1
|
La Mensa A, Buscetta M, Woldhuis RR, Cimino M, Giuffrè MR, Cristaldi M, Dino P, Fiore L, Fucarino A, Lo Iacono G, Bertani A, Brandsma CA, Bucchieri F, Cipollina C. Caspase inhibition restores collagen Iα1 and fibronectin release in cigarette smoke extract-exposed human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2025; 328:L239-L252. [PMID: 39772929 DOI: 10.1152/ajplung.00214.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by obstructed airflow, airway remodeling, and inflammation, with cigarette smoke (CS) exposure being the main risk factor. Although CS extract (CSE) has been shown to activate caspases in various cell types, the role of caspases in human lung fibroblasts (hLFs) in COPD remains poorly understood. Recent studies have linked caspases to extracellular matrix (ECM) remodeling in skin and kidney fibrosis. Caspase activation can be triggered by oxidative stress, with active caspase-3 executing the pore-forming protein gasdermin E (GSDME) in the cleaved N-terminal form GSDME-NT. We investigated whether CSE activates caspases and GSDME in hLFs and their role in ECM remodeling. MRC-5 lung fibroblasts were treated with CSE with or without the antioxidant N-acetyl-cysteine (NAC) and the caspase-8 inhibitor z-IETD-fmk. We measured the effects on caspase-1-8-3/7 activation, GSDME cleavage, ECM remodeling (procollagen Iα1, COLIα1, and fibronectin, FN), and mitochondrial superoxide (mSOX) generation. Key findings were validated in patient-derived hLFs (phLFs). Our results showed that CSE induced caspase-1-8-3/7 activation, mSOX generation, and decreased COLIα1 and FN levels in MRC-5. CSE caused caspase-8-dependent activation of caspase-3, leading to GSDME cleavage. Treatment with NAC inhibited mSOX and caspase activation. Inhibition of caspase-8 and mSOX restored FN and COLIα1 levels. In phLFs, we confirmed caspase-1 and -8 activation, mSOX increase, COLIα1/FN decrease, and the effects of NAC. Our findings highlight the role of the axis caspase-8-3/7-GSDME and mSOX in regulating ECM protein, suggesting that these pathways may contribute to remodeling in COPD.NEW & NOTEWORTHY This research investigates the connection between caspases, gasdermins, and extracellular matrix (ECM) remodeling in the context of cigarette smoke-associated lung diseases. The study found that cigarette smoke extract (CSE) activates caspases and gasdermin E in human lung fibroblasts, leading to decreased ECM protein expression and release. Findings herein reported suggest that targeting the caspase-8-3/7-gasdermin axis and mitochondrial reactive oxygen species may help restore ECM remodeling in chronic lung diseases associated with cigarette smoke exposure.
Collapse
Affiliation(s)
- Agnese La Mensa
- Ri.MED Foundation, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | | | - Roy R Woldhuis
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maura Cimino
- Ri.MED Foundation, Palermo, Italy
- IRCCS ISMETT-UPMC Italy, Palermo, Italy
| | | | | | - Paola Dino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Luigi Fiore
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università di Messina, Messina, Italy
| | - Alberto Fucarino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | | | | | - Corry-Anke Brandsma
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Chiara Cipollina
- Ri.MED Foundation, Palermo, Italy
- Istituto di Farmacologia Traslazionale-CNR, Palermo, Italy
| |
Collapse
|
2
|
Xu M, Feng P, Yan J, Li L. Mitochondrial quality control: a pathophysiological mechanism and potential therapeutic target for chronic obstructive pulmonary disease. Front Pharmacol 2025; 15:1474310. [PMID: 39830343 PMCID: PMC11739169 DOI: 10.3389/fphar.2024.1474310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic respiratory disease worldwide. Mitochondrial quality control mechanisms encompass processes such as mitochondrial biogenesis, fusion, fission, and autophagy, which collectively maintain the quantity, morphology, and function of mitochondria, ensuring cellular energy supply and the progression of normal physiological activities. However, in COPD, due to the persistent stimulation of harmful factors such as smoking and air pollution, mitochondrial quality control mechanisms often become deregulated, leading to mitochondrial dysfunction. Mitochondrial dysfunction plays a pivotal role in the pathogenesis of COPD, contributing toinflammatory response, oxidative stress, cellular senescence. However, therapeutic strategies targeting mitochondria remain underexplored. This review highlights recent advances in mitochondrial dysfunction in COPD, focusing on the role of mitochondrial quality control mechanisms and their dysregulation in disease progression. We emphasize the significance of mitochondria in the pathophysiological processes of COPD and explore potential strategies to regulate mitochondrial quality and improve mitochondrial function through mitochondrial interventions, aiming to treat COPD effectively. Additionally, we analyze the limitations and challenges of existing therapeutic strategies, aiming to provide new insights and methods for COPD treatment.
Collapse
Affiliation(s)
- Mengjiao Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Feng
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Ferguson Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Zhao Z, Zhu P, Lou Y, Hou R, Sun H, Du Y, Xu G. Receptor-Interacting Protein Kinase 3-Mediated Modulation of Endothelial Cell Necroptosis and Mitochondrial Dysfunction through AMPK/Drp1 Signaling Pathway: Insights into the Pathophysiological Mechanisms of Lipopolysaccharide-Induced Acute Lung Injury. Int J Med Sci 2025; 22:71-86. [PMID: 39744171 PMCID: PMC11659830 DOI: 10.7150/ijms.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 02/01/2025] Open
Abstract
Receptor-interacting protein 3 (Ripk3) plays a crucial part in acute lung injury (ALI) by regulating inflammation-induced endothelial damage in the lung tissue. The precise mechanisms through which Ripk3 contributes to the endothelial injury in ALI still remain uncertain. In the current research, we employed Ripk3-deficient (Ripk3-/-) mice to examine the role of Ripk3 in ALI progression, focusing on its effects on endothelial cells (ECs), mitochondrial damage and necroptosis. Our study observed significant Ripk3 upregulation in lipopolysaccharide- (LPS-) treated lung tissues, as well as in murine pulmonary microvascular endothelial cells (PMVECs). Ripk3 deletion improved lung tissue morphology, reduced inflammation, oxidative stress and endothelial dysfunction under LPS challenge. It also mitigated LPS-induced necroptosis and mitochondrial damage in PMVECs. Ripk3 upregulation suppressed the AMP-activated protein kinase (AMPK) pathway and activated Drp1-mediated mitochondrial fission, increasing mitochondrial permeability transition pore (mPTP) opening and PMVEC necroptosis. Conversely, Ripk3 deletion activated the AMPK/Drp1-mitochondrial fission pathway, preventing mPTP opening and PMVEC necroptosis in ALI. These findings demonstrated that Ripk3 promotes necroptosis through the AMPK/Drp1/mPTP opening pathway, identifying a potential therapeutic target for ALI treatment.
Collapse
Affiliation(s)
- Zhaoning Zhao
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Pingjun Zhu
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
- Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yue Lou
- The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ruoyu Hou
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
- School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Heqiang Sun
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingzhen Du
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
- Department of Disease Control and Prevention, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Guogang Xu
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Li H, Dai X, Zhou J, Wang Y, Zhang S, Guo J, Shen L, Yan H, Jiang H. Mitochondrial dynamics in pulmonary disease: Implications for the potential therapeutics. J Cell Physiol 2024; 239:e31370. [PMID: 38988059 DOI: 10.1002/jcp.31370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Mitochondria are dynamic organelles that continuously undergo fusion/fission to maintain normal cell physiological activities and energy metabolism. When mitochondrial dynamics is unbalanced, mitochondrial homeostasis is broken, thus damaging mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to lung tissue injury and pulmonary disease progression in a variety of disease models, including inflammatory responses, apoptosis, and barrier breakdown, and that the role of mitochondrial dynamics varies among pulmonary diseases. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in pulmonary diseases. In this review, we discuss the current evidence on the role of mitochondrial dynamics in pulmonary diseases, with a particular focus on its underlying mechanisms in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), lung cancer and bronchopulmonary dysplasia (BPD), and outline effective drugs targeting mitochondrial dynamics-related proteins, highlighting the great potential of targeting mitochondrial dynamics in the treatment of pulmonary disease.
Collapse
Affiliation(s)
- Hui Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xinyan Dai
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yujuan Wang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shiying Zhang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jiacheng Guo
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lidu Shen
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Huiling Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
6
|
Zhou SY, Du JM, Li WJ, Liu QY, Zhang QY, Su GH, Li Y. The roles and regulatory mechanisms of cigarette smoke constituents in vascular remodeling. Int Immunopharmacol 2024; 140:112784. [PMID: 39083928 DOI: 10.1016/j.intimp.2024.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Vascular remodeling is a dynamic process involving cellular and molecular changes, including cell proliferation, migration, apoptosis and extracellular matrix (ECM) synthesis or degradation, which disrupt the homeostasis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Cigarette smoke exposure (CSE) is thought to promote vascular remodeling, but the components are complex and the mechanisms are unclear. In this review, we overview the progression of major components of cigarette smoke (CS), such as nicotine and acrolein, involved in vascular remodeling in terms of ECs injury, VSMCs proliferation, migration, apoptosis, and ECM disruption. The aim was to elucidate the effects of different components of CS on different cells of the vascular system, to discover the relevance of their actions, and to provide new references for future studies.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jia-Min Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wen-Jing Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qi-Yun Liu
- Department of Cardiology, Shandong Second Medical University, Weifang, China
| | - Qun-Ye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Guo-Hai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
7
|
Zhao L, Gu C, Zhang Y, Yan J, Qiu L, Qin X, Wang Y. Regulation mechanism of GPS2 on PGC-1α/Drp1-mediated mitochondrial dynamics in inflammation of acute lung injury. Int Immunopharmacol 2024; 140:112838. [PMID: 39116501 DOI: 10.1016/j.intimp.2024.112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/04/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Acute lung injury (ALI) has been a hot topic in the field of critical care research in recent years. Mitochondrial dynamics consists of mitochondrial fusion and mitochondrial fission. Dynamin-related protein 1 (Drp1), a key molecule that regulates mitochondrial fission, is important in the oxidative stress and inflammatory response to ALI. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a core protein that mediates mitochondrial biogenesis. G-protein pathway suppressor 2 (GPS2) acts as a transcriptional cofactor with regulatory effects on nuclear-encoded mitochondrial genes. This study aimed to investigate the mechanism of PGC-1α/Drp1-mediated mitochondrial dynamics involved in ALI and to demonstrate the protective mechanism of GPS2 in regulating mitochondrial structure and function and inflammation in ALI. The ALI model was constructed using LPS-induced wild-type mice and human pulmonary microvascular endothelial cells (HPMVECs). It was found that lung injury, oxidative stress and inflammation were exacerbated in the mice ALI model and that mitochondrial structure and function were disrupted in HPMVECs. In vitro studies revealed that LPS led to the upregulated expression of Drp1 and the downregulated expression of PGC-1α and GPS2. Mitochondrial division was reduced and respiratory function was restored in Drp1 knockdown cells, which inhibited oxidative stress and inflammatory response. In addition, the overexpression of PGC-1α and GPS2 significantly inhibited the expression of Drp1, mitochondrial function was restored, and inhibited reactive oxygen species (ROS) production and inflammatory factor release. Moreover, the overexpression of GPS2 promoted the upregulated expression of PGC-1α. This mechanism was also validated in vivo, in which the low expression of GPS2 in mice resulted in the upregulated expression of Drp1 and the downregulated expression of PGC-1α, and further exacerbated LPS-induced ALI. In the present study, we also found that LPS-induced the downregulated expression of GPS2 may be associated with its increased degradation by the proteasome. Therefore, these findings revealed that GPS2 inhibited oxidative stress and inflammation by modulating PGC-1α/Drp1-mediated mitochondrial dynamics to alleviate LPS-induced ALI, which may provide a new approach to the therapeutic orientation for LPS-induced ALI.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Changping Gu
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yi Zhang
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jie Yan
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Lei Qiu
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Xiaofeng Qin
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yuelan Wang
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
8
|
Zhang K, Han Y, Gao YX, Gu FM, Gu ZX, Liang JY, Zhao JY, Zhang T, Gao M, Cai TY, Hu R, Liu TZ, Li B, Zhang Y. Association Between Systolic Blood Pressure and in-Hospital Mortality Among Congestive Heart Failure Patients with Chronic Obstructive Pulmonary Disease in the Intensive Care Unit: A Retrospective Cohort Study. Int J Chron Obstruct Pulmon Dis 2024; 19:2023-2034. [PMID: 39291240 PMCID: PMC11407313 DOI: 10.2147/copd.s448332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background There has been a growing body of research focusing on patients with Congestive Heart Failure (CHF) and chronic obstructive pulmonary disease (COPD) admitted to the intensive care unit (ICU). However, the optimal blood pressure (BP) level for such patients remains insufficiently explored. This study aimed to investigate the associations between systolic blood pressure (SBP) and in-hospital mortality among ICU patients with both CHF and COPD. Methods This retrospective cohort study enrolled 6309 patients from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. SBP was examined as both a continuous and categorical variable, with the primary outcome being in-hospital mortality. The investigation involved multivariable logistic regression, restricted cubic spline regression, and subgroup analysis to determine the relationship between SBP and mortality. Results The cohort consisted of 6309 patients with concurrent CHF and COPD (3246 females and 3063 males), with an average age of 73.0 ± 12.5 years. The multivariate analysis revealed an inverse association between SBP and in-hospital mortality, both as a continuous variable (odds ratio = 0.99 [95% CI, 0.99~1]) and as a categorical variable (divided into quintiles). Restricted cubic spline analysis demonstrated an L-shaped relationship between SBP and mortality risk (P nonlinearity < 0.001), with an inflection point at 99.479 mmHg. Stratified analyses further supported the robustness of this correlation. Conclusion The relationship between SBP and in-hospital mortality in patients with both CHF and COPD follows an L-shaped pattern, with an inflection point at approximately 99.479 mmHg.
Collapse
Affiliation(s)
- Kai Zhang
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yu Han
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yu Xuan Gao
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Fang Ming Gu
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhao Xuan Gu
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jia Ying Liang
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jia Yu Zhao
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Tianqi Zhang
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Min Gao
- Department of Cancer Center, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Tian Yi Cai
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Rui Hu
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Tian Zhou Liu
- Department of Gastrointestinal Surgery, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Bo Li
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yixin Zhang
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
9
|
Narala VR, Narala SR, Aiya Subramani P, Panati K, Kolliputi N. Role of mitochondria in inflammatory lung diseases. Front Pharmacol 2024; 15:1433961. [PMID: 39228517 PMCID: PMC11368744 DOI: 10.3389/fphar.2024.1433961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Mitochondria play a significant and varied role in inflammatory lung disorders. Mitochondria, known as the powerhouse of the cell because of their role in producing energy, are now recognized as crucial regulators of inflammation and immunological responses. Asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome are characterized by complex interactions between immune cells, inflammatory substances, and tissue damage. Dysfunctional mitochondria can increase the generation of reactive oxygen species (ROS), triggering inflammatory pathways. Moreover, mitochondrial failure impacts cellular signaling, which in turn affects the expression of molecules that promote inflammation. In addition, mitochondria have a crucial role in controlling the behavior of immune cells, such as their activation and differentiation, which is essential in the development of inflammatory lung diseases. Their dynamic behavior, encompassing fusion, fission, and mitophagy, also impacts cellular responses to inflammation and oxidative stress. Gaining a comprehensive understanding of the intricate correlation between mitochondria and lung inflammation is essential in order to develop accurate treatment strategies. Targeting ROS generation, dynamics, and mitochondrial function may offer novel approaches to treating inflammatory lung diseases while minimizing tissue damage. Additional investigation into the precise contributions of mitochondria to lung inflammation will provide significant knowledge regarding disease mechanisms and potential therapeutic approaches. This review will focus on how mitochondria in the lung regulate these processes and their involvement in acute and chronic lung diseases.
Collapse
Affiliation(s)
| | | | | | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa, India
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
10
|
Kagemichi N, Umemura M, Ishikawa S, Iida Y, Takayasu S, Nagasako A, Nakakaji R, Akimoto T, Ohtake M, Horinouchi T, Yamamoto T, Ishikawa Y. Cytotoxic effects of the cigarette smoke extract of heated tobacco products on human oral squamous cell carcinoma: the role of reactive oxygen species and CaMKK2. J Physiol Sci 2024; 74:35. [PMID: 38918702 PMCID: PMC11197199 DOI: 10.1186/s12576-024-00928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The increasing prevalence of heated tobacco products (HTPs) has heightened concerns regarding their potential health risks. Previous studies have demonstrated the toxicity of cigarette smoke extract (CSE) from traditional tobacco's mainstream smoke, even after the removal of nicotine and tar. Our study aimed to investigate the cytotoxicity of CSE derived from HTPs and traditional tobacco, with a particular focus on the role of reactive oxygen species (ROS) and intracellular Ca2+. METHODS A human oral squamous cell carcinoma (OSCC) cell line, HSC-3 was utilized. To prepare CSE, aerosols from HTPs (IQOS) and traditional tobacco products (1R6F reference cigarette) were collected into cell culture media. A cell viability assay, apoptosis assay, western blotting, and Fluo-4 assay were conducted. Changes in ROS levels were measured using electron spin resonance spectroscopy and the high-sensitivity 2',7'-dichlorofluorescein diacetate assay. We performed a knockdown of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) by shRNA lentivirus in OSCC cells. RESULTS CSE from both HTPs and traditional tobacco exhibited cytotoxic effects in OSCC cells. Exposure to CSE from both sources led to an increase in intracellular Ca2+ concentration and induced p38 phosphorylation. Additionally, these extracts prompted cell apoptosis and heightened ROS levels. N-acetylcysteine (NAC) mitigated the cytotoxic effects and p38 phosphorylation. Furthermore, the knockdown of CaMKK2 in HSC-3 cells reduced cytotoxicity, ROS production, and p38 phosphorylation in response to CSE. CONCLUSION Our findings suggest that the CSE from both HTPs and traditional tobacco induce cytotoxicity. This toxicity is mediated by ROS, which are regulated through Ca2+ signaling and CaMKK2 pathways.
Collapse
Affiliation(s)
- Nagao Kagemichi
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| | - Soichiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yu Iida
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shota Takayasu
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akane Nagasako
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Taisuke Akimoto
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Makoto Ohtake
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takahiro Horinouchi
- Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Tetsuya Yamamoto
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
11
|
Qi Z, Zhu J, Cai W, Lou C, Li Z. The role and intervention of mitochondrial metabolism in osteoarthritis. Mol Cell Biochem 2024; 479:1513-1524. [PMID: 37486450 PMCID: PMC11224101 DOI: 10.1007/s11010-023-04818-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Osteoarthritis (OA), a prevalent degenerative joint disease, affects a substantial global population. Despite the elusive etiology of OA, recent investigations have implicated mitochondrial dysfunction as a significant factor in disease pathogenesis. Mitochondria, pivotal cellular organelles accountable for energy production, exert essential roles in cellular metabolism. Hence, mitochondrial dysfunction can exert broad-ranging effects on various cellular processes implicated in OA development. This comprehensive review aims to provide an overview of the metabolic alterations occurring in OA and elucidate the diverse mechanisms through which mitochondrial dysfunction can contribute to OA pathogenesis. These mechanisms encompass heightened oxidative stress and inflammation, perturbed chondrocyte metabolism, and compromised autophagy. Furthermore, this review will explore potential interventions targeting mitochondrial metabolism as means to impede or decelerate the progression of OA. In summary, this review offers a comprehensive understanding of the involvement of mitochondrial metabolism in OA and underscores prospective intervention strategies.
Collapse
Affiliation(s)
- Zhanhai Qi
- Department of Orthopedics, The 960th hospital of the Joint Logistics Support Force of the People's Liberation Army, Jinan, Shandong, China
| | - Jiaping Zhu
- Department of Orthopedics, Jinan City People's Hospital, Jinan, Shandong, China
| | - Wusheng Cai
- Department of Orthopedics, Heze Third People's Hospital, Heze, Shandong, China
| | - Chunbiao Lou
- Department of Orthopedics, Heze Third People's Hospital, Heze, Shandong, China
| | - Zongyu Li
- Department of Orthopedics, The 960th hospital of the Joint Logistics Support Force of the People's Liberation Army, Jinan, Shandong, China.
| |
Collapse
|
12
|
Chen X, Xu Y, Ju Y, Gu P. Metabolic Regulation of Endothelial Cells: A New Era for Treating Wet Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:5926. [PMID: 38892113 PMCID: PMC11172501 DOI: 10.3390/ijms25115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Wet age-related macular degeneration (wet AMD) is a primary contributor to visual impairment and severe vision loss globally, but the prevailing treatments are often unsatisfactory. The development of conventional treatment strategies has largely been based on the understanding that the angiogenic switch of endothelial cells (ECs) is mainly dictated by angiogenic growth factors. Even though treatments targeting vascular endothelial growth factor (VEGF), like ranibizumab, are widely administered, more than half of patients still exhibit inadequate or null responses, suggesting the involvement of other pathogenic mechanisms. With advances in research in recent years, it has become well recognized that EC metabolic regulation plays an active rather than merely passive responsive role in angiogenesis. Disturbances of these metabolic pathways may lead to excessive neovascularization in angiogenic diseases such as wet AMD, therefore targeted modulation of EC metabolism represents a promising therapeutic strategy for wet AMD. In this review, we comprehensively discuss the potential applications of EC metabolic regulation in wet AMD treatment from multiple perspectives, including the involvement of ECs in wet AMD pathogenesis, the major endothelial metabolic pathways, and novel therapeutic approaches targeting metabolism for wet AMD.
Collapse
Affiliation(s)
- Xirui Chen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yang Xu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
13
|
Zhu X, He S, Zhang R, Kang L, Lei X, Dong W. Protective Effect and Mechanism of Autophagy in Endothelial Cell Injury Induced by Hyperoxia. Am J Perinatol 2024; 41:e2365-e2375. [PMID: 37516120 DOI: 10.1055/s-0043-1771258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
OBJECTIVE Bronchopulmonary dysplasia is a chronic lung disease in premature infants with alveolar simplification and pulmonary vascular development disorder as the main pathological feature and hyperoxia as the main etiology. Autophagy is a highly conserved cytological behavior of self-degrading cellular components and is accompanied by oxidative stress. Studies have reported that autophagy is regulated by FOXO1 posttranslational modification. However, whether autophagy can be involved in the regulation of endothelial cell injury induced by hyperoxia and its mechanism are still unclear. STUDY DESIGN We have activated and inhibited autophagy in human umbilical vein endothelial cells under hyperoxia and verified the role of autophagy in endothelial cell-related functions from both positive and negative aspects. RESULTS Our research showed that the expression level of autophagy-related proteins decreased, accompanied by decreased cell migration ability and tube formation ability and increased cell reactive oxygen species level and cell permeability under hyperoxia conditions. Using an autophagy agonist alleviated hyperoxia-induced changes and played a protective role. However, inhibition of autophagy aggravated the cell damage induced by hyperoxia. Moreover, the decrease in autophagy proteins was accompanied by the upregulation of FOXO1 phosphorylation and acetylation. CONCLUSION We concluded that autophagy was a protective mechanism against endothelial cell injury caused by hyperoxia. Autophagy might participate in this process by coregulating posttranslational modifications of FOXO1. KEY POINTS · Hyperoxia induces vascular endothelial cell injury.. · Autophagy may has a protective role under hyperoxia conditions.. · FOXO1 posttranslational modification may be involved in the regulation of autophagy..
Collapse
Affiliation(s)
- Xiaodan Zhu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Shasha He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Rong Zhang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Lan Kang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
14
|
Liu YB, Hong JR, Jiang N, Jin L, Zhong WJ, Zhang CY, Yang HH, Duan JX, Zhou Y. The Role of Mitochondrial Quality Control in Chronic Obstructive Pulmonary Disease. J Transl Med 2024; 104:100307. [PMID: 38104865 DOI: 10.1016/j.labinv.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.
Collapse
Affiliation(s)
- Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie-Ru Hong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Nan Jiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Liang J, Zhou C, Zhang C, Liang S, Zhou Z, Zhou Z, Wu C, Zhao H, Meng X, Zou F, Yu C, Cai S. Nicotinamide mononucleotide attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Int Immunopharmacol 2024; 127:111328. [PMID: 38064810 DOI: 10.1016/j.intimp.2023.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential element in cellular metabolism that regulates fundamental biological processes. Growing evidence suggests that a decline in NAD+ is a common pathological factor in various diseases and aging. However, its role in airway epithelial barrier function in response to asthma remains underexplored. The current study aims to explore the efficacy of restoring cellular NAD+ concentration through supplementation with the NAD+ precursor, nicotinamide mononucleotide (NMN), in the treatment of allergic asthma and to investigate the role of SIRT3 in mediating the effects of NAD+ precursors. In this research, NMN alleviated airway inflammation and reduced mucus secretion in house dust mite (HDM)-induced asthmatic mice. It also mitigated airway epithelial barrier disruption in HDM-induced asthma in vitro and in vivo. But inhibition of SIRT3 expression abolished the effects of NMN. Mechanistically, HDM induced SIRT3 SUMOylation and proteasomal degradation. Mutation of these two SIRT3 SUMO modification sites enhanced the stability of SIRT3. Additionally, SIRT3 was targeted by SENP1 which acted to de-conjugate SUMO. And down-regulation of SENP1 expression in HDM-induced models was reversed by NMN. Collectively, these findings suggest that NMN attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Blockage of SIRT3 SUMOylation emerges as for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Jiayuan Liang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chi Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changyun Zhang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shixiu Liang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zili Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zicong Zhou
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuiwen Wu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haijin Zhao
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhui Yu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Song Q, Wang X, Cao Z, Xin C, Zhang J, Li S. The Apelin/APJ System: A Potential Therapeutic Target for Sepsis. J Inflamm Res 2024; 17:313-330. [PMID: 38250143 PMCID: PMC10800090 DOI: 10.2147/jir.s436169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Apelin is the native ligand for the G protein-coupled receptor APJ. Numerous studies have demonstrated that the Apelin/APJ system has positive inotropic, anti-inflammatory, and anti-apoptotic effects and regulates fluid homeostasis. The Apelin/APJ system has been demonstrated to play a protective role in sepsis and may serve as a promising therapeutic target for the treatment of sepsis. Better understanding of the mechanisms of the effects of the Apelin/APJ system will aid in the development of novel drugs for the treatment of sepsis. In this review, we provide a brief overview of the physiological role of the Apelin/APJ system and its role in sepsis.
Collapse
Affiliation(s)
- Qing Song
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Xi Wang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Zhenhuan Cao
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Chun Xin
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Jingyuan Zhang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Suwei Li
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
17
|
Cong X, Mao XD, Wu LL, Yu GY. The role and mechanism of tight junctions in the regulation of salivary gland secretion. Oral Dis 2024; 30:3-22. [PMID: 36825434 DOI: 10.1111/odi.14549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tight junctions (TJs) are cell-cell interactions that localize at the most apical portion of epithelial/endothelial cells. One of the predominant functions of TJs is to regulate material transport through paracellular pathway, which serves as a selective barrier. In recent years, the expression and function of TJs in salivary glands has attracted great interest. The characteristics of multiple salivary gland TJ proteins have been identified. During salivation, the activation of muscarinic acetylcholine receptor and transient receptor potential vanilloid subtype 1, as well as other stimuli, promote the opening of acinar TJs by inducing internalization of TJs, thereby contributing to increased paracellular permeability. Besides, endothelial TJs are also redistributed with leakage of blood vessels in cholinergic-stimulated submandibular glands. Furthermore, under pathological conditions, such as Sjögren's syndrome, diabetes mellitus, immunoglobulin G4-related sialadenitis, and autotransplantation, the integrity and barrier function of TJ complex are impaired and may contribute to hyposalivation. Moreover, in submandibular glands of Sjögren's syndrome mouse model and patients, the endothelial barrier is disrupted and involved in hyposecretion and lymphocytic infiltration. These findings enrich our understanding of the secretory mechanisms that link the importance of epithelial and endothelial TJ functions to salivation under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Xin Cong
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Xiang-Di Mao
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Li-Ling Wu
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Department of Physiology and Pathophysiology, Peking University School of Basic Sciences, Beijing, China
| | - Guang-Yan Yu
- Center for Salivary Gland Diseases, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
18
|
Takada K, Suzukawa M, Igarashi S, Uehara Y, Watanabe S, Imoto S, Ishii M, Morio Y, Matsui H, Akishita M, Ohta K. Serum IgA augments adhesiveness of cultured lung microvascular endothelial cells and suppresses angiogenesis. Cell Immunol 2023; 393-394:104769. [PMID: 37741001 DOI: 10.1016/j.cellimm.2023.104769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Immunoglobulin A (IgA) is important in local immunity and is also abundant in the blood. This study aimed to evaluate the effects of serum IgA on cultured lung microvascular endothelial cells (HMVEC-Ls), which are involved in the pathogenesis of inflammatory lung diseases. Serum IgA induced adhesion molecules and inflammatory cytokine production from HMVEC-Ls, and enhanced adhesion of peripheral blood mononuclear cells to HMVEC-Ls. In contrast, migration, proliferation, and tube formation of HMVEC-Ls were significantly suppressed by serum IgA. Experiments with siRNAs and western blotting revealed that two known IgA receptors, β1,4-galactosyltransferase 1 (b4GALT1) and asialoglycoprotein receptor 1 (ASGR1), and mitogen-activated protein kinase and nuclear factor-kappa B pathways were partly involved in serum IgA-induced cytokine production by HMVEC-Ls. Collectively, serum IgA enhanced cytokine production and adhesiveness of HMVEC-L, with b4GALT1 and ASGR1 partially being involved, and suppressed angiogenesis. Thus, serum IgA may be targeted to treat inflammatory lung diseases.
Collapse
Affiliation(s)
- Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan.
| | - Sayaka Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Yuuki Uehara
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shizuka Watanabe
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sahoko Imoto
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masaki Ishii
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiteru Morio
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Hirotoshi Matsui
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, 3-1-24 Matsuyama, Kiyose-City, Tokyo 204-8522, Japan.
| |
Collapse
|
19
|
Oraby MA, Elazazy O, Karam HM, Fadaly DS, Ibrahim AA. MitoQ combats tumor cell progression in Ehrlich ascites carcinoma mice: A crosstalk between mitochondrial oxidative status, mitophagy, and NF-κB signaling. Life Sci 2023; 331:122063. [PMID: 37666390 DOI: 10.1016/j.lfs.2023.122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Despite the clinical advances in cancer treatment, the high mortality rate is still a great challenge, requiring much effort to find new and efficient cancer therapies. AIMS The present evidence investigated the potential antiproliferative impact of the mitochondrial-targeted antioxidant, Mitoquinol (MitoQ), on a mouse model of Ehrlich ascites carcinoma (EAC). MAIN METHODS Mice-bearing tumors were administered two doses of MitoQ (0.3 mg & 0.5 mg/kg; i.p daily) or doxorubicin (2 mg/kg; i.p daily) for 20 days. KEY FINDINGS EAC mice revealed exacerbated mitochondrial reactive oxygen species (mtROS) and impaired mitochondrial membrane potential (△Ψm). Dysfunctional mitophagy was observed in EAC mice, along with boosting aerobic glycolysis. In addition, tumor cells exhibited higher proliferation rates, thereby stimulating cell cycle, invasion, and angiogenesis biomarkers together with suppressing proapoptotic proteins, events that might be correlated with activation of NF-κB signaling. The administration of MitoQ combated tumor cell survival and dissemination in EAC mice as evidenced by reducing tumor volumes and weights and increasing the number of necrotic areas in histopathological assessment. MitoQ also repressed tumor cell cycle, invasion, and angiogenesis via preventing cyclin D1 mRNA, MMP-1, and CD34 levels as well as VEGF protein expression. These observations were associated with the abrogation of mtROS overproduction and enhancement of the mitophagy proteins, PINK1/Parkin levels, followed by inhibition of NADH dehydrogenase. Notably, NF-κB signaling was modulated. SIGNIFICANCE This study suggests that MitoQ combated tumor cell survival and progression in EAC mice by maintaining mtROS and restoring mitophagy, thereby attenuation of NF-κB activation.
Collapse
Affiliation(s)
- Mamdouh A Oraby
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, 11829, Egypt.
| | - Heba M Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Doaa S Fadaly
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Ibrahim
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt; Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L8, Canada.
| |
Collapse
|
20
|
Maurmann RM, Schmitt BL, Mosalmanzadeh N, Pence BD. Mitochondrial dysfunction at the cornerstone of inflammatory exacerbation in aged macrophages. EXPLORATION OF IMMUNOLOGY 2023; 3:442-452. [PMID: 38831878 PMCID: PMC11147369 DOI: 10.37349/ei.2023.00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 06/05/2024]
Abstract
Immunosenescence encompasses multiple age-related adaptations that result in increased susceptibility to infections, chronic inflammatory disorders, and higher mortality risk. Macrophages are key innate cells implicated in inflammatory responses and tissue homeostasis, functions progressively compromised by aging. This process coincides with declining mitochondrial physiology, whose integrity is required to sustain and orchestrate immune responses. Indeed, multiple insults observed in aged macrophages have been implied as drivers of mitochondrial dysfunction, but how this translates into impaired immune function remains sparsely explored. This review provides a perspective on recent studies elucidating the underlying mechanisms linking dysregulated mitochondria homeostasis to immune function in aged macrophages. Genomic stress alongside defective mitochondrial turnover accounted for the progressive accumulation of damaged mitochondria in aged macrophages, thus resulting in a higher susceptibility to excessive mitochondrial DNA (mtDNA) leakage and reactive oxygen species (ROS) production. Increased levels of these mitochondrial products following infection were demonstrated to contribute to exacerbated inflammatory responses mediated by overstimulation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and cyclic GMP-ATP synthase (cGAS)-stimulator of interferon genes (STING) pathways. While these mechanisms are not fully elucidated, the present evidence provides a promising area to be explored and a renewed perspective of potential therapeutic targets for immunological dysfunction.
Collapse
Affiliation(s)
| | | | - Negin Mosalmanzadeh
- College of Health Sciences, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Brandt D. Pence
- College of Health Sciences, University of Memphis, Memphis, Tennessee, 38152, USA
| |
Collapse
|
21
|
Nie X, Dong X, Hu Y, Xu F, Hu C, Shu C. Coenzyme Q10 Stimulate Reproductive Vatality. Drug Des Devel Ther 2023; 17:2623-2637. [PMID: 37667786 PMCID: PMC10475284 DOI: 10.2147/dddt.s386974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Female infertility and pregnancy maintenance are associate with various factors, including quantity and quality of oocytes, genital inflammation, endometriosis, and other diseases. Women are even diagnosed as unexplained infertility or unexplained recurrent spontaneous abortion when failed to achieve pregnancy with current treatment, which are urgent clinical issues need to be addressed. Coenzyme Q10 (CoQ10) is a lipid-soluble electron carrier in the mitochondrial electron transport chain. It is not only essential for the mitochondria to produce energy, but also function as an antioxidant to maintain redox homeostasis in the body. Recently, the capacity of CoQ10 to reduce oxidative stress (OS), enhance mitochondrial activity, regulate gene expression and inhibit inflammatory responses, has been discovered as a novel adjuvant in male reproductive performance enhancing in both animal and human studies. Furthermore, CoQ10 is also proved to regulate immune balance, antioxidant, promote glucose and lipid metabolism. These properties will bring highlight for ovarian dysfunction reversing, ovulation ameliorating, oocyte maturation/fertilization promoting, and embryonic development optimizing. In this review, we systematically discuss the pleiotropic effects of CoQ10 in female reproductive disorders to investigate the mechanism and therapeutic potential to provide a reference in subsequent studies.
Collapse
Affiliation(s)
- Xinyu Nie
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xinru Dong
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yuge Hu
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Fangjun Xu
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Cong Hu
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Chang Shu
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
22
|
Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X, Zhao D, Feng X, Qi W, Zhu H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J Inflamm Res 2023; 16:3593-3617. [PMID: 37641702 PMCID: PMC10460614 DOI: 10.2147/jir.s418166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Jin
- Department of Nephrology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Liming Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiaochun Feng
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haoyu Zhu
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
23
|
Borek I, Birnhuber A, Voelkel NF, Marsh LM, Kwapiszewska G. The vascular perspective on acute and chronic lung disease. J Clin Invest 2023; 133:e170502. [PMID: 37581311 PMCID: PMC10425217 DOI: 10.1172/jci170502] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
The pulmonary vasculature has been frequently overlooked in acute and chronic lung diseases, such as acute respiratory distress syndrome (ARDS), pulmonary fibrosis (PF), and chronic obstructive pulmonary disease (COPD). The primary emphasis in the management of these parenchymal disorders has largely revolved around the injury and aberrant repair of epithelial cells. However, there is increasing evidence that the vascular endothelium plays an active role in the development of acute and chronic lung diseases. The endothelial cell network in the capillary bed and the arterial and venous vessels provides a metabolically highly active barrier that controls the migration of immune cells, regulates vascular tone and permeability, and participates in the remodeling processes. Phenotypically and functionally altered endothelial cells, and remodeled vessels, can be found in acute and chronic lung diseases, although to different degrees, likely because of disease-specific mechanisms. Since vascular remodeling is associated with pulmonary hypertension, which worsens patient outcomes and survival, it is crucial to understand the underlying vascular alterations. In this Review, we describe the current knowledge regarding the role of the pulmonary vasculature in the development and progression of ARDS, PF, and COPD; we also outline future research directions with the hope of facilitating the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Izabela Borek
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Norbert F. Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, German Lung Center (DZL), Cardiopulmonary Institute, Giessen, Germany
| |
Collapse
|
24
|
Luo J, Wang X, Wei T, Lang K, Bao C, Yang D. Peroxinredoxin 6 reduction accelerates cigarette smoke extract‑induced senescence by regulating autophagy in BEAS‑2B cells. Exp Ther Med 2023; 26:375. [PMID: 37415842 PMCID: PMC10320655 DOI: 10.3892/etm.2023.12074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
Cigarette smoke (CS)-induced accelerated senescence and insufficient autophagy has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Peroxiredoxin (PRDX) 6 is a protein with prevalent antioxidant capacity. Previous studies indicate that PRDX6 could activate autophagy and alleviate senescence in other diseases. The present study investigated whether PRDX6-regulated autophagy was involved in the regulation of CS extract (CSE)-induced BEAS-2B cell senescence via the knockdown of PRDX6 expression. Furthermore, the present study evaluated the mRNA levels of PRDX6, autophagy and senescence-associated genes in the small airway epithelium from patients with COPD by analyzing the GSE20257 dataset from the Gene Expression Omnibus database. The results demonstrated that CSE reduced PRDX6 expression levels and transiently induced the activation of autophagy, followed by the accelerated senescence of BEAS-2B cells. Knockdown of PRDX6 induced autophagy degradation and accelerated senescence in CSE-treated BEAS-2B cells. Furthermore, autophagy inhibition by 3-Methyladenine increased P16 and P21 expression levels, while autophagy activation by rapamycin reduced P16 and P21 expression levels in CSE-treated BEAS-2B cells. The GSE20257 dataset revealed that patients with COPD had lower PRDX6, sirtuin (SIRT) 1 and SIRT6 mRNA levels, and higher P62 and P16 mRNA levels compared with non-smokers. P62 mRNA was significantly correlated with P16, P21 and SIRT1, which indicated that insufficient autophagic clearance of damaged proteins could be involved in accelerated cell senescence in COPD. In conclusion, the present study demonstrated a novel protective role for PRDX6 in COPD. Furthermore, a reduction in PRDX6 could accelerate senescence by inducing autophagy impairment in CSE-treated BEAS-2B cells.
Collapse
Affiliation(s)
- Jinlong Luo
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaocen Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Tingting Wei
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ke Lang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Chen Bao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Dong Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Lee WE, Genetzakis E, Figtree GA. Novel Strategies in the Early Detection and Treatment of Endothelial Cell-Specific Mitochondrial Dysfunction in Coronary Artery Disease. Antioxidants (Basel) 2023; 12:1359. [PMID: 37507899 PMCID: PMC10376062 DOI: 10.3390/antiox12071359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Although elevated cholesterol and other recognised cardiovascular risk factors are important in the development of coronary artery disease (CAD) and heart attack, the susceptibility of humans to this fatal process is distinct from other animals. Mitochondrial dysfunction of cells in the arterial wall, particularly the endothelium, has been strongly implicated in the pathogenesis of CAD. In this manuscript, we review the established evidence and mechanisms in detail and explore the potential opportunities arising from analysing mitochondrial function in patient-derived cells such as endothelial colony-forming cells easily cultured from venous blood. We discuss how emerging technology and knowledge may allow us to measure mitochondrial dysfunction as a potential biomarker for diagnosis and risk management. We also discuss the "pros and cons" of animal models of atherosclerosis, and how patient-derived cell models may provide opportunities to develop novel therapies relevant for humans. Finally, we review several targets that potentially alleviate mitochondrial dysfunction working both via direct and indirect mechanisms and evaluate the effect of several classes of compounds in the cardiovascular context.
Collapse
Affiliation(s)
- Weiqian E. Lee
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Elijah Genetzakis
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| |
Collapse
|
26
|
Li J, Li X, Song S, Sun Z, Li Y, Yang L, Xie Z, Cai Y, Zhao Y. Mitochondria spatially and temporally modulate VSMC phenotypes via interacting with cytoskeleton in cardiovascular diseases. Redox Biol 2023; 64:102778. [PMID: 37321061 DOI: 10.1016/j.redox.2023.102778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Cardiovascular diseases caused by atherosclerosis (AS) seriously endanger human health, which is closely related to vascular smooth muscle cell (VSMC) phenotypes. VSMC phenotypic transformation is marked by the alteration of phenotypic marker expression and cellular behaviour. Intriguingly, the mitochondrial metabolism and dynamics altered during VSMC phenotypic transformation. Firstly, this review combs VSMC mitochondrial metabolism in three aspects: mitochondrial ROS generation, mutated mitochondrial DNA (mtDNA) and calcium metabolism respectively. Secondly, we summarized the role of mitochondrial dynamics in regulating VSMC phenotypes. We further emphasized the association between mitochondria and cytoskelton via presenting cytoskeletal support during mitochondrial dynamics process, and discussed its impact on their respective dynamics. Finally, considering that both mitochondria and cytoskeleton are mechano-sensitive organelles, we demonstrated their direct and indirect interaction under extracellular mechanical stimuli through several mechano-sensitive signaling pathways. We additionally discussed related researches in other cell types in order to inspire deeper thinking and reasonable speculation of potential regulatory mechanism in VSMC phenotypic transformation.
Collapse
Affiliation(s)
- Jingwen Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Xinyue Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Sijie Song
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Zhengwen Sun
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yuanzhu Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Long Yang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Zhenhong Xie
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yikui Cai
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yinping Zhao
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
27
|
Ding R, Ren X, Sun Q, Sun Z, Duan J. An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2023; 48:227-257. [PMID: 35998874 PMCID: PMC10248804 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
28
|
Li N, Chang M, Zhou Q, Zhang L, Wang Y, Guan Y, Li H, Zhao Y, Ding C, Hong S, Yao S. Activation of AMPK signalling by Metformin: Implication an important molecular mechanism for protecting against mice silicosis via inhibited endothelial cell-to-mesenchymal transition by regulating oxidative stress and apoptosis. Int Immunopharmacol 2023; 120:110321. [PMID: 37192555 DOI: 10.1016/j.intimp.2023.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Inhalation of silica particles (SiO2) causes oxidative stress-induced inflammation and cell apoptosis, ultimately resulting in irreversible pulmonary fibrosis, Unfortunately, effective treatment or preventative measures have yet to be fully established. Metformin (Met), a relatively safe and effective medication for treating diabetes, may hold promise as protective agent against early-stage pulmonary fibrosis in mice through the activation of autophagy and inhibition of endothelial cell to mesenchymal transition (EndoMT). Here, we investigated whether Met could reduce silicosis in mice by regulating inflammation, oxidative stress, and apoptosis, and to identify the underlying protective effect on endothelial cells. First, through pathological observation, we found that 21 consecutive days of Met (100 mg/kg) administration is optimal against silicosis. Next, using haematoxylin-eosin and Masson's trichrome staining and immunoblotting, we found that Met effectively blunted the inflammatory response and collagen deposition at 56 days after exposure to SiO2. We also demonstrated that Met effectively activates AMPK signalling and markedly relieves oxidative stress, the mitochondrial apoptotic pathway and EndoMT induced by SiO2 exposure both in vivo and in vitro. Overall, Met can alleviate SiO2-induced pulmonary fibrosis by regulating oxidative stress and the mitochondrial apoptotic pathway. The current study provides a rationale for the clinical treatment of SiO2-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Ning Li
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China; School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Meiyu Chang
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China
| | - Qiang Zhou
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| | - Yongheng Wang
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China
| | - Yi Guan
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunjie Ding
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shan Hong
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Sanqiao Yao
- School of Public Health, North China University of Science of Technology, Tangshan 062310, China; School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
29
|
Fairley LH, Das S, Dharwal V, Amorim N, Hegarty KJ, Wadhwa R, Mounika G, Hansbro PM. Mitochondria-Targeted Antioxidants as a Therapeutic Strategy for Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2023; 12:973. [PMID: 37107348 PMCID: PMC10135688 DOI: 10.3390/antiox12040973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress is a major hallmark of COPD, contributing to inflammatory signaling, corticosteroid resistance, DNA damage, and accelerated lung aging and cellular senescence. Evidence suggests that oxidative damage is not solely due to exogenous exposure to inhaled irritants, but also endogenous sources of oxidants in the form of reactive oxygen species (ROS). Mitochondria, the major producers of ROS, exhibit impaired structure and function in COPD, resulting in reduced oxidative capacity and excessive ROS production. Antioxidants have been shown to protect against ROS-induced oxidative damage in COPD, by reducing ROS levels, reducing inflammation, and protecting against the development of emphysema. However, currently available antioxidants are not routinely used in the management of COPD, suggesting the need for more effective antioxidant agents. In recent years, a number of mitochondria-targeted antioxidant (MTA) compounds have been developed that are capable of crossing the mitochondria lipid bilayer, offering a more targeted approach to reducing ROS at its source. In particular, MTAs have been shown to illicit greater protective effects compared to non-targeted, cellular antioxidants by further reducing apoptosis and offering greater protection against mtDNA damage, suggesting they are promising therapeutic agents for the treatment of COPD. Here, we review evidence for the therapeutic potential of MTAs as a treatment for chronic lung disease and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Lauren H. Fairley
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Shatarupa Das
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Vivek Dharwal
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Nadia Amorim
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Karl J. Hegarty
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guntipally Mounika
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
30
|
Li Y, Du Z, Li T, Ren X, Yu Y, Duan J, Sun Z. MitoQ ameliorates PM 2.5-induced pulmonary fibrosis through regulating the mitochondria DNA homeostasis. CHEMOSPHERE 2023; 330:138745. [PMID: 37088202 DOI: 10.1016/j.chemosphere.2023.138745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Pulmonary fibrosis is a severe pulmonary disease, and may related to PM2.5 exposure. Our study aims to explore the pathogenesis of PM2.5-induced pulmonary fibrosis, and MitoQ protective effect in this process. Our results find that inflammatory cells aggregation and pulmonary fibrosis in mice lung after PM2.5 exposure. Moreover, Collagen I/III overproduction, EMT and TGF-β1/Smad2 pathway activation in mice lung and BEAS-2B after PM2.5 exposure. Fortunately, these changes were partially ameliorated after MitoQ treatment. Meanwhile, severe oxidative stress, mitochondrial homeostasis imbalance, overproduction of 8-oxoG (7,8-dihydro-8-oxoguanine), as well as the inhibition of SIRT3/OGG1 pathway have founded in mice lung or BEAS-2B after PM2.5 exposure, which were alleviated by MitoQ treatment. Collectively, our study found that oxidative stress, especially mitochondrial oxidative stress participates in the PM2.5-induced pulmonary fibrosis, and MitoQ intervention had a protective effect on this progress. Moreover, mitochondrial DNA homeostasis might participate in the pulmonary fibrosis caused by PM2.5 exposure. Our study provides a novel pathogenesis of PM2.5-caused pulmonary fibrosis and a possible targeted therapy for the pulmonary diseases triggered by PM2.5.
Collapse
Affiliation(s)
- Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
31
|
Chen Y, Zhang Y, Li N, Jiang Z, Li X. Role of mitochondrial stress and the NLRP3 inflammasome in lung diseases. Inflamm Res 2023; 72:829-846. [PMID: 36905430 PMCID: PMC10007669 DOI: 10.1007/s00011-023-01712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND As an organelle essential for intracellular energy supply, mitochondria are involved in intracellular metabolism and inflammation, and cell death. The interaction of mitochondria with the NLRP3 inflammasome in the development of lung diseases has been extensively studied. However, the exact mechanism by which mitochondria mediate the activation of the NLRP3 inflammasome and trigger lung disease is still unclear. METHODS The literatures related to mitochondrial stress, NLRP3 inflammasome and lung diseases were searched in PubMed. RESULTS This review aims to provide new insights into the recently discovered mitochondrial regulation of the NLRP3 inflammasome in lung diseases. It also describes the crucial roles of mitochondrial autophagy, long noncoding RNA, micro RNA, altered mitochondrial membrane potential, cell membrane receptors, and ion channels in mitochondrial stress and regulation of the NLRP3 inflammasome, in addition to the reduction of mitochondrial stress by nuclear factor erythroid 2-related factor 2 (Nrf2). The effective components of potential drugs for the treatment of lung diseases under this mechanism are also summarized. CONCLUSION This review provides a resource for the discovery of new therapeutic mechanisms and suggests ideas for the development of new therapeutic drugs, thus promoting the rapid treatment of lung diseases.
Collapse
Affiliation(s)
- Yonghu Chen
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yuqi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhe Jiang
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| | - Xuezheng Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| |
Collapse
|
32
|
Charlton NC, Mastyugin M, Török B, Török M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023; 28:molecules28031057. [PMID: 36770724 PMCID: PMC9920158 DOI: 10.3390/molecules28031057] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
This review surveys the major structural features in various groups of small molecules that are considered to be antioxidants, including natural and synthetic compounds alike. Recent advances in the strategic modification of known small molecule antioxidants are also described. The highlight is placed on changing major physicochemical parameters, including log p, bond dissociation energy, ionization potential, and others which result in improved antioxidant activity.
Collapse
|
33
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022; 13:1084604. [PMID: 36605901 PMCID: PMC9807884 DOI: 10.3389/fphys.2022.1084604] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondria are essential organelles that generate large amounts of ATP via the electron transport chain (ECT). Mitochondrial dysfunction causes reactive oxygen species accumulation, energy stress, and cell death. Endothelial mitochondrial dysfunction is an important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis development. Atherosclerosis-related risk factors, including high glucose levels, hypertension, ischemia, hypoxia, and diabetes, promote mitochondrial dysfunction in endothelial cells. This review summarizes the physiological and pathophysiological roles of endothelial mitochondria in endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Kai Qu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Fang Yan
- Department of Geriatrics, Geriatric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Xian Qin
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Kun Zhang
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Wen He
- Department of Geriatrics, Clinical trial center, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Guicheng Wu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
34
|
Wu Y, Di X, Zhao M, Li H, Bai L, Wang K. The role of the NLRP3 inflammasome in chronic inflammation in asthma and chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e750. [PMID: 36444628 PMCID: PMC9695095 DOI: 10.1002/iid3.750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are lung diseases characterized by airflow limitation and chronic inflammation. More and more studies have shown that the occurrence and development of asthma and COPD are related to abnormal immune responses caused by dysregulation of many genetic and environmental factors. The exact pathogenesis of the disease is still unclear. A large number of studies have shown that the NLRP3 inflammasome is involved in the process of chronic airway inflammation in asthma and COPD. Here, we summarize recent advances in the mechanism of NLRP3 inflammasome activation and regulation and its role in the pathogenesis of inflammatory lung diseases such as asthma and COPD. Meanwhile we propose possible therapeutic targets in asthma and COPD.
Collapse
Affiliation(s)
- Yaxin Wu
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Xin Di
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Min Zhao
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Haoran Li
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Li Bai
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Ke Wang
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
35
|
Ma H, Zhou Z, Chen L, Wang L, Muge Q. Anemoside B4 prevents chronic obstructive pulmonary disease through alleviating cigarette smoke-induced inflammatory response and airway epithelial hyperplasia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154431. [PMID: 36115169 DOI: 10.1016/j.phymed.2022.154431] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cigarette smoke (CS) is one of the major risk factors for chronic obstructive pulmonary disease (COPD) and increases the risk of lung cancer (LC). Anemoside B4 (B4) is the main bioactive ingredient in Pulsatilla chinensis (P. chinensis), a traditional medicinal herb for various diseases. It has a wide range of anti-inflammatory, anti-oxidation and anti-cancer activities. However, in recent years, there is no relevant literature report on the therapeutic effect of B4 on COPD, and the anti-inflammatory and inhibitory effects of anemoside B4 on basal cell hyperplasia in CS-induced COPD have not been clearly established. PURPOSE In the present study, we investigated whether anemoside B4 could alleviate CS or cigarette smoke extract (CSE) induced inflammation of COPD and further prevent basal cell hyperplasia, hoping to find its possible mechanism. METHODS In this study, a COPD mouse model was established in C57BL mice by CS exposure 3 months. Bronchial pathology and basal cell hyperplasia were observed by HE staining and immunostaining. The contents of glutathione peroxidase catalase (GSH-PX), malondialdehyde (MDA) and superoxide dismutase (MPO) were determined by GSH-PX, MDA and SOD assay kits, respectively. 16HBE cells were cultured with 5% CSE with or without treatment with B4 (1, 10, 100 μM) or DEX (20 μM) in vitro. Cell viability was assessed by a cell counting kit 8 (CCK-8). Reactive oxygen species (ROS) generation was tested by DCFH-DA. Moreover, anti-inflammatory mechanism of anemoside B4 was further determined by pro-inflammatory cytokines production using RT-PCR. Protein expression levels of MAPK/AP-1/TGF-β signaling pathway were measured by western blot. RESULTS Anemoside B4 improved the lung function of mice, relieved lung inflammation and reduced the MDA, MPO and GSH-Px in the plasma. At the same time, B4 repressed the oxidative stress response and played a role in balancing the levels of protease and anti-protease. During the process of bronchial basal cell hyperplasia, B4 alleviated the degree of cell hyperplasia, and prevented further deterioration of hyperplasia through increased P53 and inhibited FHIT protein. In addition, B4 reduced ROS levels in human bronchial epithelial cells stimulated by CSE in vitro study. Meanwhile, B4 treatment also significantly attenuated increased IL-1β, TGF-β, IL-8 and TNF-α from CSE treated human bronchial epithelial cells. The expression of p-P38, AP-1(c-fos, and c-Jun), TGF-β proteins in MAPK/AP-1/TGF-β signaling pathway were decreased and the signal cascade reaction was blocked. CONCLUSION Anemoside B4 protects against CS-induced COPD. These findings indicated that B4 may have therapeutic potential for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Huimiao Ma
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; Key Laboratory for evaluation on Anti-tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang 330006, PR China
| | - Ziye Zhou
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; Key Laboratory for evaluation on Anti-tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang 330006, PR China
| | - Lanying Chen
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; Key Laboratory for evaluation on Anti-tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang 330006, PR China.
| | - Lingling Wang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Qi Muge
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China; Key Laboratory for evaluation on Anti-tumor Effect of Chinese Medicine by Strengthening Body Resistance to Eliminate Pathogenic Factors, Nanchang 330006, PR China
| |
Collapse
|
36
|
Acrolein evokes inflammation and autophagy-dependent apoptosis through oxidative stress in vascular endothelial cells and its protection by 6-C-(E-2-fluorostyryl)naringenin. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Wu X, Ciminieri C, Bos IST, Woest ME, D'Ambrosi A, Wardenaar R, Spierings DCJ, Königshoff M, Schmidt M, Kistemaker LEM, Gosens R. Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119292. [PMID: 35439594 PMCID: PMC11251497 DOI: 10.1016/j.envpol.2022.119292] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by inflammation and impaired tissue regeneration, and is reported as the fourth leading cause of death worldwide by the Centers for Disease Control and Prevention (CDC). Environmental pollution and specifically motor vehicle emissions are known to play a role in the pathogenesis of COPD, but little is still known about the molecular mechanisms that are altered following diesel exhaust particles (DEP) exposure. Here we used lung organoids derived from co-culture of alveolar epithelial progenitors and fibroblasts to investigate the effect of DEP on the epithelial-mesenchymal signaling niche in the distal lung, which is essential for tissue repair. We found that DEP treatment impaired the number as well as the average diameter of both airway and alveolar type of lung organoids. Bulk RNA-sequencing of re-sorted epithelial cells and fibroblasts following organoid co-culture shows that the Nrf2 pathway, which regulates antioxidants' activity, was upregulated in both cell populations in response to DEP; and WNT/β-catenin signaling, which is essential to promote epithelial repair, was downregulated in DEP-exposed epithelial cells. We show that pharmacological treatment with anti-oxidant agents such as N-acetyl cysteine (NAC) or Mitoquinone mesylate (MitoQ) reversed the effect of DEP on organoids growth. Additionally, a WNT/β-catenin activator (CHIR99021) successfully restored WNT signaling and promoted organoid growth upon DEP exposure. We propose that targeting oxidative stress and specific signaling pathways affected by DEP in the distal lung may represent a strategy to restore tissue repair in COPD.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chiara Ciminieri
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Manon E Woest
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| | - Angela D'Ambrosi
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713AV, Groningen, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713AV, Groningen, the Netherlands
| | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Martina Schmidt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands.
| |
Collapse
|
38
|
Tanabe S, O’Brien J, Tollefsen KE, Kim Y, Chauhan V, Yauk C, Huliganga E, Rudel RA, Kay JE, Helm JS, Beaton D, Filipovska J, Sovadinova I, Garcia-Reyero N, Mally A, Poulsen SS, Delrue N, Fritsche E, Luettich K, La Rocca C, Yepiskoposyan H, Klose J, Danielsen PH, Esterhuizen M, Jacobsen NR, Vogel U, Gant TW, Choi I, FitzGerald R. Reactive Oxygen Species in the Adverse Outcome Pathway Framework: Toward Creation of Harmonized Consensus Key Events. FRONTIERS IN TOXICOLOGY 2022; 4:887135. [PMID: 35875696 PMCID: PMC9298159 DOI: 10.3389/ftox.2022.887135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Jason O’Brien
- Wildlife Toxicology Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Youngjun Kim
- Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Natalia Garcia-Reyero
- U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS, United States
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Nathalie Delrue
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Ellen Fritsche
- Group of Alternative Method Development for Environmental Toxicity Testing, IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, Switzerland
| | - Cinzia La Rocca
- Center for Gender-specific Medicine, Italian National Institute of Health, Rome, Italy
| | - Hasmik Yepiskoposyan
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, Switzerland
| | - Jördis Klose
- Group of Alternative Method Development for Environmental Toxicity Testing, IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Maranda Esterhuizen
- University of Helsinki, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Lahti, Finland, and Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Timothy W. Gant
- UK Health Security Agency, Public Health England, London, United Kingdom
| | - Ian Choi
- Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, Germany
| | | |
Collapse
|
39
|
Palma G, Sorice GP, Genchi VA, Giordano F, Caccioppoli C, D’Oria R, Marrano N, Biondi G, Giorgino F, Perrini S. Adipose Tissue Inflammation and Pulmonary Dysfunction in Obesity. Int J Mol Sci 2022; 23:ijms23137349. [PMID: 35806353 PMCID: PMC9267094 DOI: 10.3390/ijms23137349] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is a chronic disease caused by an excess of adipose tissue that may impair health by altering the functionality of various organs, including the lungs. Excessive deposition of fat in the abdominal area can lead to abnormal positioning of the diaphragm and consequent reduction in lung volume, leading to a heightened demand for ventilation and increased exposure to respiratory diseases, such as chronic obstructive pulmonary disease, asthma, and obstructive sleep apnoea. In addition to mechanical ventilatory constraints, excess fat and ectopic deposition in visceral depots can lead to adipose tissue dysfunction, which promotes metabolic disorders. An altered adipokine-secretion profile from dysfunctional adipose tissue in morbid obesity fosters systemic, low-grade inflammation, impairing pulmonary immune response and promoting airway hyperresponsiveness. A potential target of these adipokines could be the NLRP3 inflammasome, a critical component of the innate immune system, the harmful pro-inflammatory effect of which affects both adipose and lung tissue in obesity. In this review, we will investigate the crosstalk between adipose tissue and the lung in obesity, highlighting the main inflammatory mediators and novel therapeutic targets in preventing pulmonary dysfunction.
Collapse
|
40
|
He L, Zhang CL, Chen Q, Wang L, Huang Y. Endothelial shear stress signal transduction and atherogenesis: From mechanisms to therapeutics. Pharmacol Ther 2022; 235:108152. [PMID: 35122834 DOI: 10.1016/j.pharmthera.2022.108152] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Atherosclerotic vascular disease and its complications are among the top causes of mortality worldwide. In the vascular lumen, atherosclerotic plaques are not randomly distributed. Instead, they are preferentially localized at the curvature and bifurcations along the arterial tree, where shear stress is low or disturbed. Numerous studies demonstrate that endothelial cell phenotypic change (e.g., inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, endothelial-mesenchymal transition, endothelial permeability, epigenetic regulation, and endothelial metabolic adaptation) induced by oscillatory shear force play a fundamental role in the initiation and progression of atherosclerosis. Mechano-sensors, adaptor proteins, kinases, and transcriptional factors work closely at different layers to transduce the shear stress force from the plasma membrane to the nucleus in endothelial cells, thereby controlling the expression of genes that determine cell fate and phenotype. An in-depth understanding of these mechano-sensitive signaling cascades shall provide new translational strategies for therapeutic intervention of atherosclerotic vascular disease. This review updates the recent advances in endothelial mechano-transduction and its role in the pathogenesis of atherosclerosis, and highlights the perspective of new anti-atherosclerosis therapies through targeting these mechano-regulated signaling molecules.
Collapse
Affiliation(s)
- Lei He
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
41
|
Wang Y, Cheng Z, Zhang H, Li S, Pan Y, Zhang W, Huang S, He X, Zou F, Yuan Z, Yan W, Huang H. Tri-n-butyl phosphate delays tissue repair by dysregulating neutrophil function in zebrafish. Toxicol Appl Pharmacol 2022; 449:116114. [PMID: 35690110 DOI: 10.1016/j.taap.2022.116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/14/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Tri-n-butyl phosphate (TnBP) is a widely used organophosphate ester, but its effects on the regenerative process under damaging circumstances remain unknown. In the present study, zebrafish larvae were exposed to 0, 50, 100, 200 and 1000 μg/L TnBP, and the caudal fins were cut at 72 hours post fertilization (hpf). First, after exposure to TnBP, the number of total neutrophils decreased together with decreased neutrophils in the tail, and TnBP inhibited chemotaxis. Second, reactive oxygen species (ROS) levels in the zebrafish decreased greatly. Following exposure to TnBP, transcription levels of many genes regulating fin regeneration, such as fgf20a, fgfr1a, bmp2a and bmp4, were significantly downregulated, while inflammatory factors such as cxcl8a, cxcl18b, il-6, and tnfa were abnormally upregulated. In addition, TnBP inhibited the regenerative area after caudal fin amputation. The inflammatory state was adverse during the regenerative process. In summary, TnBP exposure is immunotoxic and decreases oxidative stress in injured zebrafish larvae.
Collapse
Affiliation(s)
- Yunpeng Wang
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, 400010 Chongqing, China
| | - Zhi Cheng
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Huan Zhang
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Shuaiting Li
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, 400010 Chongqing, China
| | - Yiming Pan
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Weiyang Zhang
- The First Affiliated Hospital of Chongqing Medical University, No.1 Yuanjia Gangyouyi Road, Yuzhong District, Chongqing 400042, China
| | - Siyuan Huang
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Xiwen He
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Fa Zou
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Zhi Yuan
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, 400010 Chongqing, China
| | - Wenhua Yan
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, 400010 Chongqing, China.
| | - Huizhe Huang
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, 400010 Chongqing, China.
| |
Collapse
|
42
|
Shi ZE, Zhang MY, Liu JY, Zhang WD, Hu DM, Wang QX, Ji XL, Jiang YY, Qu YQ. Autophagy Induced by BCL2-Related ceRNA Network Participates in the Occurrence of COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:791-808. [PMID: 35431545 PMCID: PMC9005473 DOI: 10.2147/copd.s347733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a predominant cause of mortality worldwide. Autophagy, which depends on a lysosomal degradation pathway, plays an essential role in the occurrence of COPD. The aim of our study was to identify the potential function of autophagy and construct a BCL2-related competing endogenous RNA (ceRNA) network that induces autophagy in COPD. Methods Blood sample data from GSE31568, GSE24709, and GSE61741 were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs in COPD and controls were identified via GEO2R. Transcription factors were obtained from FunRich. DIANA, miRDB, miRTarBase, and TargetScan were used to predict target genes of miRNAs. Autophagy genes were collected from the Human Autophagy Database (HADb). The GSE151052 dataset was used to identify autophagy-related differentially expressed genes in tissues. Functional enrichment and protein–protein interaction (PPI) network analyses were conducted via Metascape and the STRING network. Spearman correlation analysis was used to analyze the relationship between autophagy-related differentially expressed genes and lung function. The BCL2-related ceRNA network was modeled by Cytoscape. Results We obtained 41 differentially expressed miRNAs and 10 significantly different transcription factors. We identified 19 autophagy-related differentially expressed genes that were significantly different (P<0.05) in tissue samples. The most significant enrichment in Metascape was an autophagy item, which further confirmed autophagy participation in the occurrence of COPD. PPI network analysis found four genes (BCL2, BECN1, MAPK8, and ITPR1), among which BCL2 was correlated with both FEV1/FVC and FEV1 prediction. Finally, the BCL2-related ceRNA network was constructed to clarify the interaction of RNAs and occurrence of autophagy, including 18 miRNAs and 65 lncRNAs. Conclusion We identified 19 autophagy-related differentially expressed genes that participated in COPD; among them, BCL2 was correlated with lung function, and a BCL2-related ceRNA network was constructed, which further revealed the potential mechanism of autophagy involvement in COPD.
Collapse
Affiliation(s)
- Zhuang-E Shi
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Wen-Di Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Dong-Mei Hu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Qing-Xiang Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, People’s Republic of China
| | - Yuan-Yuan Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China
- Correspondence: Yi-Qing Qu, Department of pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People’s Republic of China, Tel +86 531 8216 9335, Fax +86 531 8296 7544, Email
| |
Collapse
|
43
|
Maiuolo J, Carresi C, Gliozzi M, Mollace R, Scarano F, Scicchitano M, Macrì R, Nucera S, Bosco F, Oppedisano F, Ruga S, Coppoletta AR, Guarnieri L, Cardamone A, Bava I, Musolino V, Paone S, Palma E, Mollace V. The Contribution of Gut Microbiota and Endothelial Dysfunction in the Development of Arterial Hypertension in Animal Models and in Humans. Int J Mol Sci 2022; 23:ijms23073698. [PMID: 35409057 PMCID: PMC8999124 DOI: 10.3390/ijms23073698] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The maintenance of the physiological values of blood pressure is closely related to unchangeable factors (genetic predisposition or pathological alterations) but also to modifiable factors (dietary fat and salt, sedentary lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse, smoking and use of psychogenic substances). Hypertension is usually characterized by the presence of a chronic increase in systemic blood pressure above the threshold value and is an important risk factor for cardiovascular disease, including myocardial infarction, stroke, micro- and macro-vascular diseases. Hypertension is closely related to functional changes in the endothelium, such as an altered production of vasoconstrictive and vasodilator substances, which lead to an increase in vascular resistance. These alterations make the endothelial tissue unresponsive to autocrine and paracrine stimuli, initially determining an adaptive response, which over time lead to an increase in risk or disease. The gut microbiota is composed of a highly diverse bacterial population of approximately 1014 bacteria. A balanced intestinal microbiota preserves the digestive and absorbent functions of the intestine, protecting from pathogens and toxic metabolites in the circulation and reducing the onset of various diseases. The gut microbiota has been shown to produce unique metabolites potentially important in the generation of hypertension and endothelial dysfunction. This review highlights the close connection between hypertension, endothelial dysfunction and gut microbiota.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, in IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy;
- Correspondence: (J.M.); (M.G.)
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Correspondence: (J.M.); (M.G.)
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
| | - Irene Bava
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, in IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy;
| | - Sara Paone
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro Italy, 88021 Catanzaro, Italy; (C.C.); (R.M.); (F.S.); (M.S.); (R.M.); (S.N.); (F.B.); (F.O.); (S.R.); (A.R.C.); (L.G.); (A.C.); (I.B.); (E.P.); (V.M.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| |
Collapse
|
44
|
Liao K, Lv DY, Yu HL, Chen H, Luo SX. iNOS regulates activation of the NLRP3 inflammasome through the sGC/cGMP/PKG/TACE/TNF-α axis in response to cigarette smoke resulting in aortic endothelial pyroptosis and vascular dysfunction. Int Immunopharmacol 2021; 101:108334. [PMID: 34768128 DOI: 10.1016/j.intimp.2021.108334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cigarette smoke (CS) is associated with vascular injury and dysfunction, which may be mediated by iNOS and NLRP3. However, the exact mechanism is unknown. METHODS iNOS-knockout and NLRP3-knockout C57BL/6 mice were exposed to air or CS. The vascular structure was examined by hematoxylin-eosin staining. The vascular tension was measured by a vascular reactivity assay. The expression of iNOS, NLRP3, caspase-1p20, IL-1β and eNOS were measured by western blotting. Human aortic endothelial cells (HAECs) were exposed to L-NIL (iNOS inhibitor), MCC950 (NLRP3 inhibitor), ODQ (sGC inhibitor), KT5823 (PKG inhibitor) or TAPI-1 (TACE/ADAM17 inhibitor) for 1 h prior to cigarette smoke extract (CSE) treatment. The cell viability and lactate dehydrogenase activity were assessed and pyroptosis was determined by scanning electron microscopy. The mRNA expression of TNF-α, and protein expression of iNOS, active-TACE, NLRP3, caspase-1p20, IL-1β, and eNOS were measured. RESULTS CS resulted in shrinkage of endothelial cells, impaired aorta relaxation, reduced eNOS expression, and induced expression of iNOS, NLRP3, caspase-1p20 and IL-1β, which could be prevented by knockdown of iNOS and NLRP3. CSE reduced cell viability, induced LDH release and pyroptosis, and promoted iNOS, NLRP3, caspase-1p20, and IL-1β expression and reduced eNOS reduction, which could be reversed by inhibition of iNOS or NLRP3 in HAECs. Altogether, activation of the NLRP3 inflammasome by iNOS in CS-exposed HAECs may be mediated by the sGC/cGMP/PKG/TACE/TNF- α pathway. CONCLUSION These results link iNOS to NLRP3 in CSE-stimulated HAECs through the sGC/cGMP/PKG/TACE/TNF-α pathway. The findings identify a mechanism through which iNOS and NLRP3 contribute to the pathogenesis of CS-induced pyroptosis and impaired aorta relaxation in HAECs.
Collapse
Affiliation(s)
- Ke Liao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Ding-Yi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Hui-Lin Yu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Hong Chen
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China.
| | - Su-Xin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
45
|
Wang W, Zhao T, Geng K, Yuan G, Chen Y, Xu Y. Smoking and the Pathophysiology of Peripheral Artery Disease. Front Cardiovasc Med 2021; 8:704106. [PMID: 34513948 PMCID: PMC8429807 DOI: 10.3389/fcvm.2021.704106] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Smoking is one of the most important preventable factors causing peripheral artery disease (PAD). The purpose of this review is to comprehensively analyze and summarize the pathogenesis and clinical characteristics of smoking in PAD based on existing clinical, in vivo, and in vitro studies. Extensive searches and literature reviews have shown that a large amount of data exists on the pathological process underlying the effects of cigarette smoke and its components on PAD through various mechanisms. Cigarette smoke extracts (CSE) induce endothelial cell dysfunction, smooth muscle cell remodeling and macrophage phenotypic transformation through multiple molecular mechanisms. These pathological changes are the molecular basis for the occurrence and development of peripheral vascular diseases. With few discussions on the topic, we will summarize recent insights into the effect of smoking on regulating PAD through multiple pathways and its possible pathogenic mechanism.
Collapse
Affiliation(s)
- Weiming Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tingting Zhao
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kang Geng
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Gang Yuan
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youhua Xu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
46
|
Hu K, Xiao L, Li L, Shen Y, Yang Y, Huang J, Wang Y, Zhang L, Wen S, Tang L. The mitochondria-targeting antioxidant MitoQ alleviated lipopolysaccharide/ d-galactosamine-induced acute liver injury in mice. Immunol Lett 2021; 240:24-30. [PMID: 34525396 DOI: 10.1016/j.imlet.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/02/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The mitochondria are the primary source of reactive oxygen species (ROS) under pathological condition, but the significance of mitochondrial ROS in the development of Lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute liver injury remains unclear. In the present study, the level of mitochondrial ROS in LPS/D-Gal has been determined by MitoSox staining and the potential roles of mitochondrial ROS in LPS/D-Gal-induced liver injury have been investigated by using the mitochondria-targeting antioxidant MitoQ. The results indicated that LPS/D-Gal exposure induced the generation of mitochondrial ROS while treatment with MitoQ reduced the level of mitochondrial ROS. Treatment with MitoQ ameliorated LPS/D-Gal-induced histopathologic abnormalities, suppressed the elevation of AST and ALT, and increased the survival rate of the experimental animals. Treatment with MitoQ also suppressed LPS/D-Gal-induced production of tumor necrosis factor α (TNF-α), inhibited the activities of caspase-3, caspase-8 and caspase-9, decreased the level of cleaved caspase-3 and reduced the counts of TUNEL positive cells. These results indicate that mitochondrial ROS is involved in the development of LPS-induced acute liver injury and the mitochondria-targeting antioxidant MitoQ might have potential value for the treatment of inflammation-based acute liver injury.
Collapse
Affiliation(s)
- Kai Hu
- Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Lidan Xiao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yaping Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Sha Wen
- Department of General medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Tang
- Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China; Department of Pathophysiology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
47
|
Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5188306. [PMID: 34354793 PMCID: PMC8331273 DOI: 10.1155/2021/5188306] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are indispensable for energy metabolism and cell signaling. Mitochondrial homeostasis is sustained with stabilization of mitochondrial membrane potential, balance of mitochondrial calcium, integrity of mitochondrial DNA, and timely clearance of damaged mitochondria via mitophagy. Mitochondrial dysfunction is featured by increased generation of mitochondrial reactive oxygen species, reduced mitochondrial membrane potential, mitochondrial calcium imbalance, mitochondrial DNA damage, and abnormal mitophagy. Accumulating evidence indicates that mitochondrial dysregulation causes oxidative stress, inflammasome activation, apoptosis, senescence, and metabolic reprogramming. All these cellular processes participate in the pathogenesis and progression of chronic respiratory diseases, including chronic obstructive pulmonary disease, pulmonary fibrosis, and asthma. In this review, we provide a comprehensive and updated overview of the impact of mitochondrial dysfunction on cellular processes involved in the development of these respiratory diseases. This not only implicates mechanisms of mitochondrial dysfunction for the pathogenesis of chronic lung diseases but also provides potential therapeutic approaches for these diseases by targeting dysfunctional mitochondria.
Collapse
|
48
|
Orekhov AN, Poznyak AV, Sobenin IA, Nikifirov NN, Ivanova EA. Mitochondrion as a Selective Target for the Treatment of Atherosclerosis: Role of Mitochondrial DNA Mutations and Defective Mitophagy in the Pathogenesis of Atherosclerosis and Chronic Inflammation. Curr Neuropharmacol 2021; 18:1064-1075. [PMID: 31744449 PMCID: PMC7709151 DOI: 10.2174/1570159x17666191118125018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory condition that affects different arteries in the human body and often leads to severe neurological complications, such as stroke and its sequelae. Affected blood vessels develop atherosclerotic lesions in the form of focal thickening of the intimal layer, so called atherosclerotic plaques. OBJECTIVES Despite the high priority of atherosclerosis research for global health and the numerous preclinical and clinical studies conducted, currently, there is no effective pharmacological treatment that directly impacts atherosclerotic plaques. Many knowledge gaps exist in our understanding of the mechanisms of plaque formation. In this review, we discuss the role of mitochondria in different cell types involved in atherogenesis and provide information about mtDNA mutations associated with the disease. RESULTS Mitochondria of blood and arterial wall cells appear to be one of the important factors in disease initiation and development. Significant experimental evidence connects oxidative stress associated with mitochondrial dysfunction and vascular disease. Moreover, mitochondrial DNA (mtDNA) deletions and mutations are being considered as potential disease markers. Further study of mtDNA damage and associated dysfunction may open new perspectives for atherosclerosis treatment. CONCLUSION Mitochondria can be considered as important disease-modifying factors in several chronic pathologies. Deletions and mutations of mtDNA may be used as potential disease markers. Mitochondria-targeting antioxidant therapies appear to be promising for the development of treatment of atherosclerosis and other diseases associated with oxidative stress and chronic inflammation.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russian Federation,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian, Federation,Institute of Human Morphology, Moscow 117418, Russian Federation
| | - Anastasia V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russian Federation
| | - Igor A Sobenin
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russian Federation,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian, Federation,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Nikita N Nikifirov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian, Federation,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia,Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow 119334, Russia
| | | |
Collapse
|
49
|
Ma Y, Long Y, Chen Y. Roles of Inflammasome in Cigarette Smoke-Related Diseases and Physiopathological Disorders: Mechanisms and Therapeutic Opportunities. Front Immunol 2021; 12:720049. [PMID: 34367189 PMCID: PMC8334727 DOI: 10.3389/fimmu.2021.720049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cigarette smoke damages a wide range of immunological functions, including innate and adaptive immune responses. Emerging literature demonstrates that inflammasome constitutes an essential component in innate immune response. In this review, we focus on the cumulative mechanisms of inflammasome in cigarette smoke-related diseases and physiopathological disorders, and summarize potential therapeutic opportunities targeting inflammasome. This review suggests that inflammasomes (NLRP3, NLRP6, NLRP12 and AIM2) are involved in the pathogenesis of several cigarette smoke-related diseases (including COPD, ALI, atherosclerosis, kidney injury, bladder dysfunction, and oral leukoplakia) and physiopathological disorders (macrophage dysfunction, endothelial barrier dysfunction, podocyte injury, and ubiquitin-mediated proteasomal processing). MyD88/NF-κB, HMGB1, production of ROS, endoplasmic reticulum stress and mitochondrial dysfunction, and Ca2+ influx are potentially involved in cigarette smoke induced-inflammasome activation. Strategies targeting ROS/NLRP3 inflammasome axis are most widely investigated and show potential therapeutic effects.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingjiao Long
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA, Thangavelu L, Singh SK, Rama Raju Allam VS, Jha NK, Chellappan DK, Dua K, Gupta G. Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact 2021; 345:109568. [PMID: 34181887 DOI: 10.1016/j.cbi.2021.109568] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/28/2022]
Abstract
Nuclear factor-kappa B, involved in inflammation, host immune response, cell adhesion, growth signals, cell proliferation, cell differentiation, and apoptosis defense, is a dimeric transcription factor. Inflammation is a key component of many common respiratory disorders, including asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, and acute respiratory distress syndrome. Many basic transcription factors are found in NF-κB signaling, which is a member of the Rel protein family. Five members of this family c-REL, NF-κB2 (p100/p52), RelA (p65), NF-κB1 (p105/p50), RelB, and RelA (p65) produce 5 transcriptionally active molecules. Proinflammatory cytokines, T lymphocyte, and B lymphocyte cell mitogens, lipopolysaccharides, bacteria, viral proteins, viruses, double-stranded RNA, oxidative stress, physical exertion, various chemotherapeutics are the stimulus responsible for NF-κB activation. NF-κB act as a principal component for several common respiratory illnesses, such as asthma, lung cancer, pulmonary fibrosis, COPD as well as infectious diseases like pneumonia, tuberculosis, COVID-19. Inflammatory lung disease, especially COVID-19, can make NF-κB a key target for drug production.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | | | - Sk Batin Rahman
- Bengal School of Technology, Churchura, Hooghly, West Bengal, India
| | - Waleed Hassan Al-Malki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India.
| |
Collapse
|