Forest Science, NSW Department of Primary Industries, Locked Bag 5123, Parramatta, New South Wales 2124, Australia
| | - R. Cheewangkoon
- Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, 26071 Logroño, La Rioja, Spain
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - V. Guarnaccia
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - J. Luangsa-ard
- Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA 113, Thailand Science Park Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A. Moslemi
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne 3010, Melbourne, Victoria, Australia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - W. Quaedvlieg
- Naktuinbouw, Sotaweg 22, 2371 GD Roelofarendsveen, the Netherlands
| | | | - C.F.J. Spies
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - R. Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne 3010, Melbourne, Victoria, Australia
| | - A.M. Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A.R. Wood
- ARC – Plant Protection Research Institute, Private Bag X5017, Stellenbosch 7599, South Africa
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
25
|
Gołębiewski M, Tarasek A, Sikora M, Deja-Sikora E, Tretyn A, Niklińska M. Rapid Microbial Community Changes During Initial Stages of Pine Litter Decomposition. MICROBIAL ECOLOGY 2019; 77:56-75. [PMID: 29850933 PMCID: PMC6318262 DOI: 10.1007/s00248-018-1209-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Plant litter decomposition is a process enabling biogeochemical cycles closing in ecosystems, and decomposition in forests constitutes the largest part of this process taking place in terrestrial biomes. Microbial communities during litter decomposition were studied mainly with low-throughput techniques not allowing detailed insight, particularly into coniferous litter, as it is more difficult to obtain high quality DNA required for analyses. Motivated by these problems, we analyzed archaeal, bacterial, and eukaryotic communities at three decomposition stages: fresh, 3- and 8-month-old litter by 16/18S rDNA pyrosequencing, aiming at detailed insight into early stages of pine litter decomposition. Archaea were absent from our libraries. Bacterial and eukaryotic diversity was greatest in 8-month-old litter and the same applied to bacterial and fungal rDNA content. Community structure was different at various stages of decomposition, and phyllospheric organisms (bacteria: Acetobacteraceae and Pseudomonadaceae members, fungi: Lophodermium, Phoma) were replaced by communities with metabolic capabilities adapted to the particular stage of decomposition. Sphingomonadaceae and Xanthomonadaceae and fungal genera Sistotrema, Ceuthospora, and Athelia were characteristic for 3-month-old samples, while 8-month-old ones were characterized by Bradyrhizobiaceae and nematodes (Plectus). We suggest that bacterial and eukaryotic decomposer communities change at different stages of pine litter decomposition in a way similar to that in broadleaf litter. Interactions between bacteria and eukaryotes appear to be one of the key drivers of microbial community structure.
Collapse
Affiliation(s)
- Marcin Gołębiewski
- Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland.
| | - Agata Tarasek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Marcin Sikora
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Edyta Deja-Sikora
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Department of Microbiology, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej Tretyn
- Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Maria Niklińska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
26
|
Quijada L, Johnston PR, Cooper JA, Pfister DH. Overview of Phacidiales, including Aotearoamyces gen. nov. on Nothofagus. IMA Fungus 2018; 9:371-382. [PMID: 30622887 PMCID: PMC6317588 DOI: 10.5598/imafungus.2018.09.02.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022] Open
Abstract
The new genus Aotearoamyces is proposed to accommodate a single species that was repeatedly collected on fallen wood in Nothofagaceae forests of New Zealand and was previously misidentified as a Claussenomyces species. This monotypic genus belongs to Tympanidaceae, a recently erected family in Phacidiales. Aotearoamyces is differentiated from other Tympanidaceae by phragmospores that do not form conidia either in or outside the asci, an exciple of textura intricata with hyphae widely spaced and strongly gelatinized (plectenchyma), and apically flexuous, partly helicoid paraphyses. The asexual morph was studied in pure culture. Phylogenetic analyses of combined SSU, ITS and LSU sequences strongly support a sister relationship between the sexually typified Aotearoamyces and the asexually typified “Collophorina” paarla characterized morphologically by forming endoconidia, a feature not found in the genetically distinct type species of Collophorina. Based on our molecular results, we place the genus Epithamnolia in the Mniaecia lineage within Phacidiales.
Collapse
Affiliation(s)
- Luis Quijada
- Department of Organismic and Evolutionary Biology, Harvard Herbarium, 22 Divinity Avenue, Cambridge MA 02138, United States of America
| | - Peter R Johnston
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland 1072, New Zealand
| | - Jerry A Cooper
- Manaaki Whenua Landcare Research, P.O. Box 69040, Lincoln 7640, New Zealand
| | - Donald H Pfister
- Department of Organismic and Evolutionary Biology, Harvard Herbarium, 22 Divinity Avenue, Cambridge MA 02138, United States of America
| |
Collapse
|
27
|
Suija A, van den Boom P, Zimmermann E, Zhurbenko MP, Diederich P. Lichenicolous species of Hainesia belong to Phacidiales (Leotiomycetes) and are included in an extended concept of Epithamnolia. Mycologia 2018. [PMID: 29517949 DOI: 10.1080/00275514.2017.1413891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lichenicolous taxa currently included in the genus Hainesia were studied based on the nuclear rDNA (18S, 28S, and internal transcribed spacer [ITS]) genes. The authors found that lichenicolous taxa form a distinct lineage sister to Epiglia gloeocapsae (Phacidiales, Leotiomycetes), only distantly related to the type species of Hainesia (Chaetomellaceae, Helotiales). Owing to morphological similarities, the authors include the lichenicolous species into the previously monotypic genus Epithamnolia. A new species, Epithamnolia rangiferinae, is described, several names are reduced into synonymy, and a key to the species of Epithamnolia is provided. The incorporation of public environmental ITS sequences showed that the closest relatives of these lichenicolous taxa are various endophytic, endolichenic, and soil-inhabiting fungi.
Collapse
Affiliation(s)
- Ave Suija
- a Institute of Ecology and Earth Sciences, University of Tartu , 40 Lai Street, 51005 Tartu , Estonia
| | | | | | - Mikhail P Zhurbenko
- d Komarov Botanical Institute , Professor Popov 2, St. Petersburg , 197376 , Russia
| | - Paul Diederich
- e Musée national d'histoire naturelle , 25 rue Munster, L-2160 Luxembourg, Luxembourg
| |
Collapse
|
28
|
|
29
|
Ekanayaka AH, Ariyawansa HA, Hyde KD, Jones EBG, Daranagama DA, Phillips AJL, Hongsanan S, Jayasiri SC, Zhao Q. DISCOMYCETES: the apothecial representatives of the phylum Ascomycota. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0389-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Guatimosim E, Schwartsburd PB, Crous PW, Barreto RW. Novel fungi from an ancient niche: lachnoid and chalara-like fungi on ferns. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1232-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Pärtel K, Baral HO, Tamm H, Põldmaa K. Evidence for the polyphyly of Encoelia and Encoelioideae with reconsideration of respective families in Leotiomycetes. FUNGAL DIVERS 2016. [DOI: 10.1007/s13225-016-0370-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
|
33
|
Wiseman MS, Kim YK, Dugan FM, Rogers JD, Xiao CL. A New Postharvest Fruit Rot in Apple and Pear Caused by Phacidium lacerum. PLANT DISEASE 2016; 100:32-39. [PMID: 30688574 DOI: 10.1094/pdis-02-15-0158-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During surveys for postharvest diseases of apple and pear, an unknown postharvest fruit rot was observed in Washington State. The disease appeared to originate from infection of the stem and calyx tissue of the fruit or wounds on the fruit. An unknown pycnidial fungus was consistently isolated from the decayed fruit. Isolates from apple and pear were characterized and identified by molecular phylogenetic analysis and morphology. Pathogenicity of representative isolates on apple and pear fruit was tested under laboratory or field conditions. A BLAST search in GenBank showed that isolates differed from Phacidium lacerum and its synonym, Ceuthospora pinastri, by only 0 to 4 bp in sequences within part of the combined large ribosomal subunit + internal transcribed spacer + small ribosomal subunit regions. The phylogenetic analysis confirmed the taxonomic placement of the unknown fungus in the genus Phacidium, with the highest match being C. pinastri (formerly anamorphic P. lacerum) and with closely related taxa from GenBank forming congeneric clades. The fungus grew at 0 to 30°C and formed unilocular to multilocular pycnidial conidiomata on artificial media after approximately 5 to 7 days at room temperature. On potato dextrose agar incubated for a 12-h photoperiod, semi-immersed globose to subglobose pycnidial conidiomata were 250 to 1,000 μm in diameter (mean = 350), with 1 to 3 nonpapillate to slightly papillate ostioles and a buff conidial matrix. Conidia produced on phialides were 8 to 13 by 1.5 to 2.5 μm, hyaline, aseptate, cylindrical, with an abruptly tapered, typically slightly protuberant base, 2 to 3 guttules, and sometimes with a mucilaginous, flexuous, unbranched appendage which is attached to the apex of the conidium and disappears with age. Conidiogenous cells were flask shaped and 6 to 15 ×1.5 to 3 μm. Colony characteristics included felt-like aerial white mycelium, gray olivaceous at the center becoming greenish to colorless toward the margin, in concentric rings, with pycnidia forming in 5 to 7 days originating from the center of the plate. Morphological characteristics of the fungus had the greatest conformity with the description for C. pinastri. Based on molecular and morphological data, the fungus is identified as P. lacerum. 'Fuji' apple fruit and 'd'Anjou' pear fruit that were wounded, inoculated with representative isolates, and incubated at 0°C yielded the same symptoms as seen on decayed fruit collected from commercial fruit packinghouses. Stem-end rot, calyx-end rot, and wound-associated rot developed on fruit inoculated in the orchard after 3 months of cold storage. The fungus was reisolated from the diseased fruit. This is the first report of a fruit rot in apple and pear caused by P. lacerum. We propose Phacidium rot as the name of this disease.
Collapse
Affiliation(s)
- M S Wiseman
- Department of Plant Pathology, Washington State University, Pullman 99164
| | - Y K Kim
- Pace International, Wapato, WA 98951
| | - F M Dugan
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA 99164
| | - J D Rogers
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - C L Xiao
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
34
|
Fungal Planet description sheets: 320-370. Persoonia - Molecular Phylogeny and Evolution of Fungi 2015; 34:167-266. [PMID: 26240451 PMCID: PMC4510277 DOI: 10.3767/003158515x688433] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/28/2015] [Indexed: 12/03/2022]
Abstract
Novel species of fungi described in the present study include the following from Malaysia: Castanediella eucalypti from Eucalyptus pellita, Codinaea acacia from Acacia mangium, Emarcea eucalyptigena from Eucalyptus brassiana, Myrtapenidiella eucalyptorum from Eucalyptus pellita, Pilidiella eucalyptigena from Eucalyptus brassiana and Strelitziana malaysiana from Acacia mangium. Furthermore, Stachybotrys sansevieriicola is described from Sansevieria ehrenbergii (Tanzania), Phacidium grevilleae from Grevillea robusta (Uganda), Graphium jumulu from Adansonia gregorii and Ophiostoma eucalyptigena from Eucalyptus marginata (Australia), Pleurophoma ossicola from bone and Plectosphaerella populi from Populus nigra (Germany), Colletotrichum neosansevieriae from Sansevieria trifasciata, Elsinoë othonnae from Othonna quinquedentata and Zeloasperisporium cliviae (Zeloasperisporiaceae fam. nov.) from Clivia sp. (South Africa), Neodevriesia pakbiae, Phaeophleospora hymenocallidis and Phaeophleospora hymenocallidicola on leaves of a fern (Thailand), Melanconium elaeidicola from Elaeis guineensis (Indonesia), Hormonema viticola from Vitis vinifera (Canary Islands), Chlorophyllum pseudoglobossum from a grassland (India), Triadelphia disseminata from an immunocompromised patient (Saudi Arabia), Colletotrichum abscissum from Citrus (Brazil), Polyschema sclerotigenum and Phialemonium limoniforme from human patients (USA), Cadophora vitícola from Vitis vinifera (Spain), Entoloma flavovelutinum and Bolbitius aurantiorugosus from soil (Vietnam), Rhizopogon granuloflavus from soil (Cape Verde Islands), Tulasnella eremophila from Euphorbia officinarum subsp. echinus (Morocco), Verrucostoma martinicensis from Danaea elliptica (French West Indies), Metschnikowia colchici from Colchicum autumnale (Bulgaria), Thelebolus microcarpus from soil (Argentina) and Ceratocystis adelpha from Theobroma cacao (Ecuador). Myrmecridium iridis (Myrmecridiales ord. nov., Myrmecridiaceae fam. nov.) is also described from Iris sp. (The Netherlands). Novel genera include (Ascomycetes): Budhanggurabania from Cynodon dactylon (Australia), Soloacrosporiella, Xenocamarosporium, Neostrelitziana and Castanediella from Acacia mangium and Sabahriopsis from Eucalyptus brassiana (Malaysia), Readerielliopsis from basidiomata of Fuscoporia wahlbergii (French Guyana), Neoplatysporoides from Aloe ferox (Tanzania), Wojnowiciella, Chrysofolia and Neoeriomycopsis from Eucalyptus (Colombia), Neophaeomoniella from Eucalyptus globulus (USA), Pseudophaeomoniella from Olea europaea (Italy), Paraphaeomoniella from Encephalartos altensteinii, Aequabiliella, Celerioriella and Minutiella from Prunus (South Africa). Tephrocybella (Basidiomycetes) represents a novel genus from wood (Italy). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Collapse
|
35
|
Crous PW, Carris LM, Giraldo A, Groenewald JZ, Hawksworth DL, Hernández-Restrepo M, Jaklitsch WM, Lebrun MH, Schumacher RK, Stielow JB, van der Linde EJ, Vilcāne J, Voglmayr H, Wood AR. The Genera of Fungi - fixing the application of the type species of generic names - G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 2015; 6:163-98. [PMID: 26203422 PMCID: PMC4500082 DOI: 10.5598/imafungus.2015.06.01.11] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/05/2015] [Indexed: 11/03/2022] Open
Abstract
The present paper represents the second contribution in the Genera of Fungi series, linking type species of fungal genera to their morphology and DNA sequence data, and where possible, ecology. This paper focuses on 12 genera of microfungi, 11 of which the type species are neo- or epitypified here: Allantophomopsis (A. cytisporea, Phacidiaceae, Phacidiales, Leotiomycetes), Latorua gen. nov. (Latorua caligans, Latoruaceae, Pleosporales, Dothideomycetes), Macrodiplodiopsis (M. desmazieri, Macrodiplodiopsidaceae, Pleosporales, Dothideomycetes), Macrohilum (M. eucalypti, Macrohilaceae, Diaporthales, Sordariomycetes), Milospium (M. graphideorum, incertae sedis, Pezizomycotina), Protostegia (P. eucleae, Mycosphaerellaceae, Capnodiales, Dothideomycetes), Pyricularia (P. grisea, Pyriculariaceae, Magnaporthales, Sordariomycetes), Robillarda (R. sessilis, Robillardaceae, Xylariales, Sordariomycetes), Rutola (R. graminis, incertae sedis, Pleosporales, Dothideomycetes), Septoriella (S. phragmitis, Phaeosphaeriaceae, Pleosporales, Dothideomycetes), Torula (T. herbarum, Torulaceae, Pleosporales, Dothideomycetes) and Wojnowicia (syn. of Septoriella, S. hirta, Phaeosphaeriaceae, Pleosporales, Dothideomycetes). Novel species include Latorua grootfonteinensis, Robillarda africana, R. roystoneae, R. terrae, Torula ficus, T. hollandica, and T. masonii spp. nov., and three new families: Macrodiplodiopsisceae, Macrohilaceae, and Robillardaceae. Authors interested in contributing accounts of individual genera to larger multi-authored papers to be published in IMA Fungus, should contact the associate editors listed for the major groups of fungi on the List of Protected Generic Names for Fungi (www.generaoffungi.org).
Collapse
Affiliation(s)
- Pedro W. Crous
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Lori M. Carris
- Department of Plant Pathology, Washington State University, Pullman WA 99164-6430, USA
| | - Alejandra Giraldo
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | | | - David L. Hawksworth
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, Madrid 28040, Spain
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Mycology Section, Royal Botanic Gardens, Kew, Surrey TW9 3DS, UK
| | - Margarita Hernández-Restrepo
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Walter M. Jaklitsch
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Peter Jordan-Straße 82, 1190 Vienna, Austria
| | - Marc-Henri Lebrun
- UR1290 INRA BIOGER-CPP, Campus AgroParisTech, F-78850 Thiverval-Grignon, France
| | | | - J. Benjamin Stielow
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Elna J. van der Linde
- ARC – Plant Protection Research Institute, Biosystematics Division – Mycology, P. Bag X134, Queenswood 0121, South Africa
| | - Jūlija Vilcāne
- Horticulture Crop pathology, Latvian Plant Protection research centre Ltd., Struktoru 14A, Riga, LATVIA, LV-1039
| | - Hermann Voglmayr
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Alan R. Wood
- ARC – Plant Protection Research Institute, P. Bag X5017, Stellenbosch 7599, South Africa
| |
Collapse
|