1
|
Zarei J, Soleimani A, Tahmasbi M, Sarkarian M, Rezaeijo SM. Reproducibility of MRI-derived radiomic features in prostate cancer detection: a methodological approach. Pol J Radiol 2025; 90:e180-e188. [PMID: 40416516 PMCID: PMC12099201 DOI: 10.5114/pjr/201467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/15/2025] [Indexed: 05/27/2025] Open
Abstract
Purpose We aim to evaluate the reproducibility of these features and apply machine learning algorithms to predict cancer diagnosis. Material and methods We analyzed magnetic resonance (MR) images from a cohort of 82 individuals, split between 41 prostate cancer patients and 41 healthy controls. A total of 215 radiomic features were extracted from T2-weighted and ADC images using the Software Environment for Radiomic Analysis (SERA). Intraclass correlation coefficient (ICC) analysis was used to assess the reproducibility of features, and Pearson's correlation was applied to remove redundant features. After feature selection, seven dimensionality reduction techniques, including principal component analysis (PCA), kernel PCA, linear discriminant analysis, and locally linear embedding, were applied to preprocess the radiomic features. Ten machine learning algorithms, including support vector machines (SVM), random forests, neural networks, logistic regression, and ensemble methods such as CatBoost and AdaBoost, were utilized to classify cancerous versus non-cancerous tissues. Model performance was evaluated using accuracy and AUC-ROC metrics. Results The results showed that features with high reproducibility (ICC > 0.75) contributed significantly to the performance of machine learning models. SVM, neural networks, and logistic regression achieved the highest accuracy (0.88-0.9) and AUC (up to 0.93) when using features from the good and excellent reproducibility categories. PCA emerged as the most effective dimensionality reduction method, preserving the discriminative power of reproducible features across all models. Conclusion The results indicate that radiomic feature extraction from MR images, combined with dimensionality reduction and machine learning algorithms, provides a robust approach for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Javad Zarei
- Department of Health Information Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asma Soleimani
- Department of Health Information Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziyeh Tahmasbi
- Department of Radiologic Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Sarkarian
- Department of Urology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Masoud Rezaeijo
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Ajayi AF, Hamed MA, Onaolapo MC, Fiyinfoluwa OH, Oyeniran OI, Oluwole DT. Defining the genetic profile of prostate cancer. Urol Oncol 2025; 43:164-177. [PMID: 39690078 DOI: 10.1016/j.urolonc.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 12/19/2024]
Abstract
Several studies indicated that prostate cancer has a hereditary component. In particular, a significant risk of prostate cancer has been linked to a tight familial lineage. However, to provide insight into how prostate cancer is inherited, characterising its genetic profile is essential. The current body of research on the analysis of genetic mutations in prostate cancer was reviewed to achieve this. This paper reports on the effects and underlying processes of prostate cancer that have been linked to decreased male fertility. Many research approaches used have resulted in the discovery of unique inheritance patterns and manifest traits, the onset and spread of prostate cancer have also been linked to many genes. Studies have specifically examined Androgen Receptor gene variants about prostate cancer risk and disease progression. Research has shown that genetic and environmental variables are important contributors to prostate cancer, even if the true origins of the disease are not fully recognised or established. Researchers studying the genetics of prostate cancer are using genome-wide association studies more and more because of their outstanding effectiveness in revealing susceptibility loci for prostate cancer. Genome-Wide Association Studies provides a detailed method for identifying the distinct sequence of a gene that is associated with cancer risk. Surgical procedures and radiation treatments are 2 of the treatment options for prostate cancer. Notwithstanding the compelling evidence shown in this work, suggests that more research must be done to detect the gene alterations and the use of genetic variants in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria; The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - Moyinoluwa Comfort Onaolapo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Ogundipe Helen Fiyinfoluwa
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | | | - David Tolulope Oluwole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Department of Physiology, College of Health Sciences, Crescent University, Abeokuta, Ogun State, Nigeria.
| |
Collapse
|
3
|
Dabaghkar Y, Eghlima G, Behboudi H, Ebrahimi M, Ghorbanpour M. Agro-morphological characterization and assessment of metabolic profiling and anticancer activities in various tribulus (Tribulus terrestris L.) populations. BMC PLANT BIOLOGY 2025; 25:20. [PMID: 39757213 DOI: 10.1186/s12870-024-06021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Tribulus terrestris L. from the family of Zygophyllaceae, which is rich in saponin compounds, especially diosgenin, has various biological properties, such as anti-inflammation, anti-Alzheimer, anti-obesity, anti-diabetes, anti-leukemia, and anti-cancer activities, due to these compounds. This research aimed to study the diversity of agro-morphological and phytochemical traits and anti-proliferative activity against human prostate cancer cells (PC3) of T. terrestris collected from 24 geographical regions in Iran and to select the superior populations for future domestication and breeding projects. The highest coefficient of variations was related to the fruit dry weight (104.77%), shoot dry weight (104.62%), and leaf dry weight (99.83%). Maximum plant height (113.96 cm), leaf length (49.39 mm), leaf width (23.48 mm), fruit diameter (11.42 mm), and fruit dry weight (34.11 g/plant) were recorded in SBU population. Gallic acid, 3.4dhb, rutin, salicylic acid, quercetin, kaempferol, apigenin, chlorogenic acid, caffeic acid, p-coumarin, ferulic acid, and rosmarinic acid were identified as the main phenolic compounds by HPLC. The highest total saponin content was observed in the RAF population (9.46 µg OCE/g DW) and the lowest in the KER population (4.75 µg OCE/g DW). The minimum (0.65 mg/g DW) and maximum (7.49 mg/g DW) diosgenin content was observed in KHA and PAN populations, respectively. The results of the MTT assay demonstrated the significant anti-proliferative activity of the T. terrestris extracts against the PC3 cancer cell line. IC50 calculated for the T. terrestris extracts in the 24-h treatment was from 15.02 to 27.11 µg/ml, implying that all samples had considerable cytotoxicity activity against the PC3 cells. The diversity observed among the T. terrestris populations in the studied traits shows its high potential for selecting and using the best populations in domestication, breeding, and cultivation projects.
Collapse
Affiliation(s)
- Yasamin Dabaghkar
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ghasem Eghlima
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
4
|
Pandey SK, Sabharwal U, Tripathi S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Androgen Signaling in Prostate Cancer: When a Friend Turns Foe. Endocr Metab Immune Disord Drug Targets 2025; 25:37-56. [PMID: 38831575 DOI: 10.2174/0118715303313528240523101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Usha Sabharwal
- P. G. Department of Biosciences, Centre of Advanced Studies, Satellite Campus, Sardar Patel Maidan, 388120, Gujarat, India
| | - Swati Tripathi
- Section of Electron Microscopy, Supportive Centre for Brain Research, National Institute for Physiological Sciences (NIPS) Okazaki, 444-8787, Japan
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
5
|
Shaharudin NS, Surindar Singh GK, Kek TL, Sultan S. Targeting signaling pathways with andrographolide in cancer therapy (Review). Mol Clin Oncol 2024; 21:81. [PMID: 39301125 PMCID: PMC11411607 DOI: 10.3892/mco.2024.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024] Open
Abstract
Terpenoids are a large group of naturally occurring organic compounds with a wide range of components. A phytoconstituent in this group, andrographolide, which is derived from a plant called Andrographis paniculate, offers a number of advantages, including anti-inflammatory, anticancer, anti-angiogenesis and antioxidant effects. The present review elucidates the capacity of andrographolide to inhibit signaling pathways, namely the nuclear factor-κB (NF-κB), hypoxia-inducible factor 1 (HIF-1), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Wnt/β-catenin and mitogen-activated protein kinase (MAPK) pathways, which are involved in cellular processes and responses such as the inflammatory response, apoptosis and angiogenesis. Inhibiting pathways enables andrographolide to exhibit its anticancer effects against breast, colorectal and lung cancer. The present review focuses on the anticancer effects of andrographolide, specifically in breast, colorectal and lung cancer through the NF-κB, HIF-1 and JAK/STAT signaling pathways. Therefore, the Google Scholar, PubMed and ScienceDirect databases were used to search for references to these prevalent types of cancer and the anticancer mechanisms of andrographolide associated with them. The following key words were used: Andrographolide, anticancer, JAK/STAT, HIF-1, NF-κB, PI3K/AKT/mTOR, Wnt/β-catenin and MAPK pathways, and the literature was limited to studies published between 2010 to 2023. The present review article provides details about the different involvements of signaling pathways in the anticancer mechanisms of andrographolide.
Collapse
Affiliation(s)
- Nur Shahirah Shaharudin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
- Faculty of Pharmacy, Brain Degeneration and Therapeutics Research Center, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| | - Teh Lay Kek
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Sadia Sultan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
- Faculty of Pharmacy, Biotransformation Research Center, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| |
Collapse
|
6
|
Iheanacho CO, Odili VU. Adverse Drug Reactions and Predictors of Medication Adherence in Patients with Prostate Cancer. Can J Hosp Pharm 2024; 77:e3567. [PMID: 39386970 PMCID: PMC11426963 DOI: 10.4212/cjhp.3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 10/12/2024]
Abstract
Background Adherence to therapy with prostate cancer medicines is critical for delaying the progression of disease and enhancing health outcomes. Objectives To determine patients' medication adherence, the predictors of adherence, and the frequency and types of adverse drug reactions (ADRs) in persons with prostate cancer. Methods A serial entry-point cross-sectional study of patients with prostate cancer was conducted in 3 cancer hospitals in Nigeria over a 12-month period (January 7, 2022, to January 3, 2023). Data on medication adherence were self-reported by patients, and data on ADRs were obtained from hospital records. Descriptive and inferential statistical analyses were performed, and p less than 0.05 was considered statistically significant. Results Of the 133 study participants, most 112 (84.2%) reported high medication adherence. The cost of drugs was the most frequently reported potential barrier to adherence (n = 63, 47.4%). Adherence was significantly dependent on family history of cancer (df = 3, F = 4.557, p = 0.005) and health-related quality of life (HRQOL) (ß = 0.275, T = 2.170, p = 0.032) but not illness perception (ß = 0.046, T = 0.360, p = 0.72). Adverse events were observed in 36 participants (27.1%) and were deemed to be "possible ADRs" (n = 19, 53%) or "probable ADRs" (n = 17, 47%); all were nonpreventable and expected (100%), and most (n = 31, 86%) were within the level 1 category of severity. Loss of erection and low libido was the most frequently reported ADR (n = 14, 39%). Conclusions In this study, medication adherence was high, with cost being a potential barrier to adherence. Family history of cancer and HRQOL significantly predicted medication adherence. The medications were well tolerated, and observed ADRs had minor severity. Policies targeting the reduction of cost-related factors for prostate cancer medications are essential.
Collapse
Affiliation(s)
- Chinonyerem O Iheanacho
- , MPH, MPharm, PhD, is with the Department of Clinical Pharmacy and Public Health, Faculty of Pharmacy, University of Calabar, Calabar, Cross River State, Nigeria
| | - Valentine U Odili
- , PharmD, MPharm, PhD, is with the Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
7
|
Zhao X, Zhang R, Song Z, Yang K, He H, Jin L, Zhang W. Curcumin suppressed the proliferation and apoptosis of HPV-positive cervical cancer cells by directly targeting the E6 protein. Phytother Res 2024; 38:4967-4981. [PMID: 37157900 DOI: 10.1002/ptr.7868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Most human papillomavirus (HPV) types, including HPV16 and HPV18, are closely related to the occurrence of cervical cancer, predominantly through the action of viral oncoproteins E6 and E7. Curcumin, the active ingredient of the turmeric plant, has been gaining attention over the past two decades as an antioxidant, anti-inflammatory, and anticancer agent. In the present study, the HPV-positive cervical cancer cells HeLa and CaSki were treated with curcumin, and the results showed that curcumin has a dose-dependent and time-dependent inhibitory effect on cell viability. In addition, apoptosis induction was further quantitatively confirmed through flow cytometric analysis. Furthermore, the influence of different concentrations of curcumin on the mitochondrial membrane potential was evaluated through JC-1 staining and found to dramatically decrease the membrane potential in treated HeLa and CaSki cells, suggesting the critical role of the mitochondrial pathway in their apoptosis-inducing effect. This study also demonstrated the wound-healing potential of curcumin, and the results of transwell assays showed that curcumin treatment inhibited HeLa and CaSki cell invasion and migration in a dose-dependent manner compared with the control treatment. Curcumin also downregulated the expression of Bcl-2, N-cadherin, and Vimentin and upregulated the expression of Bax, C-caspase-3, and E-cadherin in both cell lines. Further research showed that curcumin also selectively inhibited the expression of the viral oncoproteins E6 and E7, as demonstrated by western blot analysis; moreover, the downregulation of E6 was more significant than that of E7. Our research also showed that coculture with cells infected with siE6 lentivirus (siE6 cells) can inhibit the proliferation, invasion, and metastasis of HPV-positive cells. While the siE6 cells were also treated with curcumin, the effect of curcumin monotherapy was offset. In summary, our research shows that curcumin regulates the apoptosis, migration, and invasion of cervical cancer cells, and the mechanism may be related to its ability to downregulate E6. This study provides a foundation for future research on the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Xingyu Zhao
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Ruowen Zhang
- Faculty of Medicine, Beihua University, Jilin, People's Republic of China
| | - Zitong Song
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Kun Yang
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Han He
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Lianhai Jin
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Wei Zhang
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| |
Collapse
|
8
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
9
|
Jahreiß MC, Heemsbergen WD, Aben KKH, Incrocci L. Risk factors for secondary bladder cancer following prostate cancer radiotherapy. Transl Androl Urol 2024; 13:1288-1296. [PMID: 39100827 PMCID: PMC11291406 DOI: 10.21037/tau-23-667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/05/2024] [Indexed: 08/06/2024] Open
Abstract
This review investigates the complex landscape of secondary bladder cancer (SBC) after radiotherapy for prostate cancer (PCa). External beam radiotherapy (EBRT) poses an increased risk for SBC, while brachytherapy seems to be associated with smaller increased risks for SBC due to its targeted radiation delivery, sparing the surrounding bladder tissue. Secondary cancers in the bladder are the most frequently diagnosed secondary cancers in the PCa patient population treated with radiotherapy. Patient-related factors are pivotal, with age emerging as a dual-edged factor. While advanced age is a recognized risk for bladder cancer, younger PCa patients exhibit higher susceptibility to radiation-induced cancers. Smoking, a well-established bladder cancer risk factor, increases this vulnerability. Studies highlight the synergistic effect of smoking and radiation exposure, amplifying the likelihood of genetic mutations and SBC. The latency period of SBC, which spans years to decades, remains a critical aspect. There is a strong dose-response relationship between radiation exposure and SBC risk, with higher doses consistently being associated with a higher SBC risk. While specific models for therapeutic radiation-induced SBC are lacking, insights from related studies, like the Atomic Bomb survivor research, emphasize the bladder's sensitivity to radiation-induced cancer. Chemotherapy in combination with radiotherapy, although infrequently used in PCa, emerges as a potential risk for bladder cancer. Bladder cancer's complex epidemiology, encompassing risk factors, treatment modalities, and cancer types, provides a comprehensive backdrop. As research refines understanding, we hope that this review contributes to guide clinicians, inform patient care, and shape preventive strategies on SBC.
Collapse
Affiliation(s)
- Marie-Christina Jahreiß
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wilma D. Heemsbergen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katja K. H. Aben
- Department of Research, Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
- Deaprtment for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luca Incrocci
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Ajiboye BO, Fatoki TH, Akinola OG, Ajeigbe KO, Bamisaye AF, Domínguez-Martín EM, Rijo P, Oyinloye BE. In silico exploration of anti-prostate cancer compounds from differential expressed genes. BMC Urol 2024; 24:138. [PMID: 38956591 PMCID: PMC11221101 DOI: 10.1186/s12894-024-01521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Prostate cancer (PCa) is a complex and biologically diverse disease with no curative treatment options at present. This study aims to utilize computational methods to explore potential anti-PCa compounds based on differentially expressed genes (DEGs), with the goal of identifying novel therapeutic indications or repurposing existing drugs. The methods employed in this study include DEGs-to-drug prediction, pharmacokinetics prediction, target prediction, network analysis, and molecular docking. The findings revealed a total of 79 upregulated DEGs and 110 downregulated DEGs in PCa, which were used to identify drug compounds capable of reversing the dysregulated conditions (dexverapamil, emetine, parthenolide, dobutamine, terfenadine, pimozide, mefloquine, ellipticine, and trifluoperazine) at a threshold probability of 20% on several molecular targets, such as serotonin receptors 2a/2b/2c, HERG protein, adrenergic receptors alpha-1a/2a, dopamine D3 receptor, inducible nitric oxide synthase (iNOS), epidermal growth factor receptor erbB1 (EGFR), tyrosine-protein kinases, and C-C chemokine receptor type 5 (CCR5). Molecular docking analysis revealed that terfenadine binding to inducible nitric oxide synthase (-7.833 kcal.mol-1) and pimozide binding to HERG (-7.636 kcal.mol-1). Overall, binding energy ΔGbind (Total) at 0 ns was lower than that of 100 ns for both the Terfenadine-iNOS complex (-101.707 to -103.302 kcal.mol-1) and Ellipticine-TOPIIα complex (-42.229 to -58.780 kcal.mol-1). In conclusion, this study provides insight on molecular targets that could possibly contribute to the molecular mechanisms underlying PCa. Further preclinical and clinical studies are required to validate the therapeutic effectiveness of these identified drugs in PCa disease.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria.
| | - Toluwase Hezekiah Fatoki
- Applied Bioinformatics Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Olamilekan Ganiu Akinola
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Kazeem Olasunkanmi Ajeigbe
- Department of Physiology, Faculty of Basic Medical Sciences, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | | | - Eva-María Domínguez-Martín
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lusófona University, Campo Grande 376, Lisbon, 1749-024, Portugal
- Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología), Universidad de Alcalá de Henares, Nuevos Agentes Antitumorales, Acción Tóxica Sobre Células Leucémicas, Ctra. Madrid-Barcelona km. 33,600, Alcalá de Henares, Madrid, 28805, España
| | - Patricia Rijo
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lusófona University, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
11
|
Farabi H, Moradi N, Ahmadzadeh A, Aghamir SMK, Mohammadi A, Rezapour A. A cost-benefit analysis of mass prostate cancer screening. COST EFFECTIVENESS AND RESOURCE ALLOCATION 2024; 22:37. [PMID: 38705990 PMCID: PMC11071254 DOI: 10.1186/s12962-024-00553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) causes a substantial health and financial burden worldwide, underscoring the need for efficient mass screening approaches. This study attempts to evaluate the Net Cost-Benefit Index (NCBI) of PCa screening in Iran to offer insights for informed decision-making and resource allocation. METHOD The Net Cost-Benefit Index (NCBI) was calculated for four age groups (40 years and above) using a decision-analysis model. Two screening strategies, prostate-specific antigen (PSA) solely and PSA with Digital Rectal Examination (DRE), were evaluated from the health system perspective. A retrospective assessment of 1402 prostate cancer (PCa) patients' profiles were conducted, and direct medical and non-medical costs were calculated based on the 2021 official tariff rates, patient records, and interviews. The monetary value of mass screening was determined through Willingness to Pay (WTP) assessments, which served as a measure for the benefit aspect. RESULT The combined PSA and DRE strategy of screening is cost-effective, yields up to $3 saving in costs per case and emerges as the dominant strategy over PSA alone. Screening for men aged 70 and above does not meet economic justification, indicated by a negative Net Cost-Benefit Index (NCBI). The 40-49 age group exhibits the highest net benefit, $13.81 based on basic information and $13.54 based on comprehensive information. Sensitivity analysis strongly supports the cost-effectiveness of the combined screening approach. CONCLUSION This study advocates prostate cancer screening with PSA and DRE, is economically justified for men aged 40-69. The results of the study recommend that policymakers prioritize resource allocation for PCa screening programs based on age and budget constraints. Men's willingness to pay, especially for the 40-49 age group which had the highest net benefit, leverages their financial participation in screening services. Additionally, screening services for other age groups, such as 50-54 or 55-59, can be provided either for free or at a reduced cost.
Collapse
Affiliation(s)
- Hiro Farabi
- Barts and the London Pragmatic Clinical Trials Unit, Centre for Evaluation and Methods, Wolfson Institute of Population Health, Queen Mary University of London, London, UK.
| | - Najmeh Moradi
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Abdolreza Mohammadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aziz Rezapour
- Health Management and Economics Research Center, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Waraich TA, Khalid SY, Kathia UM, Ali A, Qamar SSS, Yousuf A, Saleem RMU. Assessing the Efficacy and Long-Term Outcomes of Surgical Intervention Versus Radiotherapy: A Comprehensive Systematic Review and Meta-Analysis of Prostate Cancer Treatment Modalities. Cureus 2024; 16:e58842. [PMID: 38784314 PMCID: PMC11115355 DOI: 10.7759/cureus.58842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
There is controversy regarding the most effective primary treatment of choice for prostate cancer (PCa) in terms of patient outcomes, such as surgery or radiotherapy (RT). This study evaluated the comparative efficacy and long-term outcomes of radical prostatectomy (RP) and RT for PCa treatment. A thorough literature review of relevant databases was conducted, focusing on academic and clinical studies published from 2019 onwards. The inclusion criteria included randomized controlled trials (RCTs) and other observational studies comparing survival outcomes in patients treated with surgery and RT. We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines to provide an overview of the data. We selected 19 studies based on the inclusion criteria. Of the total 19 studies, 12 advocated RP as the preferred treatment to improve survival outcomes in patients with PCa. The results of our synthesis showed that prostate cancer-specific mortality (PCSM) was lower in patients treated with RT. The total effect size for the analysis was calculated as Z=1.19 (p-value=0.23). The heterogeneity in the studies was as follows: Tau2=0.09, Chi2=20.25, df=4, I2=80%. Moreover, overall survival (OS) was shown to be higher in patients who underwent prostatectomy. The combined effect for the analysis was found to be: HR=0.97 (0.93, 1.01). The total effect was calculated as Z=1.33 (p-value= 0.18). The heterogeneity was found to be Tau2=0.00, Chi2=1.33, df=2, and I2=0%. However, overall mortality (OM) was shown to be independent of the treatment modality. RT is the preferred strategy for PCa treatment, as it balances efficacy and long-term outcomes. Clinical decision-making should consider individual patient characteristics and future research should delve into specific subpopulations and long-term outcomes to further refine the treatment guidelines.
Collapse
Affiliation(s)
| | - Syed Yousaf Khalid
- Department of Urology, Letterkenny University Hospital, Letterkenny, IRL
- Department of General Surgery, Letterkenny University Hospital, Letterkenny, IRL
- Department of Cardiothoracic Surgery, St. James's Hospital, Dublin, IRL
| | - Usama Muhammad Kathia
- Department of Urology and Kidney Transplantation, Lahore General Hospital, Lahore, PAK
| | - Azfar Ali
- Department of Urology and Kidney Transplantation, Lahore General Hospital, Lahore, PAK
| | | | - Ammar Yousuf
- Department of Urology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | | |
Collapse
|
13
|
Singh V, Shirbhate E, Kore R, Mishra A, Johariya V, Veerasamy R, Tiwari AK, Rajak H. Dietary Plant Metabolites Induced Epigenetic Modification as a Novel Strategy for the Management of Prostate Cancer. Mini Rev Med Chem 2024; 24:1409-1426. [PMID: 38385496 DOI: 10.2174/0113895575283895240207065454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Prostate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment. The present work reviews the epigenetic effects of dietary plant metabolites in the context of prostate cancer therapy. We first outline the key epigenetic mechanisms involved in prostate cancer pathogenesis, including histone modifications, DNA methylation, and miRNA or Long Noncoding RNA (lncRNA) dysregulation. Next, we delve into the vast array of dietary plant metabolites that have demonstrated promising anti-cancer effects through epigenetic regulation. Resveratrol, minerals, isothiocyanates, curcumin, tea polyphenols, soy isoflavones and phytoestrogens, garlic compounds, anthocyanins, lycopene, and indoles are among the most extensively studied compounds. These plant-derived bioactive compounds have been shown to influence DNA methylation patterns, histone modifications, and microRNA expression, thereby altering the gene expression allied with prostate cancer progression, cell proliferation, and apoptosis. We also explore preclinical and clinical studies investigating the efficacy of dietary plant metabolites as standalone treatments or in combination with traditional treatments for people with prostate cancer. The present work highlights the potential of dietary plant metabolites as epigenetic modulators to treat prostate cancer. Continued research in this field may pave the way for personalized and precision medicine approaches, moving us closer to the goal of improved prostate cancer management.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Varsha Johariya
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Departement of Pharmaceutical chemistry, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy, College of Pharmacy and Pharmaceutical Sciences, UAMS - University of Arkansas for Medical Sciences, Arkansas, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
14
|
Dombroski JA, Antunovic M, Schaffer KR, Hurley PJ, King MR. Activation of Dendritic Cells Isolated from the Blood of Patients with Prostate Cancer by Ex Vivo Fluid Shear Stress Stimulation. Curr Protoc 2023; 3:e933. [PMID: 38047658 PMCID: PMC11178276 DOI: 10.1002/cpz1.933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Prostate cancer is one of the most common cancers among men in the United States and a leading cause of cancer-related death in men. Treatment options for patients with advanced prostate cancer include hormone therapies, chemotherapies, radioligand therapies, and immunotherapies. Provenge (sipuleucel-T) is an autologous cancer-vaccine-based immunotherapy approved for men with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). Administration of sipuleucel-T involves leukapheresis of patient blood to isolate antigen-presenting cells (APCs), including dendritic cells (DCs), and subsequent incubation of isolated APCs with both an antigen, prostatic acid phosphatase (PAP), and granulocyte macrophage-colony stimulating factor (GM-CSF) before their infusion back into the patient. Although sipuleucel-T has been shown to improve overall survival, other meaningful outcomes, such as prostate-specific antigen (PSA) levels and radiographic response, are inconsistent. This lack of robust response may be due to limited ex vivo activation of DCs using current protocols. Earlier studies have shown that many cell types can be activated ex vivo by external forces such as fluid shear stress (FSS). We hypothesize that novel fluid shear stress technologies and methods can be used to improve ex vivo efficacy of prostate cancer DC activation in prostate cancer. Herein, we report a new protocol for activating DCs from patients with prostate cancer using ex vivo fluid shear stress. Ultimately, the goal of these studies is to improve DC activation to expand the efficacy of therapies such as sipuleucel-T. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sample collection and DC isolation Basic Protocol 2: Determination and application of fluid shear stress Basic Protocol 3: Flow cytometry analysis of DCs after FSS stimulation.
Collapse
Affiliation(s)
- Jenna A. Dombroski
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Monika Antunovic
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kerry R. Schaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| | - Paula J. Hurley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
15
|
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 2023; 22:160. [PMID: 37784179 PMCID: PMC10546754 DOI: 10.1186/s12943-023-01849-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.
Collapse
Affiliation(s)
- Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India
- Savitribai Phule Pune University, Pune, 411007, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India.
- Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
16
|
Fan S, Liu H, Zhu Y, Zheng Z, Cui Q. Effect of fast-track surgery on postoperative wound pain in patients with prostate cancer: A meta-analysis. Int Wound J 2023; 21:e14417. [PMID: 37737032 PMCID: PMC10824699 DOI: 10.1111/iwj.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Fast track surgery (FTS) is widely used in many procedures and has been shown to reduce complications and accelerate recovery. However, no studies have been conducted to assess their effectiveness in treating wounds after radical prostatectomy (RP). The objective of this study was to evaluate the impact of FTS on RP. We went through 4 major databases. A study was conducted by PubMed, the Cochrane Library, Embase, and the Web of Science to determine the effect of comparison of FTS versus conventional surgery in RP on postoperative wound complications as of 1 July 2023. Based on the review of literature, data extraction and literature quality assessment, we conducted meta-analyses with RevMan 5.3. In the course of the study, the researchers selected 6 of the 404 studies to be analysed according to exclusion criteria. Data analysis showed that the FTS method reduced the postoperative pain associated with VAS and also decreased the rate of postoperative complications in post-surgical patients. However, there was no significant difference between FTS and conventional surgery in terms of blood loss, operation time, and postoperative infection rate. Therefore, generally speaking, FTS has less impact on postoperative complications in patients with minimal invasive prostatic cancer, but it does reduce postoperative pain and total postoperative complications.
Collapse
Affiliation(s)
- Shicheng Fan
- Department of UrologyThe Third People's Hospital of Yunnan ProvinceKunmingChina
| | - Haolin Liu
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduChina
| | - Yuanquan Zhu
- Department of UrologyThe Third People's Hospital of Yunnan ProvinceKunmingChina
| | - Zhiqiang Zheng
- Department of UrologyThe Third People's Hospital of Yunnan ProvinceKunmingChina
| | - Qingpeng Cui
- Department of UrologyThe Third People's Hospital of Yunnan ProvinceKunmingChina
| |
Collapse
|
17
|
Varaprasad GL, Gupta VK, Prasad K, Kim E, Tej MB, Mohanty P, Verma HK, Raju GSR, Bhaskar L, Huh YS. Recent advances and future perspectives in the therapeutics of prostate cancer. Exp Hematol Oncol 2023; 12:80. [PMID: 37740236 PMCID: PMC10517568 DOI: 10.1186/s40164-023-00444-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in males and the fifth leading reason of death. Age, ethnicity, family history, and genetic defects are major factors that determine the aggressiveness and lethality of PC. The African population is at the highest risk of developing high-grade PC. It can be challenging to distinguish between low-risk and high-risk patients due to the slow progression of PC. Prostate-specific antigen (PSA) is a revolutionary discovery for the identification of PC. However, it has led to an increase in over diagnosis and over treatment of PC in the past few decades. Even if modifications are made to the standard PSA testing, the specificity has not been found to be significant. Our understanding of PC genetics and proteomics has improved due to advances in different fields. New serum, urine, and tissue biomarkers, such as PC antigen 3 (PCA3), have led to various new diagnostic tests, such as the prostate health index, 4K score, and PCA3. These tests significantly reduce the number of unnecessary and repeat biopsies performed. Chemotherapy, radiotherapy, and prostatectomy are standard treatment options. However, newer novel hormone therapy drugs with a better response have been identified. Androgen deprivation and hormonal therapy are evolving as new and better options for managing hormone-sensitive and castration-resistant PC. This review aimed to highlight and discuss epidemiology, various risk factors, and developments in PC diagnosis and treatment regimens.
Collapse
Affiliation(s)
- Ganji Lakshmi Varaprasad
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Vivek Kumar Gupta
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health Care Informatics, Sacred Heart University, 5151 Park Avenue, Fair Fields, CT, 06825, USA
| | - Pratik Mohanty
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Helmholtz Zentrum, 85764, Neuherberg, Munich, Germany
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
18
|
Pol M, Gao H, Zhang H, George OJ, Fox JM, Jia X. Dynamic modulation of matrix adhesiveness induces epithelial-to-mesenchymal transition in prostate cancer cells in 3D. Biomaterials 2023; 299:122180. [PMID: 37267701 PMCID: PMC10330660 DOI: 10.1016/j.biomaterials.2023.122180] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Synthetic matrices with dynamic presentation of cell guidance cues are needed for the development of physiologically relevant in vitro tumor models. Towards the goal of mimicking prostate cancer progression and metastasis, we engineered a tunable hyaluronic acid-based hydrogel platform with protease degradable and cell adhesive properties employing bioorthogonal tetrazine ligation with strained alkenes. The synthetic matrix was first fabricated via a slow tetrazine-norbornene reaction, then temporally modified via a diffusion-controlled method using trans-cyclooctene, a fierce dienophile that reacts with tetrazine with an unusually fast rate. The encapsulated DU145 prostate cancer single cells spontaneously formed multicellular tumoroids after 7 days of culture. In situ modification of the synthetic matrix via covalent tagging of cell adhesive RGD peptide induced tumoroid decompaction and the development of cellular protrusions. RGD tagging did not compromise the overall cell viability, nor did it induce cell apoptosis. In response to increased matrix adhesiveness, DU145 cells dynamically loosen cell-cell adhesion and strengthen cell-matrix interactions to promote an invasive phenotype. Characterization of the 3D cultures by immunocytochemistry and gene expression analyses demonstrated that cells invaded into the matrix via a mesenchymal like migration, with upregulation of major mesenchymal markers, and down regulation of epithelial markers. The tumoroids formed cortactin positive invadopodia like structures, indicating active matrix remodeling. Overall, the engineered tumor model can be utilized to identify potential molecular targets and test pharmacological inhibitors, thereby accelerating the design of innovative strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Mugdha Pol
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Olivia J George
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Xinqiao Jia
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
19
|
Jain DP, Dinakar YH, Kumar H, Jain R, Jain V. The multifaceted role of extracellular vesicles in prostate cancer-a review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:481-498. [PMID: 37842237 PMCID: PMC10571058 DOI: 10.20517/cdr.2023.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 10/17/2023]
Abstract
Prostate cancer is the second most prominent form of cancer in men and confers the highest mortality after lung cancer. The term "extracellular vesicles" refers to minute endosomal-derived membrane microvesicles and it was demonstrated that extracellular vesicles affect the environment in which tumors originate. Extracellular vesicles' involvement is also established in the development of drug resistance, angiogenesis, stemness, and radioresistance in various cancers including prostate cancer. Extracellular vesicles influence the general environment, processes, and growth of prostate cancer and can be a potential area that offers a significant lead in prostate cancer therapy. In this review, we have elaborated on the multifaceted role of extracellular vesicles in various processes involved in the development of prostate cancer, and their multitude of applications in the diagnosis and treatment of prostate cancer through the encapsulation of various bioactives.
Collapse
Affiliation(s)
- Divya Prakash Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
20
|
Mehr JP, Blum KA, Green T, Howell S, Palasi S, Sullivan AT, Kim B, Kannady C, Wang R. Comparison of satisfaction with penile prosthesis implantation in patients with prostate cancer radiation therapy versus radical prostatectomy. Transl Androl Urol 2023; 12:690-699. [PMID: 37305636 PMCID: PMC10251085 DOI: 10.21037/tau-22-600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/12/2023] [Indexed: 06/13/2023] Open
Abstract
Background Penile prosthesis surgery (PPS) is a commonly used treatment for erectile dysfunction (ED), either as first-line therapy or in cases refractory to other treatment options. In patients with a urologic malignancy such as prostate cancer, surgical interventions like radical prostatectomy (RP) as well as non-surgical treatments such as radiation therapy can all induce ED. PPS as a treatment for ED has high satisfaction rates in the general population. Our aim was to compare sexual satisfaction in patients with prosthesis implantation for ED following RP versus ED following radiation therapy for prostate cancer. Methods A retrospective chart review from our institutional database was conducted to identify patients who underwent PPS at our institution from 2011 to 2021. Erectile Dysfunction Inventory of Treatment Satisfaction (EDITS) questionnaire data at least 6 months from implant operative date available was required for inclusion. Eligible patients were placed in one of two groups depending on etiology of ED-following RP or prostate cancer radiation therapy. To prevent crossover confounding; patients with history of pelvic radiation were excluded from the RP group and patients with history of RP were excluded from the radiation group. Data were obtained from 51 patients in the RP group and 32 patients in the radiation therapy group. Mean EDITS scores and additional survey questions were compared between the radiation and RP groups. Results There was a significant difference in mean survey responses for 8 of the 11 questions in the EDITS questionnaire between the RP group and the radiation group. Additional survey questions administered also found RP patients reported significantly higher rate of satisfaction with size of penis post-operatively versus the radiation group. Conclusions These preliminary findings, while requiring large-scale follow-up, suggest that there is greater sexual satisfaction and penile prosthesis device satisfaction in patients undergoing IPP placement following RP versus radiation therapy for prostate cancer. Use of validated questionnaires should continue to be utilized in quantifying device and sexual satisfaction following PPS.
Collapse
Affiliation(s)
- Justin P. Mehr
- Department of Surgery, Division of Urology, McGovern Medical School at UTHealth - Houston, Houston, TX, USA
| | - Kyle A. Blum
- Department of Surgery, Division of Urology, McGovern Medical School at UTHealth - Houston, Houston, TX, USA
| | - Travis Green
- Department of Surgery, Division of Urology, McGovern Medical School at UTHealth - Houston, Houston, TX, USA
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Skyler Howell
- Department of Surgery, Division of Urology, McGovern Medical School at UTHealth - Houston, Houston, TX, USA
| | - Stephen Palasi
- Department of Surgery, Division of Urology, McGovern Medical School at UTHealth - Houston, Houston, TX, USA
| | - Andrew T. Sullivan
- Department of Surgery, Division of Urology, McGovern Medical School at UTHealth - Houston, Houston, TX, USA
| | - Benjamin Kim
- Department of Surgery, Division of Urology, McGovern Medical School at UTHealth - Houston, Houston, TX, USA
| | - Christopher Kannady
- Department of Surgery, Division of Urology, McGovern Medical School at UTHealth - Houston, Houston, TX, USA
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Run Wang
- Department of Surgery, Division of Urology, McGovern Medical School at UTHealth - Houston, Houston, TX, USA
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Jeong SH, Kim HH, Park MY, Bhosale PB, Abusaliya A, Won CK, Park KI, Kim E, Heo JD, Kim HW, Ahn M, Seong JK, Kim GS. Flavones: The Apoptosis in Prostate Cancer of Three Flavones Selected as Therapeutic Candidate Models. Int J Mol Sci 2023; 24:ijms24119240. [PMID: 37298192 DOI: 10.3390/ijms24119240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a widespread but dangerous disease that can strike anyone and is the second 1leading cause of death worldwide. Prostate cancer, in particular, is a prevalent cancer that occurs in men, and much research is being done on its treatment. Although chemical drugs are effective, they have various side effects, and accordingly, anticancer drugs using natural products are emerging. To date, many natural candidates have been discovered, and new drugs are being developed as drugs to treat prostate cancer. Representative candidate compounds that have been studied to be effective in prostate cancer include apigenin, acacetin and tangeretin of the flavone family among flavonoids. In this review, we look at the effects of these three flavones on prostate cancer cells via apoptosis in vitro and in vivo. Furthermore, in addition to the existing drugs, we suggest the three flavones and their effectiveness as natural anticancer agents, a treatment model for prostate cancer.
Collapse
Affiliation(s)
- Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Min Young Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Chung Kil Won
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Kwang Il Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Eunhye Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Jeong Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Jinju 52725, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
22
|
Malik J, Ahmed S, Momin SS, Shaikh S, Alafnan A, Alanazi J, Said Almermesh MH, Anwar S. Drug Repurposing: A New Hope in Drug Discovery for Prostate Cancer. ACS OMEGA 2023; 8:56-73. [PMID: 36643505 PMCID: PMC9835086 DOI: 10.1021/acsomega.2c05821] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/24/2022] [Indexed: 06/12/2023]
Abstract
Prostate cancer (PCA), the most common cancer in men, accounted for 1.3 million new incidences in 2018. An increase in incidences is an issue of concern that should be addressed. Of all the reported prostate cancers, 85% were detected in stages III and IV, making them difficult to treat. Conventional drugs gradually lose their efficacy due to the developed resistance against them, thus requiring newer therapeutic agents to be used as monotherapy or combination. Recent research regarding treatment options has attained remarkable speed and development. Therefore, in this context, drug repurposing comes into the picture, which is defined as the "investigation of the off-patent, approved and marketed drugs for a novel therapeutic indication" which saves at least 30% of the time and cost, reducing the cost of treatment for patients, which usually runs high in cancer patients. The anticancer property of cardiac glycosides in cancers was tested in the early 1980s. The trend then shifts toward treating prostate cancer by repurposing other cardiovascular drugs. The current review mainly emphasizes the advantageous antiprostate cancer profile of conventional CVS drugs like cardiac glycosides, RAAS inhibitors, statins, heparin, and beta-blockers with underlying mechanisms.
Collapse
Affiliation(s)
- Jonaid
Ahmad Malik
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, Guwahati 781003, India
- Biomedical
Engineering, Indian Institute of Technology
(IIT), Ropar, Punjab 140001, India
| | - Sakeel Ahmed
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Sadiya Sikandar Momin
- Department
of Pharmaceutics, Annasaheb Dange College of B. Pharmacy, Ashta, Shivaji University, Sangli, Maharastra 416301, India
| | - Sijal Shaikh
- Sandip Institute
of Pharmaceutical Sciences, Savitribai Phule
Pune University, Nashik, Maharashtra 422213, India
| | - Ahmed Alafnan
- Department
of Pharmacology and Toxicology, University
of Hail, Hail 81422, Saudi Arabia
| | - Jowaher Alanazi
- Department
of Pharmacology and Toxicology, University
of Hail, Hail 81422, Saudi Arabia
| | | | - Sirajudheen Anwar
- Department
of Pharmacology and Toxicology, University
of Hail, Hail 81422, Saudi Arabia
| |
Collapse
|
23
|
Sonicated Extract from the Aril of Momordica Cochinchinensis Inhibits Cell Proliferation and Migration in Aggressive Prostate Cancer Cells. J Toxicol 2022; 2022:1149856. [PMID: 36605288 PMCID: PMC9810401 DOI: 10.1155/2022/1149856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/10/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Momordica cochinchinensis or gac fruit has been reported to have several biological activities, including antioxidation, anti-inflammatory, and anticancer activities. However, the effect on cancer cell metastasis has not been extensively studied. With this aim, the extract from the aril part was selected and investigated for prostate cancer cell migration. The aril extracts were prepared as boiled extract, sonicated extract, ethanol extract, and HAE (hexane:acetone:ethanol; 2 : 1 : 1) extract, while the prostate cancer cell models were PC-3 and LNCaP cells. An MTT assay was performed to compare the antiproliferative effect between prostate cancer cells and normal Vero cells. As a result, the sonicated extract had the highest efficiency in PC-3 cells, with IC50 values of 2 mg/mL and 0.59 mg/mL for 48 and 72 h, respectively, while it had less of an effect in LNCaP cells and was not toxic to normal cells. Cell damage was further confirmed using LDH and cell cycle analysis. As a result, the sonicated extract did not cause cell damage or death and only inhibited cell proliferation. The effect on cancer metastasis was further examined by wound healing, transwell migration assays, and western blotting. The results demonstrated that the sonicated extract inhibited PC-3 cell migration and decreased MMP-9 but increased TIMP-1 expression. All these results support that gac fruit is a valuable source for further development as an anticancer agent for prostate cancer patients.
Collapse
|
24
|
Feng Y, Cao H, Zhao W, Chen L, Wang D, Gao R. miR-143 mediates abiraterone acetate resistance by regulating the JNK/Bcl-2 signaling pathway in prostate cancer. J Cancer 2022; 13:3652-3659. [PMID: 36606191 PMCID: PMC9809307 DOI: 10.7150/jca.78246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background: miR-143 is known to be downregulated in various cancer cells and tumors and generally plays a tumor-suppressor role. miR-143. However, the role of miR-143 in the mediation of the sensitivity of prostate cancer cells to abiraterone acetate remains unrevealed. Methods: The expression levels of miRNAs were determined by miRNA microarray and quantitative real-time PCR (qRT-PCR). The protein levels were assessed by Western blot assay. Cell viability and apoptosis were respectively measured by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Results: We identified that miR-143 was significantly downregulated in PC3-AbiR cells compared to PC3 cells. Overexpression of miR-143 promoted PC-AbiR sensitivity to abiraterone acetate in vitro and in vivo. We also revealed that miR-143 upregulation inhibited p-JNK (c-Jun N-terminal kinases) and increased p-Bcl2 (B-cell lymphoma 2), contributing to abiraterone acetate-induced apoptosis in PC3-AbiR cells. Finally, we showed that the combination of miR-143 and abiraterone acetate exerted the most profound tumor inhibition effect and prolonged the mice survival rate in PC3-AbiR tumor-bearing mice. Conclusion: Upregulation of miR-143 may serve as a new strategy to enhance the therapeutical effect of abiraterone acetate on prostate cancer patients who are resistant to abiraterone acetate.
Collapse
Affiliation(s)
| | | | | | - Lei Chen
- ✉ Corresponding authors: Lei Chen, Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China; ; Tel: 86-13003255716. Dan Wang, Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China; ; Tel: 86-18516154000. Renjie Gao, Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China;
| | - Dan Wang
- ✉ Corresponding authors: Lei Chen, Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China; ; Tel: 86-13003255716. Dan Wang, Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China; ; Tel: 86-18516154000. Renjie Gao, Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China;
| | - Renjie Gao
- ✉ Corresponding authors: Lei Chen, Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China; ; Tel: 86-13003255716. Dan Wang, Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China; ; Tel: 86-18516154000. Renjie Gao, Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China;
| |
Collapse
|
25
|
Milligan K, Van Nest SJ, Deng X, Ali-Adeeb R, Shreeves P, Punch S, Costie N, Pavey N, Crook JM, Berman DM, Brolo AG, Lum JJ, Andrews JL, Jirasek A. Raman spectroscopy and supervised learning as a potential tool to identify high-dose-rate-brachytherapy induced biochemical profiles of prostate cancer. JOURNAL OF BIOPHOTONICS 2022; 15:e202200121. [PMID: 35908273 DOI: 10.1002/jbio.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
High-dose-rate-brachytherapy (HDR-BT) is an increasingly attractive alternative to external beam radiation-therapy for patients with intermediate risk prostate cancer. Despite this, no bio-marker based method currently exists to monitor treatment response, and the changes which take place at the biochemical level in hypo-fractionated HDR-BT remain poorly understood. The aim of this pilot study is to assess the capability of Raman spectroscopy (RS) combined with principal component analysis (PCA) and random-forest classification (RF) to identify radiation response profiles after a single dose of 13.5 Gy in a cohort of nine patients. We here demonstrate, as a proof-of-concept, how RS-PCA-RF could be utilised as an effective tool in radiation response monitoring, specifically assessing the importance of low variance PCs in complex sample sets. As RS provides information on the biochemical composition of tissue samples, this technique could provide insight into the changes which take place on the biochemical level, as result of HDR-BT treatment.
Collapse
Affiliation(s)
- Kirsty Milligan
- Department of Physics, University of British Columbia, Kelowna, Canada
| | - Samantha J Van Nest
- Trev and Joyce Deeley Research Centre, BC Cancer-Victoria, Victoria, Canada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Xinchen Deng
- Department of Physics, University of British Columbia, Kelowna, Canada
| | - Ramie Ali-Adeeb
- Department of Physics, University of British Columbia, Kelowna, Canada
| | - Phillip Shreeves
- Department of Mathematics and Statistics, University of British Columbia, Kelowna, Canada
| | - Samantha Punch
- Trev and Joyce Deeley Research Centre, BC Cancer-Victoria, Victoria, Canada
| | - Nathalie Costie
- Trev and Joyce Deeley Research Centre, BC Cancer-Victoria, Victoria, Canada
| | - Nils Pavey
- Trev and Joyce Deeley Research Centre, BC Cancer-Victoria, Victoria, Canada
| | - Juanita M Crook
- Sindi Ahluwalia Hawkins Centre for the Southern Interior, BC Cancer, Kelowna, Canada
- Department of Radiation Oncology, University of British Columbia, Kelowna, Canada
| | - David M Berman
- Department of Pathology and Molecular Medicine, Queens University, Kingston, Canada
| | | | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer-Victoria, Victoria, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Jeffrey L Andrews
- Department of Mathematics and Statistics, University of British Columbia, Kelowna, Canada
| | - Andrew Jirasek
- Department of Physics, University of British Columbia, Kelowna, Canada
| |
Collapse
|
26
|
Oliveira AI, Pinho C, Vieira FQ, Silva R, Cruz A. Taraxacum spp. in vitro and in vivo anticancer activity – a review. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Shariatifar H, Ranjbarian F, Hajiahmadi F, Farasat A. A comprehensive review on methotrexate containing nanoparticles; an appropriate tool for cancer treatment. Mol Biol Rep 2022; 49:11049-11060. [PMID: 36097117 DOI: 10.1007/s11033-022-07782-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
For more than seven decades, methotrexate has been used all over the world for treatment of different diseases such as: cancer, autoimmune diseases, and rheumatoid arthritis. Several studies have addressed its formula, efficacy, and delivery methods in recent years. These studies have been focused on the effectiveness of different nanoparticles on drug delivery, delivery of the drug to the target cells, and attenuation of harm to the host cell. Whereas, the main usages of methotrexate are in cancer treatment field, this review provided a brief perspective into using different nanoparticles and their role in the treatment of different cancers.
Collapse
Affiliation(s)
- Hanifeh Shariatifar
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fateme Ranjbarian
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fahimeh Hajiahmadi
- Department of Medical Imaging Technology (Molecular Imaging), School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
28
|
Bromma K, Dos Santos N, Barta I, Alexander A, Beckham W, Krishnan S, Chithrani DB. Enhancing nanoparticle accumulation in two dimensional, three dimensional, and xenograft mouse cancer cell models in the presence of docetaxel. Sci Rep 2022; 12:13508. [PMID: 35931743 PMCID: PMC9356051 DOI: 10.1038/s41598-022-17752-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Recent clinical trials show docetaxel (DTX), given in conjunction with radiation therapy (RT) and androgen suppression, improves survival in high-risk prostate cancer. Addition of gold nanoparticles (GNPs) to this current DTX/RT protocol is expected to further improve therapeutic benefits remarkably. However, the foundation for the triple combination of RT, DTX, and GNPs must be elucidated to ensure quicker facilitation to the clinic. In this study, we explored the use of low concentrations of DTX combined with GNPs in two prostate cancer cell lines in a two-dimensional monolayer, a three-dimensional spheroid, and a mouse xenograft model. When used together, DTX and GNPs induced a nearly identical relative increase in uptake of gold in both the spheroid model and the mouse xenograft, which saw a 130% and 126% increase respectively after 24 h, showcasing the benefit of using spheroids as an in vitro model to better optimize in vivo experiments. Further, the benefits of using low concentrations of DTX combined with GNPs extended for over 72 h, allowing for less frequency in dosing when translating to the clinic. Overall, these results highlight the benefits of using DTX combined with GNPs and lays the groundwork for the translation of the triple combination of RT, GNPs, and DTX to the clinic.
Collapse
Affiliation(s)
- Kyle Bromma
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Nancy Dos Santos
- British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Ingrid Barta
- Animal Care Services, University of British Columbia, Vancouver, BC, Canada
| | - Abraham Alexander
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- British Columbia Cancer, Victoria, BC, Canada
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Devika B Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.
- British Columbia Cancer, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
29
|
Siemińska I, Baran J. Myeloid-Derived Suppressor Cells as Key Players and Promising Therapy Targets in Prostate Cancer. Front Oncol 2022; 12:862416. [PMID: 35860573 PMCID: PMC9289201 DOI: 10.3389/fonc.2022.862416] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PC) is the second most often diagnosed malignancy in men and one of the major causes of cancer death worldwide. Despite genetic predispositions, environmental factors, including a high-fat diet, obesity, a sedentary lifestyle, infections of the prostate, and exposure to chemicals or ionizing radiation, play a crucial role in PC development. Moreover, due to a lack of, or insufficient T-cell infiltration and its immunosuppressive microenvironment, PC is frequently classified as a “cold” tumor. This is related to the absence of tumor-associated antigens, the lack of T-cell activation and their homing into the tumor bed, and the presence of immunological cells with regulatory functions, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg), and tumor-associated macrophages (TAMs). All of them, by a variety of means, hamper anti-tumor immune response in the tumor microenvironment (TME), stimulating tumor growth and the formation of metastases. Therefore, they emerge as potential anti-cancer therapy targets. This article is focused on the function and role of MDSCs in the initiation and progression of PC. Clinical trials directly targeting this cell population or affecting its biological functions, thus limiting its pro-tumorigenic activity, are also presented.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland
- University Centre of Veterinary Medicine, Jagiellonian University - University of Agriculture, Cracow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland
- *Correspondence: Jarek Baran,
| |
Collapse
|
30
|
Okeke CJ, Obi AO, Ojewola RW, Jeje EA, Okorie CO, Afogu EN, Ogbobe UU, Ulebe AO, Odo C, Ugwuidu E. Prostate Cancer and Challenges in Management in a Semi-urban Centre: A 10-year Experience. JOURNAL OF THE WEST AFRICAN COLLEGE OF SURGEONS 2022; 12:44-48. [PMID: 36388746 PMCID: PMC9641728 DOI: 10.4103/jwas.jwas_140_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Prostate cancer (CaP) is the second most common cancer in men and the fifth most common cancer worldwide. The incidence in Nigeria is rising. Numerous challenges exist that prevent the successful management of these patients in this subregion. AIMS AND OBJECTIVES This study aimed to report on the modes of presentation and difficulties encountered in managing patients with CaP in our environment with a view to finding solutions to these challenges. MATERIALS AND METHODS This was a retrospective study of all CaP patients who were managed in Alex-Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State, Nigeria over a 10-year period from 2012 to 2021. Data were collated using a pro forma. Numerical data were summarized as means, median, and standard deviation, whereas categorical data were summarized as frequencies. Statistical significance was pegged at P < 0.05. RESULTS Seventy-three patients were analysed. The mean age of the patients was 71.48 ± 8.15 years. The three most common presenting complaints were lower urinary tract symptoms (LUTSs) 23 (31.5%), acute urinary retention 9 (12.3%), and LUTS with low back pain 9 (12.3%). The median duration of symptoms was 6.5 months. No difference was noted among educational level, occupation, and stage of CaP, (P=0.222 and P=0.548), respectively. The median total prostate-specific antigen was 85.0 ng/mL. Sixty-seven patients (91.8%) had an abdominopelvic ultrasound scan. Fifty patients (68.5%) had stage 4 disease. Thirty-eight (52.1%) had financial constraints. Forty-nine (67.1%) patients were lost to follow-up. Bilateral orchidectomy was offered to 28 (38.4%) patients. CONCLUSION Financial constraint was a huge barrier in the management of CaP patients in this study. Late presentation was common in this study.
Collapse
Affiliation(s)
- Chike John Okeke
- Department of Surgery, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State/Department of Surgery, Ebonyi State University/Alex-Ekwueme Federal Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| | - Anselm Okwudili Obi
- Department of Surgery, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State/Department of Surgery, Ebonyi State University/Alex-Ekwueme Federal Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| | - Rufus Wale Ojewola
- Department of Surgery of the College of Medicine of the University of Lagos, Lagos University Teaching Hospital, IdiAraba, Surulere, Lagos, Nigeria
| | - Emmanuel Ajibola Jeje
- Department of Surgery of the College of Medicine of the University of Lagos, Lagos University Teaching Hospital, IdiAraba, Surulere, Lagos, Nigeria
| | - Chukwudi Ogonnaya Okorie
- Department of Surgery, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State/Department of Surgery, Ebonyi State University/Alex-Ekwueme Federal Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| | - Emmaunel Nwali Afogu
- Department of Surgery, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State/Department of Surgery, Ebonyi State University/Alex-Ekwueme Federal Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| | - Uchechukwu Ugonna Ogbobe
- Department of Surgery, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State/Department of Surgery, Ebonyi State University/Alex-Ekwueme Federal Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| | - Augustine Obasi Ulebe
- Department of Surgery, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State/Department of Surgery, Ebonyi State University/Alex-Ekwueme Federal Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| | - Chinonso Odo
- Department of Surgery, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State/Department of Surgery, Ebonyi State University/Alex-Ekwueme Federal Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| | - Emmanuel Ugwuidu
- Department of Surgery, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State/Department of Surgery, Ebonyi State University/Alex-Ekwueme Federal Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| |
Collapse
|
31
|
Montazer M, Taghehchian N, Mojarrad M, Moghbeli M. Role of microRNAs in regulation of WNT signaling pathway in urothelial and prostate cancers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Urothelial cancer (UC) and prostate cancer (PCa) are the most common cancers among men with a high ratio of mortality in advanced-stages. The higher risk of these malignancies among men can be associated with higher carcinogens exposure. Molecular pathology of UC and PCa is related to the specific mutations and aberrations in some signaling pathways. WNT signaling is a highly regulated pathway that has a pivotal role during urothelial and prostate development and homeostasis. This pathway also plays a vital role in adult stem cell niches to maintain a balance between stemness and differentiation. Deregulation of the WNT pathway is frequently correlated with tumor progression and metastasis in urothelial and prostate tumors. Therefore, regulatory factors of WNT pathways are being investigated as diagnostic or prognostic markers and novel therapeutic targets during urothelial and prostate tumorigenesis. MicroRNAs (miRNAs) have a pivotal role in WNT signaling regulation in which there are interactions between miRNAs and WNT signaling pathway during tumor progression. Since, the miRNAs are sensitive, specific, and noninvasive, they can be introduced as efficient biomarkers of tumor progression.
Main body
In present review, we have summarized all of the miRNAs that have been involved in regulation of WNT signaling pathway in urothelial and prostate cancers.
Conclusions
It was observed that miRNAs were mainly involved in regulation of WNT signaling in bladder cancer cells through targeting the WNT ligands and cytoplasmic WNT components such as WNT5A, WNT7A, CTNNB1, GSK3β, and AXIN. Whereas, miRNAs were mainly involved in regulation of WNT signaling in prostate tumor cells via targeting the cytoplasmic WNT components and WNT related transcription factors such as CTNNB1, GSK3β, AXIN, TCF7, and LEF1. MiRNAs mainly functioned as tumor suppressors in bladder and prostate cancers through the WNT signaling inhibition. This review paves the way of introducing a noninvasive diagnostic panel of WNT related miRNAs in urothelial and prostate tumors.
Collapse
|
32
|
Ezenwankwo EF, Nnate DA, Oladoyinbo CA, Dogo HM, Idowu AA, Onyeso CP, Ogo CN, Ogunsanya M, Bamidele O, Nnaji CA. Strengthening Capacity for Prostate Cancer Early Diagnosis in West Africa Amidst the COVID-19 Pandemic: A Realist Approach to Rethinking and Operationalizing the World Health Organization 2017 Guide to Cancer Early Diagnosis. Ann Glob Health 2022; 88:29. [PMID: 35646616 PMCID: PMC9104562 DOI: 10.5334/aogh.3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two years after SARS-CoV-2 (COVID-19) was declared a global public health emergency, the restoration, at least, to the pre-pandemic level of early diagnostic services for prostate cancer has remained enormously challenging for many health systems, worldwide. This is particularly true of West Africa as the region grapples also with the broader impacts of changing demographics and overly stretched healthcare systems. With the lingering COVID-19 crisis, it is likely that the current trend of late prostate cancer diagnosis in the region will worsen with a concomitant increase in the burden of the disease. There is, therefore, a compelling need for innovative and evidence-based solutions to de-escalate the current situation and forestall the collapse of existing structures supporting early prostate cancer diagnosis in the region. In this viewpoint, we make a case for the operationalization of the World Health Organization (WHO) guide to early cancer diagnosis to strengthen the capacity for early prostate cancer diagnosis in West Africa using a realist approach, drawing on participatory health research and evidence-based co-creation. Ultimately, we demonstrate the potential for developing COVID-19 responsive and context-specific models to optimize patient navigation/journey along the essential steps of the World Health Organization guide to early cancer diagnosis.
Collapse
Affiliation(s)
- Elochukwu Fortune Ezenwankwo
- Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- African Behavioral Research (ABeR) Center, Federal University of Agriculture, Abeokuta, Nigeria
- Cancer Research Initiative, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Daniel A. Nnate
- Department of Nursing and Community Health, School of Health and Life Sciences, Glasgow Caledonian University, UK
| | - Catherine Adebukola Oladoyinbo
- African Behavioral Research (ABeR) Center, Federal University of Agriculture, Abeokuta, Nigeria
- Department of Nutrition and Dietetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - Hassan Mohammed Dogo
- African Behavioral Research (ABeR) Center, Federal University of Agriculture, Abeokuta, Nigeria
- Department of Surgery, Urology Division, University of Maiduguri, Maiduguri, Nigeria
| | - Ademola Amos Idowu
- African Behavioral Research (ABeR) Center, Federal University of Agriculture, Abeokuta, Nigeria
- Department of Chemical Pathology, Ekiti State University College of Medicine, Ado-Ekiti, Nigeria
| | | | - Chidiebere Ndukwe Ogo
- Department of Surgery, Federal Medical Centre Abeokuta, NG
- African Behavioral Research (ABeR) Center, Federal Univeristy of Agriculture, Abeokuta, Nigeria
| | - Motolani Ogunsanya
- College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave, Oklahoma City, US
| | - Olufikayo Bamidele
- Institute for Clinical and Applied Health Research, Hull York Medical School, R341, University of Hull, UK
| | - Chukwudi A. Nnaji
- Cancer Research Initiative, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- Cochrane South Africa, South African Medical Research Council, Francie Van Zijl Drive, Parow Valley, Cape Town 7501, South Africa
| |
Collapse
|
33
|
Bagherabadi A, Hooshmand A, Shekari N, Singh P, Zolghadri S, Stanek A, Dohare R. Correlation of NTRK1 Downregulation with Low Levels of Tumor-Infiltrating Immune Cells and Poor Prognosis of Prostate Cancer Revealed by Gene Network Analysis. Genes (Basel) 2022; 13:840. [PMID: 35627227 PMCID: PMC9140438 DOI: 10.3390/genes13050840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PCa) is a life-threatening heterogeneous malignancy of the urinary tract. Due to the incidence of prostate cancer and the crucial need to elucidate its molecular mechanisms, we searched for possible prognosis impactful genes in PCa using bioinformatics analysis. A script in R language was used for the identification of Differentially Expressed Genes (DEGs) from the GSE69223 dataset. The gene ontology (GO) of the DEGs and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. A protein-protein interaction (PPI) network was constructed using the STRING online database to identify hub genes. GEPIA and UALCAN databases were utilized for survival analysis and expression validation, and 990 DEGs (316 upregulated and 674 downregulated) were identified. The GO analysis was enriched mainly in the "collagen-containing extracellular matrix", and the KEGG pathway analysis was enriched mainly in "focal adhesion". The downregulation of neurotrophic receptor tyrosine kinase 1 (NTRK1) was associated with a poor prognosis of PCa and had a significant positive correlation with infiltrating levels of immune cells. We acquired a collection of pathways related to primary PCa, and our findings invite the further exploration of NTRK1 as a biomarker for early diagnosis and prognosis, and as a future potential molecular therapeutic target for PCa.
Collapse
Affiliation(s)
- Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran;
| | - Amirreza Hooshmand
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 74147-85318, Iran;
| | - Nooshin Shekari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz 61357-83151, Iran;
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.)
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 74147-85318, Iran;
| | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.)
| |
Collapse
|
34
|
The IGSF1, Wnt5a, FGF14, and ITPR1 Gene Expression and Prognosis Hallmark of Prostate Cancer. Rep Biochem Mol Biol 2022; 11:44-53. [PMID: 35765527 PMCID: PMC9208564 DOI: 10.52547/rbmb.11.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/11/2023]
Abstract
Background Prostate cancer is considered as the second leading cause of cancer related death in men worldwide and the third frequent cancer among Iranian men. Despite the use of PSA as the only biomarker for early diagnosis of prostate cancer, its application in clinical settings is under debate. Therefore, the introduction of new molecular markers for early detection of prostate cancer is needed. Methods In the present study we intended to evaluate the expression of IGSF1, Wnt5a, FGF14, and ITPR1 in prostate cancer specimens by real time PCR. Biopsy samples of 40 prostate cancer cases and 41 healthy Iranian men were compared to determine the relative gene expression of IGSF1, Wnt5a, FGF14, and ITPR1 by real time PCR. Results Our results showed that Wnt5a, FGF14, and IGSF1 were significantly overexpressed in the prostate cancer patients while the mean relative expression of ITPR1 showed a significant decrease in PCa samples compared to healthy controls. Conclusion According to results of the present study, the combination panel of IGSF1, Wnt5a, FGF14, and ITPR1 genes could be considered as potential genetic markers for prostate cancer diagnosis. However further studies on larger populations and investigating the clinicopathological relevance of these genes is needed.
Collapse
|
35
|
Holmes-Martin K, Zhu M, Xiao S, Arab Hassani F. Advances in Assistive Electronic Device Solutions for Urology. MICROMACHINES 2022; 13:mi13040551. [PMID: 35457855 PMCID: PMC9028141 DOI: 10.3390/mi13040551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
Recent technology advances have led urology to become one of the leading specialities to utilise novel electronic systems to manage urological ailments. Contemporary bladder management strategies such as urinary catheters can provide a solution but leave the user mentally and physically debilitated. The unique properties of modern electronic devices, i.e., flexibility, stretchability, and biocompatibility, have allowed a plethora of new technologies to emerge. Many novel electronic device solutions in urology have been developed for treating impaired bladder disorders. These disorders include overactive bladder (OAB), underactive bladder (UAB) and other-urinary-affecting disorders (OUAD). This paper reviews common causes and conservative treatment strategies for OAB, UAB and OUAD, discussing the challenges and drawbacks of such treatments. Subsequently, this paper gives insight into clinically approved and research-based electronic advances in urology. Advances in this area cover bladder-stimulation and -monitoring devices, robot-assistive surgery, and bladder and sphincter prosthesis. This study aims to introduce the latest advances in electronic solutions for urology, comparing their advantages and disadvantages, and concluding with open problems for future urological device solutions.
Collapse
|
36
|
Sousa AP, Costa R, Alves MG, Soares R, Baylina P, Fernandes R. The Impact of Metabolic Syndrome and Type 2 Diabetes Mellitus on Prostate Cancer. Front Cell Dev Biol 2022; 10:843458. [PMID: 35399507 PMCID: PMC8992047 DOI: 10.3389/fcell.2022.843458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCa) remains the second most common type of cancer in men worldwide in 2020. Despite its low death rate, the need for new therapies or prevention strategies is critical. The prostate carcinogenesis process is complex and multifactorial. PCa is caused by a variety of mutations and carcinogenic events that constitutes the disease's multifactorial focus, capable of not only remodeling cellular activity, but also modeling metabolic pathways to allow adaptation to the nutritional requirements of the tumor, creating a propitious microenvironment. Some risk factors have been linked to the development of PCa, including Metabolic Syndrome (MetS) and Type 2 Diabetes Mellitus (T2DM). MetS is intrinsically related to PCa carcinogenic development, increasing its aggressiveness. On the other hand, T2DM has the opposite impact, although in other carcinomas its effect is similar to the MetS. Although these two metabolic disorders may share some developmental processes, such as obesity, insulin resistance, and dyslipidemia, their influence on PCa prognosis appears to have an inverse effect, which makes this a paradox. Understanding the phenomena behind this paradoxical behavior may lead to new concepts into the comprehension of the diseases, as well as to evaluate new therapeutical targets. Thus, this review aimed to evaluate the impact of metabolic disorders in PCa's aggressiveness state and metabolism.
Collapse
Affiliation(s)
- André P. Sousa
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Raquel Costa
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Marco G. Alves
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Pilar Baylina
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Rúben Fernandes
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
37
|
Komakech R, Yim NH, Shim KS, Jung H, Byun JE, Lee J, Okello D, Matsabisa MG, Erhabor JO, Oyenihi O, Omujal F, Agwaya M, Kim YG, Park JH, Kang Y. Root Extract of a Micropropagated Prunus africana Medicinal Plant Induced Apoptosis in Human Prostate Cancer Cells (PC-3) via Caspase-3 Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8232851. [PMID: 35116070 PMCID: PMC8807049 DOI: 10.1155/2022/8232851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is one of the major causes of cancer-related deaths among men globally. Medicinal plants have been explored as alternative treatment options. Herein, we assessed the in vitro cytotoxic effects of 70% ethanolic root extracts of six-month-old micropropagated Prunus africana (PIR) on PC-3 prostate cancer cells as an alternative to the traditionally used P. africana stem-bark extract (PWS) treatment. In vitro assays on PC-3 cells included annexin-V and propidium iodide staining, DAPI staining, and caspase-3 activity analysis through western blotting. PC-3 cells were exposed to PWS and PIR at different concentrations, and dose-dependent antiprostate cancer effects were observed. PC-3 cell viability was determined using CCK-8 assay, which yielded IC50 values of 52.30 and 82.40 μg/mL for PWS and PIR, respectively. Annexin-V and PI staining showed dose-dependent apoptosis of PC-3 cells. Significant (p < 0.001) percent of DAPI-stained apoptotic PC-3 cells were observed in PWS, PIR, and doxorubicin treatment compared with the negative control. PWS treatment substantially elevated cleaved caspase-3 levels in PC-3 cells compared with the PIR treatment. These results provide evidence for the antiprostate cancer potential of PIR and sets a basis for further research to enhance future utilization of roots of young micropropagated P. africana for prostate cancer treatment as an alternative to stem bark. Moreover, micropropagation approach may help provide the required raw materials and hence reduce the demand for P. africana from endangered wild population.
Collapse
Affiliation(s)
- Richard Komakech
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
- University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Nam-Hui Yim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Ki-Shuk Shim
- Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jae-Eun Byun
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
- University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Denis Okello
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
- University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Motlalepula Gilbert Matsabisa
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Joseph O. Erhabor
- IKS Research Group, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, Free State, South Africa
- Phytomedicine Unit, Department of Plant Biology and Biotechnology, University of Benin, PMB 1154, Benin City, Nigeria
| | - Omolola Oyenihi
- IKS Research Group, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, Free State, South Africa
| | - Francis Omujal
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Moses Agwaya
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Yong-goo Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Jeong Hwan Park
- KM Data Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Youngmin Kang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
- University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
38
|
Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release 2021; 340:221-242. [PMID: 34757195 DOI: 10.1016/j.jconrel.2021.10.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
A bird's eye view is now demanded in the area of cancer research to suppress the suffering of cancer patient and mediate the lack of treatment related to chemotherapy. Chemotherapy is always preferred over surgery or radiation therapy, but they never met the patient's demand of safe medication. Targeted therapy has now been in research that could hinder the unnecessary effect of drug on normal cells but could affect the tumor cells in much efficient manner. Angiogenesis is process involved in development of new blood vessel that nourishes tumor growth. Integrin receptors are over expressed on cancer cells that play vital role in angiogenesis for growth and metastasis of tumor cell. A delivery of RGD based peptide to integrin targeted site could help in its successful binding and liberation of drug in tumor vasculature. Dendrimers, in addition to its excellent pharmacokinetic properties also helps to carry targeting ligand to site of tumor by successfully conjugating with them. The aim of this review is to bring light upon the role of integrin in cancer progression, interaction of RGD to integrin receptor and more importantly the RGD-dendrimer based targeted therapy for the treatment of various cancers.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
39
|
Martínez-Esquivias F, Gutiérrez-Angulo M, Pérez-Larios A, Sánchez-Burgos J, Becerra-Ruiz J, Guzmán-Flores JM. Anticancer Activity of Selenium Nanoparticles In Vitro Studies. Anticancer Agents Med Chem 2021; 22:1658-1673. [PMID: 34515010 DOI: 10.2174/1871520621666210910084216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
Health systems worldwide consider cancer a disease that causes the highest number of deaths per year. The low efficacy of current cancer therapies has led other areas of science to search for new alternatives, including nanomaterial sciences. Selenium nanoparticles have anticancer activity, as revealed by in vitro tests performed on prostate, breast, cervical, lung, colorectal, and liver cancer cell lines. Studies attribute anticancer activity to the anti-metastatic effect due to the inhibition of migration and invasion processes. The antiproliferative effect is the low expression of molecules such as cyclin D1, cyclin E, and CDK2. In addition to the activation of cell apoptosis by caspase-dependent mechanisms, there is a low expression of anti-apoptotic proteins such as Bcl-2 and a high expression of the apoptotic proteins like Bax and Bad. Other studies attribute anticancer activity to the activation of cell necroptosis, where molecules such as TNF and IRF1 participate. The pharmacological potential of selenium nanoparticles depends primarily on the administered dose, particle size, and chemical composition. Furthermore, several studies have shown that the administration of these nanoparticles is safe due to their low toxicity in non-cancerous cells. In this review, the most relevant antecedents on the anticancer potential of selenium nanoparticles in prostate, breast, cervical, lung, liver, and colorectal cancer cell lines are discussed.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Melva Gutiérrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Alejandro Pérez-Larios
- Laboratorio de Materiales, Agua y Energía, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | | | - Julieta Becerra-Ruiz
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| |
Collapse
|
40
|
Jurys T, Burzynski B, Potyka A, Paradysz A. Post-Radical Prostatectomy Erectile Dysfunction Assessed Using the IIEF-5 Questionnaire - A Systematic Literature Review. INTERNATIONAL JOURNAL OF SEXUAL HEALTH : OFFICIAL JOURNAL OF THE WORLD ASSOCIATION FOR SEXUAL HEALTH 2021; 34:55-64. [PMID: 38595677 PMCID: PMC10903601 DOI: 10.1080/19317611.2021.1936333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 04/11/2024]
Abstract
Erectile dysfunction is common postoperative complication after radical prostatectomy. The aim of this study is to evaluate erectile dysfunction among the population of men who have undergone radical prostatectomy. Finally, 21 articles are included in the current qualitative analysis. The results suggest that recovery in potency occurs after 12 months after surgery, and that different adjuvant treatment can be used to accelerate recovery and increase effectiveness. However, conclusions are not derived from all the selected articles, but are rather based on those which present clear numerical scores according to the IIEF-5 questionnaire.
Collapse
Affiliation(s)
- Tomasz Jurys
- Doctoral School, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Bartlomiej Burzynski
- Department of Rehabilitation, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Anna Potyka
- Institute of Education and Communication Research, Silesian University of Technology in Gliwice, Gliwice, Poland
| | - Andrzej Paradysz
- Department of Urology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
41
|
Kgatle MM, Boshomane TMG, Lawal IO, Mokoala KMG, Mokgoro NP, Lourens N, Kairemo K, Zeevaart JR, Vorster M, Sathekge MM. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach. Int J Mol Sci 2021; 22:4109. [PMID: 33921181 PMCID: PMC8071559 DOI: 10.3390/ijms22084109] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Emerging research demonstrates that co-inhibitory immune checkpoints (ICs) remain the most promising immunotherapy targets in various malignancies. Nonetheless, ICIs have offered insignificant clinical benefits in the treatment of advanced prostate cancer (PCa) especially when they are used as monotherapies. Current existing PCa treatment initially offers an improved clinical outcome and overall survival (OS), however, after a while the treatment becomes resistant leading to aggressive and uncontrolled disease associated with increased mortality and morbidity. Concurrent combination of the ICIs with radionuclides therapy that has rapidly emerged as safe and effective targeted approach for treating PCa patients may shift the paradigm of PCa treatment. Here, we provide an overview of the contextual contribution of old and new emerging inhibitory ICs in PCa, preclinical and clinical studies supporting the use of these ICs in treating PCa patients. Furthermore, we will also describe the potential of using a combinatory approach of ICIs and radionuclides therapy in treating PCa patients to enhance efficacy, durable cancer control and OS. The inhibitory ICs considered in this review are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1), V-domain immunoglobulin suppressor of T cell activation (VISTA), indoleamine 2,3-dioxygenase (IDO), T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), B7 homolog 3 (B7-H3) and B7-H4.
Collapse
Affiliation(s)
- Mankgopo M. Kgatle
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Neo P. Mokgoro
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Nico Lourens
- Department of Urology, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kalevo Kairemo
- Departments of Molecular Radiotherapy & Nuclear Medicine, Docrates Cancer Center, 00180 Helsinki, Finland;
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Radiochemistry, South African Nuclear Energy Corporation SOC (Necsa), Pelindaba 0001, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
42
|
Azizi A, Mumin NH, Shafqat N. Phytochemicals With Anti 5-alpha-reductase Activity: A Prospective For Prostate Cancer Treatment. F1000Res 2021; 10:221. [PMID: 34316358 PMCID: PMC8276191 DOI: 10.12688/f1000research.51066.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 11/20/2022] Open
Abstract
Prostate cancer (CaP) is one of the leading causes of death in men worldwide. Much attention has been given on its prevention and treatment strategies, including targeting the regulation of 5-alpha-Reductase (5αR) enzyme activity, aimed to limit the progression of CaP by inhibiting the conversion of potent androgen dihydrotestosterone from testosterone that is thought to play a role in pathogenesis of CaP, by using the 5-alpha-Reductase inhibitors (5αRis) such as finasteride and dutasteride. However, 5αRis are reported to exhibit numerous adverse side effects, for instance erectile dysfunction, ejaculatory dysfunction and loss of libido. This has led to a surge of interest on plant-derived alternatives that might offer favourable side effects and less toxic profiles. Phytochemicals from plants are shown to exhibit numerous medicinal properties in various studies targeting many major illnesses including CaP. Therefore, in this review, we aim to discuss the use of phytochemicals namely phytosterols, polyphenols and fatty acids, found in various plants with proven anti-CaP properties, as an alternative herbal CaP medicines as well as to outline their inhibitory activities on 5αRs isozymes based on their structural similarities with current 5αRis as part of CaP treatment approaches.
Collapse
Affiliation(s)
- Aziemah Azizi
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei
| | - Nuramalina H Mumin
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei
| | - Naeem Shafqat
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei
| |
Collapse
|
43
|
Nath M, Nath S, Choudhury Y. The impact of thiazolidinediones on the risk for prostate cancer in patients with type 2 diabetes mellitus: A review and meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Safarpour-Dehkordi M, Doosti A, Jami MS. Impacts of the Staphylococcal Enterotoxin H on the Apoptosis and lncRNAs in PC3 and ACHN. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2021; 35:180-188. [PMID: 33500599 PMCID: PMC7818696 DOI: 10.3103/s0891416820030076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/18/2020] [Accepted: 01/31/2020] [Indexed: 11/30/2022]
Abstract
Cancer is considered as the most lethal disease for human beings, and up to now many attempts were failed for prevention and treatment of this tremendous health problem. Consequently, this study purpose was to investigate novel therapeutic methods for cancer. The bacterial toxin can result in cell death throughout the induction of apoptosis in cancer cell lines. We evaluated apoptosis and the expression levels of long non-coding RNAs (lncRNAs) in PC3, ACHN and HDF cell lines that were transfected with pCDNA3.1(+)-seh and empty plasmid. pCDNA3.1(+)-seh treatment showed overexpression of GAS5 (p = 0.0033 and p = 0.0033) in PC3 and ACHN cells, down regulation of PCA3 and NEAT1 (p = 0.0092 and p = 0.0097) in the PC3 cells, and down regulation of PVT1 and MALAT1 (p = 0.0239 and p = 0.0133) in the ACHN cells in comparison with the empty plasmid, but there was no significant effect on HDF normal cells. Additionally, this study data demonstrated that the cell adhesion was down regulated. The flow cytometry data showed transfection by pCDNA3.1 (+)-seh could elevate PC3 and ACHN cell apoptosis levels in comparison with empty plasmid. This study findings propose that SEH toxin of S. aureus could be a useful candidate for therapeutic researches in cancer vaccine development.
Collapse
Affiliation(s)
- M Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - A Doosti
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - M S Jami
- Department of Neurology, David Geffen School of Medicine, University of California, CA 90095 Los Angeles (UCLA), United States.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
45
|
Mustafa M, Rass HA, Yahya M, Hamdan K, Eiss Y. Primary metastatic prostate cancer between prognosis or adequate/proper medical therapy. World J Surg Oncol 2021; 19:5. [PMID: 33397422 PMCID: PMC7783967 DOI: 10.1186/s12957-020-02111-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose To define the efficacy of standard androgen deprivation therapy (ADT) in the treatment of metastatic prostate cancer (PCa). Materials and methods Fifty patients with mean age of 70.48 ± 9.95 years old (range 52–87) who had metastatic PCa and received ADT between 2014 and 2019 were retrospectively evaluated. Median values of pre-therapeutic PSA and Gleason scores were 50 ng/ml (range 8–1201) and 8 (range 6–9), respectively. All patients received luteinizing hormone-releasing hormone (LHRH) analogue and anti-androgen. The patients were evaluated in terms of age, pre-therapeutic PSA serum levels, Gleason scores, presence of metastasis, number and percentage of cores involved, nadir PSA, time to nadir PSA, duration of ADT, and PSA at last follow-up. Multivariate analysis was used to define the factors which have impact on ADT response. The mean follow-up period was 13.87 ± 7.78 months, (range 2–32). Results All patients showed reduction in serum PSA level after initiation of ADT, and the median value of nadir PSA was 1.12 ng/ml (range 0.02–50). The mean value of time to nadir PSA was 3.85 ± 1.57 months (range 2–7). The median value of PSA at last follow-up was 2 ng/ml (range 0.02–50.21). Multi-variant analysis showed that nadir PSA have a significant correlation with pre-therapeutic PSA, PSA at last follow-up, age, and Gleason scores (p < .05). Conclusion Standard ADT is a feasible option in the treatment of metastatic PCa. Gleason scores, age, pre-therapeutic PSA, and PSA at last follow-up have significant impact on outcomes of ADT. Further studies of high number of patients with long-term follow-up including other chemo-hormonal therapy and androgen receptor blockers should be carried out to confirm and improve efficacy of ADT.
Collapse
Affiliation(s)
- Mahmoud Mustafa
- Urology Department, Faculty of Medicine and Health Science, An-Najah National University, Nablus, West Bank, Palestine.
| | - Honood Abu Rass
- Pathology Department, Faculty of Medicine and Health Science, An-Najah National University, Nablus, West Bank, Palestine
| | - Mothafr Yahya
- Urology Department, Faculty of Medicine and Health Science, An-Najah National University, Nablus, West Bank, Palestine
| | - Khaleel Hamdan
- Urology Department, Faculty of Medicine and Health Science, An-Najah National University, Nablus, West Bank, Palestine
| | - Yazan Eiss
- Urology Department, Faculty of Medicine and Health Science, An-Najah National University, Nablus, West Bank, Palestine
| |
Collapse
|
46
|
Zhu W, Sheng D, Shao Y, Zhang Q, Peng Y. Neuronal calcitonin gene-related peptide promotes prostate tumor growth in the bone microenvironment. Peptides 2021; 135:170423. [PMID: 33086087 DOI: 10.1016/j.peptides.2020.170423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/27/2022]
Abstract
Advanced stage of prostate cancer cells preferentially metastasizes to varying bones of prostate cancer patients, resulting in incurable disease with poor prognosis and limited therapeutical treatment options. Calcitonin gene-related peptide (CGRP), a neuropeptide produced by prostate gland, is known to play a pivotal role in facilitating tumor growth and metastasis of numerous human cancers. In this study, we aim to investigate the clinical relevance of CGRP in prostate cancer patients and the effects of CGRP and CGRP antagonists on prostate tumor growth in the mouse model. The prostate tumor-bearing mice were received either CGRP or CGRP antagonist treatment, and the tumor growth was monitored by quantification of luminescence intensities. We found that the CGRP+ nerve fiber density and serum CGRP levels were substantially upregulated in the bone or serum specimens from advanced prostate cancer patients as well as in prostate tumor-bearing mice. Administration of CGRP promoted, whereas treatment of CGRP antagonists inhibited prostate tumor growth in the femurs of mice. In addition, CGRP treatment activated extracellular signal-regulated kinases (ERKs)/ Signal transducer and activator of transcription 3 (STAT3) signaling in prostate cancer cells. Targeting CGRP may serve as a potential therapeutic strategy for advanced prostate cancer patients.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dongya Sheng
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yiqun Shao
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qiang Zhang
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Peng
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
47
|
Farabi H, Rezapour A, Moradi N, Aghamir SMK, Koohpayehzadeh J. Men's willingness to pay for prostate cancer screening: a systematic review. Syst Rev 2020; 9:290. [PMID: 33298175 PMCID: PMC7727201 DOI: 10.1186/s13643-020-01522-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to review studies on willingness to pay (WTP) for prostate cancer screening. METHODS This systematic-review was conducted based on the Preferred Reporting Items for Systematic Reviews guidelines. By searching six-health-database, WTP studies on prostate cancer screening using contingent valuation method published in English until March 2020 were included and those with unavailable full-text and inadequate quality-assessment scores were excluded. Smith checklist was used for the quality assessment. Extracted WTPs were converted to US dollar in 2018 using exchange rate parity and net present value formula to make comparison. Factors' effect was assessed by vote counting. RESULTS Six final studies published after 2006 reported above 70% Smith checklist items needed to be considered in contingent valuation study reports. Seven factors have positive effects on WTP. The reported WTP value varied from 11$ to 588$ in Japan and Germany, respectively. CONCLUSION WTP for prostate cancer screening was positive among all studied men. The results of factors' effect assessment showed that better understanding prostate cancer risks or screening tests and factors such as age, income, family history of cancer, hospitalization history, and educational level have positive effects. Moreover, prostate-specific antigen history, health insurance, employment, and subject's health assessment received less attention. The results' generalization to all countries is not applicable because there are no studies for low- and middle-income countries. SYSTEMATIC REVIEW REGISTRATION PROSPERO 2020 CRD42020172789.
Collapse
Affiliation(s)
- Hiro Farabi
- Department of Health Economics, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Aziz Rezapour
- Health Management and Economics Research Center, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Najmeh Moradi
- Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran, Iran University of Medical Sciences, Tehran, Iran
| | | | - Jalil Koohpayehzadeh
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute. Community and Family Medicine Departmentm School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Determination of the CTV-PTV margin for prostate cancer radiotherapy depending on the prostate gland positioning control method. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2020. [DOI: 10.2478/pjmpe-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Objective: The objective of the study was to determine the correct CTV-PTV margin, depending on the method used to verify the PG position. In the study, 3 methods of CBCT image superimposition were assessed as based on the location of the prostate gland (CBCT images), a single gold marker, and pubic symphysis respectively.
Materials and methods: The study group consisted of 30 patients undergoing irradiation therapy at the University Hospital in Zielona Góra. The therapy was delivered using the VMAT (Volumetric Modulated Arc Therapy) protocol. CBCT image-based superimposition (prostate-based alignment) was chosen as the reference method. The uncertainty of the PG positioning method was determined and the margin to be used was determined for the CBCT-based reference method. Then, changes in the position of the prostate gland relative to these determined using the single marker and pubic symphysis-based methods were determined. The CTV-PTV margin was calculated at the root of the sum of the squares for the doubled value of method uncertainty for the CBCT image-based alignment method and the value of the difference between the locations of planned and actual isocenters as determined using the method of interest and the CBCT-based alignment method for which the total number of differences accounted for 95% of all differences.
Results: The CTV-PTV margins to be used when the prostate gland is positioned using the CBCT imaging, single marker, and pubic symphysis-based methods were determined. For the CBCT-based method, the following values were obtained for the Vrt, Lng, and Lat directions respectively: 0.43 cm, 0.48 cm, 0.29 cm. For the single marker-based method, the respective values were 0.7 cm, 0.88 cm, and 0.44 cm whereas for the pubic symphysis-based method these were 0.65 cm, 0.76 cm, and 0.46 cm.
Conclusions: Regardless of the method, the smallest margin values were obtained for the lateral direction, with the CBCT-based method facilitating the smallest margins to be used. The largest margins were obtained using the single marker-based alignment method.
Collapse
|
49
|
Scaria B, Sood S, Raad C, Khanafer J, Jayachandiran R, Pupulin A, Grewal S, Okoko M, Arora M, Miles L, Pandey S. Natural Health Products (NHP's) and Natural Compounds as Therapeutic Agents for the Treatment of Cancer; Mechanisms of Anti-Cancer Activity of Natural Compounds and Overall Trends. Int J Mol Sci 2020; 21:E8480. [PMID: 33187200 PMCID: PMC7697102 DOI: 10.3390/ijms21228480] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most cancer therapeutics, such as tubulin-targeting chemotherapy drugs, cause cytotoxic, non-selective effects. These harmful side-effects drastically reduce the cancer patient's quality of life. Recently, researchers have focused their efforts on studying natural health products (NHP's) which have demonstrated the ability to selectively target cancer cells in cellular and animal models. However, the major hurdle of clinical validation remains. NHP's warrant further clinical investigation as a therapeutic option since they exhibit low toxicity, while retaining a selective effect. Additionally, they can sensitize cancerous cells to chemotherapy, which enhances the efficacy of chemotherapeutic drugs, indicating that they can be utilized as supplemental therapy. An additional area for further research is the investigation of drug-drug interactions between NHP's and chemotherapeutics. The objectives of this review are to report the most recent results from the field of anticancer NHP research, and to highlight the most recent advancements in possible supplemental therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada; (B.S.); (S.S.); (C.R.); (J.K.); (R.J.); (A.P.); (S.G.); (M.O.); (M.A.); (L.M.)
| |
Collapse
|
50
|
Curcumin against Prostate Cancer: Current Evidence. Biomolecules 2020; 10:biom10111536. [PMID: 33182828 PMCID: PMC7696488 DOI: 10.3390/biom10111536] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition characterized by remarkably enhanced rates of cell proliferation paired with evasion of cell death. These deregulated cellular processes take place following genetic mutations leading to the activation of oncogenes, the loss of tumor suppressor genes, and the disruption of key signaling pathways that control and promote homeostasis. Plant extracts and plant-derived compounds have historically been utilized as medicinal remedies in different cultures due to their anti-inflammatory, antioxidant, and antimicrobial properties. Many chemotherapeutic agents used in the treatment of cancer are derived from plants, and the scientific interest in discovering plant-derived chemicals with anticancer potential continues today. Curcumin, a turmeric-derived polyphenol, has been reported to possess antiproliferative and proapoptotic properties. In the present review, we summarize all the in vitro and in vivo studies examining the effects of curcumin in prostate cancer.
Collapse
|