1
|
Chen Cardenas SM, Baker TA, Shimoda LA, Bernal-Mizrachi E, Punjabi NM. L-type calcium channel blockade worsens glucose tolerance and β-cell function in C57BL6/J mice exposed to intermittent hypoxia. Am J Physiol Endocrinol Metab 2025; 328:E161-E172. [PMID: 39763275 DOI: 10.1152/ajpendo.00423.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for the treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated. Adult male C57BL6/J mice were exposed to either nifedipine or vehicle concurrently with IH or intermittent air (IA) over 5 days. IH exposure entailed cycling fractional-inspired oxygen levels between 0.21 and 0.055 at a rate of 60 events/h. Nifedipine (20 mg/kg/day) or vehicle was administered via subcutaneous osmotic pumps resulting in four groups of mice: IA-vehicle (control), IA-nifedipine, IH-vehicle, and IH-nifedipine. Compared with IA (control), IH increased fasting glucose (mean Δ: 33.0 mg/dL; P < 0.001) and insulin (mean Δ: 0.53 ng/mL; P < 0.001) with nifedipine having no independent effect. Furthermore, glucose tolerance was worse with nifedipine alone, and IH further exacerbated the impairment in glucose disposal (P = 0.013 for interaction). Nifedipine also decreased glucose-stimulated insulin secretion and the insulinogenic index, with addition of IH attenuating those measures further. There were no discernible alterations in insulin biosynthesis/processing, insulin content, or islet morphology. These findings underscore the detrimental impact of IH on insulin sensitivity and glucose tolerance while highlighting that nifedipine exacerbates these disturbances through impaired β-cell function. Consequently, cautious use of L-type calcium channel blockers is warranted in patients with OSA, particularly in those at risk for type 2 diabetes.NEW & NOTEWORTHY The results of this study demonstrate the interaction between intermittent hypoxemia (IH) and nifedipine in a murine model. IH raises fasting glucose and insulin levels, with nifedipine exacerbating these disturbances. Glucose tolerance worsens when nifedipine is administered alone, and IH magnifies the impairment in glucose disposal. These findings raise the possibility of potential deleterious effects of L-type calcium channel blockers in patients with obstructive sleep apnea (OSA).
Collapse
Affiliation(s)
- Stanley M Chen Cardenas
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tess A Baker
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Larissa A Shimoda
- Division of Pulmonary, Critical Care, and Sleep Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Naresh M Punjabi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, Florida, United States
| |
Collapse
|
2
|
Elmansy AM, Hannora DM, Khalifa HK. Serum glucose/potassium ratio as an indicator of early and delayed outcomes of acute carbon monoxide poisoning. Toxicol Res (Camb) 2024; 13:tfae168. [PMID: 39381599 PMCID: PMC11457236 DOI: 10.1093/toxres/tfae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Carbon monoxide (CO) poisoning is a major health problem associated with a high rate of severe morbidity and mortality. AIMS This study aimed to evaluate the validity of the serum glucose/potassium (Glu/K) ratio as a quick predictor of both early and delayed unfavorable outcomes following acute CO poisoning. PATIENTS AND METHODS This prospective cohort study included 136 patients with acute CO poisoning admitted at Tanta Poison Control Center, Egypt, between January 2023 and June 2024. The serum Glu/K ratio was calculated for all patients. The primary outcome was a prediction of mortality. Secondary outcomes were the prediction of delayed neurological sequelae (DNS) within six months after CO exposure, the need for mechanical ventilation, and the need for hyperbaric oxygen. A receiver operating curve analysis was applied to test the performance of the Glu/K ratio in predicting acute CO poisoning outcomes. RESULTS The mortality rate was 12.5% of patients with acute CO poisoning. Meanwhile, 14.7% of patients developed DNS. Furthermore, mechanical ventilation was required in 16.9% of patients. An elevated Glu/K ratio was significantly associated with the severity of acute CO poisoning. At a cut-off value of >31.62, the Glu/K ratio demonstrated an AUC of 0.649 for predicting mortality. The Glu/K ratio was employed to predict DNS at a cut-off value of 33.10, with a sensitivity of 60.0%, a specificity of 82.76%, and an AUC of 0.692. CONCLUSIONS Early Glu/K ratio may be an effective, reliable, and convenient laboratory predictor of mortality, DNS, and the need for mechanical ventilation in patients with acute CO poisoning.
Collapse
Affiliation(s)
- Alshaimma Mahmoud Elmansy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Medical colleges campus, 6 Floor, Al-Geish Street, Tanta University, Tanta, Elgharbya, 31527, Egypt
| | - Dalia Mustafa Hannora
- Neuropsychiatry Department, Faculty of Medicine, Medical colleges campus, Al-Geish Street, Tanta University, Tanta, Elgharbya, 31527, Egypt
| | - Heba K Khalifa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Medical colleges campus, 6 Floor, Al-Geish Street, Tanta University, Tanta, Elgharbya, 31527, Egypt
| |
Collapse
|
3
|
Engin A. Adipose Tissue Hypoxia in Obesity: Clinical Reappraisal of Hypoxia Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:329-356. [PMID: 39287857 DOI: 10.1007/978-3-031-63657-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obese subjects exhibit lower adipose tissue oxygen consumption in accordance with the lower adipose tissue blood flow. Thereby, compared to lean subjects, obese individuals have almost half lower capillary density and more than half lower vascular endothelial growth factor (VEGF). The VEGF expression together with hypoxia-inducible transcription factor-1 alpha (HIF-1α) activity also requires phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR)-mediated signaling. Especially HIF-1α is an important signaling molecule for hypoxia to induce the inflammatory responses. Hypoxia contributes to several biological functions, such as angiogenesis, cell proliferation, apoptosis, inflammation, and insulin resistance (IR). Pathogenesis of obesity-related comorbidities is attributed to intermittent hypoxia (IH), which is mostly observed in visceral obesity. Proinflammatory phenotype of the adipose tissue is a crucial link between IH and the development of IR. Inhibition of adaptive unfolded protein response (UPR) in hypoxia increases β cell death. Moreover, deletion of HIF-1α worsens β cell function. Oxidative stress, as well as the release of proinflammatory cytokines/adipokines in obesity, is proportional to the severity of IH. Reactive oxygen species (ROS) generation at mitochondria is responsible for propagation of the hypoxic signal; however, mitochondrial ROS production is required for hypoxic HIF-1α protein stabilization. Alterations in oxygen availability of adipose tissue directly affect the macrophage polarization and are responsible for the dysregulated adipocytokines production in obesity. Hypoxia both inhibits adipocyte differentiation from preadipocytes and macrophage migration from the hypoxic adipose tissue. Upon reaching a hypertrophic threshold beyond the adipocyte fat loading capacity, excess extracellular matrix (ECM) components are deposited, causing fibrosis. HIF-1α initiates the whole pathological process of fibrosis and inflammation in the obese adipose tissue. In addition to stressed adipocytes, hypoxia contributes to immune cell migration and activation which further aggravates adipose tissue fibrosis. Therefore, targeting HIF-1α might be an efficient way to suppress hypoxia-induced pathological changes in the ECM. The fibrosis score of adipose tissue correlates negatively with the body mass index and metabolic parameters. Inducers of browning/beiging adipocytes and adipokines, as well as modulations of matrix remodeling enzyme inhibitors, and associated gene regulators, are potential pharmacological targets for treating obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Tang H, Lv F, Zhang P, Liu J, Mao J. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1254459. [PMID: 37850091 PMCID: PMC10577417 DOI: 10.3389/fendo.2023.1254459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by episodic sleep state-dependent collapse of the upper airway, with consequent hypoxia, hypercapnia, and arousal from sleep. OSA contributes to multisystem damage; in severe cases, sudden cardiac death might occur. In addition to causing respiratory, cardiovascular and endocrine metabolic diseases, OSA is also closely associated with nonalcoholic fatty liver disease (NAFLD). As the prevalence of OSA and NAFLD increases rapidly, they significantly exert adverse effects on the health of human beings. The authors retrieved relevant documents on OSA and NAFLD from PubMed and Medline. This narrative review elaborates on the current knowledge of OSA and NAFLD, demonstrates the impact of OSA on NAFLD, and clarifies the underlying mechanisms of OSA in the progression of NAFLD. Although there is a lack of sufficient high-quality clinical studies to prove the causal or concomitant relationship between OSA and NAFLD, existing evidence has confirmed the effect of OSA on NAFLD. Elucidating the underlying mechanisms through which OSA impacts NAFLD would hold considerable importance in terms of both prevention and the identification of potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Haiying Tang
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Furong Lv
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Zhang
- Department of Medical Information Engineering, Zhongshan College of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Liu
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Wojeck BS, Inzucchi SE, Qin L, Yaggi HK. Polysomnographic predictors of incident diabetes and pre-diabetes: an analysis of the DREAM study. J Clin Sleep Med 2023; 19:703-710. [PMID: 36689314 PMCID: PMC10071389 DOI: 10.5664/jcsm.10414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 01/24/2023]
Abstract
STUDY OBJECTIVES We sought to evaluate sleep measures that better predict incident diabetes and prediabetes in a large cohort of veterans. METHODS This secondary analysis included 650 patients without baseline diabetes from a multisite observational veterans' cohort. Participants underwent obstructive sleep apnea evaluation via laboratory-based polysomnography between 2000 and 2004 with follow-up through 2012. The primary outcomes were prediabetes and diabetes defined by fasting blood glucose, hemoglobin A1c, or use of glucose-lowering medication at study initiation. Exposure variables included respiratory event frequency, arousals, and oxygen desaturation. Cox models adjusted for body mass index, age, race, sex, change in body mass index, and continuous positive airway pressure device utilization. RESULTS The adjusted analysis revealed that time spent with oxygen saturation less than 90 [hazards ratio (HR) 1.009], confidence interval (CI) 1.001-1.017, P = .02), respiratory arousals (HR 1.009, CI 1.003-1.015, P < 0.01) and total arousals (HR 1.006 CI 1.001-1.011 P = .02) were associated with an increased incidence of diabetes. Increases in mean nocturnal oxygen saturation were associated with decreased incidence of diabetes (HR 0.914 CI 0.857-0.975, P < .01) and prediabetes (HR 0.914 CI 0.857-0.975, P < .01). No significant relationships were demonstrated for apnea-hypopnea index (AHI), measures related to central apnea, Cheyne-Stokes respiration, periodic limb movements, or Epworth Sleepiness Scale score. CONCLUSIONS There was no significant association of incident prediabetes or diabetes with AHI, the gold standard of sleep apnea severity. This study suggests that hypoxia may be a better predictor of glycemic outcomes than AHI in an obstructive sleep apnea population and may provide clues to the underlying mechanism(s) that link sleep-disordered breathing and its metabolic consequences. CITATION Wojeck BS, Inzucchi SE, Qin L, Yaggi HK. Polysomnographic predictors of incident diabetes and pre-diabetes: an analysis of the DREAM study. J Clin Sleep Med. 2023;19(4):703-710.
Collapse
Affiliation(s)
- Brian S. Wojeck
- Yale University Department of Internal Medicine, Section of Endocrinology, New Haven, Connecticut
| | - Silvio E. Inzucchi
- Yale University Department of Internal Medicine, Section of Endocrinology, New Haven, Connecticut
| | - Li Qin
- Yale University Department of Internal Medicine, Section of Cardiology, New Haven, Connecticut
| | - Henry Klar Yaggi
- Yale University Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, New Haven, Connecticut
- The Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven VA, West Haven, Connecticut
| |
Collapse
|
6
|
Giampá SQC, Lorenzi-Filho G, Drager LF. Obstructive sleep apnea and metabolic syndrome. Obesity (Silver Spring) 2023; 31:900-911. [PMID: 36863747 DOI: 10.1002/oby.23679] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 03/04/2023]
Abstract
Metabolic syndrome (MS) is a heterogeneous condition associated with increased cardiovascular risk. There is growing evidence from experimental, translational, and clinical investigations that has suggested that obstructive sleep apnea (OSA) is associated with prevalent and incident components of MS and MS itself. The biological plausibility is supportive, primarily related to one of the main features of OSA, namely intermittent hypoxia: increased sympathetic activation with hemodynamic repercussions, increased hepatic glucose output, insulin resistance through adipose tissue inflammation, pancreatic β-cell dysfunction, hyperlipidemia through the worsening of fasting lipid profiles, and the reduced clearance of triglyceride-rich lipoproteins. Although there are multiple related pathways, the clinical evidence relies mainly on cross-sectional data preventing any causality assumptions. The overlapping presence of visceral obesity or other confounders such as medications challenges the ability to understand the independent contribution of OSA on MS. In this review, we revisit the evidence on how OSA/intermittent hypoxia could mediate adverse effects of MS parameters independent of adiposity. Particular attention is devoted to discussing recent evidence from interventional studies. This review describes the research gaps, the challenges in the field, perspectives, and the need for additional high-quality data from interventional studies addressing the impact of not only established but promising therapies for OSA/obesity.
Collapse
Affiliation(s)
- Sara Q C Giampá
- Graduate Program in Cardiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Geraldo Lorenzi-Filho
- Laboratório do Sono, Divisão de Pneumologia, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano F Drager
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Unidade de Hipertensão, Disciplina de Nefrologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Galetaki DM, Cai CL, Bhatia KS, Chin V, Aranda JV, Beharry KD. Biomarkers of growth and carbohydrate metabolism in neonatal rats supplemented with fish oil and/or antioxidants during intermittent hypoxia. Growth Horm IGF Res 2023; 68:101513. [PMID: 36427361 DOI: 10.1016/j.ghir.2022.101513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Extremely low gestational age neonates (ELGANs) experience frequent intermittent hypoxia (IH) episodes during therapeutic oxygen. ELGANs exhibit poor postnatal growth requiring lipid supplementation. Lipids are targets of reactive oxygen species resulting in lipid peroxidation and cell death, particularly in preterm infants with compromised antioxidant systems. We tested the hypothesis that early supplementation with lipids and/or antioxidants promotes growth and influences biomarkers of carbohydrate metabolism in neonatal rats exposed to IH. DESIGN Newborn rats (n = 18/group) were exposed to brief hypoxia (12% O2) during hyperoxia (50% O2), or room air (RA), from birth (P0) to P14 during which they received daily oral supplementation with: 1) fish oil; 2) Coenzyme Q10 (CoQ10) in olive oil; 3) glutathione nanoparticles (nGSH); 4) fish oil+CoQ10; or 5) olive oil. At P21, plasma samples were assessed for glucose, insulin, glucokinase (GCK), glucagon, glucagon-like peptide (GLP)-1, growth hormone (GH), corticosterone, and ghrelin. Liver was assessed for histopathology, apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL stain), and GH, insulin-like growth factor (IGF)-I, GH binding protein (GHBP), and IGF binding protein (IGFBP)-3. RESULTS Neonatal IH resulted in decreased liver weight and liver/body weight ratios, as well as hepatocyte swelling, steatosis, and apoptosis, which were attenuated with fish oil, nGSH, and combined fish oil+CoQ10. IH also decreased plasma glucose, insulin, GCK, and ghrelin, but increased GLP-1. All treatments improved plasma glucose in IH, but insulin was higher with CoQ10 and nGSH only. Glucagon was increased with CoQ10, fish oil, and CoQ10 + fish oil, while corticosterone was higher with nGSH and CoQ10 + fish oil. IGF-I and IGFBP-3 were significantly higher in the liver with CoQ10 in IH, while deficits in GH were noted with CoQ10 and fish oil in RA and IH. Treatment with nGSH and combined CoQ10 + fish oil reduced IGF-I in RA and IH but increased IGFBP-3. CONCLUSIONS Neonatal IH impairs liver growth with significant hepatocyte damage. Of all supplements in IH, nGSH and combined fish oil+CoQ10 were most effective for preserving liver growth and carbohydrate metabolism. Data suggest that these supplements may improve poor postnatal organ and body growth; and metabolic dysfunction associated with neonatal IH.
Collapse
Affiliation(s)
- Despoina Myrsini Galetaki
- Department of Pediatrics, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Kulsajan S Bhatia
- Department of Pediatrics, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Vivian Chin
- Department of Pediatrics, Division of Endocrinology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, Brooklyn, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, Brooklyn, NY, USA.
| |
Collapse
|
8
|
Prescription medication use after congenital heart surgery. Cardiol Young 2022; 32:1786-1793. [PMID: 34986916 DOI: 10.1017/s1047951121005060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Improvements in mortality after congenital heart surgery have necessitated a shift in focus to postoperative morbidity as an outcome measure. We examined late morbidity after congenital heart surgery based on prescription medication use. METHODS Between 1953 and 2009, 10,635 patients underwent congenital heart surgery at <15 years of age in Finland. We obtained 4 age-, sex-, birth-time, and hospital district-matched controls per patient. The Social Insurance Institution of Finland provided data on all prescription medications obtained between 1999 and 2012 by patients and controls. Patients were assigned one diagnosis based on a hierarchical list of cardiac defects and dichotomised into simple and severe groups. Medications were divided into short- and long-term based on indication. Follow-up started at the first operation and ended at death, emigration, or 31 December, 2012. RESULTS Totally, 8623 patients met inclusion criteria. Follow-up was 99.9%. In total, 8126 (94%) patients required prescription medications. Systemic anti-bacterials were the most common short-term prescriptions among patients (93%) and controls (88%). Patients required betablockers (simple hazard ratio 1.9, 95% confidence interval 1.7-2.1; severe hazard ratio 6.5, 95% confidence interval 5.3-8.1) and diuretics (simple hazard ratio 3.2, 95% CI 2.8-3.7; severe hazard ratio 38.8, 95% CI 27.5-54.7) more often than the general population. Both simple and severe defects required medication for cardiovascular, gastrointestinal, psychiatric, neurologic, metabolic, autoimmune, and infectious diseases more often than the general population. CONCLUSIONS The significant risk for postoperative cardiovascular and non-cardiovascular disease warrants close long-term follow-up after congenital heart surgery for all defects.
Collapse
|
9
|
Huang CC, Chen TH, Ho CH, Chen YC, Chen RJ, Wang YJ, Hsu CC, Lin HJ, Wang JJ, Chang CP, Guo HR. Risks of Developing Diabetes and Hyperglycemic Crisis Following Carbon Monoxide Poisoning: A Study Incorporating Epidemiologic Analysis and Animal Experiment. Clin Epidemiol 2022; 14:1265-1279. [PMID: 36345392 PMCID: PMC9636896 DOI: 10.2147/clep.s380990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Carbon monoxide (CO) poisoning may damage the pancreas, but the effects of CO poisoning on the development of diabetes and on existing diabetes remain unclear. We conducted a study incorporating data from epidemiologic analyses and animal experiments to clarify these issues. METHODS Using the National Health Insurance Database of Taiwan, we identified CO poisoning patients diagnosed between 2002 and 2016 (CO poisoning cohort) together with references without CO poisoning who were matched by age, sex, and index date at a 1:3 ratio. We followed participants until 2017 and compared the risks of diabetes and hyperglycemic crisis between two cohorts using Cox proportional hazards regressions. In addition, a rat model was used to assess glucose and insulin levels in blood as well as pathological changes in the pancreas and hypothalamus following CO poisoning. RESULTS Among participants without diabetes history, 29,141 in the CO poisoning cohort had a higher risk for developing diabetes than the 87,423 in the comparison cohort after adjusting for potential confounders (adjusted hazard ratio [AHR]=1.23; 95% confidence interval [CI]: 1.18-1.28). Among participants with diabetes history, 2302 in the CO poisoning cohort had a higher risk for developing hyperglycemic crisis than the 6906 in participants without CO poisoning (AHR = 2.12; 95% CI: 1.52-2.96). In the rat model, CO poisoning led to increased glucose and decreased insulin in blood and damages to pancreas and hypothalamus. CONCLUSION Our epidemiological study revealed that CO poisoning increased the risks of diabetes and hyperglycemic crisis, which might be attributable to damages in the pancreas and hypothalamus as shown in the animal experiments.
Collapse
Affiliation(s)
- Chien-Cheng Huang
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Emergency Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hao Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Information Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yi-Chen Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Rong-Jane Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chin Hsu
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Emergency Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jhi-Joung Wang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Anesthesiology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Occupational Safety, Health and Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
10
|
McDonald S, Ray P, Bunn RC, Fowlkes JL, Thrailkill KM, Popescu I. Heterogeneity and altered β-cell identity in the TallyHo model of early-onset type 2 diabetes. Acta Histochem 2022; 124:151940. [PMID: 35969910 DOI: 10.1016/j.acthis.2022.151940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/01/2022]
Abstract
A primary underlying defect makes β-cells "susceptible" to no longer compensate for the peripheral insulin resistance and to trigger the onset of type 2 diabetes (T2D). New evidence suggests that in T2D, β-cells are not destroyed but experience a loss of identity, reverting to a progenitor-like state and largely losing the ability to sense glucose and produce insulin. We assessed (using fluorescence microscopy and histomorphometry correlated with the glycaemic status) the main β-cell identity modifications as diabetes progresses in the TallyHo/JngJ (TH) male mice, a polygenic model of spontaneous T2D, akin to the human phenotype. We found that: 1) conversion to overt diabetes is paralleled by a progressive reduction of insulin-expressing cells and expansion of a glucagon-positive population, together with alteration of islet size and shape; 2) the β-cell population is highly heterogeneous in terms of insulin content and specific transcription factors like PDX1 and NKX6.1, that are gradually lost during diabetes progression; 3) GLUT2 expression is altered early and strongly reduced at late stages of diabetes; 4) an endocrine developmental program dependent on NGN3-expressing progenitors is revived when hyperglycaemia becomes severe; and 5) the re-expression of the EMT-associated factor vimentin occurs as diabetes worsens, representing a possible regenerative response to β-cell loss. Based on these results, we formulated additional hypotheses for the β-cell identity alteration in the TH model, together with several limitations of the study, that constitute future research directions.
Collapse
Affiliation(s)
- Sarah McDonald
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA
| | - Phil Ray
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Robert C Bunn
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - John L Fowlkes
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Kathryn M Thrailkill
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA; Department of Pediatric Endocrinology, University of Kentucky, College of Medicine, 2195 Harrodsburg Rd., Lexington, KY 40504, USA
| | - Iuliana Popescu
- Barnstable Brown Diabetes Center, University of Kentucky, College of Medicine, 900S. Limestone, CTW 469, Lexington, KY 40536, USA.
| |
Collapse
|
11
|
Kajikawa M, Higashi Y. Obesity and Endothelial Function. Biomedicines 2022; 10:biomedicines10071745. [PMID: 35885049 PMCID: PMC9313026 DOI: 10.3390/biomedicines10071745] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023] Open
Abstract
Obesity is a major public health problem and is related to increasing rates of cardiovascular morbidity and mortality. Over 1.9 billion adults are overweight or obese worldwide and the prevalence of obesity is increasing. Obesity influences endothelial function through obesity-related complications such as hypertension, dyslipidemia, diabetes, metabolic syndrome, and obstructive sleep apnea syndrome. The excess fat accumulation in obesity causes adipocyte dysfunction and induces oxidative stress, insulin resistance, and inflammation leading to endothelial dysfunction. Several anthropometric indices and imaging modalities that are used to evaluate obesity have demonstrated an association between obesity and endothelial function. In the past few decades, there has been great focus on the mechanisms underlying endothelial dysfunction caused by obesity for the prevention and treatment of cardiovascular events. This review focuses on pathophysiological mechanisms of obesity-induced endothelial dysfunction and therapeutic targets of obesity.
Collapse
Affiliation(s)
- Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan;
| | - Yukihito Higashi
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan;
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-82-257-5831
| |
Collapse
|
12
|
Bastani S, Vahedian V, Rashidi M, Mir A, Mirzaei S, Alipourfard I, Pouremamali F, Nejabati H, Kadkhoda J, Maroufi NF, Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed Pharmacother 2022; 153:113297. [PMID: 35738178 DOI: 10.1016/j.biopha.2022.113297] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
Crocin, an active ingredient derived from saffron, is one of the herbal components that has recently been considered by researchers. Crocin has been shown to have many anti-inflammatory and antioxidant properties, and therefore can be used to treat various diseases. It has been shown that Crocin has a positive effect on the prevention and treatment of cardiovascular disease, cancer, diabetes, and kidney disease. In addition, the role of this substance in COVID-19 pandemic has been identified. In this review article, we tried to have a comprehensive review of the antioxidant and anti-inflammatory effects of Crocin in different diseases and different tissues. In conclusion, Crocin may be helpful in pathological conditions that are associated with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Brazil
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection - Faculty of Natural Sciences - University of Silesia - Katowice - Poland
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Gut Microbiome-Targeted Modulations Regulate Metabolic Profiles and Alleviate Altitude-Related Cardiac Hypertrophy in Rats. Microbiol Spectr 2022; 10:e0105321. [PMID: 35138162 PMCID: PMC8826942 DOI: 10.1128/spectrum.01053-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is well known that humans physiologically or pathologically respond to high altitude, with these responses accompanied by alterations in the gut microbiome. To investigate whether gut microbiota modulation can alleviate high-altitude-related diseases, we administered probiotics, prebiotics, and synbiotics in rat model with altitude-related cardiac impairment after hypobaric hypoxia challenge and observed that all three treatments alleviated cardiac hypertrophy as measured by heart weight-to-body weight ratio and gene expression levels of biomarkers in heart tissue. The disruption of gut microbiota induced by hypobaric hypoxia was also ameliorated, especially for microbes of Ruminococcaceae and Lachnospiraceae families. Metabolome revealed that hypobaric hypoxia significantly altered the plasma short-chain fatty acids (SCFAs), bile acids (BAs), amino acids, neurotransmitters, and free fatty acids, but not the overall fecal SCFAs and BAs. The treatments were able to restore homeostasis of plasma amino acids and neurotransmitters to a certain degree, but not for the other measured metabolites. This study paves the way to further investigate the underlying mechanisms of gut microbiome in high-altitude related diseases and opens opportunity to target gut microbiome for therapeutic purpose. IMPORTANCE Evidence suggests that gut microbiome changes upon hypobaric hypoxia exposure; however, it remains elusive whether this microbiome change is a merely derivational reflection of host physiological alteration, or it synergizes to exacerbate high-altitude diseases. We intervened gut microbiome in the rat model of prolonged hypobaric hypoxia challenge and found that the intervention could alleviate the symptoms of pathological cardiac hypertrophy, gut microbial dysbiosis, and metabolic disruptions of certain metabolites in gut and plasma induced by hypobaric hypoxia. Our study suggests that gut microbiome may be a causative factor for high-altitude-related pathogenesis and a target for therapeutic intervention.
Collapse
|
14
|
Sun XJ, Liu NF. Diabetic mellitus, vascular calcification and hypoxia: A complex and neglected tripartite relationship. Cell Signal 2021; 91:110219. [PMID: 34921978 DOI: 10.1016/j.cellsig.2021.110219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/11/2021] [Accepted: 12/11/2021] [Indexed: 11/15/2022]
Abstract
DM (diabetic mellitus) and its common vascular complications VC (vascular calcification), are increasingly harmful to human health. In recent years, the research on the relationship between DM and VC is also deepening. Hypoxia, as one of the pathogenic factors of many disease models, is also closely related to the occurrence of DM and VC. There are some studies on the role of hypoxia in the pathogenesis of DM and VC respectively, but no one has made an in-depth summary of the systematic connection between hypoxia, DM and VC. Therefore, what we want to review in this article are the relationship between DM, VC and hypoxia, respectively, as well as the role of hypoxia in the development of DM and VC, which has little concern but is a novel and potentially target that may provide some new ideas for the prevention and treatment of DM, VC, especially diabetic VC.
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, PR China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, PR China.
| |
Collapse
|
15
|
Pae EK, Harper RM. Potential Mechanisms Underlying Hypoxia-Induced Diabetes in a Rodent Model: Implications for COVID-19. CHILDREN 2021; 8:children8121178. [PMID: 34943374 PMCID: PMC8700366 DOI: 10.3390/children8121178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023]
Abstract
Previous studies reported that repetitive hypoxia in rat pups reduces insulin secretion and elevates fasting blood glucose levels; these sequelae persisted for several months. This report describes how episodic hypoxic events elevate a chloride ion exporter, K+-Cl− cotransporter-2 (KCC2), in the plasma membrane of insulin-secreting pancreatic β-cells. We assume that acute diabetic symptoms observed in rat pups with periodic oxygen desaturation could result from a lack of blood insulin levels due to disturbed β-cell function. This acute hypo-insulinemia may result from a disruption in chloride balance in β-cells arising from an imbalanced KCC2-NKCC1 (chloride exporter-importer) density as a consequence of periodic oxygen desaturation. Mechanistically, we postulate that a reduced insulin secretion due to the KCC2-NKCC1 imbalance subsequent to acute oxygen desaturation could result in hyperglycemia in rat pups, paralleling symptoms shown in patients with COVID-19 who experienced acute respiratory distress.
Collapse
Affiliation(s)
- Eung-Kwon Pae
- School of Dentistry, University of Maryland, 650 W. Baltimore St., Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-310-740-6161
| | - Ronald M. Harper
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA 90095, USA;
| |
Collapse
|
16
|
Farré R, Gozal D, Almendros I. Human experimental models: seeking to enhance multiscale research in sleep apnoea. Eur Respir J 2021; 58:58/4/2101169. [PMID: 34620681 DOI: 10.1183/13993003.01169-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain .,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - David Gozal
- Dept of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| |
Collapse
|
17
|
Thanaviratananich S, Cheng H, Chirakalwasan N, Reutrakul S. Association between nocturnal hypoxemic burden and glucose metabolism. Sleep Breath 2021; 26:1465-1470. [PMID: 34390444 DOI: 10.1007/s11325-021-02464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate the association between a novel integrated event-based and hypoxemia-based parameter of polysomnography (PSG), hypoxemic load or HL100, and fasting blood glucose (FBG) and hemoglobin A1c (HbA1c) levels. METHODS Adult patients, who underwent an in-lab PSG at the University of Iowa Hospitals and Clinics with FBG or HbA1c levels, were included. Event-based parameter and hypoxemia-based parameter data were derived. HL100, defined as the integrated area of desaturation between the 100% oxygen saturation and the measured saturation levels during sleep divided by the total sleep time, was calculated by Python software. Demographic data and glycemic parameters within 1 year prior to PSG (FBG and HbA1c) were retrieved from chart review. Spearman correlation analysis and stepwise backward regression analysis were performed to determine independent predictors of FBG and HbA1c levels. RESULTS Of the 467 patients who underwent an in-lab PSG, 218 had FBG levels, 84 had HbA1c levels, and 118 had both values. All event-based and hypoxemia-based parameters, including HL100, were significantly correlated to FBG and HbA1c levels. Stepwise backward regression analyses, adjusted for age, sex, body mass index, and diabetes status, revealed that log HL100 was significantly related to FBG (B = 23.9, p = 0.010), but none of log event-based or hypoxemia-based parameters were found to be significantly related HbA1c levels. CONCLUSIONS HL100 was shown to be an independent predictor of FBG in this cohort, implying that any degree of desaturation below 100% could adversely affect glucose metabolism. HL100 may be useful for interpretation of sleep studies, risk stratification, and patient management purposes in the future.
Collapse
Affiliation(s)
- Sikawat Thanaviratananich
- Department of Neurology, Carver College of Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA.
| | - Hao Cheng
- Miami VA Healthcare System, Miami, FL, USA
| | - Naricha Chirakalwasan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Sleep Disorders, King Chulalongkorn Memorial Hospital/Thai Red Cross Society, Bangkok, Thailand
| | - Sirimon Reutrakul
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois At Chicago, Chicago, IL, USA
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Zhou J, Zhao Y, Guo YJ, Zhao YS, Liu H, Ren J, Li JR, Ji ES. A rapid juvenile murine model of nonalcoholic steatohepatitis (NASH): Chronic intermittent hypoxia exacerbates Western diet-induced NASH. Life Sci 2021; 276:119403. [PMID: 33785339 DOI: 10.1016/j.lfs.2021.119403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023]
Abstract
AIMS Many dietary NASH models require a long duration to establish (4-6 months). Chronic intermittent hypoxia (CIH), a cardinal hallmark of obstructive sleep apnea (OSA), may accelerate the progression of pediatric nonalcoholic fatty liver disease (NAFLD). However, diet-induced obese (DIO) mice exposed to CIH have not been perceived as a fast or reliable tool in NASH research. This study was designed to establish a rapid juvenile murine NASH model, and determine whether the combination of CIH and a western-style diet (hypercaloric fatty diet plus high fructose) can fully display key pathologic features of NASH. METHODS C57BL/6 N mice (3 weeks old) fed a control diet or western diet (WD) were exposed to CIH (9% nadir of inspired oxygen levels) or room air for 6 and 12 weeks. KEY FINDINGS The Control/CIH group mainly exhibited hyperinsulinemia and insulin resistance (IR). In contrast, mice fed a WD developed weight gain after 3 weeks, microvesicular steatosis in 6 weeks, and indices of metabolic disorders at 12 weeks. Furthermore, CIH exposure accelerated WD- induced macromicrovesicular steatosis (liver triglycerides and de novo lipogenesis), liver injury (ballooned hepatocytes and liver enzymes), lobular/portal inflammation (inflammatory cytokines and macrophage recruitment), and fibrogenesis (hydroxyproline content and TGF-β protein). Notably, only the WD/CIH group exhibited elevated hepatic MDA content, protein levels of NOX4, α-SMA and collagen I, as well as reduced Nrf2 and HO-1 protein expression. SIGNIFICANCE WD/CIH treatment rapidly mimics the histological characteristics of pediatric NASH with metabolic dysfunction and fibrosis, representing an appropriate experimental model for NASH research.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China; Department of pharmacology, Chengde Medical College, Chengde, Hebei, China
| | - Yang Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ya-Jing Guo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ya-Shuo Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Han Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jing Ren
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jie-Ru Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.
| |
Collapse
|
19
|
Marcouiller F, Jochmans-Lemoine A, Ganouna-Cohen G, Mouchiroud M, Laplante M, Marette A, Bairam A, Joseph V. Metabolic responses to intermittent hypoxia are regulated by sex and estradiol in mice. Am J Physiol Endocrinol Metab 2021; 320:E316-E325. [PMID: 33284090 PMCID: PMC8260369 DOI: 10.1152/ajpendo.00272.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The roles of sex and sex-hormones on the metabolic consequences of intermittent hypoxia (IH, a reliable model of sleep apnea) are unknown. We used intact male or female mice and ovariectomized (OVX) females treated with vehicle (Veh) or estradiol (E2) and exposed to normoxia (Nx) or IH (6% O2, 10 cycles/h, 12 h/day, 2 wk). Mice were then fasted for 6 h, and we measured fasting glucose and insulin levels and performed insulin or glucose tolerance tests (ITT or GTT). We also assessed liver concentrations of glycogen, triglycerides (TGs), and expression levels of genes involved in aerobic or anaerobic metabolism. In males, IH lowered fasting levels of glucose and insulin, slightly improved glucose tolerance, but altered glucose tolerance in females. In OVX-Veh females, IH reduced fasting glucose and insulin levels and strongly impaired glucose tolerance. E2 supplementation reversed these effects and improved homeostasis model assessment of β-cell function (HOMA-β), a marker of pancreatic glucose-induced insulin released. IH decreased liver TG concentration in males and slightly increased glycogen in OVX-Veh females. Liver expression of glycolytic (Ldha) and mitochondrial (citrate synthase, Pdha1) genes was reduced by IH in males and in OVX-Veh females, but not in intact or OVX-E2 females. We conclude that 1) IH reduced fasting levels of glycemia in males and in ovariectomized females. 2) IH improves glucose tolerance only in males. 3) In females IH decreased glucose tolerance, this effect was amplified by ovariectomy, and reversed by E2 supplementation. 4) During IH exposures, E2 supplementation appears to improve pancreatic β cells functions.NEW & NOTEWORTHY We assessed fasting glycemic control, and tolerance to insulin and glucose in male and female mice exposed to intermittent hypoxia. IH improves glucose tolerance in males but had opposite effects in females. This response was amplified following ovariectomy in females and prevented by estradiol supplementation. Metabolic consequences of IH differ between males and females and are regulated by estradiol in female mice.
Collapse
Affiliation(s)
- François Marcouiller
- Faculté de Médecine, Département de Pédiatrie, Axe Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Alexandra Jochmans-Lemoine
- Faculté de Médecine, Département de Pédiatrie, Axe Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Gauthier Ganouna-Cohen
- Faculté de Médecine, Département de Pédiatrie, Axe Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Mathilde Mouchiroud
- Faculté de Médecine, Département de Médecine, Axe Obésité-Métabolisme, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Mathieu Laplante
- Faculté de Médecine, Département de Médecine, Axe Obésité-Métabolisme, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - André Marette
- Faculté de Médecine, Département de Médecine, Axe Cardiologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Quebec, Canada
| | - Aida Bairam
- Faculté de Médecine, Département de Pédiatrie, Axe Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Vincent Joseph
- Faculté de Médecine, Département de Pédiatrie, Axe Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| |
Collapse
|
20
|
Johns EC, Denison FC, Reynolds RM. Sleep disordered breathing in pregnancy: A review of the pathophysiology of adverse pregnancy outcomes. Acta Physiol (Oxf) 2020; 229:e13458. [PMID: 32087033 DOI: 10.1111/apha.13458] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
Sleep disordered breathing (SDB) is a common obesity-related co-morbidity with strong associations to cardiometabolic disease. The risk of SDB is increased during pregnancy, particularly among obese pregnant women. Accumulating evidence suggests that an association exists between maternal SDB and the development of adverse pregnancy outcomes, particularly gestational diabetes and hypertensive disorders of pregnancy. Intermittent hypoxia, a central characteristic of SDB, has been shown in animal and clinical studies to dysregulate several biological pathways. This includes the promotion of oxidative stress, increased inflammation, activation of the hypothalamic-pituitary-adrenal axis, increased sympathetic activity and impaired glucose and insulin metabolism. This review considers how, during pregnancy, these pathophysiological processes are plausible mechanisms through which SDB may contribute to an increased risk of adverse outcomes, for the mother and perhaps also the offspring. However, a lack of robust evidence specific to the pregnant population, including limited evaluation of the placental function in affected pregnancies, limits our ability to draw definite conclusions on mechanisms contributing to adverse pregnancy outcomes and, indeed, the strength of association between SDB and certain pregnancy complications.
Collapse
Affiliation(s)
- Emma C. Johns
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health University of Edinburgh, Queen's Medical Research Institute Edinburgh United Kingdom
| | - Fiona C. Denison
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health University of Edinburgh, Queen's Medical Research Institute Edinburgh United Kingdom
| | - Rebecca M. Reynolds
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health University of Edinburgh, Queen's Medical Research Institute Edinburgh United Kingdom
- BHF/University Centre for Cardiovascular Science University of Edinburgh, Queen's Medical Research Institute Edinburgh United Kingdom
| |
Collapse
|
21
|
Pugliese G, Barrea L, Laudisio D, Salzano C, Aprano S, Colao A, Savastano S, Muscogiuri G. Sleep Apnea, Obesity, and Disturbed Glucose Homeostasis: Epidemiologic Evidence, Biologic Insights, and Therapeutic Strategies. Curr Obes Rep 2020; 9:30-38. [PMID: 31970714 DOI: 10.1007/s13679-020-00369-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA), obesity, and disturbed glucose homeostasis are usually considered distinct clinical condition, although they are tightly related to each other. The aim of our manuscript is to provide an overview of the current evidence on OSA, obesity, and disturbed glucose homeostasis providing epidemiologic evidence, biological insights, and therapeutic strategies. RECENT FINDINGS The mechanisms hypothesized to be involved in this complex interplay are the following: (1) "direct weight-dependent" mechanisms, according to which fat excess compromises respiratory mechanics, and (2) "indirect weight-dependent" mechanisms such as hyperglycemia, insulin resistance and secondary hyperinsulinemia, leptin resistance and other hormonal dysregulations frequently found in subjects with obesity, type 2 diabetes, and/or sleep disorders. Moreover, the treatment of each of these clinical conditions, through weight loss induced by diet or bariatric surgery, the use of anti-obesity or antidiabetic drugs, and continuous positive airway pressure (CPAP), seems to positively influence the others. These recent data suggest not only that there are multiple connections among these diseases but also that treating one of them may result in an improvement of the others.
Collapse
Affiliation(s)
- Gabriella Pugliese
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, via Sergio Pansini 5, 80131, Naples, Italy
| | - Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, via Sergio Pansini 5, 80131, Naples, Italy
| | - Daniela Laudisio
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, via Sergio Pansini 5, 80131, Naples, Italy
| | - Ciro Salzano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, via Sergio Pansini 5, 80131, Naples, Italy
| | - Sara Aprano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, via Sergio Pansini 5, 80131, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, via Sergio Pansini 5, 80131, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, via Sergio Pansini 5, 80131, Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
22
|
Mesarwi OA, Loomba R, Malhotra A. Obstructive Sleep Apnea, Hypoxia, and Nonalcoholic Fatty Liver Disease. Am J Respir Crit Care Med 2020; 199:830-841. [PMID: 30422676 DOI: 10.1164/rccm.201806-1109tr] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent studies have demonstrated that obstructive sleep apnea (OSA) is associated with the development and evolution of nonalcoholic fatty liver disease (NAFLD), independent of obesity or other shared risk factors. Like OSA, NAFLD is a prevalent disorder associated with major adverse health outcomes: Patients with NAFLD may develop cirrhosis, liver failure, and hepatocellular carcinoma. One major finding that has emerged from these studies is that the OSA-NAFLD association is related to the degree of nocturnal hypoxemia in OSA. Animal models have therefore largely focused on intermittent hypoxia, a key manifestation of OSA, to shed light on the mechanisms by which OSA may give rise to the complex metabolic disturbances that are seen in NAFLD. Intermittent hypoxia leads to tissue hypoxia and can result in oxidative stress, mitochondrial dysfunction, inflammation, and overactivation of the sympathetic nervous system, among many other maladaptive effects. In such models, intermittent hypoxia has been shown to cause insulin resistance, dysfunction of key steps in hepatic lipid metabolism, atherosclerosis, and hepatic steatosis and fibrosis, each of which is pertinent to the development and/or progression of NAFLD. However, many intriguing questions remain unanswered: Principally, how aggressively should the clinician screen for NAFLD in patients with OSA, and vice versa? In this review, we attempt to apply the best evidence from animal and human studies to highlight the relationship between these two disorders and to advocate for further trials aimed at defining these relationships more precisely.
Collapse
Affiliation(s)
- Omar A Mesarwi
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine
| | - Rohit Loomba
- 2 Division of Gastroenterology, Department of Medicine, and.,3 Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, California
| | - Atul Malhotra
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine
| |
Collapse
|
23
|
Ramasubramanian B, Reddy PH. Are TallyHo Mice A True Mouse Model for Type 2 Diabetes and Alzheimer’s Disease? J Alzheimers Dis 2019; 72:S81-S93. [DOI: 10.3233/jad-190613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
24
|
Tao L, Wang L, Yang X, Jiang X, Hua F. Recombinant human glucagon-like peptide-1 protects against chronic intermittent hypoxia by improving myocardial energy metabolism and mitochondrial biogenesis. Mol Cell Endocrinol 2019; 481:95-103. [PMID: 30503377 DOI: 10.1016/j.mce.2018.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Obstructive sleep apnea syndrome is a chronic disease associated with intermittent hypoxia (IH) and is an important risk factor for cardiovascular disease. Glucagon-like peptide (GLP-1) is a naturally occurring incretin used as a promising therapeutic agent in the treatment of acute myocardial infarction, dilated cardiomyopathy, and advanced heart failure. However, whether GLP-1 can protect against IH-induced cardiac injury is still unclear. Accordingly, in this study, we evaluated the effects of recombinant human GLP-1 (rhGLP-1) on cardiac health in mice. METHODS Mice were subjected to repetitive 5% O2 for 30 s and 21% O2 for 30 s, for a total of 8 h/day for 4 weeks. Subsequently, mice received subcutaneous injection of saline or rhGLP-1 (100 μg/kg, three times per day). Cardiac function, myocardial apoptosis and fibrosis, energy metabolism, and mitochondrial biogenesis were examined for evaluation of cardiac injury. RESULTS A reduction in diastolic function (E/A ratio) in mice exposed to IH was significantly reversed by rhGLP-1. IH induced marked cardiomyocyte apoptosis and myocardial fibrosis. Additionally, IH resulted in a shift from fatty acid to glucose metabolism in the myocardium with downregulation of peroxisome proliferator-activated receptor (PPAR) α and PPARγ. Moreover, IH caused a reduction in mitochondrial DNA (mtDNA) replication and transcription, together with reduced mtDNA content and impaired mitochondrial ultrastructure. These changes were abolished by rhGLP-1 via activation of PGC-1α and Akt signaling. CONCLUSIONS rhGLP-1 protects against IH-induced cardiac injury by improving myocardial energy metabolism and enhancing the early adaptive changes of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Long Wang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Xiaoyu Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Xiaohong Jiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China.
| |
Collapse
|
25
|
Framnes SN, Arble DM. The Bidirectional Relationship Between Obstructive Sleep Apnea and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:440. [PMID: 30127766 PMCID: PMC6087747 DOI: 10.3389/fendo.2018.00440] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep disorder, effecting 17% of the total population and 40-70% of the obese population (1, 2). Multiple studies have identified OSA as a critical risk factor for the development of obesity, diabetes, and cardiovascular diseases (3-5). Moreover, emerging evidence indicates that metabolic disorders can exacerbate OSA, creating a bidirectional relationship between OSA and metabolic physiology. In this review, we explore the relationship between glycemic control, insulin, and leptin as both contributing factors and products of OSA. We conclude that while insulin and leptin action may contribute to the development of OSA, further research is required to determine the mechanistic actions and relative contributions independent of body weight. In addition to increasing our understanding of the etiology, further research into the physiological mechanisms underlying OSA can lead to the development of improved treatment options for individuals with OSA.
Collapse
Affiliation(s)
| | - Deanna M. Arble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
26
|
Archontogeorgis K, Nena E, Papanas N, Rizzo M, Voulgaris A, Xanthoudaki M, Kouratzi M, Ragia G, Manolopoulos V, Zissimopoulos A, Froudarakis M, Steiropoulos P. Metabolic Syndrome and Vitamin D Levels in Patients with Obstructive Sleep Apnea Syndrome. Metab Syndr Relat Disord 2018; 16:190-196. [PMID: 29608396 DOI: 10.1089/met.2017.0181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Numerous studies have indicated that obstructive sleep apnea syndrome (OSAS), may contribute to the development of metabolic syndrome (MetS) and diabetes. Moreover, OSAS has been associated with lowered vitamin D (Vit D) levels, but reports are inconclusive. Aim of the study was to compare Vit D levels according to the presence of MetS and its components in OSAS patients. METHODS The presence of MetS was evaluated and serum 25-hydroxy vitamin D [25(OH)D] levels were measured in consecutive newly diagnosed, by polysomnography, subjects with OSAS. RESULTS A total of 107 subjects (88 men) with OSAS were included in the study. Patients were divided into group A (OSAS with MetS group: 55 subjects) and group B (OSAS without MetS: 52 subjects). There were no differences between the two groups in terms of age, body mass index, and sleep parameters. Patients in group A exhibited higher levels of daytime sleepiness, as expressed by Epworth Sleepiness Scale score (12 ± 5.5 vs. 9.3 ± 4.8 for groups A vs. B, p = 0.008). Serum 25(OH)D levels were significantly decreased in group A, as compared with group B (18 ± 8.6 ng/mL vs. 23.9 ± 14.1 ng/mL, respectively, p = 0.012). Group A was then subdivided in two smaller groups, according to patients' metabolic index: OSAS patients with metabolic score = 3 and OSAS patients with metabolic score >3. Serum 25(OH)D levels were higher in OSAS patients with metabolic score = 3 compared with OSAS patients with metabolic score >3 (19.8 ± 8.9 ng/mL vs. 15.1 ± 7.3 ng/mL respectively, p = 0.038). CONCLUSIONS OSAS patients with concurrent MetS exhibit lower serum Vit D levels, as compared with those without MetS.
Collapse
Affiliation(s)
- Kostas Archontogeorgis
- 1 MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| | - Evangelia Nena
- 2 Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| | - Nikolaos Papanas
- 3 Second Department of Internal Medicine, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| | - Manfredi Rizzo
- 4 Department of Internal Medicine and Medical Specialties, University of Palermo , Italy
| | - Athanasios Voulgaris
- 1 MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace , Alexandroupolis, Greece .,5 Department of Pneumonology, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| | - Maria Xanthoudaki
- 5 Department of Pneumonology, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| | - Maria Kouratzi
- 5 Department of Pneumonology, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| | - Georgia Ragia
- 6 Laboratory of Pharmacology, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| | - Vangelis Manolopoulos
- 6 Laboratory of Pharmacology, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| | - Athanasios Zissimopoulos
- 7 Laboratory of Nuclear Medicine, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| | - Marios Froudarakis
- 5 Department of Pneumonology, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| | - Paschalis Steiropoulos
- 1 MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace , Alexandroupolis, Greece .,5 Department of Pneumonology, Medical School, Democritus University of Thrace , Alexandroupolis, Greece
| |
Collapse
|
27
|
Li CG, Ni CL, Yang M, Tang YZ, Li Z, Zhu YJ, Jiang ZH, Sun B, Li CJ. Honokiol protects pancreatic β cell against high glucose and intermittent hypoxia-induced injury by activating Nrf2/ARE pathway in vitro and in vivo. Biomed Pharmacother 2018; 97:1229-1237. [DOI: 10.1016/j.biopha.2017.11.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
|
28
|
Gu C, Younas H, Jun JC. Sleep apnea: An overlooked cause of lipotoxicity? Med Hypotheses 2017; 108:161-165. [PMID: 29055392 DOI: 10.1016/j.mehy.2017.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea (OSA) is a common sleep disorder associated with diabetes and cardiovascular disease. However, the mechanisms by which OSA causes cardiometabolic dysfunction are not fully elucidated. OSA increases plasma free fatty acids (FFA) during sleep, reflecting excessive adipose tissue lipolysis. In animal studies, intermittent hypoxia simulating OSA also increases FFA, and the increase is attenuated by beta-adrenergic blockade. In other contexts, excessive plasma FFA can lead to ectopic fat accumulation, insulin resistance, vascular dysfunction, and dyslipidemia. Herein, we propose that OSA is a cause of excessive adipose tissue lipolysis contributing towards systemic "lipotoxicity". Since visceral and upper-body obesity contributes to OSA pathogenesis, OSA-induced lipolysis may further aggravate the consequences of this metabolically harmful state. If this hypothesis is correct, then OSA may represent a reversible risk factor for cardio-metabolic dysfunction, and this risk might be mitigated by preventing OSA-induced lipolysis during sleep.
Collapse
Affiliation(s)
- Chenjuan Gu
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haris Younas
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan C Jun
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
29
|
Gerber PA, Rutter GA. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid Redox Signal 2017; 26:501-518. [PMID: 27225690 PMCID: PMC5372767 DOI: 10.1089/ars.2016.6755] [Citation(s) in RCA: 436] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. CRITICAL ISSUES Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn2+ concentrations and thus susceptibility to hypoxia and oxidative stress. FUTURE DIRECTIONS Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.
Collapse
Affiliation(s)
- Philipp A. Gerber
- Department of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Wang Y, Hai B, Niu X, Ai L, Cao Y, Li R, Li Y. Chronic intermittent hypoxia disturbs insulin secretion and causes pancreatic injury via the MAPK signaling pathway. Biochem Cell Biol 2016; 95:415-420. [PMID: 28177762 DOI: 10.1139/bcb-2016-0167] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a breathing disorder during sleep, with a most prominent character of chronic intermittent hypoxia (CIH), which induces the generation of reactive oxygen species (ROS) that damages multiple tissues and causes metabolic disorders. In this study, we established a rat model of varying OSA with different grades of CIH (12.5% O2, 10% O2, 7.5% O2, and 5% O2) for 12 weeks, and found that CIH stimulated insulin secretion, reduced the insulin:proinsulin ratio in pancreatic tissue, and caused pancreatic tissue lesions and cell apoptosis in a dose-dependent manner. Moreover, CIH promoted the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and activated mitogen-activated protein kinase (MAPK) family members, extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and P38, depending on the O2 concentration. In summary, CIH disturbed insulin secretion, and caused inflammation, lesions, and cell apoptosis in pancreatic tissue via the MAPK signaling pathway, which may be of great significance for clinical treatment of OSA and type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Yeying Wang
- a Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, People's Republic of China.,b Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, Yunnan 650500, People's Republic of China
| | - Bing Hai
- a Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, People's Republic of China
| | - Xiaoqun Niu
- a Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, People's Republic of China
| | - Li Ai
- a Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, People's Republic of China
| | - Yu Cao
- a Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, People's Republic of China
| | - Ran Li
- a Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, People's Republic of China
| | - Yongxia Li
- a Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, People's Republic of China
| |
Collapse
|
31
|
Denvir J, Boskovic G, Fan J, Primerano DA, Parkman JK, Kim JH. Whole genome sequence analysis of the TALLYHO/Jng mouse. BMC Genomics 2016; 17:907. [PMID: 27835940 PMCID: PMC5106808 DOI: 10.1186/s12864-016-3245-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Background The TALLYHO/Jng (TH) mouse is a polygenic model for obesity and type 2 diabetes first described in the literature in 2001. The origin of the TH strain is an outbred colony of the Theiler Original strain and mice derived from this source were selectively bred for male hyperglycemia establishing an inbred strain at The Jackson Laboratory. TH mice manifest many of the disease phenotypes observed in human obesity and type 2 diabetes. Results We sequenced the whole genome of TH mice maintained at Marshall University to a depth of approximately 64.8X coverage using data from three next generation sequencing runs. Genome-wide, we found approximately 4.31 million homozygous single nucleotide polymorphisms (SNPs) and 1.10 million homozygous small insertions and deletions (indels) of which 98,899 SNPs and 163,720 indels were unique to the TH strain compared to 28 previously sequenced inbred mouse strains. In order to identify potentially clinically-relevant genes, we intersected our list of SNP and indel variants with human orthologous genes in which variants were associated in GWAS studies with obesity, diabetes, and metabolic syndrome, and with genes previously shown to confer a monogenic obesity phenotype in humans, and found several candidate variants that could be functionally tested using TH mice. Further, we filtered our list of variants to those occurring in an obesity quantitative trait locus, tabw2, identified in TH mice and found a missense polymorphism in the Cidec gene and characterized this variant’s effect on protein function. Conclusions We generated a complete catalog of variants in TH mice using the data from whole genome sequencing. Our findings will facilitate the identification of causal variants that underlie metabolic diseases in TH mice and will enable identification of candidate susceptibility genes for complex human obesity and type 2 diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3245-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA
| | - Goran Boskovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA
| | - Donald A Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA
| | - Jacaline K Parkman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA.
| |
Collapse
|
32
|
Yang J, Huang T, Song WM, Petralia F, Mobbs CV, Zhang B, Zhao Y, Schadt EE, Zhu J, Tu Z. Discover the network underlying the connections between aging and age-related diseases. Sci Rep 2016; 6:32566. [PMID: 27582315 PMCID: PMC5007654 DOI: 10.1038/srep32566] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022] Open
Abstract
Although our knowledge of aging has greatly expanded in the past decades, it remains elusive why and how aging contributes to the development of age-related diseases (ARDs). In particular, a global mechanistic understanding of the connections between aging and ARDs is yet to be established. We rely on a network modelling named "GeroNet" to study the connections between aging and more than a hundred diseases. By evaluating topological connections between aging genes and disease genes in over three thousand subnetworks corresponding to various biological processes, we show that aging has stronger connections with ARD genes compared to non-ARD genes in subnetworks corresponding to "response to decreased oxygen levels", "insulin signalling pathway", "cell cycle", etc. Based on subnetwork connectivity, we can correctly "predict" if a disease is age-related and prioritize the biological processes that are involved in connecting to multiple ARDs. Using Alzheimer's disease (AD) as an example, GeroNet identifies meaningful genes that may play key roles in connecting aging and ARDs. The top modules identified by GeroNet in AD significantly overlap with modules identified from a large scale AD brain gene expression experiment, supporting that GeroNet indeed reveals the underlying biological processes involved in the disease.
Collapse
Affiliation(s)
- Jialiang Yang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Tao Huang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Won-min Song
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Francesca Petralia
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Charles V. Mobbs
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Yong Zhao
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Eric E. Schadt
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| |
Collapse
|
33
|
Plasma Incretin Levels and Dipeptidyl Peptidase-4 Activity in Patients with Obstructive Sleep Apnea. Ann Am Thorac Soc 2016; 13:1378-87. [DOI: 10.1513/annalsats.201510-697oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Madsen NL, Marino BS, Woo JG, Thomsen RW, Videbœk J, Laursen HB, Olsen M. Congenital Heart Disease With and Without Cyanotic Potential and the Long-term Risk of Diabetes Mellitus: A Population-Based Follow-up Study. J Am Heart Assoc 2016; 5:JAHA.115.003076. [PMID: 27402234 PMCID: PMC5015361 DOI: 10.1161/jaha.115.003076] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Long‐term survival for persons born with congenital heart disease (CHD) is improved, but limited knowledge exists of this growing population's acquired cardiovascular risk profile. This study's purpose was to assess CHD survivors’ risk for type 2 diabetes mellitus (T2DM) with attention to the impact of cyanotic CHD. Methods and Results This population‐based cohort study included Danish subjects with CHD who were born between 1963 and 1980 and were alive at age 30 years. For each CHD case, we identified 10 individuals from the general population matched by sex and birth year, by using the Danish Civil Registration System. Complete follow‐up was obtained through Danish public registries for death, emigration, and T2DM (diagnosis and prescriptions record). We computed cumulative incidences and hazard ratios of developing T2DM after age 30 for 5149 CHD subjects compared with the general population. After adjusting for CHD severity, as well as age, sex, preterm birth, and extracardiac defects, we analyzed the impact of cyanotic compared with acyanotic CHD. By age 45 years, the cumulative incidence of T2DM after age 30 was 4% among subjects with CHD. Subjects with CHD were more likely to develop T2DM than the general population (hazard raio 1.4, 95% CI 1.1–1.6). Subjects CHD who had cyanotic defects were more likely to develop T2DM than were subjects with acyanotic CHD (hazard ratio 1.9, 95% CI 1.1–3.3). Conclusions CHD survivors had an increased risk of developing T2DM after age 30. Patients with cyanotic CHD are at particular risk. Given the cardiovascular health burden of T2DM, attention to its development in CHD survivors seems warranted.
Collapse
Affiliation(s)
- Nicolas L Madsen
- Department of Pediatrics, Heart Institute, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Bradley S Marino
- Heart Center at the Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL Department of Pediatrics and Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jessica G Woo
- Department of Pediatrics, Heart Institute, University of Cincinnati College of Medicine, Cincinnati, OH Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Reimar W Thomsen
- Department of Clinical Epidemiology, University of Aarhus, Aarhus, Denmark
| | - Jørgen Videbœk
- Department of Clinical Epidemiology, University of Aarhus, Aarhus, Denmark
| | | | - Morten Olsen
- Department of Clinical Epidemiology, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
35
|
Gileles-Hillel A, Kheirandish-Gozal L, Gozal D. Biological plausibility linking sleep apnoea and metabolic dysfunction. Nat Rev Endocrinol 2016; 12:290-8. [PMID: 26939978 DOI: 10.1038/nrendo.2016.22] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnoea (OSA) is a very common disorder that affects 10-25% of the general population. In the past two decades, OSA has emerged as a cardiometabolic risk factor in both paediatric and adult populations. OSA-induced metabolic perturbations include dyslipidaemia, atherogenesis, liver dysfunction and abnormal glucose metabolism. The mainstay of treatment for OSA is adenotonsillectomy in children and continuous positive airway pressure therapy in adults. Although these therapies are effective at resolving the sleep-disordered breathing component of OSA, they do not always produce beneficial effects on metabolic function. Thus, a deeper understanding of the underlying mechanisms by which OSA influences metabolic dysfunction might yield improved therapeutic approaches and outcomes. In this Review, we summarize the evidence obtained from animal models and studies of patients with OSA of potential mechanistic pathways linking the hallmarks of OSA (intermittent hypoxia and sleep fragmentation) with metabolic dysfunction. Special emphasis is given to adipose tissue dysfunction induced by sleep apnoea, which bears a striking resemblance to adipose dysfunction resulting from obesity. In addition, important gaps in current knowledge and promising lines of future investigation are identified.
Collapse
Affiliation(s)
- Alex Gileles-Hillel
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| |
Collapse
|
36
|
Kent BD, McNicholas WT, Ryan S. Insulin resistance, glucose intolerance and diabetes mellitus in obstructive sleep apnoea. J Thorac Dis 2015; 7:1343-57. [PMID: 26380761 DOI: 10.3978/j.issn.2072-1439.2015.08.11] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 07/12/2015] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnoea (OSA) is a highly prevalent disorder, which conveys an increased risk of cardiovascular disease and death. Type 2 diabetes mellitus (T2DM), glucose intolerance and insulin resistance (IR) are common in subjects with OSA, but a shared intimate relationship with obesity makes discerning an independent link challenging. Nonetheless, mechanistic studies suggest that OSA could contribute to impaired glucose metabolism via the effects of sleep fragmentation, sympathetic excitation and intermittent hypoxia (IH) on pancreatic B-cell function, insulin sensitivity, and systemic inflammation. In particular, emerging data suggest that IH may have an important detrimental effect on adipose tissue function and inflammation. Similarly, data from population-and clinic-level studies suggest that OSA is independently related with the prevalence and incidence of T2DM and IR, and may also lead to worse glycaemic control in diabetics. However, the ability of continuous positive airway pressure (CPAP) therapy to make a meaningful impact on T2DM or IR remains uncertain. In this review we explore the available evidence linking OSA with IR, glucose intolerance and T2DM, and discuss potential pathobiological mechanisms by which sleep disordered breathing can affect metabolic health.
Collapse
Affiliation(s)
- Brian D Kent
- 1 Pulmonary and Sleep Disorders Unit, Guy's and St Thomas' Hospital, London, UK ; 2 Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin; Ireland ; 3 School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Walter T McNicholas
- 1 Pulmonary and Sleep Disorders Unit, Guy's and St Thomas' Hospital, London, UK ; 2 Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin; Ireland ; 3 School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Silke Ryan
- 1 Pulmonary and Sleep Disorders Unit, Guy's and St Thomas' Hospital, London, UK ; 2 Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin; Ireland ; 3 School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Truchan NA, Brar HK, Gallagher SJ, Neuman JC, Kimple ME. A single-islet microplate assay to measure mouse and human islet insulin secretion. Islets 2015; 7:e1076607. [PMID: 26452321 PMCID: PMC4708880 DOI: 10.1080/19382014.2015.1076607] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest.
Collapse
Affiliation(s)
- Nathan A Truchan
- Department of Medicine; Division of Endocrinology, Diabetes & Metabolism; University of Wisconsin-Madison; Madison, WI USA
- William S Middleton Memorial Veterans Hospital; Madison, WI USA
| | - Harpreet K Brar
- Department of Medicine; Division of Endocrinology, Diabetes & Metabolism; University of Wisconsin-Madison; Madison, WI USA
- William S Middleton Memorial Veterans Hospital; Madison, WI USA
| | - Shannon J Gallagher
- Department of Medicine; Division of Endocrinology, Diabetes & Metabolism; University of Wisconsin-Madison; Madison, WI USA
- William S Middleton Memorial Veterans Hospital; Madison, WI USA
| | - Joshua C Neuman
- Interdisciplinary Graduate Program in Nutritional Sciences; University of Wisconsin-Madison; Madison, WI USA
- William S Middleton Memorial Veterans Hospital; Madison, WI USA
| | - Michelle E Kimple
- Department of Medicine; Division of Endocrinology, Diabetes & Metabolism; University of Wisconsin-Madison; Madison, WI USA
- Interdisciplinary Graduate Program in Nutritional Sciences; University of Wisconsin-Madison; Madison, WI USA
- William S Middleton Memorial Veterans Hospital; Madison, WI USA
- Correspondence to: Michelle E Kimple;
| |
Collapse
|