1
|
Eslami M, Raji-Amirhasani A, Khaksari M, Keshavarzi Z, Rostamzadeh F, Sabet N, Jafari E, Soltani Z, Karamouzian S. The changes of digestive system inflammatory, oxidative stress, and histopathology factors following oral mesenchymal stem cells administration in rats with traumatic brain injury. BMC Neurosci 2025; 26:20. [PMID: 40050727 PMCID: PMC11884162 DOI: 10.1186/s12868-025-00936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/10/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND AND AIMS Mucous mesenchymal stem cells can migrate to damaged areas, and their use is proposed as a new approach to treating diseases. The present study aimed to investigate the effect of oral mesenchymal stem cells (OMSCs) on inflammatory, oxidative stress, and histopathological indices in the tissues of the stomach, intestine, and colon after traumatic brain injury (TBI). METHODS AND MATERIALS Adult male rats were randomly divided into four groups: Sham, TBI, Vehicle (Veh), and Stem cell (SC). Intravenous injection of OMSCs was performed at 1 and 24 h after injury. The inflammatory, oxidative stress, and histopathological indices of the tissues of the stomach, small intestine, and colon were evaluated 48 h after injury. RESULTS After TBI, IL-1β and IL-6 levels increased and IL-10 levels decreased in the tissues of the stomach, small intestine, and colon, but the administration of OMSCS prevented these changes to a large extent. Oxidative stress indices (MDA, PC, TAC, SOD, and CAT) showed an increase in oxidative stress after TBI, but oxidative stress was less severe in the OMSC group. The administration of OMSCs after TBI improved the histopathological outcome in the tissues of the stomach, small intestine, and colon. CONCLUSION Administration of OMSCs in rats suffering from TBI can improve inflammatory, oxidative stress, and histopathological indices in the tissues of the stomach, small intestine, and colon, which shows the beneficial effect of using OMSCs in TBI.
Collapse
Affiliation(s)
- Masoud Eslami
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Raji-Amirhasani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeed Karamouzian
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Ureiro-Cueto G, Rodil SE, Silva-Bermúdez P, Santana-Vázquez M, Hoz-Rodríguez L, Arzate H, Montoya-Ayala G. Amorphous titanium oxide (aTiO 2) thin films biofunctionalized with CAP-p15 induce mineralized-like differentiation of human oral mucosal stem cells (hOMSCs). Biomed Mater 2024; 19:055003. [PMID: 38917837 DOI: 10.1088/1748-605x/ad5bab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO2), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype. We carried out cell attachment and viability assays. Next, hOMSCs differentiation was assessed by red alizarin stain, ALP activity, and western blot analysis by evaluating the expression of RUNX2, BSP, BMP2, and OCN at the protein level. Our results showed that functionalized surfaces with CAP-p15 (1 µg ml-1) displayed a synergistic effect increasing cell proliferation and cell attachment, ALP activity, and expression of osteogenic-related markers. These data demonstrate that CAP-p15 and its interaction with aTiO2surfaces promote osteoblastic differentiation and enhanced mineralization of hOMSCs when compared to pristine samples. Therefore, CAP-p15 shows the potential to be used as a therapeutical molecule capable of inducing mineralized tissue regeneration onto titanium-based implants.
Collapse
Affiliation(s)
- Guadalupe Ureiro-Cueto
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, UNAM, Mexico
| | - Phaedra Silva-Bermúdez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico
| | - Maricela Santana-Vázquez
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Lia Hoz-Rodríguez
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Higinio Arzate
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Gonzalo Montoya-Ayala
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| |
Collapse
|
3
|
Pilipenko V, Dzirkale Z, Rozkalne R, Upite J, Hellal F, Plesnila N, Jansone B. Focal Cerebral Ischemia Induces Global Subacute Changes in the Number of Neuroblasts and Neurons and the Angiogenic Factor Density in Mice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2168. [PMID: 38138271 PMCID: PMC10745011 DOI: 10.3390/medicina59122168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Dissecting the complex pathological cascade of an ischemic stroke in preclinical models is highly warranted to understand the course of this disease in humans. Neurogenesis and angiogenesis are integral for post-stroke recovery, yet it is not clear how these processes are altered months after an ischemic stroke. In this study, we investigated the changes that take place subacutely after focal cerebral ischemia in experimental adult male mice. Materials and Methods: Male 12-week-old C57BL/6 mice underwent a 60 min long fMCAo or sham surgery. Two months after the procedure, we examined the immunohistochemistry to assess the changes in neuroblast (DCX) and differentiated neuron (NeuN) numbers, as well as the density of the pro-angiogenic factor VEGF. Results: We found decreased neuroblast numbers in both brain hemispheres of the fMCAo mice: by more than 85% in the dentate gyrus and by more than 70% in the subventricular zone. No neuroblasts were found in the contralateral hemisphere of the fMCAO mice or the sham controls, but a small population was detected in the ipsilateral ischemic core of the fMCAo mice. Intriguingly, the number of differentiated neurons in the ipsilateral ischemic core was lower by 20% compared to the contralateral hemisphere. VEGF expression was diminished in both brain hemispheres of the fMCAo mice. Conclusions: Our current report shows that focal cerebral ischemia induces changes in neuroblast numbers and the pro-angiogenic factor VEGF in both cerebral hemispheres 2 months after an fMCAo in mice. Our data show that focal cerebral ischemia induces a long-term regenerative response in both brain hemispheres.
Collapse
Affiliation(s)
- Vladimirs Pilipenko
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Raina blvd. 19, LV-1586 Riga, Latvia; (Z.D.); (J.U.)
| | - Zane Dzirkale
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Raina blvd. 19, LV-1586 Riga, Latvia; (Z.D.); (J.U.)
| | - Rebeka Rozkalne
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Raina blvd. 19, LV-1586 Riga, Latvia; (Z.D.); (J.U.)
| | - Jolanta Upite
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Raina blvd. 19, LV-1586 Riga, Latvia; (Z.D.); (J.U.)
| | - Farida Hellal
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University Munich, 81377 München, Germany; (F.H.); (N.P.)
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University Munich, 81377 München, Germany; (F.H.); (N.P.)
| | - Baiba Jansone
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Raina blvd. 19, LV-1586 Riga, Latvia; (Z.D.); (J.U.)
| |
Collapse
|
4
|
Bardag Gorce F, Al Dahan M, Narwani K, Terrazas J, Ferrini M, Calhoun CC, Uyanne J, Royce-Flores J, Crum E, Niihara Y. Human Oral Mucosa as a Potentially Effective Source of Neural Crest Stem Cells for Clinical Practice. Cells 2023; 12:2216. [PMID: 37759439 PMCID: PMC10526281 DOI: 10.3390/cells12182216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
We report in this study on the isolation and expansion of neural crest stem cells (NCSCs) from the epithelium of oral mucosa (OM) using reagents that are GMP-certified and FDA-approved for clinical use. Characterization analysis showed that the levels of keratins K2, K6C, K4, K13, K31, and K15-specific to OM epithelial cells-were significantly lower in the experimental NCSCs. While SOX10 was decreased with no statistically significant difference, the earliest neural crest specifier genes SNAI1/2, Ap2a, Ap2c, SOX9, SOX30, Pax3, and Twist1 showed a trend in increased expression in NCSCs. In addition, proteins of Oct4, Nestin and Noth1 were found to be greatly expressed, confirming NCSC multipotency. In conclusion, our study showed that the epithelium of OM contains NCSCs that can be isolated and expanded with clinical-grade reagents to supply the demand for multipotent cells required for clinical applications in regenerative medicine. Supported by Emmaus Medical Inc.
Collapse
Affiliation(s)
- Fawzia Bardag Gorce
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mais Al Dahan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Kavita Narwani
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
| | - Jesus Terrazas
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Monica Ferrini
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Colonya C. Calhoun
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Department of Oral & Maxillofacial Surgery and Hospital Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jettie Uyanne
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Herman Ostrow School of Dentistry of USC, Los Angeles, CA 90089, USA
| | - Jun Royce-Flores
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Eric Crum
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yutaka Niihara
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Emmaus Medical, Inc., Torrance, CA 90503, USA
| |
Collapse
|
5
|
Zolfaghari Baghbadorani P, Rayati Damavandi A, Moradi S, Ahmadi M, Bemani P, Aria H, Mottedayyen H, Rayati Damavandi A, Eskandari N, Fathi F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev Neurosci 2023; 34:613-633. [PMID: 36496351 DOI: 10.1515/revneuro-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease related to the central nervous system (CNS) with a significant global burden. In this illness, the immune system plays an essential role in its pathophysiology and progression. The currently available treatments are not recognized as curable options and, at best, might slow the progression of MS injuries to the CNS. However, stem cell treatment has provided a new avenue for treating MS. Stem cells may enhance CNS healing and regulate immunological responses. Likewise, stem cells can come from various sources, including adipose, neuronal, bone marrow, and embryonic tissues. Choosing the optimal cell source for stem cell therapy is still a difficult verdict. A type of stem cell known as mesenchymal stem cells (MSCs) is obtainable from different sources and has a strong immunomodulatory impact on the immune system. According to mounting data, the umbilical cord and adipose tissue may serve as appropriate sources for the isolation of MSCs. Human amniotic epithelial cells (hAECs), as novel stem cell sources with immune-regulatory effects, regenerative properties, and decreased antigenicity, can also be thought of as a new upcoming contender for MS treatment. Overall, the administration of stem cells in different sets of animal and clinical trials has shown immunomodulatory and neuroprotective results. Therefore, this review aims to discuss the different types of stem cells by focusing on MSCs and their mechanisms, which can be used to treat and improve the outcomes of MS disease.
Collapse
Affiliation(s)
| | - Amirmasoud Rayati Damavandi
- Students' Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Keshavarz Blvrd, Vesal Shirazi St., Tehran 1417613151, Iran
| | - Samira Moradi
- School of Medicine, Hormozgan University of Medical Sciences Chamran Blvrd., Hormozgan 7919693116, Bandar Abbass, Iran
| | - Meysam Ahmadi
- School of Medicine, Shiraz University of Medical Sciences, Fars, Zand St., Shiraz 7134814336, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fars, Ibn Sina Sq., Fasa 7461686688, Iran
| | - Hossein Mottedayyen
- Department of Immunology, School of Medicine, Kashan University of Medical Sciences, Ravandi Blvrd, Isfahan, Kashan 8715988141, Iran
| | - Amirhossein Rayati Damavandi
- Student's Research Committee, Pharmaceutical Sciences Branch, Islamic Azad University, Yakhchal St., Tehran 193951498, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| |
Collapse
|
6
|
Wang Z, Knight R, Stephens P, Ongkosuwito EM, Wagener FADTG, Von den Hoff JW. Stem cells and extracellular vesicles to improve preclinical orofacial soft tissue healing. Stem Cell Res Ther 2023; 14:203. [PMID: 37580820 PMCID: PMC10426149 DOI: 10.1186/s13287-023-03423-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Orofacial soft tissue wounds caused by surgery for congenital defects, trauma, or disease frequently occur leading to complications affecting patients' quality of life. Scarring and fibrosis prevent proper skin, mucosa and muscle regeneration during wound repair. This may hamper maxillofacial growth and speech development. To promote the regeneration of injured orofacial soft tissue and attenuate scarring and fibrosis, intraoral and extraoral stem cells have been studied for their properties of facilitating maintenance and repair processes. In addition, the administration of stem cell-derived extracellular vesicles (EVs) may prevent fibrosis and promote the regeneration of orofacial soft tissues. Applying stem cells and EVs to treat orofacial defects forms a challenging but promising strategy to optimize treatment. This review provides an overview of the putative pitfalls, promises and the future of stem cells and EV therapy, focused on orofacial soft tissue regeneration.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Rob Knight
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Phil Stephens
- Advanced Therapeutics Group, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - E M Ongkosuwito
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
The Prescription of Oral Mucosal Mesenchymal Stem Cells post-Traumatic Brain Injury Improved the Kidney and Heart Inflammation and Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8235961. [PMID: 36408281 PMCID: PMC9671733 DOI: 10.1155/2022/8235961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Background In the last years, mesenchymal stem cells (MSCs) have been considered as a useful strategy to treat many diseases such as traumatic brain injury (TBI). The production of inflammatory agents by TBI elicits an inflammatory response directed to other systems of body, such as the heart and the kidneys. In this study, the efficacy of oral mucosal mesenchymal stem cells (OMSCs) prescription after TBI in inflammation and oxidative stress of the heart and kidneys was evaluated. Methods Twenty-four male rats were located in groups as follows: sham, TBI, vehicle (Veh), and stem cell (SC). OMSCs were injected intravenously 1 and 24 hours after TBI. Inflammatory, oxidative stress, and histopathological outcomes of the heart and kidney tissues were investigated 48 hours after TBI. Results TBI caused an increase in the level of interleukin-1β (IL-1β), interleukin-6 (IL-6), malondialdehyde (MDA), and carbonyl protein (PC) of the heart and kidney compared to the sham group. Superoxide dismutase (SOD), total antioxidant capacity (TAC), catalase (CAT), and interleukin-10 (IL-10) of the heart and kidney decreased after TBI. The use of OMSCs after TBI reduced the changes of these factors in both the heart and the kidney. Conclusion Application of OMSCs after TBI can decrease inflammation and oxidative stress of the heart and kidney tissues leading to the reduction of damage. Therefore, this method can be evaluated in the TBI patients in future studies.
Collapse
|
8
|
Stančin P, Song MS, Alajbeg I, Mitrečić D. Human Oral Mucosa Stem Cells Increase Survival of Neurons Affected by In Vitro Anoxia and Improve Recovery of Mice Affected by Stroke Through Time-limited Secretion of miR-514A-3p. Cell Mol Neurobiol 2022:10.1007/s10571-022-01276-7. [PMID: 36083390 DOI: 10.1007/s10571-022-01276-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
The success rate of regenerative medicine largely depends on the type of stem cells applied in such procedures. Consequently, to achieve the needed level for clinical standardization, we need to investigate the viability of accessible sources with sufficient quantity of cells. Since the oral region partly originates from the neural crest, which naturally develops in niche with decreased levels of oxygen, the main goal of this work was to test if human oral mucosa stem cells (hOMSC) might be used to treat neurons damaged by anoxia. Here we show that hOMSC are more resistant to anoxia than human induced pluripotent stem cells and that they secrete BDNF, GDNF, VEGF and NGF. When hOMSC were added to human neurons damaged by anoxia, they significantly improved their survival. This regenerative capability was at least partly achieved through miR-514A-3p and SHP-2 and it decreased in hOMSC exposed to neural cells for 14 or 28 days. In addition, the beneficial effect of hOMSC were also confirmed in mice affected by stroke. Hence, in this work we have confirmed that hOMSC, in a time-limited manner, improve the survival of anoxia-damaged neurons and significantly contribute to the recovery of experimental animals following stroke.
Collapse
Affiliation(s)
- Paula Stančin
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Ivan Alajbeg
- Department of Oral Medicine, University of Zagreb School of Dental Medicine and University Hospital Centre Zagreb, Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
9
|
Zhang Q, Burrell JC, Zeng J, Motiwala FI, Shi S, Cullen DK, Le AD. Implantation of a nerve protector embedded with human GMSC-derived Schwann-like cells accelerates regeneration of crush-injured rat sciatic nerves. Stem Cell Res Ther 2022; 13:263. [PMID: 35725660 PMCID: PMC9208168 DOI: 10.1186/s13287-022-02947-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Peripheral nerve injuries (PNIs) remain one of the great clinical challenges because of their considerable long-term disability potential. Postnatal neural crest-derived multipotent stem cells, including gingiva-derived mesenchymal stem cells (GMSCs), represent a promising source of seed cells for tissue engineering and regenerative therapy of various disorders, including PNIs. Here, we generated GMSC-repopulated nerve protectors and evaluated their therapeutic effects in a crush injury model of rat sciatic nerves. METHODS GMSCs were mixed in methacrylated collagen and cultured for 48 h, allowing the conversion of GMSCs into Schwann-like cells (GiSCs). The phenotype of GiSCs was verified by fluorescence studies on the expression of Schwann cell markers. GMSCs encapsulated in the methacrylated 3D-collagen hydrogel were co-cultured with THP-1-derived macrophages, and the secretion of anti-inflammatory cytokine IL-10 or inflammatory cytokines TNF-α and IL-1β in the supernatant was determined by ELISA. In addition, GMSCs mixed in the methacrylated collagen were filled into a nerve protector made from the decellularized small intestine submucosal extracellular matrix (SIS-ECM) and cultured for 24 h, allowing the generation of functionalized nerve protectors repopulated with GiSCs. We implanted the nerve protector to wrap the injury site of rat sciatic nerves and performed functional and histological assessments 4 weeks post-surgery. RESULTS GMSCs encapsulated in the methacrylated 3D-collagen hydrogel were directly converted into Schwann-like cells (GiSCs) characterized by the expression of S-100β, p75NTR, BDNF, and GDNF. In vitro, co-culture of GMSCs encapsulated in the 3D-collagen hydrogel with macrophages remarkably increased the secretion of IL-10, an anti-inflammatory cytokine characteristic of pro-regenerative (M2) macrophages, but robustly reduced LPS-stimulated secretion of TNF-1α and IL-1β, two cytokines characteristic of pro-inflammatory (M1) macrophages. In addition, our results indicate that implantation of functionalized nerve protectors repopulated with GiSCs significantly accelerated functional recovery and axonal regeneration of crush-injured rat sciatic nerves accompanied by increased infiltration of pro-regenerative (M2) macrophages while a decreased infiltration of pro-inflammatory (M1) macrophages. CONCLUSIONS Collectively, these findings suggest that Schwann-like cells converted from GMSCs represent a promising source of supportive cells for regenerative therapy of PNI through their dual functions, neurotrophic effects, and immunomodulation of pro-inflammatory (M1)/pro-regenerative (M2) macrophages.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA.
| | - Justin C. Burrell
- grid.25879.310000 0004 1936 8972Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.410355.60000 0004 0420 350XCenter for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Jincheng Zeng
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA ,grid.410560.60000 0004 1760 3078Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, 523808 China
| | - Faizan I. Motiwala
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA
| | - Shihong Shi
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA
| | - D. Kacy Cullen
- grid.25879.310000 0004 1936 8972Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.410355.60000 0004 0420 350XCenter for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Anh D. Le
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA ,grid.411115.10000 0004 0435 0884Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|
10
|
The Effect of Oral Mucosal Mesenchymal Stem Cells on Pathological and Long-Term Outcomes in Experimental Traumatic Brain Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4065118. [PMID: 35528162 PMCID: PMC9071883 DOI: 10.1155/2022/4065118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/26/2022] [Accepted: 04/09/2022] [Indexed: 01/10/2023]
Abstract
Background Neuroprotective effects of stem cells have been shown in some neurologic diseases. In this study, the effect of oral mucosal mesenchymal stem cells (OMSCs) on traumatic brain injury (TBI) was evaluated in long term. Materials and Methods TBI was induced by Marmarou's method. The number of 2 × 106 OMSCs was intravenously injected 1 and 24 h after the injury. Brain edema and pathological outcome were assessed at 24 h and 21 days after the injury. Besides, long-term neurological, motor, and cognitive outcomes were evaluated at days 3, 7, 14, and 21 after the injury. Results OMSCs administration could significantly inhibit microglia proliferation, and reduce brain edema and neuronal damage, at 24 h and 21 days after the injury. Neurological function improvement was observed in the times evaluated in OMSCs group. Cognitive and motor function dysfunction and anxiety-like behavior were prevented especially at 14 and 21 days after the injury in the treatment group. Conclusion According to the results of this study, OMSCs administration after TBI reduced brain edema and neuronal damage, improved neurologic outcome, and prevented memory and motor impairments and anxiety-like behavior in long term.
Collapse
|
11
|
Gugliandolo A, Mazzon E. Dental Mesenchymal Stem Cell Secretome: An Intriguing Approach for Neuroprotection and Neuroregeneration. Int J Mol Sci 2021; 23:ijms23010456. [PMID: 35008878 PMCID: PMC8745761 DOI: 10.3390/ijms23010456] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known for their beneficial effects and regenerative potential. In particular, dental-derived MSCs have the advantage of easier accessibility and a non-invasive isolation method. Moreover, thanks to their neural crest origin, dental MSCs seem to have a more prominent neuroregenerative potential. Indeed, in basal conditions they also express neuronal markers. However, it is now well known that the beneficial actions of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules released in the conditioned medium (CM) or in extracellular vesicles (EVs). In this review we focus on the applications of the secretome derived from dental MSCs for neuroregeneration and neuroprotection. The secretomes of different dental MSCs have been tested for their effects for neuroregenerative purposes, and the secretomes of dental pulp stem cells and stem cells from human exfoliated deciduous teeth are the most studied. Both the CM and EVs obtained from dental MSCs showed that they are able to promote neurite outgrowth and neuroprotective effects. Interestingly, dental-derived MSC secretome showed stronger neuroregenerative and neuroprotective effects compared to that obtained from other MSC sources. For these reasons, the secretome obtained from dental MSCs may represent a promising approach for neuroprotective treatments.
Collapse
|
12
|
Lopez-Letayf S, Arie I, Araidy S, Abu El-Naaj I, Pitaru S, Arzate H. Human oral mucosa-derived neural crest-like stem cells differentiate into functional osteoprogenitors that contribute to regeneration of critical size calvaria defects. J Periodontal Res 2021; 57:305-315. [PMID: 34839539 DOI: 10.1111/jre.12960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Regeneration of large bony defects is an unmet medical need. The therapeutic effect of fully developed bony constructs engineered in vitro from mineralized scaffold and adult stem cells is hampered by deficient long-term graft integration. The purpose of the present study was to investigate the regenerative capacity of a bony primordial construct consisting of human oral mucosa stem cells (hOMSC)-derived osteoprogenitors and absorbable Gelfoam® sponges. METHODS Gingiva and alveolar mucosa-derived hOMSC were differentiated into osteoprogenitors (Runx2 and osterix positive) and loaded into Gelfoam® sponges to generate primordial hOMSC constructs. These were implanted into critical size calvaria defects in the rat. Defects treated with human dermal fibroblasts (HDF) constructs; Gelfoam® sponges and untreated defects served as controls. RESULTS After 120-day post-implantation defects treated with hOMSC constructs, HDF constructs and gelatin and untreated defects exhibited 86%, 30%, 21%, and 9% of new bone formation, respectively. Immunofluorescence analysis for human nuclear antigen (HNA), bone sialoprotein (BSP), and osteocalcin (OCN) revealed viable hOMSC-derived osteoblasts and osteocytes that formed most of the cell population of the newly formed bone at 30 and 120 days post surgery. Few HNA-positive HDF that were negative for BSP and OCN were identified together with inflammatory cells in the soft tissue adjacent to new bone formation only at 30 days post implantation. CONCLUSION Collectively, the results demonstrate that primordial in vitro engineered constructs consisting of hOMSC-derived osteoprogenitors and absorbable gelatin almost completely regenerate critical size defects in an immunocompetent xenogeneic animal by differentiating into functional osteoblasts that retain the immunomodulatory ability of naïve hOMSC.
Collapse
Affiliation(s)
- Sonia Lopez-Letayf
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Cd. Universitaria, Mexico City, Mexico
| | - Ina Arie
- Department of Oral Biology, School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shareef Araidy
- Department of Cranio-Maxillofacial Surgery, Baruch Padeh Medical Center, Poria, Israel
| | - Imad Abu El-Naaj
- Department of Cranio-Maxillofacial Surgery, Baruch Padeh Medical Center, Poria, Israel
| | - Sandu Pitaru
- Department of Oral Biology, School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Higinio Arzate
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Cd. Universitaria, Mexico City, Mexico
| |
Collapse
|
13
|
Harnessing 3D collagen hydrogel-directed conversion of human GMSCs into SCP-like cells to generate functionalized nerve conduits. NPJ Regen Med 2021; 6:59. [PMID: 34593823 PMCID: PMC8484485 DOI: 10.1038/s41536-021-00170-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Achieving a satisfactory functional recovery after severe peripheral nerve injuries (PNI) remains one of the major clinical challenges despite advances in microsurgical techniques. Nerve autografting is currently the gold standard for the treatment of PNI, but there exist several major limitations. Accumulating evidence has shown that various types of nerve guidance conduits (NGCs) combined with post-natal stem cells as the supportive cells may represent a promising alternative to nerve autografts. In this study, gingiva-derived mesenchymal stem cells (GMSCs) under 3D-culture in soft collagen hydrogel showed significantly increased expression of a panel of genes related to development/differentiation of neural crest stem-like cells (NCSC) and/or Schwann cell precursor-like (SCP) cells and associated with NOTCH3 signaling pathway activation as compared to their 2D-cultured counterparts. The upregulation of NCSC-related genes induced by 3D-collagen hydrogel was abrogated by the presence of a specific NOTCH inhibitor. Further study showed that GMSCs encapsulated in 3D-collagen hydrogel were capable of transmigrating into multilayered extracellular matrix (ECM) wall of natural NGCs and integrating well with the aligned matrix structure, thus leading to biofabrication of functionalized NGCs. In vivo, implantation of functionalized NGCs laden with GMSC-derived NCSC/SCP-like cells (designated as GiSCs), significantly improved the functional recovery and axonal regeneration in the segmental facial nerve defect model in rats. Together, our study has identified an approach for rapid biofabrication of functionalized NGCs through harnessing 3D collagen hydrogel-directed conversion of GMSCs into GiSCs.
Collapse
|
14
|
Guo S, Redenski I, Levenberg S. Spinal Cord Repair: From Cells and Tissue Engineering to Extracellular Vesicles. Cells 2021; 10:cells10081872. [PMID: 34440641 PMCID: PMC8394921 DOI: 10.3390/cells10081872] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition, often leading to severe motor, sensory, or autonomic nervous dysfunction. As the holy grail of regenerative medicine, promoting spinal cord tissue regeneration and functional recovery are the fundamental goals. Yet, effective regeneration of injured spinal cord tissues and promotion of functional recovery remain unmet clinical challenges, largely due to the complex pathophysiology of the condition. The transplantation of various cells, either alone or in combination with three-dimensional matrices, has been intensively investigated in preclinical SCI models and clinical trials, holding translational promise. More recently, a new paradigm shift has emerged from cell therapy towards extracellular vesicles as an exciting "cell-free" therapeutic modality. The current review recapitulates recent advances, challenges, and future perspectives of cell-based spinal cord tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Shaowei Guo
- The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Correspondence: (S.G.); (S.L.)
| | - Idan Redenski
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel;
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel;
- Correspondence: (S.G.); (S.L.)
| |
Collapse
|
15
|
An implantable human stem cell-derived tissue-engineered rostral migratory stream for directed neuronal replacement. Commun Biol 2021; 4:879. [PMID: 34267315 PMCID: PMC8282659 DOI: 10.1038/s42003-021-02392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
The rostral migratory stream (RMS) facilitates neuroblast migration from the subventricular zone to the olfactory bulb throughout adulthood. Brain lesions attract neuroblast migration out of the RMS, but resultant regeneration is insufficient. Increasing neuroblast migration into lesions has improved recovery in rodent studies. We previously developed techniques for fabricating an astrocyte-based Tissue-Engineered RMS (TE-RMS) intended to redirect endogenous neuroblasts into distal brain lesions for sustained neuronal replacement. Here, we demonstrate that astrocyte-like-cells can be derived from adult human gingiva mesenchymal stem cells and used for TE-RMS fabrication. We report that key proteins enriched in the RMS are enriched in TE-RMSs. Furthermore, the human TE-RMS facilitates directed migration of immature neurons in vitro. Finally, human TE-RMSs implanted in athymic rat brains redirect migration of neuroblasts out of the endogenous RMS. By emulating the brain’s most efficient means for directing neuroblast migration, the TE-RMS offers a promising new approach to neuroregenerative medicine. O’Donnell et al. describe their Tissue-Engineered Rostral Migratory Stream (TE-RMS) comprised of human astrocyte-like cells that can be derived from adult gingival stem cells within one week, which reorganizes into bundles of bidirectional, longitudinally-aligned astrocytes to emulate the endogenous RMS. Establishing immature neuronal migration in vitro and in vivo, their study demonstrates surgical feasibility and proof-of-concept evidence for this nascent technology.
Collapse
|
16
|
Can Human Oral Mucosa Stem Cells Differentiate to Corneal Epithelia? Int J Mol Sci 2021; 22:ijms22115976. [PMID: 34205905 PMCID: PMC8198937 DOI: 10.3390/ijms22115976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Human oral mucosa stem cells (hOMSCs) arise from the neural crest, they can self-renew, proliferate, and differentiate to several cell lines and could represent a good source for application in tissue engineering. Because of their anatomical location, hOMSCs are easy to isolate, have multilineage differentiation capacity and express embryonic stem cells markers such as—Sox2, Oct3/4 and Nanog. We have used SHEM (supplemented hormonal epithelial medium) media and cultured hOMSCs over human amniotic membrane and determined the cell’s capacity to differentiate to an epithelial-like phenotype and to express corneal specific epithelial markers—CK3, CK12, CK19, Pan-cadherin and E-cadherin. Our results showed that hOMSCs possess the capacity to attach to the amniotic membrane and express CK3, CK19, Pan-Cadherin and E-Cadherin without induction with SHEM media and expressed CK12 or changed the expression pattern of E-Cadherin to a punctual-like feature when treated with SHEM media. The results observed in this study show that hOMSCs possess the potential to differentiate toward epithelial cells. In conclusion, our results revealed that hOMSCs readily express markers for corneal determination and could provide the ophthalmology field with a therapeutic alternative for tissue engineering to achieve corneal replacement when compared with other techniques. Nevertheless, further studies are needed to develop a predictable therapeutic alternative for cornea replacement.
Collapse
|
17
|
Kent I, Jahansouz C, Ghuman A, Shpitz B, Kidron D, Yaffe V, Abu El-Naaj I, Araidy S, Reina L, Pitaru S, Wexner SD, Avital S. Human Oral Mucosal Stem Cells Reduce Anastomotic Leak in an Animal Model of Colonic Surgery. Eur Surg Res 2021; 62:32-39. [PMID: 33902028 DOI: 10.1159/000514987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Anastomotic leak is regarded as one of the most feared complications of bowel surgery; avoiding leaks is a major priority. Attempts to reduce or eliminate leaks have included alternate anastomotic techniques. Human oral mucosa stem cells (hOMSC) are self-renewing and expandable cells derived from buccal mucosa. Studies have shown that hOMSC can accelerate tissue regeneration and wound healing. The objective of this study was to evaluate whether hOMSC can decrease anastomotic leak rates in a murine model of colon surgery. METHODS Two experiments were performed. In the first study, mice underwent colonic anastomosis using five interrupted sutures. hOMSC (n = 7) or normal saline (NS; n = 17) was injected into the colon wall at the site of the anastomosis. To evaluate whether hOMSC can impact anastomotic healing, the model was stressed by repeating the first experiment, reducing the number of sutures used for the construction of the anastomosis from five to four. Either hOMSC (n = 8) or NS (n = 20) was injected at the anastomosis. All mice that survived were sacrificed on postoperative day 7. Anastomotic leak rate, mortality, daily weight, and daily wellness scores were compared. RESULTS In the five-suture anastomosis, there were no differences in anastomotic leak rate, mortality, or daily weight. Mice that received hOMSC had significantly higher wellness scores on postoperative day 2 (p < 0.05). In the four-suture anastomosis, there was a significant decrease in leak rate (70% [NS] vs. 25% [hOMSC], p = 0.029) and higher wellness scores in mice that received hOMSC (p < 0.05). CONCLUSION Our study suggests that injecting hOMSC at the colonic anastomosis can potentially reduce anastomotic leak and improve postoperative wellness in a murine model of colon surgery.
Collapse
Affiliation(s)
- Ilan Kent
- Department of Surgery, Meir Medical Center, Kfar Saba, Israel.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Cyrus Jahansouz
- Division of Colon and Rectal Surgery, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amandeep Ghuman
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Baruch Shpitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Debora Kidron
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Yaffe
- Department of Cranio-Maxillofacial Surgery, Baruch Padeh Medical Center, Poria, Israel
| | - Imad Abu El-Naaj
- Department of Cranio-Maxillofacial Surgery, Baruch Padeh Medical Center, Poria, Israel
| | - Shareef Araidy
- Department of Cranio-Maxillofacial Surgery, Baruch Padeh Medical Center, Poria, Israel
| | - Luciana Reina
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sandu Pitaru
- Department of Oral Biology, School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Steven David Wexner
- Department of Colorectal Surgery, Cleveland Clinic Florida, Weston, Florida, USA
| | - Shmuel Avital
- Department of Surgery, Meir Medical Center, Kfar Saba, Israel.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Examination of the Therapeutic Potential of Mouse Oral Mucosa Stem Cells in a Wound-Healing Diabetic Mice Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134854. [PMID: 32640560 PMCID: PMC7369976 DOI: 10.3390/ijerph17134854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Diabetic wounds' delayed healing response is still considered a major therapeutic challenge. Stem cells and derived cellular products have been an active field of research for novel therapies referred to as regenerative medicine. It has recently been shown that human oral mucosa stem cells (hOMSCs) are a readily accessible source for obtaining large quantities of stem cells. This study evaluates the potential of mouse oral mucosa stem cells (mOMSCs) to enhance wound healing in a diabetic (db/db) mouse model by morphological and histological analysis. We show that mOMSCs-treated wounds displayed a significantly faster wound-healing response (p ≤ 0.0001), featuring faster re-epithelialization and a larger area of granulation tissue (p ≤ 0.05). Taken together, these results suggest that oral mucosa stem cells might have therapeutic potential in diabetic wound healing.
Collapse
|
19
|
Comparative Analysis of Biological Properties of Large-Scale Expanded Adult Neural Crest-Derived Stem Cells Isolated from Human Hair Follicle and Skin Dermis. Stem Cells Int 2019; 2019:9640790. [PMID: 30915126 PMCID: PMC6399535 DOI: 10.1155/2019/9640790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/14/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction The adult neural crest-derived stem cells (NCSCs) have significant perspectives for use in regenerative medicine. The most attractive sources for adult NCSC isolation are the hair follicles (HF) and skin dermis (SD) because of easy access and minimally invasive biopsy. The aim of this study was to compare the biological properties of HF- and SD-derived NCSCs after their large-scale expansion. Methods The conventional explant method was used to obtain HF NCSCs. For the isolation of SD NCSCs, a new combined technique consisting of preplating and subsequent culturing in 3D blood plasma-derived fibrin hydrogel was applied. The studied cells were characterized by flow cytometry, ICC, qPCR, Bio-Plex multiplex assay, and directed multilineage differentiation assays. Results We have obtained both adult SD and HF NCSCs from each skin sample (n = 5). Adult SD and HF NCSCs were positive for key neural crest markers: SOX10, P75 (CD271), NESTIN, SOX2, and CD349. SD NCSCs showed a higher growth rate during the large-scale expansion compared to HF NCSCs (p < 0.01). Final population of SD NCSCs also contained more clonogenic cells (p < 0.01) and SOX10+, CD271+, CD105+, CD140a+, CD146+, CD349+ cells (p < 0.01). Both HF and SD NCSCs had similar gene expression profiling and produced growth factors, but some quantitative differences were detected. Adult HF and SD NCSCs were able to undergo directed differentiation into neurons, Schwann cells, adipocytes, and osteoblasts. Conclusion The HF and SD are suitable sources for large-scale manufacturing of adult NCSCs with similar biological properties. We demonstrated that the NCSC population from SD was homogenous and displayed significantly higher growth rate than HF NCSCs. Moreover, SD NCSC isolation is cheaper, easier, and minimally time-consuming method.
Collapse
|
20
|
Alajbeg I, Alić I, Andabak-Rogulj A, Brailo V, Mitrečić D. Human- and mouse-derived neurons can be simultaneously obtained by co-cultures of human oral mucosal stem cells and mouse neural stem cells. Oral Dis 2018; 24:5-10. [PMID: 29480641 DOI: 10.1111/odi.12776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To observe simultaneous differentiation and analyse possible interactions between co-cultured human oral mucosal stem cells (hOMSC) and mouse neural stem cells (mNSC). MATERIALS AND METHODS hOMSC and mNSC were co-cultured in mouse and in human medium, and their immunocytochemical characterization to detect survival rate and differentiation pattern was performed. Co-cultures in different media were compared to hOMSC in human medium and mNSC in mouse medium as controls. RESULTS Co-culture of hOMSC and mNSC in medium for human cells led to normal differentiation pattern of human cells, while mNSC were directed towards astrocytes. When the same cells were cultivated in the mouse medium, both cell types succeeded to form neurons, although mNSC showed a tendency to overgrow hOMSC. hOMSC alone in the human-specific medium differentiated towards ectodermal (Oct4, Map2) and mesodermal (Osterix) cell populations. mNSC in the mouse-specific medium differentiated towards Map2-, β3-tubulin- and NeuN-positive neurons. CONCLUSIONS hOMSC and mNSC can form co-cultures. Different media considerably affected the differentiation pattern of co-cultures, whereas one cell population itself modestly influenced differentiation of the other cell type. The in vitro differentiation pattern of hOMSC in the mouse neural tissue environment suggested that hOMSC could be beneficial in the brain tissue affected by ischaemia.
Collapse
Affiliation(s)
- I Alajbeg
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, Zagreb, Croatia.,Department of Dentistry, University Hospital Centre Zagreb, Zagreb, Croatia
| | - I Alić
- Department of Anatomy, Histology and Embryology, University of Zagreb Faculty of Veterinary Medicine, Zagreb, Croatia.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - A Andabak-Rogulj
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - V Brailo
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, Zagreb, Croatia.,Department of Dentistry, University Hospital Centre Zagreb, Zagreb, Croatia
| | - D Mitrečić
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Stem Cells, Croatian Institute for Brain Research, Zagreb, Croatia
| |
Collapse
|
21
|
Ganz J, Shor E, Guo S, Sheinin A, Arie I, Michaelevski I, Pitaru S, Offen D, Levenberg S. Implantation of 3D Constructs Embedded with Oral Mucosa-Derived Cells Induces Functional Recovery in Rats with Complete Spinal Cord Transection. Front Neurosci 2017; 11:589. [PMID: 29163001 PMCID: PMC5671470 DOI: 10.3389/fnins.2017.00589] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI), involving damaged axons and glial scar tissue, often culminates in irreversible impairments. Achieving substantial recovery following complete spinal cord transection remains an unmet challenge. Here, we report of implantation of an engineered 3D construct embedded with human oral mucosa stem cells (hOMSC) induced to secrete neuroprotective, immunomodulatory, and axonal elongation-associated factors, in a complete spinal cord transection rat model. Rats implanted with induced tissue engineering constructs regained fine motor control, coordination and walking pattern in sharp contrast to the untreated group that remained paralyzed (42 vs. 0%). Immunofluorescence, CLARITY, MRI, and electrophysiological assessments demonstrated a reconnection bridging the injured area, as well as presence of increased number of myelinated axons, neural precursors, and reduced glial scar tissue in recovered animals treated with the induced cell-embedded constructs. Finally, this construct is made of bio-compatible, clinically approved materials and utilizes a safe and easily extractable cell population. The results warrant further research with regards to the effectiveness of this treatment in addressing spinal cord injury.
Collapse
Affiliation(s)
- Javier Ganz
- Department of Human Molecular Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Shor
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Shaowei Guo
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Anton Sheinin
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ina Arie
- Department of Oral Biology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Izhak Michaelevski
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Sandu Pitaru
- Department of Oral Biology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Department of Human Molecular Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
22
|
The neurotrophic effects of different human dental mesenchymal stem cells. Sci Rep 2017; 7:12605. [PMID: 28974767 PMCID: PMC5626751 DOI: 10.1038/s41598-017-12969-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
Abstract
The current gold standard treatment for peripheral nerve injury is nerve grafting but this has disadvantages such as donor site morbidity. New techniques focus on replacing these grafts with nerve conduits enhanced with growth factors and/or various cell types such as mesenchymal stem cells (MSCs). Dental-MSCs (D-MSCs) including stem cells obtained from apical papilla (SCAP), dental pulp stem cells (DPSC), and periodontal ligament stem cells (PDLSC) are potential sources of MSCs for nerve repair. Here we present the characterization of various D-MSCs from the same human donors for peripheral nerve regeneration. SCAP, DPSC and PDLSC expressed BDNF, GDNF, NGF, NTF3, ANGPT1 and VEGFA growth factor transcripts. Conditioned media from D-MSCs enhanced neurite outgrowth in an in vitro assay. Application of neutralizing antibodies showed that brain derived neurotrophic factor plays an important mechanistic role by which the D-MSCs stimulate neurite outgrowth. SCAP, DPSC and PDLSC were used to treat a 10 mm nerve gap defect in a rat sciatic nerve injury model. All the stem cell types significantly enhanced axon regeneration after two weeks and showed neuroprotective effects on the dorsal root ganglia neurons. Overall the results suggested SCAP to be the optimal dental stem cell type for peripheral nerve repair.
Collapse
|
23
|
Wang F, Zhang L. p15(INK4b) regulates cell cycle signaling in hippocampal astrocytes of aged rats. Aging Clin Exp Res 2016; 28:813-21. [PMID: 26526028 DOI: 10.1007/s40520-015-0484-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Cyclin-dependent kinase inhibitor p15(INK4b) is thought to be an important player in regulating astrocytic cell cycle. However, little is known with regard to the expression of p15(INK4b) and its function in hippocampal astrocytes. This study evaluated the expression of p15(INK4b) and its function during different development stages in hippocampal astrocytes. METHODS In this study, we cultured hippocampal astrocytes from neonatal adult and aged rats. The expression of p15(INK4b) in neonatal, adult and aged astrocytes was examined. Short interfering RNA (siRNA) was then used to study the functional effects of p15(INK4b) down-regulation during cell cycle regulation. RESULTS We found the expression of p15(INK4b) in hippocampal astrocytes was detectable on postnatal day 7, was expressed at moderate levels in adult mice (9 months old) astrocytes and peaked in aged rat (24 months old) astrocytes. Incubation with siRNA significantly suppressed p15(INK4b) expression at the mRNA and protein levels in astrocytes. Down-regulation of p15(INK4b) increased [(3)H]-thymidine incorporation into DNA and allowed cells to pass the G0/G1-S checkpoint in aged but not in neonatal or adult astrocytes. CONCLUSIONS These observations suggest p15(INK4b) is expressed at a steady level in neonatal and adult rat hippocampal astrocytes with no effect on cell cycle regulation. Importantly, aged astrocyte cell cycle regulation was significantly affected by high expression levels of p15(INK4b) suggesting a role for p15(INK4b) in cell cycle regulation when it is expressed at high but not moderate or low levels in hippocampal astrocytes.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurology, The Central Hospital of Wuhan, 26 Shengli Street, Wuhan, 430014, China.
| | - Linhong Zhang
- Department of Neurology, The Central Hospital of Wuhan, 26 Shengli Street, Wuhan, 430014, China
| |
Collapse
|
24
|
Bianco J, De Berdt P, Deumens R, des Rieux A. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 2016; 73:1413-37. [PMID: 26768693 PMCID: PMC11108394 DOI: 10.1007/s00018-015-2126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium.
- Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
25
|
Boddupally K, Wang G, Chen Y, Kobielak A. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells. Stem Cells 2016; 34:720-31. [PMID: 26865184 DOI: 10.1002/stem.2314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/09/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
It has been suggested that multipotent stem cells with neural crest (NC) origin persist into adulthood in oral mucosa. However their exact localization and role in normal homeostasis is unknown. In this study, we discovered that Lgr5 is expressed in NC cells during embryonic development, which give rise to the dormant stem cells in the adult tongue and oral mucosa. Those Lgr5 positive oral stromal stem cells display properties of NC stem cells including clonal growth and multipotent differentiation. RNA sequencing revealed that adult Lgr5+ oral stromal stem cells express high number of neural crest related markers like Sox9, Twist1, Snai1, Myc, Ets1, Crabp1, Epha2, and Itgb1. Using lineage-tracing experiments, we show that these cells persist more than a year in the ventral tongue and some areas of the oral mucosa and give rise to stromal progeny. In vivo transplantation demonstrated that these cells reconstitute the stroma. Our studies show for the first time that Lgr5 is expressed in the NC cells at embryonic day 9.5 (E9.5) and is maintained during embryonic development and postnataly in the stroma of the ventral tongue, and some areas of the oral mucosa and that Lgr5+ cells participate in the maintenance of the stroma.
Collapse
Affiliation(s)
- Keerthi Boddupally
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Guangfang Wang
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, California, USA
| | - Agnieszka Kobielak
- Department of Otolaryngology, Head & Neck Surgery, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
26
|
Renno WM, Khan KM, Benov L. Is there a role for neurotrophic factors and their receptors in augmenting the neuroprotective effect of (-)-epigallocatechin-3-gallate treatment of sciatic nerve crush injury? Neuropharmacology 2015; 102:1-20. [PMID: 26514400 DOI: 10.1016/j.neuropharm.2015.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/01/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022]
Abstract
This study analyzed and compared the effects of EGCG treatment on the expression of NTFs and NTF receptors expression in the sciatic nerve and the L3-L6 spinal cord segments at the early phase of regeneration following sciatic nerve crush injury. Analysis of BDNF, GDNF and NT3 neurotropic factors and Trk-B, Trk-C and NGFR-p75 receptors in neurons in the spinal cord of CRUSH and CRUSH + EGGC rats showed significant (p < 0.0001) decrease compared to NAÏVE and SHAM at day 1, 3, 7 and 14 after nerve injury. EGCG treatment significantly (p < 0.0001) increased the BDNF, GDN, NT3, Trk-B, Trk-C and NGFR-p75 immunostaining in the L3-L6 spinal cord compared to CRUSH animals. Also, EGCG treatment significantly increased the Trk-B protein concentration and Trk-B, NT3 and Trk-C gene expression in the spinal cords compared to CRUSH group. However, at day 1 and 3 post nerve injury, EGCG treatment significantly decreased the NGFR-p75 expression compared to CRUSH rats. In the sciatic nerve, EGCG treatment significantly (p < 0.01) increased the Trk-B and NGFR-p75 protein concentration in the controls. EGCG treatment significantly (p < 0.0001) increased the Trk-B, Trk-C and NGFR-p75 mRNA gene expressions in the sciatic nerves compared to CRUSH group. Only at day 1, CRUSH + EGCG animals displayed significant rise in the sciatic nerves NT3 gene expression compared to CRUSH group. Our data suggest that the EGCG neuroprotective effect on the spinal cord neurons may be mediated through the modulation of NTFs and NTF receptors following nerve crush injury in a rat model.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait.
| | - Khalid M Khan
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
27
|
Müller J, Ossig C, Greiner JFW, Hauser S, Fauser M, Widera D, Kaltschmidt C, Storch A, Kaltschmidt B. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats. Stem Cells Transl Med 2014; 4:31-43. [PMID: 25479965 DOI: 10.5966/sctm.2014-0078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model.
Collapse
Affiliation(s)
- Janine Müller
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christiana Ossig
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Johannes F W Greiner
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Stefan Hauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Mareike Fauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Darius Widera
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Alexander Storch
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|