1
|
Garg P, Ramisetty S, Nair M, Kulkarni P, Horne D, Salgia R, Singhal SS. Strategic advancements in targeting the PI3K/AKT/mTOR pathway for Breast cancer therapy. Biochem Pharmacol 2025; 236:116850. [PMID: 40049296 DOI: 10.1016/j.bcp.2025.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Breast cancer (BC) is a complex disease that affects millions of women worldwide. Its growing impact calls for advanced treatment strategies to improve patient outcomes. The PI3K/AKT/mTOR pathway is a key focus in BC therapy because it plays a major role in important processes like tumor growth, survival, and resistance to treatment. Targeting this pathway could lead to better treatment options and outcomes. The present review explores how the PI3K/AKT/mTOR pathway becomes dysregulated in BC, focusing on the genetic changes like PIK3CA mutations and PTEN loss that leads to its aggravation. Current treatment options include the use of inhibitors targeting PI3K, AKT, and mTOR with combination therapies showing promise in overcoming drug resistance and improving effectiveness. Looking ahead, next-generation inhibitors and personalized treatment plans guided by biomarker analysis may provide more accurate and effective options for patients. Integrating these pathway inhibitors with immunotherapy offers an exciting opportunity to boost anti-tumor responses and improve survival rates. This review offers a comprehensive summary of the current progress in targeting the PI3K/AKT/mTOR pathway in BC. It highlights future research directions and therapeutic strategies aimed at enhancing patient outcomes and quality of life.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sravani Ramisetty
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Meera Nair
- William J. Brennan High School, San Antonio, TX 78253, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
2
|
Liu C, Zhang J, Ye Z, Luo J, Peng B, Wang Z. Research on the role and mechanism of the PI3K/Akt/mTOR signalling pathway in osteoporosis. Front Endocrinol (Lausanne) 2025; 16:1541714. [PMID: 40421249 PMCID: PMC12104071 DOI: 10.3389/fendo.2025.1541714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Osteoporosis is a systemic metabolic bone disease characterised mainly by reduced bone mass, bone microstructure degradation, and loss of bone mechanical properties. As the world population ages, more than 200 million people worldwide suffer from the pain caused by osteoporosis every year, which severely affects their quality of life. Moreover, the prevalence of osteoporosis continues to increase. The pathogenesis of osteoporosis is highly complex and is closely related to apoptosis, autophagy, oxidative stress, the inflammatory response, and ferroptosis. The PI3K/Akt/mTOR signalling pathway is one of the most crucial intracellular signal transduction pathways. This pathway is not only involved in bone metabolism and bone remodelling but also closely related to the proliferation and differentiation of osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells. Abnormal activation or inhibition of the PI3K/Akt/mTOR signalling pathway can disrupt the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, ultimately leading to the development of osteoporosis. This review summarises the molecular mechanisms by which the PI3K/Akt/mTOR signalling pathway mediates five pathological mechanisms, namely, apoptosis, autophagy, oxidative stress, the inflammatory response, and ferroptosis, in the regulation of osteoporosis, aiming to provide a theoretical basis for the development of novel and effective therapeutic drugs and intervention measures for osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Chuanlong Liu
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianqiang Zhang
- Liuyang Traditional Chinese Medicine Hospital, Liuyang, Hunan, China
| | - Ziyu Ye
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ji Luo
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Bing Peng
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Zhexiang Wang
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Wang BD, Lucero A, Ha S, Yarmohammadi R. PI3Kδ as a Novel Therapeutic Target for Aggressive Prostate Cancer. Cancers (Basel) 2025; 17:1610. [PMID: 40427108 PMCID: PMC12110313 DOI: 10.3390/cancers17101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) signaling represents an important pathway regulating cell proliferation, survival, invasion, migration, and metabolism. Notably, PI3K/AKT/mTOR signaling is frequently dysregulated in the majority of malignancies. Among the class IA PI3Ks (PI3Kα/β/δ), emerging evidence has implicated that PI3Kδ is not only overexpressed in leukocytes but also in solid tumors, including prostate cancer. The critical role of PI3Kδ in tumorigenesis and in the creation of a suppressive tumor microenvironment, along with the recent finding of PI3Kδ splice isoforms in promoting tumor aggressiveness and resistance, further demonstrates the potential of developing novel PI3Kδ-targeted cancer therapies. In this review, we comprehensively describe the functional mechanisms underlying the PI3Kδ-driven tumor progression and immune regulation in prostate cancer diseases. Furthermore, the recent preclinical and clinical studies on the development of PI3Kδ-/PI3K-targeted inhibitors as single agents and in combination therapies (with chemotherapy, radiation, hormone therapy, or immunotherapy) are summarized. Finally, we discuss the potential novel therapies for improving the treatment efficacies, as well as the current limitations and challenges of PI3Kδ-based therapies for prostate cancer.
Collapse
Affiliation(s)
- Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Alyssa Lucero
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Reyhaneh Yarmohammadi
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
4
|
Dawalibi A, Bakir M, Mohammad KS. The genetic architecture of bone metastases: unveiling the role of epigenetic and genetic modifications in drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:19. [PMID: 40342734 PMCID: PMC12059479 DOI: 10.20517/cdr.2025.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/26/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Bone metastases represent frequent and severe complications in various cancers, notably impacting prognosis and quality of life. This review article delves into the genetic and epigenetic mechanisms underpinning drug resistance in bone metastases, a key challenge in effective cancer treatment. The development of drug resistance in cancer can manifest as either intrinsic or acquired, with genetic heterogeneity playing a pivotal role. Intrinsic resistance is often due to pre-existing mutations, while acquired resistance evolves through genetic and epigenetic alterations during treatment. These alterations include mutations in driver genes like TP53 and RB1, epigenetic modifications such as DNA methylation and histone changes, and pathway alterations, notably involving RANK-RANKL signaling and the PI3K/AKT/mTOR cascade. Recent studies underline the significance of the tumor microenvironment in fostering drug resistance, with components such as cancer-associated fibroblasts and hypoxia playing crucial roles. The interactions between metastatic cancer cells and the bone microenvironment facilitate survival and the proliferation of drug-resistant clones. This review highlights the necessity of understanding these complex interactions to develop targeted therapies that can overcome resistance and improve treatment outcomes. Current therapeutic strategies and future directions are discussed, emphasizing the integration of genomic profiling and targeted interventions in managing bone metastases. The evolving landscape of genetic research, including the application of next-generation sequencing and CRISPR technology, offers promising avenues for novel and more effective therapeutic strategies. This comprehensive exploration aims to provide insights into the molecular intricacies of drug resistance in bone metastases, paving the way for improved clinical management and patient care.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohamad Bakir
- Department of Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
5
|
Lan Y, Sun J, Xu J, Chen X. Anti-lung cancer activity of lotusine in non-small cell lung cancer HCC827 via reducing proliferation, oxidative stress, induction of apoptosis, and G0/G1 cell cycle arrest via suppressing EGFR-Akt-ERK signalling. In Vitro Cell Dev Biol Anim 2025; 61:450-458. [PMID: 40392483 DOI: 10.1007/s11626-025-01048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/10/2025] [Indexed: 05/22/2025]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths worldwide, with resistance to targeted therapies and the need for novel therapeutic agents driving ongoing research. In this study, we investigated the anti-lung cancer activity of lotusine, a natural alkaloid, in the A549 (non-EGFR mutant), and EGFR-mutant HCC827 NSCLC cell line (deletion in exon 19). Our results demonstrated that lotusine significantly inhibited cell proliferation in a concentration- and time-dependent manner of HCC827 cells in comparison to A549 cells. Mechanistic analysis revealed that lotusine induced apoptosis in HCC827 cells, as evidenced by increased expression of pro-apoptotic markers (Bax and cleaved caspase-3) and decreased levels of anti-apoptotic proteins (Bcl-2). Cell cycle analysis indicated that lotusine caused G0/G1 phase arrest. Importantly, lotusine exerted its effects through the inhibition of the epidermal growth factor receptor (EGFR) EGFR-Akt-ERK signaling pathway, as evidenced by reduction of p-EGFR, p-Akt, and p-ERK in a western blot analysis in HCC827 cells. These findings suggest that lotusine exerts potent anti-cancer effects via a multifaceted mechanism, including inhibition of proliferation, apoptosis induction, and cell cycle arrest, predominantly mediated by EGFR suppression. This study highlights lotusine as a promising therapeutic candidate for the treatment of EGFR-mutant NSCLC and provides insights into its molecular mechanisms of action, paving the way for further preclinical and clinical evaluations.
Collapse
Affiliation(s)
- Yuanmin Lan
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen and Longgang District People's Hospital of Shenzhen, Guangdong, Guangdong, 518172, China
| | - Jing Sun
- Department Of Oncology, The Fifth People's Hospital Of Dalian, Dalian Liaoning, 116021, China
| | - Jiqing Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen and Longgang District People's Hospital of Shenzhen, Guangdong, Guangdong, 518172, China
| | - Xiaoying Chen
- Department of Respiratory and Critical Care Medicine, Lishui Second People's Hospital, Lishui Zhejiang, 323000, China.
| |
Collapse
|
6
|
Bai Z, Li H, Jiao B. Potential Therapeutic Effect of Sinigrin on Diethylnitrosamine-Induced Liver Cancer in Mice: Exploring the Involvement of Nrf-2/HO-1, PI3K-Akt-mTOR Signaling Pathways, and Apoptosis. ACS OMEGA 2024; 9:46064-46073. [PMID: 39583716 PMCID: PMC11579720 DOI: 10.1021/acsomega.4c06203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Sinigrin is a glucosinolate present in plants of the family Brassicaceae and has been considered for its anticancer potential. This study examines the efficacy of sinigrin on the liver cancer caused by diethylnitrosamine (DEN) in mice through the analysis of its impact on the Nrf-2/HO-1, PI3K-Akt-mTOR, and apoptotic pathways. Development of liver cancer was induced by intraperitoneal injection at the age of 14 days with DEN (25 mg/kg) in mice. Thereafter, sinigrin was orally administered at doses of 10 and 20 mg/kg body weight per day the last 28 days. At the end of 10 weeks, mice were sacrificed and then we conducted hepatic biochemical and molecular assessments. Sinigrin reduced the serum level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), alpha-fetoprotein (AFP), and bilirubin but increased total protein, and albumin, levels. Sinigrin increased the antioxidant enzymes (SOD, CAT, GPx, and GST) as indicated by reduced 8-OHdG, TBARS and increased glutathione. Sinigrin reduced the levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, and NF-κB p65) and PI3K/AKT/mTOR signaling pathway. Sinigrin also activated the intrinsic mitochondrial apoptosis pathway mediated by p53, downregulated antiapoptotic proteins (Bcl-2), up-regulated pro-apoptosis regulatory proteins like Bax and caspase-3. All these results indicate that the protective effects of sinigrin against liver cancer are likely to be applied as an effective therapeutic agent through its antioxidant and pro-apoptotic activities.
Collapse
Affiliation(s)
- Zhe Bai
- Department
of Hepatobiliary Pancreatic and Gastrosurgery, Shanxi Province Cancer
Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital
Affiliated to Shanxi Medical University, Xinghualing District Workers New Street 3, Taiyuan 030013, China
| | - Hui Li
- Department
of Gastroenterology, The First Hospital
of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, Shanxi 030001, China
| | - Baoping Jiao
- Department
of Hepatobiliary Pancreatic and Gastrosurgery, Shanxi Province Cancer
Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital
Affiliated to Shanxi Medical University, Xinghualing District Workers New Street 3, Taiyuan 030013, China
| |
Collapse
|
7
|
Lee HM, Kuo PC, Chen WH, Chen PJ, Lam SH, Su YC, Chen CH. Diterpenoid from Croton tonkinensis as a Potential Radiation Sensitizer in Oral Squamous Cell Carcinoma: An In Vitro Study. Int J Mol Sci 2024; 25:11839. [PMID: 39519390 PMCID: PMC11546982 DOI: 10.3390/ijms252111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Radiotherapy combined with a radiosensitizer represents an important treatment for head and neck squamous cell carcinoma (HNSCC). Only a few chemotherapy agents are currently approved as radiosensitizers for targeted therapy. Oral squamous cell carcinoma is one of the deadliest cancers, with approximately ~500,000 new diagnosed cases and 145,000 deaths worldwide per year. The incidence of new cases continues to increase in developing countries. This study aimed to investigate the effect of Croton tonkinensis and Curcuma longa on cell viability in OSCC cells. The HNSCC cell line OML1 and its radiation-resistant clone OML1-R were used. The anticancer effect and the mechanism of action of Croton tonkinensis and Curcuma longa in OSCC cells were analyzed by using cell viability assays, Western blot analysis, and Tranwell migration assays. The results showed that Croton tonkinensis concentration-dependently reduced the viability of OML1 and OML1-R (radioresistant) cells by downregulating the levels of AKT/mTOR mediators, such as p110α, p85, pAKT (ser473), p-mTOR (ser2448), and p-S6 Ribosomal (ser235/236). We found that cotreatment of OML1 and OML1R cells with either zVAD-FMK (apoptosis inhibitor), Ferrostatin-1 (Fer-1, a ferroptosis inhibitor), or chloroquine (CQ, an autophagy inhibitor) markedly reduced cell death. These results demonstrate that Croton tonkinensis exhibits anti-proliferation activity and highlight the therapeutic potential of small-molecule inhibitors against PI3K/mTOR signaling for radiosensitization in HNC treatment.
Collapse
Affiliation(s)
- Hui-Ming Lee
- Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824005, Taiwan;
- School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (P.-C.K.); (S.-H.L.)
| | - Wen-Hui Chen
- Department of Dentistry, E-Da Hospital, I-Shou University, Kaohsiung 824005, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (P.-C.K.); (S.-H.L.)
| | - Yu-Chieh Su
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 824410, Taiwan
| | - Chih-Hao Chen
- Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| |
Collapse
|
8
|
Vásquez Martínez IP, Pérez-Campos E, Pérez-Campos Mayoral L, Cruz Luis HI, Pina Canseco MDS, Zenteno E, Bazán Salinas IL, Martínez Cruz M, Pérez-Campos Mayoral E, Hernández-Huerta MT. O-GlcNAcylation: Crosstalk between Hemostasis, Inflammation, and Cancer. Int J Mol Sci 2024; 25:9896. [PMID: 39337387 PMCID: PMC11432004 DOI: 10.3390/ijms25189896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc, O-GlcNAcylation) is a post-translational modification of serine/threonine residues of proteins. Alterations in O-GlcNAcylation have been implicated in several types of cancer, regulation of tumor progression, inflammation, and thrombosis through its interaction with signaling pathways. We aim to explore the relationship between O-GlcNAcylation and hemostasis, inflammation, and cancer, which could serve as potential prognostic tools or clinical predictions for cancer patients' healthcare and as an approach to combat cancer. We found that cancer is characterized by high glucose demand and consumption, a chronic inflammatory state, a state of hypercoagulability, and platelet hyperaggregability that favors thrombosis; the latter is a major cause of death in these patients. Furthermore, we review transcription factors and pathways associated with O-GlcNAcylation, thrombosis, inflammation, and cancer, such as the PI3K/Akt/c-Myc pathway, the nuclear factor kappa B pathway, and the PI3K/AKT/mTOR pathway. We also review infectious agents associated with cancer and chronic inflammation and potential inhibitors of cancer cell development. We conclude that it is necessary to approach both the diagnosis and treatment of cancer as a network in which multiple signaling pathways are integrated, and to search for a combination of potential drugs that regulate this signaling network.
Collapse
Affiliation(s)
- Itzel Patricia Vásquez Martínez
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Eduardo Pérez-Campos
- National Institute of Technology of Mexico, Technological Institute of Oaxaca, Oaxaca 68033, Mexico; (E.P.-C.); (M.M.C.)
| | - Laura Pérez-Campos Mayoral
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Holanda Isabel Cruz Luis
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - María del Socorro Pina Canseco
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Edgar Zenteno
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Irma Leticia Bazán Salinas
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Margarito Martínez Cruz
- National Institute of Technology of Mexico, Technological Institute of Oaxaca, Oaxaca 68033, Mexico; (E.P.-C.); (M.M.C.)
| | - Eduardo Pérez-Campos Mayoral
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - María Teresa Hernández-Huerta
- National Council of Humanities, Sciences and Technologies (CONAHCYT), Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
9
|
Subramani R, Chatterjee A, Pedroza DA, Poudel S, Rajkumar P, Annabi J, Penner E, Lakshmanaswamy R. 2-methoxyestradiol inhibits the malignant behavior of triple negative breast cancer cells by altering their miRNome. Front Oncol 2024; 14:1371792. [PMID: 39328201 PMCID: PMC11424607 DOI: 10.3389/fonc.2024.1371792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a subtype of breast cancer with no effective targeted treatment currently available. Estrogen and its metabolites influence the growth of mammary cancer. Previously, we demonstrated the anti-cancer effects of 2-methoxyestradiol (2ME2) on mammary carcinogenesis. Materials and methods In the present study, we investigated the effects of 2ME2 on TNBC cells. TNBC (MDA-MB-231 and MDA-MB-468) and non-tumorigenic breast (MCF10A) cell lines were used to determine the effects of 2ME2 on cell proliferation (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; MTS assay), cell cycle (flow cytometric assay), migration (transwell migration assay), invasion (matrigel invasion assay), apoptosis (annexin V/propidium iodide assay), colony formation (soft agar assay), and miRNome (human miRNA profiling array). The miRNome data were analyzed using the c-BioPortal and Xena platforms. Moreover, Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and reactome pathway analyses were performed. Results We found that 2ME2 effectively inhibited cell proliferation and induced apoptosis. Furthermore, 2ME2 treatment arrested TNBC cells in the S-phase of the cell cycle. Treatment with 2ME2 also significantly decreased the aggressiveness of TNBC cells by inhibiting their migration and invasion. In addition, 2ME2 altered the miRNA expression in these cells. In silico analysis of the miRNome profile of 2ME2-treated MDA-MB-468 cells revealed that miRNAs altered the target genes involved in many different cancer hallmarks. Conclusion 2ME2 inhibits triple negative breast cancer by impacting major cellular processes like proliferation, apoptosis, metastasis, etc. It further modifies gene expression by altering the miRNome of triple negative breast cancer cells. Overall, our findings suggest 2ME2 as a potent anti-cancer drug for the treatment of TNBC.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Animesh Chatterjee
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Diego A Pedroza
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Seeta Poudel
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Preetha Rajkumar
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT, United States
| | - Jeffrey Annabi
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Elizabeth Penner
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, United States
| |
Collapse
|
10
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Nadile M, Sze NSK, Fajardo VA, Tsiani E. Inhibition of Prostate Cancer Cell Survival and Proliferation by Carnosic Acid Is Associated with Inhibition of Akt and Activation of AMPK Signaling. Nutrients 2024; 16:1257. [PMID: 38732504 PMCID: PMC11085396 DOI: 10.3390/nu16091257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Prostate cancer, accounting for 375,304 deaths in 2020, is the second most prevalent cancer in men worldwide. While many treatments exist for prostate cancer, novel therapeutic agents with higher efficacy are needed to target aggressive and hormone-resistant forms of prostate cancer, while sparing healthy cells. Plant-derived chemotherapy drugs such as docetaxel and paclitaxel have been established to treat cancers including prostate cancer. Carnosic acid (CA), a phenolic diterpene found in the herb rosemary (Rosmarinus officinalis) has been shown to have anticancer properties but its effects in prostate cancer and its mechanisms of action have not been examined. CA dose-dependently inhibited PC-3 and LNCaP prostate cancer cell survival and proliferation (IC50: 64, 21 µM, respectively). Furthermore, CA decreased phosphorylation/activation of Akt, mTOR, and p70 S6K. A notable increase in phosphorylation/activation of AMP-activated kinase (AMPK), acetyl-CoA carboxylase (ACC) and its upstream regulator sestrin-2 was seen with CA treatment. Our data indicate that CA inhibits AKT-mTORC1-p70S6K and activates Sestrin-2-AMPK signaling leading to a decrease in survival and proliferation. The use of inhibitors and small RNA interference (siRNA) approaches should be employed, in future studies, to elucidate the mechanisms involved in carnosic acid's inhibitory effects of prostate cancer.
Collapse
Affiliation(s)
- Matteo Nadile
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (M.N.); (N.S.K.S.); (V.A.F.)
| | - Newman Siu Kwan Sze
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (M.N.); (N.S.K.S.); (V.A.F.)
| | - Val A. Fajardo
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (M.N.); (N.S.K.S.); (V.A.F.)
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (M.N.); (N.S.K.S.); (V.A.F.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
12
|
Chen HC, Kuo CY, Chang Y, Tsai DL, Lee MH, Lee JY, Lee HM, Su YC. 5-Methoxytryptophan enhances the sensitivity of sorafenib on the inhibition of proliferation and metastasis for lung cancer cells. BMC Cancer 2024; 24:248. [PMID: 38388902 PMCID: PMC10885375 DOI: 10.1186/s12885-024-11986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer-related mortality worldwide, and effective therapies are limited. Lung cancer is a leading cause of cancer-related mortality worldwide with limited effective therapy. Sorafenib is a multi-tyrosine kinase inhibitor frequently used to treat numerous types of malignant tumors. However, it has been demonstrated that sorafenib showed moderate antitumor activity and is associated with several side effects in lung cancer, which restricted its clinical application. This study aimed to examine the antitumor effect of the combination treatment of sorafenib and 5-methoxytryptophan (5-MTP) on cell growth and metastasis of Lewis lung carcinoma (LLC) cells. METHOD The anticancer effect of the combination treatment of sorafenib and 5-MTP was determined through cytotoxicity assay and colony forming assays. The mechanism was elucidated using flow cytometry and western blotting. Wound healing and Transwell assays were conducted to evaluate the impact of the combination treatment on migration and invasion abilities. An in vivo model was employed to analyze the effect of the combination treatment on the tumorigenic ability of LLC cells. RESULT Our results demonstrated that the sorafenib and 5-MTP combination synergistically reduced viability and proliferation compared to sorafenib or 5-MTP treatment alone. Reduction of cyclin D1 expression was observed in the sorafenib alone or combination treatments, leading to cell cycle arrest. Furthermore, the sorafenib-5-MTP combination significantly increased the inhibitory effect on migration and invasion of LLC cells compared to the single treatments. The combination also significantly downregulated vimentin and MMP9 levels, contributing to the inhibition of metastasis. The reduction of phosphorylated Akt and STAT3 expression may further contribute to the inhibitory effect on proliferation and metastasis. In vivo, the sorafenib-5-MTP combination further reduced tumor growth and metastasis compared to the treatment of sorafenib alone. CONCLUSIONS In conclusion, our data indicate that 5-MTP sensitizes the antitumor activity of sorafenib in LLC cells in vitro and in vivo, suggesting that sorafenib-5-MTP has the potential to serve as a therapeutic option for patients with lung cancer.
Collapse
Affiliation(s)
- Huang-Chi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yu Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu Chang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Dong-Lin Tsai
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Hsuan Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jui-Ying Lee
- Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Ming Lee
- Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Chieh Su
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Teng YJ, Yang YX, Yang JJ, Lu QY, Shi JY, Xu JH, Bao J, Wang QH. Association between triglyceride-glucose index and colorectal polyps: A retrospective cross-sectional study. World J Gastrointest Endosc 2024; 16:55-63. [PMID: 38464818 PMCID: PMC10921154 DOI: 10.4253/wjge.v16.i2.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Colorectal polyps (CPs) are frequently occurring abnormal growths in the colorectum, and are a primary precursor of colorectal cancer (CRC). The triglyceride-glucose (TyG) index is a novel marker that assesses metabolic health and insulin resistance, and has been linked to gastrointestinal cancers. AIM To investigate the potential association between the TyG index and CPs, as the relation between them has not been documented. METHODS A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan, Jiangsu Province, China, between January 2020 and December 2022 were included in this retrospective cross-sectional study. After excluding individuals who did not meet the eligibility criteria, descriptive statistics were used to compare characteristics between patients with and without CPs. Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs. The TyG index was calculated using the following formula: Ln [triglyceride (mg/dL) × glucose (mg/dL)/2]. The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports. RESULTS A nonlinear relation between the TyG index and the prevalence of CPs was identified, and exhibited a curvilinear pattern with a cut-off point of 2.31. A significant association was observed before the turning point, with an odds ratio (95% confidence interval) of 1.70 (1.40, 2.06), P < 0.0001. However, the association between the TyG index and CPs was not significant after the cut-off point, with an odds ratio (95% confidence interval) of 0.57 (0.27, 1.23), P = 0.1521. CONCLUSION Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals, suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.
Collapse
Affiliation(s)
- Ya-Jie Teng
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Ying-Xue Yang
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Jing-Jing Yang
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Qiu-Yan Lu
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Jia-Yi Shi
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Jian-Hao Xu
- Department of Pathology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Jie Bao
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| | - Qing-Hua Wang
- Department of Gastroenterology, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| |
Collapse
|
14
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Yayan J, Franke KJ, Berger M, Windisch W, Rasche K. Adhesion, metastasis, and inhibition of cancer cells: a comprehensive review. Mol Biol Rep 2024; 51:165. [PMID: 38252369 PMCID: PMC10803487 DOI: 10.1007/s11033-023-08920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
This comprehensive review delves into cancer's complexity, focusing on adhesion, metastasis, and inhibition. It explores the pivotal role of these factors in disease progression and therapeutic strategies. This review covers cancer cell migration, invasion, and colonization of distant organs, emphasizing the significance of cell adhesion and the intricate metastasis process. Inhibition approaches targeting adhesion molecules, such as integrins and cadherins, are discussed. Overall, this review contributes significantly to advancing cancer research and developing targeted therapies, holding promise for improving patient outcomes worldwide. Exploring different inhibition strategies revealed promising therapeutic targets to alleviate adhesion and metastasis of cancer cells. The effectiveness of integrin-blocking antibodies, small molecule inhibitors targeting Focal adhesion kinase (FAK) and the Transforming Growth Factor β (TGF-β) pathway, and combination therapies underscores their potential to disrupt focal adhesions and control epithelial-mesenchymal transition processes. The identification of as FAK, Src, β-catenin and SMAD4 offers valuable starting points for further research and the development of targeted therapies. The complex interrelationships between adhesion and metastatic signaling networks will be relevant to the development of new treatment approaches.
Collapse
Affiliation(s)
- Josef Yayan
- Department of Internal Medicine, Division of Pulmonary, Allergy, and Sleep Medicine, Witten/Herdecke University, HELIOS Clinic Wuppertal, Heusnerstr. 40, 42283, Wuppertal, Germany.
| | - Karl-Josef Franke
- Department of Internal Medicine, Pulmonary Division, Internal Intensive Care Medicine, Infectiology, and Sleep Medicine, Märkische Clinics Health Holding Ltd, Clinic Lüdenscheid, Witten/Herdecke University, Lüdenscheid, Germany
| | - Melanie Berger
- Department of Pneumology, Cologne Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Wolfram Windisch
- Department of Pneumology, Cologne Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Kurt Rasche
- Department of Internal Medicine, Division of Pulmonary, Allergy, and Sleep Medicine, Witten/Herdecke University, HELIOS Clinic Wuppertal, Heusnerstr. 40, 42283, Wuppertal, Germany
| |
Collapse
|
16
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
17
|
Zhao Y, Lin S, Zeng W, Lin X, Qin X, Miu B, Gao S, Wu H, Liu J, Chen X. JS-K activates G2/M checkpoints through the DNA damage response and induces autophagy via CAMKKβ/AMPKα/mTOR pathway in bladder cancer cells. J Cancer 2024; 15:343-355. [PMID: 38169515 PMCID: PMC10758033 DOI: 10.7150/jca.86393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 01/05/2024] Open
Abstract
The aim of this study was to investigate the effects of JS-K, a nitric oxide donor prodrug, on DNA damage and autophagy in bladder cancer (BCa) cells and to explore the potential related mechanisms. Through detecting proliferation viability, cell morphology observation and colony formation assay low concentrations of JS-K significantly inhibited BCa growth while having no effect on normal cells. JS-K induced an increase in the level of DNA damage protein γH2AX and a decrease in the level of DNA damage repair-related proteins PCNA and RAD51 in BCa cells, indicating that JS-K can induce DNA damage in BCa cells and inhibit DNA damage repair. JS-K induced G2/M phase block and calcium overload using flow cytometry analysis. Moreover, we also investigated the levels of cell G2/M cycle checkpoint-related protein and autophagy-associated protein by western blot. The results of our study demonstrated that JS-K induced BCa cells G2/M phase arrest due to upregulating proteins related to DNA damage-related G2/M checkpoint activation (p-ATM, p-ATR, p-Chk1, p-Chk2, and p-Cdc2) and down-regulation of Cyclin B1 protein. In addition, our study demonstrated that JS-K-induced autophagy in BCa cells was related to the CAMKKβ/AMPKα/mTOR pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianjun Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaojun Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
18
|
Rayginia TP, Keerthana CK, Shifana SC, Pellissery MJ, Abhishek A, Anto RJ. Phytochemicals as Potential Lead Molecules against Hepatocellular Carcinoma. Curr Med Chem 2024; 31:5199-5221. [PMID: 38213177 DOI: 10.2174/0109298673275501231213063902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, accounting for 85-90% of liver cancer cases and is a leading cause of cancer-related mortality worldwide. The major risk factors for HCC include hepatitis C and B viral infections, along with chronic liver diseases, such as cirrhosis, fibrosis, and non-alcoholic steatohepatitis associated with metabolic syndrome. Despite the advancements in modern medicine, there is a continuous rise in the annual global incidence rate of HCC, and it is estimated to reach >1 million cases by 2025. Emerging research in phytomedicine and chemotherapy has established the anti-cancer potential of phytochemicals, owing to their diverse biological activities. In this review, we report the major phytochemicals that have been explored in combating hepatocellular carcinoma and possess great potential to be used as an alternative or in conjunction with the existing HCC treatment modalities. An overview of the pre-clinical observations, mechanism of action and molecular targets of some of these phytochemicals is also incorporated.
Collapse
Affiliation(s)
- Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | - Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | | | - Maria Joy Pellissery
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Ajmani Abhishek
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| |
Collapse
|
19
|
Yang J, Jiang H, Fu Q, Qin H, Li Y, Liu M. Blue light photobiomodulation induced apoptosis by increasing ROS level and regulating SOCS3 and PTEN/PI3K/AKT pathway in osteosarcoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112814. [PMID: 37956614 DOI: 10.1016/j.jphotobiol.2023.112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Blue light photobiomodulation (PBM) has attracted great attention in diminishing proliferation and inducing death of cancer cells recently. Osteosarcoma (OS) primarily occurring in children and adolescents, the limitations of drug resistance and limb salvage make it urgent to develop and identify new adjuvant therapeutic strategies. In this work, we attempted to research the anticancer effects and biological mechanisms of blue light PBM in human OS MG63 cells. The effects of various blue light parameters on MG63 cells indicated that suppressed cell proliferation and cell migration, induced cell apoptosis which are experimentally assessed using multiple assays including CCK, LDH, wound healing assay and Hoechst staining. Concurrently, the increases of ROS level and the inhibition of PI3K and AKT expression were identified under high-dose blue light PBM in MG63 cells. Meanwhile, SOCS3 is a major inducible anti-tumor molecule, we also found that blue light LED substantially promoted its expression. Thus, this study proposed that bule light PBM may be a hopeful therapeutic approach in OS clinical treatment in the future.
Collapse
Affiliation(s)
- Jiali Yang
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Qiqi Fu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Yinghua Li
- Shanghai Fifth People's Hospital, Fudan University, 801th Heqing Road, Shanghai 200240, China
| | - Muqing Liu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 28403, China.
| |
Collapse
|
20
|
Zhu M, He Q, Wang Y, Duan L, Rong K, Wu Y, Ding Y, Mi Y, Ge X, Yang X, Yu Y. Exploring the mechanism of aloe-emodin in the treatment of liver cancer through network pharmacology and cell experiments. Front Pharmacol 2023; 14:1238841. [PMID: 37900162 PMCID: PMC10600456 DOI: 10.3389/fphar.2023.1238841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Objective: Aloe-emodin (AE) is an anthraquinone compound extracted from the rhizome of the natural plant rhubarb. Initially, it was shown that AE exerts an anti-inflammatory effect. Further studies revealed its antitumor activity against various types of cancer. However, the mechanisms underlying these properties remain unclear. Based on network pharmacology and molecular docking, this study investigated the molecular mechanism of AE in the treatment of hepatocellular carcinoma (HCC), and evaluated its therapeutic effect through in vitro experiments. Methods: CTD, Pharmmapper, SuperPred and TargetNet were the databases to obtain potential drug-related targets. DisGenet, GeneCards, OMIM and TTD were used to identify potential disease-related targets. Intersection genes for drugs and diseases were obtained through the Venn diagram. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersecting genes were conducted by the website of Bioinformatics. Intersection genes were introduced into STRING to construct a protein-protein interaction network, while the Cytoscape3.9.1 software was used to visualize and analyze the core targets. AutoDock4.2.6 was utilized to achieve molecular docking between drug and core targets. In vitro experiments investigated the therapeutic effects and related mechanisms of AE. Results: 63 overlapped genes were obtained and GO analysis generated 3,646 entries by these 63 intersecting genes. KEGG analysis mainly involved apoptosis, proteoglycans in cancer, TNF signaling pathway, TP53 signaling pathway, PI3K-AKT signaling pathway, etc. AKT1, EGFR, ESR1, TP53, and SRC have been identified as core targets because the binding energies of them between aloe-emodin were less than -5 kcal/Mol.The mRNA and protein expression, prognosis, mutation status, and immune infiltration related to core targets were further revealed. The involvement of AKT1 and EGFR, as well as the key target of the PI3K-AKT signaling pathway, indicated the importance of this signaling pathway in the treatment of HCC using AE. The results of the Cell Counting Kit-8 assay and flow analysis demonstrated the therapeutic effect of AE. The downregulation of EGFR, PI3KR1, AKT1, and BCL2 in mRNA expression and PI3KR1, AKT,p-AKT in protein expression confirmed our hypothesis. Conclusion: Based on network pharmacology and molecular docking, our study initially showed that AE exerted a therapeutic effect on HCC by modulating multiple signaling pathways. Various analyses confirmed the antiproliferative activity and pro-apoptotic effect of AE on HCC through the PI3K-AKT signaling pathway. This study revealed the therapeutic mechanism of AE in the treatment of HCC through a novel approach, providing a theoretical basis for the clinical application of AE.
Collapse
Affiliation(s)
- Mingyang Zhu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingmin He
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yanan Wang
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Liying Duan
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kang Rong
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Wu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ye Ding
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Ge
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaocui Yang
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yong Yu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Abushanab AK, Mousa MT, Mustafa MT, Qawaqzeh RA. The efficacy and safety of Capivasertib (AZD5363) in the treatment of patients with solid tumor: a systematic review and meta-analysis of randomized clinical trials. Expert Opin Drug Saf 2023; 22:799-805. [PMID: 37224269 DOI: 10.1080/14740338.2023.2218085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/02/2023] [Accepted: 03/27/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To evaluate the clinical efficacy and safety of Capivasertib on patients with solid tumors. METHODS Data from four RCTs were pooled to create a systematic review and meta-analysis focusing on Capivasertib-treated patients with solid tumor. Progression-free survival (PFS) and adverse events (AE) were the primary outcomes. RESULTS A total of 540 individuals from four RCTs were included. The analysis showed that Capivasertib improved PFS for the ITT population with an HR of 0.75 (95% CI = 0.62-0.90, p = 0.002), whereas it did not show improvement in PFS of the PI3K/AKT/PTEN-altered group with an HR = 0.61 (95% CI = 0.32-1.16, p = 0.13). The analysis also showed that Capivasertib improved OS for the ITT population with an HR = 0.61 (95% CI = 0.47-0.78, p = 0.0001). For safety, four studies were included; statistical differences between Capivasertib and placebo were found in discontinuation of Capivasertib due to toxicity or AE (RR = 2.37, 95% CI = 1.37-4.10, p = 0.002). CONCLUSION Capivasertib plus chemotherapy or hormonal therapy combination has shown promising antitumor efficacy and promising safety profile in the treatment of individuals with solid tumor.
Collapse
|
22
|
Karadag I, Karakaya S, Akkan T, Demir B, Alkurt EG, Dogan M. The Potential Prognostic Marker TyG Index Predicts Time to Brain Metastasis at HER2 Positive Breast Cancer. Cancer Manag Res 2023; 15:311-317. [PMID: 36994110 PMCID: PMC10042251 DOI: 10.2147/cmar.s403445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Background We aimed to investigate the prognostic significance of insulin resistance (IR) markers fasting triglyceride-glucose (TyG) index and triglyceride high-density lipoprotein cholesterol (TG/HDL-C) ratio in HER2-positive breast cancer (BC) patients with brain metastasis (BM). Methods In this single-center study, 120 patients who met the criteria were included. TyG and TG/HDL-C at the time of diagnosis were computed retrospectively. For TyG and TG/HDL-C, the median values of 9.32 and 2.95 were taken as the cut-off, respectively. TyG values <9.32 and <2.95 were considered low, and TG/HDL-C values ≥9.32 and ≥2.95 were considered high. Results The median overall survival (OS) was 47 months (95% CI: 40.54-53.45). Time to BM was 22 months (95% CI: 17.22-26.73). The median time to BM was 35 months (95% CI: 20.90-49.09) in the low TyG group and 15 months (95% CI: 8.92-21.07) in the high TyG group (p < 0.001). The time to BM was 27 months (95% CI: 20.49-33.50) in the low TG/HDL-C group and 20 months (95% CI: 16.76-23.23) in the high TG/HDL-C group (p=0.084). In the multivariate Cox regression analysis, the TyG index (HR: 20.98, 95% CI: 7.14-61.59, p < 0.001) was an independent risk factor for time to BM. Conclusion These findings suggest that the TyG index could be used as a predictive biomarker at the time of diagnosis for risk of time BM in patients with HER2-positive BC. The TyG index can be used as a standard potential marker with prospective studies confirming these data.
Collapse
Affiliation(s)
- Ibrahim Karadag
- Department of Medical Oncology, Hitit University Erol Olcok Training and Research Hospital, Corum, Turkey
| | - Serdar Karakaya
- Department of Medical Oncology, Health Science University, Atatürk Chest Diseases and Chest Surgery Training and Research Hospital, Ankara, Turkey
| | - Tolga Akkan
- Department of Endocrinology, Eskisehir City Hospital, Eskisehir, Turkey
| | - Bilgin Demir
- Department of Medical Oncology, Aydın Atatürk Public Hospital, Aydın, Turkey
| | - Ertugrul Gazi Alkurt
- Department of Surgical Oncology, Hitit University Erol Olcok Training and Research Hospital, Corum, Turkey
| | - Mutlu Dogan
- Department of Medical Oncology, Health Sciences University, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
23
|
Wang Y, Hu Y, Wang T, Che G, Li L. Addition of metformin for non-small cell lung cancer patients receiving antineoplastic agents. Front Pharmacol 2023; 14:1123834. [PMID: 36969876 PMCID: PMC10036803 DOI: 10.3389/fphar.2023.1123834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Background and purpose: Previous studies have found that metformin can inhibit tumor growth and improve outcomes for cancer patients. However, the association between the addition of metformin to the treatment regimen and survival in non-small cell lung cancer (NSCLC) patients receiving antineoplastic agents such as chemotherapy drugs, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), and immune checkpoint inhibitors (ICIs) remains unclear. This study aimed to evaluate the effect of metformin in NSCLC patients who received the aforementioned antineoplastic therapies.Methods: Several electronic databases were searched for relevant studies published by 10 September 2022. The primary and secondary outcomes were overall survival (OS) and progression-free survival (PFS); eligible studies were those comparing patients with and without the addition of metformin. Hazard ratios (HRs) and 95% confidence intervals (CIs) were combined, with all statistical analyses performed using STATA 15.0.Results: A total of 19 studies involving 6,419 participants were included, of which six were randomized controlled trials. The overall pooled results indicate that the addition of metformin improved OS (HR = 0.84, 95% CI: 0.71–0.98, p = 0.029) and PFS (HR = 0.85, 95% CI: 0.74–0.99, p = 0.039). However, subgroup analysis based on treatment type and comorbidity of diabetes mellitus demonstrated that improvements in OS and PFS were observed only in diabetic and EGFR-TKI-treated patients (OS: HR = 0.64, 95% CI: 0.45–0.90, p = 0.011; PFS: HR = 0.59, 95% CI: 0.34–1.03, p = 0.061).Conclusion: Overall, this meta-analysis found that metformin use could improve outcomes for diabetic patients receiving EGFR-TKIs. However, no significant association between the addition of metformin and the survival of non-diabetic NSCLC patients receiving chemotherapy or ICI therapy was identified based on the current evidence.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guowei Che, ; Lu Li,
| | - Lu Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guowei Che, ; Lu Li,
| |
Collapse
|
24
|
Shirani-Bidabadi S, Tabatabaee A, Tavazohi N, Hariri A, Aref AR, Zarrabi A, Casarcia N, Bishayee A, Mirian M. CRISPR technology: A versatile tool to model, screen, and reverse drug resistance in cancer. Eur J Cell Biol 2023; 102:151299. [PMID: 36809688 DOI: 10.1016/j.ejcb.2023.151299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Drug resistance is a serious challenge in cancer treatment that can render chemotherapy a failure. Understanding the mechanisms behind drug resistance and developing novel therapeutic approaches are cardinal steps in overcoming this issue. Clustered regularly interspaced short palindrome repeats (CRISPR) gene-editing technology has proven to be a useful tool to study cancer drug resistance mechanisms and target the responsible genes. In this review, we evaluated original research studies that used the CRISPR tool in three areas related to drug resistance, namely screening resistance-related genes, generating modified models of resistant cells and animals, and removing resistance by genetic manipulation. We reported the targeted genes, study models, and drug groups in these studies. In addition to discussing different applications of CRISPR technology in cancer drug resistance, we analyzed drug resistance mechanisms and provided examples of CRISPR's role in studying them. Although CRISPR is a powerful tool for examining drug resistance and sensitizing resistant cells to chemotherapy, more studies are required to overcome its disadvantages, such as off-target effects, immunotoxicity, and inefficient delivery of CRISPR/cas9 into the cells.
Collapse
Affiliation(s)
- Shiva Shirani-Bidabadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Aliye Tabatabaee
- Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Nazita Tavazohi
- Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Amirali Hariri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Translational Sciences, Xsphera Biosciences Inc., Boston, MA 02215, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| |
Collapse
|
25
|
Abd Emoniem N, Mukhtar RM, Ghaboosh H, Elshamly EM, Mohamed MA, Elsaman T, Alzain AA. Turning down PI3K/AKT/mTOR signalling pathway by natural products: an in silico multi-target approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:163-182. [PMID: 36853097 DOI: 10.1080/1062936x.2023.2181392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The PI3K/AKT/mTOR pathway is a significant target for cancer drug discovery. Many efforts have focused on discovering new inhibitors against key kinase proteins involved in this pathway for cancer treatment. PI3K/mTOR dual inhibitors, such as PKI-179, have been reported to be more effective than agents that act only on a single protein target. The present computational study aimed to discover triple target inhibitors against PI3K, AKT, and mTOR proteins. Accordingly, the PI3K protein bound with the ligand was used as input for e-pharmacophore modelling to generate the pharmacophore hypothesis and then screened for a library of 270,540 natural products from the Zinc database resulting in 57,220 compounds that matched the hypothesis. These compounds were then docked into the active site of PI3K, resulting in 292 compounds with better docking scores than the co-crystallized ligand. These compounds were re-docked into AKT and mTOR proteins. Besides, MM-GBSA binding free energy calculations, MD simulations, and ADMET prediction were carried out, leading to 5 potential triple-target inhibitors namely, ZINC000014644152, ZINC000014760695, ZINC000014644839, ZINC000095099451, and ZINC000005998557. In conclusion, these inhibitors may be possible leads for inhibiting PI3K/AKT/mTOR pathway, and they may be further evaluated in vitro and clinically as anticancer agents.
Collapse
Affiliation(s)
- N Abd Emoniem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - R M Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - H Ghaboosh
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - E M Elshamly
- Department of Molecular Biotechnology, Hochschule Anhalt, Köthen, Germany
| | - M A Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - T Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
26
|
Curigliano G, Shapiro GI, Kristeleit RS, Abdul Razak AR, Leong S, Alsina M, Giordano A, Gelmon KA, Stringer-Reasor E, Vaishampayan UN, Middleton M, Olszanski AJ, Rugo HS, Kern KA, Pathan N, Perea R, Pierce KJ, Mutka SC, Wainberg ZA. A Phase 1B open-label study of gedatolisib (PF-05212384) in combination with other anti-tumour agents for patients with advanced solid tumours and triple-negative breast cancer. Br J Cancer 2023; 128:30-41. [PMID: 36335217 PMCID: PMC9814742 DOI: 10.1038/s41416-022-02025-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND This Phase 1b study (B2151002) evaluated the PI3K/mTOR inhibitor gedatolisib (PF-05212384) in combination with other anti-tumour agents in advanced solid tumours. METHODS Patients with various malignancies were administered gedatolisib (90‒310 mg intravenously every week [QW]) plus docetaxel (arm A) or cisplatin (arm B) (each 75 mg/m2 intravenously Q3W) or dacomitinib (30 or 45 mg/day orally). The safety and tolerability of combination therapies were assessed during dose escalation; objective response (OR) and safety were assessed during dose expansion. RESULTS Of 110 patients enrolled, 107 received gedatolisib combination treatment. Seven of 70 (10.0%) evaluable patients had dose-limiting toxicities; the most common was grade 3 oral mucositis (n = 3). Based upon reprioritisation of the sponsor's portfolio, dose expansion focused on arm B, gedatolisib (180 mg QW) plus cisplatin in patients (N = 22) with triple-negative breast cancer (TNBC). OR (95% CI) was achieved in four of ten patients in first-line (overall response rate 40.0% [12.2-73.8%]) and four of 12 in second/third-line (33.3% [9.9-65.1%]) settings. One patient in each TNBC arm (10%, first-line; 8.3%, second/third-line) achieved a complete response. CONCLUSIONS Gedatolisib combination therapy showed an acceptable tolerability profile, with clinical activity at the recommended Phase 2 dose in patients with TNBC. CLINICAL TRIAL ClinicalTrial.gov: NCT01920061.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- Istituto Europeo di Oncologia, IRCCS, Milano, Italy.
- University of Milan, Milano, Italy.
| | | | | | | | - Stephen Leong
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Maria Alsina
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Antonio Giordano
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | | - Erica Stringer-Reasor
- University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, AL, USA
| | - Ulka N Vaishampayan
- University of Michigan/Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | | | | | | | | | - Zev A Wainberg
- David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
28
|
Ye G, Wang J, Yang W, Li J, Ye M, Jin X. The roles of KLHL family members in human cancers. Am J Cancer Res 2022; 12:5105-5139. [PMID: 36504893 PMCID: PMC9729911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
Collapse
Affiliation(s)
- Ganghui Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Weili Yang
- Yinzhou People’s Hospital of Medical School, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
29
|
Han M, Wang H, Yang S, Zhu S, Zhao G, Shi H, Li P. Triglyceride glucose index and Atherogenic index of plasma for predicting colorectal neoplasms in patients without cardiovascular diseases. Front Oncol 2022; 12:1031259. [PMID: 36452491 PMCID: PMC9702061 DOI: 10.3389/fonc.2022.1031259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/27/2022] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND AND AIMS Colorectal neoplasms (CRN) include colorectal cancer (CRC) and colorectal adenoma (CRA). The relationship between CRN and triglyceride-glucose (TyG) index or between CRN and atherogenic index of plasma (AIP) is unclear. This study aims to investigate the roles of TyG index and AIP in predicting CRN in people without cardiovascular disease (CVD). METHODS 2409 patients without CVD underwent colonoscopy were enrolled. Clinical information and relevant laboratory test results of these patients were collected and recorded. According to endoscopic and pathological results, all participants were divided into a neoplasms group and a non-neoplasms group. The TyG index was calculated as ln (TGs×FPG/2), while AIP was calculated as log (TGs/HDL-C). We used uni- and multivariate logistic regression and restricted cubic spline (RCS) to analyze the association between the TyG inedx, AIP and CRN, develop predictive models and construct the nomograms. Receiver operating characteristic (ROC) curves were utilized to evaluate the predictive value for CRN. RESULTS Participants in the neoplasms group were more likely to be older, have higher TyG index, higher AIP and higher rates of fecal occult blood test positivity, and were more likely to be male, smokers and those with the family history of CRC (P < 0.05). The higher TyG index was related to the higher risk of CRN [OR (95% CI): 1.23 (1.08 - 1.41), P = 0.003]. The higher AIP was related to the higher risk of CRN [OR (95% CI): 1.55 (1.16 - 2.06), P = 0.003]. These two indicators are better for predicting CRN in women than men. The combined use of the TyG index and other independent risk factors (age, sex, smoking status, family history and FOBT) to distinguish CRN was effective, with a sensitivity of 61.0%, a specificity of 65.1% and an AUC of 0.669 (95%CI, 0.639 - 0.698). Likewise, the combined use of the AIP and other independent risk factors to distinguish CRN was also effective, the model had an overall 56.3% sensitivity and 68.7% specificity with an AUC of 0.667 (95%CI, 0.638 - 0.697). CONCLUSION This study showed that the TyG index and the AIP might be biomarkers that could be used to predict the risk of CRN in patients without CVD.
Collapse
Affiliation(s)
- Muzhou Han
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Hao Wang
- Department of Clinical Epidemiology and Evidence-based Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Siying Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Haiyun Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| |
Collapse
|
30
|
Yamauchi T, Shangraw S, Zhai Z, Ravindran Menon D, Batta N, Dellavalle RP, Fujita M. Alcohol as a Non-UV Social-Environmental Risk Factor for Melanoma. Cancers (Basel) 2022; 14:5010. [PMID: 36291794 PMCID: PMC9599745 DOI: 10.3390/cancers14205010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Although cancer mortality has declined among the general population, the incidence of melanoma continues to rise. While identifying high-risk cohorts with genetic risk factors improves public health initiatives and clinical care management, recognizing modifiable risk factors such as social-environmental risk factors would also affect the methods of patient outreach and education. One major modifiable social-environmental risk factor associated with melanoma is ultraviolet (UV) radiation. However, not all forms of melanoma are correlated with sun exposure or occur in sun-exposed areas. Additionally, UV exposure is rarely associated with tumor progression. Another social-environmental factor, pregnancy, does not explain the sharply increased incidence of melanoma. Recent studies have demonstrated that alcohol consumption is positively linked with an increased risk of cancers, including melanoma. This perspective review paper summarizes epidemiological data correlating melanoma incidence with alcohol consumption, describes the biochemical mechanisms of ethanol metabolism, and discusses how ethanol and ethanol metabolites contribute to human cancer, including melanoma.
Collapse
Affiliation(s)
- Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nisha Batta
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Wang C, Chen J, Kuang Y, Cheng X, Deng M, Jiang Z, Hu X. A novel methylated cation channel TRPM4 inhibited colorectal cancer metastasis through Ca 2+/Calpain-mediated proteolysis of FAK and suppression of PI3K/Akt/mTOR signaling pathway. Int J Biol Sci 2022; 18:5575-5590. [PMID: 36147460 PMCID: PMC9461655 DOI: 10.7150/ijbs.70504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) is an aggressive malignancy with poor prognosis. It is imperative to elucidate the potential molecular mechanisms that regulate CRC cell aggressiveness. In present study, the transient receptor potential melastatin 4 (TRPM4), a calcium-activated nonselective cation channel, is downregulated in CRC as a novel methylated tumor suppressor gene (TSG). The reduced mRNA level of TRPM4 is due to the epigenetic methylation of its promoter CpG island (CGI). Moreover, ectopic expression of TRPM4 inhibited tumor growth and metastasis both in vitro and in vivo. Our experiments also demonstrate that TRPM4 restructures the CRC cytoskeleton and activates the Ca2+-mediated calpain pathway through enhancing calcium influx. The western blot analysis shows that the expression of focal adhesion kinase (FAK), a calpain-mediated proteolytic substrate, is markedly suppressed after ectopic overexpression of TRPM4, besides, Akt (also known as protein kinase B, PKB), phosphatidylinositol 3-kinase (PI3K) as well as its central target mTOR have significantly decreased expression accompanied by elevated E-cadherin and restrained matrix metalloproteinases (MMP2/MMP9) expression. The inhibition of protease calpain effectively relieves the retard of FAK/Akt signals and reverses the migration suppression of TRPM4. Taken together, TRPM4, identified as a novel methylated TSG, employs intracellular Ca2+ signals to activate calpain-mediated cleavage of FAK and impede CRC migration and invasion through modulating the PI3K/Akt/mTOR signaling cascade, providing the first evidence that TRPM4 is likely to be a significant biomarker and potential target for CRC therapy.
Collapse
Affiliation(s)
- Chan Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jiaxin Chen
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Yeye Kuang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiaoqing Cheng
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Min Deng
- Department of Pathology, The First People's Hospital of Fuyang, Hangzhou 311400, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Xiaotong Hu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, China.,Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
32
|
Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int J Mol Sci 2022; 23:ijms231710132. [PMID: 36077529 PMCID: PMC9456549 DOI: 10.3390/ijms231710132] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.
Collapse
|
33
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
34
|
Su YC, Wang CC, Weng JH, Yeh SA, Chen PJ, Hwang TZ, Chen HC. 5-Methoxytryptophan Sensitizing Head and Neck Squamous Carcinoma Cell to Cisplatitn Through Inhibiting Signal Transducer and Activator of Transcription 3 (STAT3). Front Oncol 2022; 12:834941. [PMID: 35936759 PMCID: PMC9353643 DOI: 10.3389/fonc.2022.834941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common cancer of the oral cavity. Cisplatin (CDDP) is the ideal chemo-radiotherapy used for several tumor types, but resistance to the drug has become a major obstacle in treating patients with HNSCC. 5-methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, reduces inflammation-mediated proliferation and metastasis. This study aimed to assess the anti-oral cancer activity of 5-MTP when used alone or in combination with CDDP. Results showed that CDDP dose dependently reduced the growth of SSC25 cells but not 5-MTP. The combination of CDDP and 5-MTP exerted additional inhibitory effect on the growth of SSC25 cells by attenuating the phosphorylation of STAT3. In the 4-nitroquinoline-1-oxide-induced oral cancer mouse model, 5-MTP sensitized the reduction effect of CDDP on tumorigenesis, which restricted the tongue tissue in hyperkeratotic lesion rather than squamous cell carcinoma. The combination of CDDP and 5-MTP may be a potent therapeutic strategy for HNSCC patients with radiotherapy.
Collapse
Affiliation(s)
- Yu-Chieh Su
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Chih-Chun Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Otolaryngology, E-Da Hospital, Kaohsiung, Taiwan
| | - Jui-Hsi Weng
- Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Shyh-An Yeh
- Department of Radiation Oncology, E-Da Hospital, Kaohsiung, Taiwan
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung City, Taiwan
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Tzer-Zen Hwang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Otolaryngology, E-Da Hospital, Kaohsiung, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- *Correspondence: Huang-Chi Chen,
| |
Collapse
|
35
|
Alfaifi A, Bahashwan S, Alsaadi M, Malhan H, Aqeel A, Al-Kahiry W, Almehdar H, Qadri I. Metabolic Biomarkers in B-Cell Lymphomas for Early Diagnosis and Prediction, as Well as Their Influence on Prognosis and Treatment. Diagnostics (Basel) 2022; 12:394. [PMID: 35204484 PMCID: PMC8871334 DOI: 10.3390/diagnostics12020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
B-cell lymphomas exhibit a vast variety of clinical and histological characteristics that might complicate the diagnosis. Timely diagnosis is crucial, as treatments for aggressive subtypes are considered successful and frequently curative, whereas indolent B-cell lymphomas are incurable and often need several therapies. The purpose of this review is to explore the current advancements achieved in B-cell lymphomas metabolism and how these indicators help to early detect metabolic changes in B-cell lymphomas and the use of predictive biological markers in refractory or relapsed disease. Since the year 1920, the Warburg effect has been known as an integral part of metabolic reprogramming. Compared to normal cells, cancerous cells require more glucose. These cancer cells undergo aerobic glycolysis instead of oxidative phosphorylation to metabolize glucose and form lactate as an end product. With the help of these metabolic alterations, a novel biomass is generated by the formation of various precursors. An aggressive metabolic phenotype is an aerobic glycolysis that has the advantage of producing high-rate ATP and preparing the biomass for the amino acid, as well as fatty acid, synthesis needed for a rapid proliferation of cells, while aerobic glycolysis is commonly thought to be the dominant metabolism in cancer cells. Later on, many metabolic biomarkers, such as increased levels of lactate dehydrogenase (LDH), plasma lactate, and deficiency of thiamine in B-cell lymphoma patients, were discovered. Various kinds of molecules can be used as biomarkers, such as genes, proteins, or hormones, because they all refer to body health. Here, we focus only on significant metabolic biomarkers in B-cell lymphomas. In conclusion, many metabolic biomarkers have been shown to have clinical validity, but many others have not been subjected to extensive testing to demonstrate their clinical usefulness in B-cell lymphoma. Furthermore, they play an essential role in the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
- Department of Hematology, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- King AbdulAziz University Hospital, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Aqeel Aqeel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
| |
Collapse
|
36
|
Deng C, Hu F, Zhao Z, Zhou Y, Liu Y, Zhang T, Li S, Zheng W, Zhang W, Wang T, Ma X. The Establishment of Quantitatively Regulating Expression Cassette with sgRNA Targeting BIRC5 to Elucidate the Synergistic Pathway of Survivin with P-Glycoprotein in Cancer Multi-Drug Resistance. Front Cell Dev Biol 2022; 9:797005. [PMID: 35047507 PMCID: PMC8762277 DOI: 10.3389/fcell.2021.797005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Quantitative analysis and regulating gene expression in cancer cells is an innovative method to study key genes in tumors, which conduces to analyze the biological function of the specific gene. In this study, we found the expression levels of Survivin protein (BIRC5) and P-glycoprotein (MDR1) in MCF-7/doxorubicin (DOX) cells (drug-resistant cells) were significantly higher than MCF-7 cells (wild-type cells). In order to explore the specific functions of BIRC5 gene in multi-drug resistance (MDR), a CRISPR/Cas9-mediated knocking-in tetracycline (Tet)-off regulatory system cell line was established, which enabled us to regulate the expression levels of Survivin quantitatively (clone 8 named MCF-7/Survivin was selected for further studies). Subsequently, the determination results of doxycycline-induced DOX efflux in MCF-7/Survivin cells implied that Survivin expression level was opposite to DOX accumulation in the cells. For example, when Survivin expression was down-regulated, DOX accumulation inside the MCF-7/Survivin cells was up-regulated, inducing strong apoptosis of cells (reversal index 118.07) by weakening the release of intracellular drug from MCF-7/Survivin cells. Also, down-regulation of Survivin resulted in reduced phosphorylation of PI3K, Akt, and mTOR in MCF-7/Survivin cells and significantly decreased P-gp expression. Previous studies had shown that PI3K/Akt/mTOR could regulate P-gp expression. Therefore, we speculated that Survivin might affect the expression of P-gp through PI3K/Akt/mTOR pathway. In summary, this quantitative method is not only valuable for studying the gene itself, but also can better analyze the biological phenomena related to it.
Collapse
Affiliation(s)
- Changping Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fabiao Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhangting Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiwen Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tong Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shihui Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenliang Zhang
- Center of Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Tianwen Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
37
|
Associations of Genetic Polymorphisms of mTOR rs2295080 T/G and rs1883965 G/A with Susceptibility of Urinary System Cancers. DISEASE MARKERS 2022; 2022:1720851. [PMID: 35082928 PMCID: PMC8786550 DOI: 10.1155/2022/1720851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022]
Abstract
Background. Genetic polymorphisms in mammalian target of rapamycin (mTOR) signaling axis can influence the susceptibility of cancer. The relationship between mTOR gene variants rs2295080 T/G and rs1883965 G/A and the risk of cancer remains inconsistent. The present study is aimed at comprehensively investigating the association between mTOR polymorphisms and susceptibility to cancer. Methods. We conducted a comprehensive assessment using odds ratios (ORs), corresponding 95% confidence intervals (CIs), and in silico tools to evaluate the effect of mTOR variations. Immunohistochemical staining (IHS) and GSEA analysis were used to investigate the expression of mTOR in urinary system cancer. Results. The pooled analysis involved 22 case-control studies including 14,747 cancer patients and 16,399 controls. The rs2295080 T/G polymorphism was associated with the risk of cancer (G-allele versus T-allele,
,
–0.98,
; GT versus TT,
,
–0.96,
; GG+GT versus TT,
,
–0.96,
), especially for cancers of the urinary system, breast, and blood. Variation rs1883965 G/A was associated with cancer susceptibility, especially for digestive cancer. IHS analysis showed that mTOR was upregulated in prostate and bladder cancer. GSEA revealed that the insulin signaling pathway, lysine degradation pathway, and mTOR signaling pathway were enriched in the high mTOR expression group. Conclusions. The mTOR rs2295080 T/G polymorphism may be associated with susceptibility of urinary cancer. The expression of mTOR is positively correlated with tumor malignancy in prostate cancer.
Collapse
|
38
|
Tian P, Zhang X, Yang S, Fang Y, Yuan H, Li W, Zhu H, Zhao F, Ding J, Zhu Y, Wang S, Sun G, Ni H, Ma T, Lei T. Characteristics of TP53 germline variants and their correlation with Li-Fraumeni syndrome or Li-Fraumeni-like syndrome in Chinese tumor patients. J Genet Genomics 2022; 49:645-653. [PMID: 35033608 DOI: 10.1016/j.jgg.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/17/2021] [Accepted: 12/26/2021] [Indexed: 02/08/2023]
Abstract
Li-Fraumeni syndrome (LFS), a rare autosomal-dominant inheritance condition, is associated with a family cancer history as well as pathogenic/likely-pathogenic TP53 germline variants (P/LP TP53 GV). The current clinical methods for detecting LFS are limited. Here, we retrospectively investigate P/LP TP53 GV among Chinese cancer patients by next-generation sequencing and evaluate its relationship with a family cancer history. A total of 270 out of 19,226 cancer patients had TP53 GV, including 53 patients with P/LP TP53 GV. Patients with P/LP TP53 GV were mainly found in male with glioma, lung cancer or sarcoma. The median age of diagnosis for P/LP TP53 GV patients was significantly lower than that of non-P/LP TP53 GV patients (31-years vs. 53-years; P < 0.01). One LFS patient and three Li-Fraumeni-like syndrome (LFL) patients were among the 26 followed-up P/LP TP53 GV patients. Among 25 types of P/LP TP53 GV, the highest variant frequencies occurred at codon 175 and 248. p.M237I, p.R158H, p.C238Y and p.C275R, were firstly identified among the Chinese LFS/LFL patients. This is the first cohort report of (P/LP) TP53 GV characteristics of Chinese pan-cancer patients. These findings suggest analyzing the P/LP TP53 GV in cancer patients is an effective strategy for identifying cancer predisposition syndrome.
Collapse
Affiliation(s)
- Panwen Tian
- Department of Respiratory and Critical Care Medicine, Lung cancer treatment center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyan Zhang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing 102206, China
| | - Sheng Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yu Fang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing 102206, China
| | - Hongling Yuan
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing 102206, China
| | - Wei Li
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing 102206, China
| | - Honglin Zhu
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing 102206, China
| | - Fangping Zhao
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing 102206, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Yunshu Zhu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Sizhen Wang
- Genetron Health (Beijing) Technology, Co. Ltd., Beijing 102206, China
| | - Guochen Sun
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing 100853, China.
| | - Hongbin Ni
- Department of Neurosurgery, Nanjing Drum Tower Hospital (Nanjing Gulou Yi Yuan), The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Tonghui Ma
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing 102206, China.
| | - Ting Lei
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China.
| |
Collapse
|
39
|
Anticancer effects of veratramine via the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin and its downstream signaling pathways in human glioblastoma cell lines. Life Sci 2022; 288:120170. [PMID: 34826438 DOI: 10.1016/j.lfs.2021.120170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
AIMS Antitumor effects of veratramine in prostate and liver cancers has been investigated, but it is still unclear whether veratramine can be used as an effective therapeutic agent for glioma. The aim of this study was to evaluate the potential pharmacological mechanism of veratramine in glioma. MAIN METHODS Using four types of human glioblastoma cell lines, including A172, HS-683, T98G, and U-373-MG the dose-dependent antitumor effect of veratramine was evaluated. The cytotoxicity and cell proliferation were examined by CCK-8, and cell proliferation was further confirmed by anchorage-independent colony formation assay. The cell cycle distribution and apoptotic rate was assessed by flow cytometry, and apoptosis was further evaluated by apoptosis assay. The migration and invasiveness capacity were analyzed by using transwell. Protein and mRNA levels of related factors were determined by western blotting and RT-qPCR, respectively. KEY FINDINGS Veratramine markedly induced apoptosis, suppressed the cell proliferation via the cell cycle G0/G1 phase arrest, and reduced the capacity for the migration and invasion in human glioblastoma multiforme cell lines. Moreover, veratramine was sufficient to affect the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin signaling pathway and its downstream Mdm2/p53/p21 pathway in human glioblastoma cell lines. SIGNIFICANCE Antitumor effects of veratramine in suppression of glioma progression was mediated by the regulation of PI3K/Akt/mTOR and Mdm2/p53/p21 signaling pathway.
Collapse
|
40
|
Rajpurohit T, Bhattacharya S. Moving Towards Dawn: KRas Signaling and Treatment in Pancreatic Ductal Adenocarcinoma. Curr Mol Pharmacol 2022; 15:904-928. [PMID: 35088684 DOI: 10.2174/1874467215666220128161647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
"Pancreatic ductal adenocarcinoma (PDAC)" is robust, nearly clueless, and all-around deadly among all tumors. Below 10 %, the general 5-year endurance period has remained adamantly unaltered in the last 30 years, regardless of enormous clinical and therapeutic endeavors. The yearly number of deaths is more than the number of recently analyzed cases. Not a classic one, but "Carbohydrate Antigen CA19- 9" remains the prevailing tool for diagnosis. MicroRNAs and non-invasive techniques are now incorporated for the effective prognosis of PDAC than just CA19-9. Mutated "Rat sarcoma virus Ras" conformation "V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog KRas" is 95 % accountable for PDAC, and its active (GTP-bound) formation activates signaling cascade comprising "Rapidly accelerated fibrosarcoma Raf"/"Mitogen-activated protein kinase MEK"/ "Extracellular signal-regulated kinase ERK" with "Phosphoinositide 3-kinase PI3K"/ "protein kinase B Akt"/ "mammalian target of rapamycin mTOR" pathways. KRas has acquired the label of 'undruggable' since the crosstalk in the nexus of pathways compensates for Raf and PI3K signaling cascade blocking. It is arduous to totally regulate KRascoordinated PDAC with traditional medicaments like "gemcitabine GEM" plus nabpaclitaxel/ FOLFIRINOX. For long-haul accomplishments aiming at KRas, future endeavors should be directed to combinatorial methodologies to adequately block KRas pathways at different standpoints. Currently they are contributing to healing PDAC. In this review article, we outline the function of KRas in carcinogenesis in PDAC, its signaling cascade, former techniques utilized in hindering Kras, current and future possibilities for targeting Kras.
Collapse
Affiliation(s)
- Tarun Rajpurohit
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
41
|
Zhu PF, Wang MX, Chen ZL, Yang L. Targeting the Tumor Microenvironment: A Literature Review of the Novel Anti-Tumor Mechanism of Statins. Front Oncol 2021; 11:761107. [PMID: 34858839 PMCID: PMC8632059 DOI: 10.3389/fonc.2021.761107] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Statins is widely used in clinical practice as lipid-lowering drugs and has been proven to be effective in the treatment of cardiovascular, endocrine, metabolic syndrome and other diseases. The latest preclinical evidence shows that statins have anti-proliferation, pro-apoptotic, anti-invasion and radiotherapy sensitization effects on tumor cells, suggesting that statins may become a new type of anti-tumor drugs. For a long time, mevalonate pathway has been proved to play a supporting role in the development of tumor cells. As an effective inhibitor of mevalonate pathway, statins have been proved to have a direct auxiliary anti-tumor effect in a large number of studies. In addition, anti-tumor effects of statins through ferroptosis, pyroptosis, autophagy and tumor microenvironment (TME) have also been gradually discovered. However, the specific mechanism of the antitumor effect of statins in the tumor microenvironment has not been clearly elucidated. Herein, we reviewed the antitumor effects of statins in tumor microenvironment, focusing on hypoxia microenvironment, immune microenvironment, metabolic microenvironment, acid microenvironment and mechanical microenvironment.
Collapse
Affiliation(s)
- Peng-Fei Zhu
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Ming-Xing Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Zhe-Ling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| |
Collapse
|
42
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
43
|
Sun EJ, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Targeting the PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9111639. [PMID: 34829868 PMCID: PMC8615614 DOI: 10.3390/biomedicines9111639] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Despite advances in the treatment of cancers through surgical procedures and new pharmaceuticals, the treatment of hepatocellular carcinoma (HCC) remains challenging as reflected by low survival rates. The PI3K/Akt/mTOR pathway is an important signaling mechanism that regulates the cell cycle, proliferation, apoptosis, and metabolism. Importantly, deregulation of the PI3K/Akt/mTOR pathway leading to activation is common in HCC and is hence the subject of intense investigation and the focus of current therapeutics. In this review article, we consider the role of this pathway in the pathogenesis of HCC, focusing on its downstream effectors such as glycogen synthase kinase-3 (GSK-3), cAMP-response element-binding protein (CREB), forkhead box O protein (FOXO), murine double minute 2 (MDM2), p53, and nuclear factor-κB (NF-κB), and the cellular processes of lipogenesis and autophagy. In addition, we provide an update on the current ongoing clinical development of agents targeting this pathway for HCC treatments.
Collapse
Affiliation(s)
- Eun Jin Sun
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Miriam Wankell
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
| | - Pranavan Palamuthusingam
- Institute of Surgery, The Townsville University Hospital, Townsville, QLD 4811, Australia;
- Mater Hospital, Townsville, QLD 4811, Australia
| | - Craig McFarlane
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
| | - Lionel Hebbard
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
44
|
Verma E, Kumar A, Devi Daimary U, Parama D, Girisa S, Sethi G, Kunnumakkara AB. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
45
|
RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101638. [PMID: 34683931 PMCID: PMC8541396 DOI: 10.3390/pharmaceutics13101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the most lethal forms of cancer, predicted to be the second leading cause of cancer-associated death by 2025. Despite intensive research for effective treatment strategies and novel anticancer drugs over the past decade, the overall patient survival rate remains low. RNA interference (RNAi) is capable of interfering with expression of specific genes and has emerged as a promising approach for pancreatic cancer because genetic aberrations and dysregulated signaling are the drivers for tumor formation and the stromal barrier to conventional therapy. Despite its therapeutic potential, RNA-based drugs have remaining hurdles such as poor tumor delivery and susceptibility to serum degradation, which could be overcome with the incorporation of nanocarriers for clinical applications. Here we summarize the use of small interfering RNA (siRNA) and microRNA (miRNA) in pancreatic cancer therapy in preclinical reports with approaches for targeting either the tumor or tumor microenvironment (TME) using various types of nanocarriers. In these studies, inhibition of oncogene expression and induction of a tumor suppressive response in cancer cells and surrounding immune cells in TME exhibited a strong anticancer effect in pancreatic cancer models. The review discusses the remaining challenges and prospective strategies suggesting the potential of RNAi-based therapeutics for pancreatic cancer.
Collapse
|
46
|
Feng Y, Cao X, Zhao B, Song C, Pang B, Hu L, Zhang C, Wang J, He J, Wang S. Nitrate increases cisplatin chemosensitivity of oral squamous cell carcinoma via REDD1/AKT signaling pathway. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1814-1828. [PMID: 34542810 DOI: 10.1007/s11427-020-1978-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Although cisplatin is one of the chemotherapeutics most frequently used in oral squamous cell carcinoma (OSCC) treatment, it exerts multiple side effects and poor chemosensitivity. Nitrate reportedly demonstrates several beneficial biological functions, and synthesized nitrates enhance the therapeutic efficacy of chemotherapy. However, the role of inorganic nitrate in cisplatin chemotherapy remains unclear. We therefore investigated the effect of inorganic nitrate exerted on cisplatin sensitivity in OSCC. We found that nitrate did not affect OSCC cell growth and apoptosis in OSCC cells and OSCC xenograft tumor animal studies. Cisplatin induced REDD1 expression and AKT activation in OSCC. However, nitrate could increase cisplatin chemosensitivity, reduce its REDD1 expression, and attenuate AKT signaling activation in OSCC cells. Dysregulation of high levels of REDD1, which could enhance AKT activation, was positively associated with poor prognosis in OSCC patients. Thus, reduced REDD1 expression and retarded AKT activation induced by inorganic nitrate might be a new potential approach to the sensitization of oral cancer to cisplatin treatment in the future.
Collapse
Affiliation(s)
- Yuanyong Feng
- Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xuedi Cao
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China
| | - Bin Zhao
- Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Chunyan Song
- Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Baoxing Pang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Liang Hu
- Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Chunmei Zhang
- Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Jinsong Wang
- Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China.
| | - Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China.
- Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100069, China.
| |
Collapse
|
47
|
Iksen, Pothongsrisit S, Pongrakhananon V. Targeting the PI3K/AKT/mTOR Signaling Pathway in Lung Cancer: An Update Regarding Potential Drugs and Natural Products. Molecules 2021; 26:4100. [PMID: 34279440 PMCID: PMC8271933 DOI: 10.3390/molecules26134100] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common cancers and has a high mortality rate. Due to its high incidence, the clinical management of the disease remains a major challenge. Several reports have documented a relationship between the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway and lung cancer. The recognition of this pathway as a notable therapeutic target in lung cancer is mainly due to its central involvement in the initiation and progression of the disease. Interest in using natural and synthetic medications to target these signaling pathways has increased in recent years, with promising results in vitro, in vivo, and in clinical trials. In this review, we focus on the current understanding of PI3K/AKT/mTOR signaling in tumor development. In addition to the signaling pathway, we highlighted the therapeutic potential of recently developed PI3K/AKT/mTOR inhibitors based on preclinical and clinical trials.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan 20131, Indonesia
| | - Sutthaorn Pothongsrisit
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Cluster, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
48
|
Uva P, Bosco MC, Eva A, Conte M, Garaventa A, Amoroso L, Cangelosi D. Connectivity Map Analysis Indicates PI3K/Akt/mTOR Inhibitors as Potential Anti-Hypoxia Drugs in Neuroblastoma. Cancers (Basel) 2021; 13:cancers13112809. [PMID: 34199959 PMCID: PMC8200206 DOI: 10.3390/cancers13112809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is one of the deadliest pediatric cancers, accounting for 15% of deaths in childhood. Hypoxia is a condition of low oxygen tension occurring in solid tumors and has an unfavorable prognostic factor for NB. In the present study, we aimed to identify novel promising drugs for NB treatment. Connectivity Map (CMap), an online resource for drug repurposing, was used to identify connections between hypoxia-modulated genes in NB tumors and compounds. Two sets of 34 and 21 genes up- and down-regulated between hypoxic and normoxic primary NB tumors, respectively, were analyzed with CMap. The analysis reported a significant negative connectivity score across nine cell lines for 19 compounds mainly belonging to the class of PI3K/Akt/mTOR inhibitors. The gene expression profiles of NB cells cultured under hypoxic conditions and treated with the mTORC complex inhibitor PP242, referred to as the Mohlin dataset, was used to validate the CMap findings. A heat map representation of hypoxia-modulated genes in the Mohlin dataset and the gene set enrichment analysis (GSEA) showed an opposite regulation of these genes in the set of NB cells treated with the mTORC inhibitor PP242. In conclusion, our analysis identified inhibitors of the PI3K/Akt/mTOR signaling pathway as novel candidate compounds to treat NB patients with hypoxic tumors and a poor prognosis.
Collapse
Affiliation(s)
- Paolo Uva
- Clinical Bioinformatics Unit, Scientific Direction, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
- Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (M.C.B.); (A.E.)
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (M.C.B.); (A.E.)
| | - Massimo Conte
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (M.C.); (A.G.); (L.A.)
| | - Alberto Garaventa
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (M.C.); (A.G.); (L.A.)
| | - Loredana Amoroso
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (M.C.); (A.G.); (L.A.)
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, Scientific Direction, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
- Correspondence:
| |
Collapse
|
49
|
Tsiani E, Tsakiridis N, Kouvelioti R, Jaglanian A, Klentrou P. Current Evidence of the Role of the Myokine Irisin in Cancer. Cancers (Basel) 2021; 13:cancers13112628. [PMID: 34071869 PMCID: PMC8199282 DOI: 10.3390/cancers13112628] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Regular exercise/physical activity is beneficial for the health of an individual and lowers the risk of getting different diseases, including cancer. How exactly exercise results in these health benefits is not known. Recent studies suggest that the molecule irisin released by muscles into the blood stream after exercise may be responsible for these effects. This review summarizes all the available in vitro/cell culture, animal and human studies that have investigated the relationship between cancer and irisin with the aim to shed light and understand the possible role of irisin in cancer. The majority of the in vitro studies indicate anticancer properties of irisin, but more animal and human studies are required to better understand the exact role of irisin in cancer. Abstract Cancer is a disease associated with extreme human suffering, a huge economic cost to health systems, and is the second leading cause of death worldwide. Regular physical activity is associated with many health benefits, including reduced cancer risk. In the past two decades, exercising/contracting skeletal muscles have been found to secrete a wide range of biologically active proteins, named myokines. Myokines are delivered, via the circulation, to different cells/tissues, bind to their specific receptors and initiate signaling cascades mediating the health benefits of exercise. The present review summarizes the existing evidence of the role of the myokine irisin in cancer. In vitro studies have shown that the treatment of various cancer cells with irisin resulted in the inhibition of cell proliferation, survival, migration/ invasion and induced apoptosis by affecting key proliferative and antiapoptotic signaling pathways. However, the effects of irisin in humans remains unclear. Although the majority of the existing studies have found reduced serum irisin levels in cancer patients, a few studies have shown the opposite. Similarly, the majority of studies have found increased levels of irisin in cancer tissues, with a few studies showing the opposite trend. Clearly, further investigations are required to determine the exact role of irisin in cancer.
Collapse
Affiliation(s)
- Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (N.T.); (R.K.); (A.J.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Correspondence:
| | - Nicole Tsakiridis
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (N.T.); (R.K.); (A.J.)
| | - Rozalia Kouvelioti
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (N.T.); (R.K.); (A.J.)
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Alina Jaglanian
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (N.T.); (R.K.); (A.J.)
| | - Panagiota Klentrou
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
50
|
Curigliano G, Martin M, Jhaveri K, Beck JT, Tortora G, Fazio N, Maur M, Hubner RA, Lahner H, Donnet V, Ajipa O, Li Z, Blumenstein L, Andre F. Alpelisib in combination with everolimus ± exemestane in solid tumours: Phase Ib randomised, open-label, multicentre study. Eur J Cancer 2021; 151:49-62. [PMID: 33964572 DOI: 10.1016/j.ejca.2021.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Combined mTORC1 inhibition with everolimus (EVE) and phosphatidylinositol 3-kinase catalytic subunit p110α blockade with alpelisib (ALP) has demonstrated synergistic efficacy in preclinical models and supports testing the combination of ALP and EVE in the clinical setting. The primary objective was to determine the maximum tolerated dose (MTD)/recommended dose for expansion (RDE) of ALP in combination with EVE and in combination with EVE and exemestane (EXE) and subsequently assess safety, preliminary efficacy and effect of ALP on the pharmacokinetics of EVE and determine the magnitude of the drug-drug interaction. PATIENTS AND METHODS Dose escalation phases were conducted in patients with advanced solid tumours and in postmenopausal women with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC). The dose expansion phase was conducted in patients with pancreatic neuroendocrine tumour and renal cell carcinoma (RCC) (both mechanistic target of rapamycin inhibitor [mTORi]-naive), in patients with mTORi-pretreated solid tumours and in postmenopausal women with HR+, HER2- ABC. RESULTS During the doublet escalation phase, dose-limiting toxicities (DLTs) were reported in 5 of 10 (50%) patients: one patient had grade (Gr) 2 hyperglycemia and one patient had Gr 3 diarrhoea in the 300 mg dose group, one patient had Gr 2 hyperglycemia and one patient had Gr 4 hypocalcaemia in the 250 mg dose group, and one patient in the 200 mg dose group had Gr 3 diarrhoea and Gr 3 stomatitis. The combination of ALP 250 mg + EVE 2.5 mg was declared as the MTD/RDE in subjects with advanced solid tumours. In the triplet escalation phase, one patient who received ALP 200 mg + EVE 2.5 mg + EXE 25 mg had a DLT of Gr 3 acute kidney injury. This dose combination was declared as the MTD and RDE in subjects with advanced HR-positive HER2-negative BC. The common adverse events (≥30% patients), occurring across all phases, were hyperglycaemia, stomatitis, diarrhoea, nausea, asthenia, decreased appetite and fatigue. The sixteen-week progression-free survival rate was 52.4% (90% confidence interval [CI]: 32.8, 71.4) in the RCC cohort, 35.3% (90% CI: 16.6, 58.0) in the prior pNET cohort and 30.0% (90% CI: 8.7, 60.7) in the prior mTORi cohort. The pharmacokinetics of 2.5 mg of EVE was largely unchanged in the presence of ALP, independent of the dose (250 mg or 300 mg). There were no clinically relevant drug-drug interactions observed between ALP and EVE. CONCLUSION The overall safety profile of ALP with EVE and EXE is manageable and reversible; no unexpected safety signals were noted compared with the individual safety profiles. Pharmacokinetics of ALP, EVE and EXE was largely unchanged in combination with each other.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- Department of Oncology and Hematology, University of Milano, Milan, Italy; European Intitute of Oncology, IEO, IRCCS, Milan, Italy.
| | - Miguel Martin
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - J T Beck
- Highlands Oncology Group, AR, USA
| | | | - Nicola Fazio
- European Intitute of Oncology, IEO, IRCCS, Milan, Italy
| | | | | | | | | | | | - Zheng Li
- Novartis Pharmaceuticals, NJ, USA
| | | | | |
Collapse
|